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Analytic Solutions to Nonlocal Abstract Equations.
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Sunto. — Si considera i problema dellesistenza di soluzioni globali analitiche per
equazioni astrutie, in spozi di Hilbert, di tipe Klein-Gordon corretle con termini
non locali, del tipo: '

w” + mfaully, (An, %)) A+ nllulfy, (Au, ) u=0.
In ﬁm‘tficalare gi individuano classi di condizioni sulle Sfunzioni m ed n (gin in pre-
senza che in assenza di emergie conservate) che gorantiscono Lesistenza di teli
soluzioni .

Summary. — In this paper we study the problem of existence of globul solutions for
some classes of abstract equations; that generalize some type of Klein-Gordon equa-
tions, with nonlinear nonlecal terms of Kivchhoff type. We find some conditiona
that guarantee the existence of such solutions whether in presence or in absence of
a conserved energy. :

1. -~ Introduction.

Let V be an Hilbert space, which is imbedded in this antidual space V' by a
symmetric eontinuous compact map, and let H be the Hilbert completion of V'
with respect to the product (%, v)y= {u, v), where {u, v} is the antiduality
between V' and V. '

Let A: V-V’ be a symmetrie positive definite isomorphism, ie.

(1) (Au,v)=(4v,u) and (Au,u)=clul} with c>0.

In this framework, we consider the following abstract Cauchy problem:

12 " + 1l lullr, A, u)) A+ nllulffy, (A, w)) =10
wW0)=upeV,u'(0)=weV

while m, n:[0, + @[ %[0, + ®[—>R are continuous functions and:
~ mfr,8)=0 on [0, +w[x[0, +of.
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Since the operator A is symmetric and coercive, and m is nonnegative,
equation in (1.2) is of weakly hyperbolic type.

In the case n.=0 and m(r, 8) = m(s), a concrete version of (1.2) is the
Kirchhoff equation (introduced by [8]: '

13) uu—'m;(;Wula) Au=0 zeQ

where 2= [0, 2z]* (and we look for solutions # which are 2a-periodic fune-
tions in the space variables). The problem of existence of local-global solutions
for (1.3) has been studied by a lot of authors (both in Scbolev spaces and in the
analytic case); we refer to [1] and [10] for a complete bibliography. Only we re-
call some authors who studied the problem of analytic global golutions.

Bernstein [3] proved that equation (1.3) with analytic periodic data has a
global solution in one space dimension, assuming that

(i.4) m Lipschitz continuous and m=+v>0.

Pohozaev [9] extended this result to geveral space dimensions. Later on Arosio
& Spagnolo [2] relaxed hypothesis (1.4) by assuming merely that » is continu-
ous and: ‘

+m
(1.5) m is bounded or f m(s) ds = + .
]

Condition (1.5) was later removed by I’Ancona & Spagnolo [5]-6), indeed
they supposed only m continuous and m = 0. We remark that in [6] it was con-
gidered the abstract generalization of (1.3), i.e. u" + m{{An, u)) Au = 0. Later
on in [7] it was proved the existence of global in time, periodie in x, analytic
solutions for some system of the form:

h
(16) U= El Bi(lut 1B, ..., ) UL,

_ A
where U= (%, ..., Un), matrices B; are continuous, 2 Bi(ry, ..., 7m) §; has

=1
real eigenvalues for all £ = (£1, ..., £4) eR"\{0} andi|f|| denote the L *-norm.
Moreover they assumed that: :

THEOREM 1. - The Iﬁaiz'ices Bi(ry, ..oy Tm) are_bounded.

or

THEoREM 2. — System (1.6) has a conserved coercive energy, ie. there

exists some function L{ry, ..., Tm) (With 71, ..., 7% =0) such that if U=

ANALY¥TIC BOLUTIONS TO NONLOCAL ABSTRACT EQUATIONS 183

{4, ..., ty) i8 2 solution of (1.6) then
an L ®P, . b @I = L (O, ..., (O

Moreover

Liry, ..., Tp) = + 2,
Pttt g+ {1y ooes )

ar

THEOREM 8. — System (1.6) is 2 x 2 in one space variable, with a conserved
energy (see (1.7)). Moreover, denoted by ¢ ; 4,7 =1, 2 the coefficients of the
matrix B, one has: '

® Q0 92120

® |y, (7, 8)| SA(r) (A continuous function)
e ig%'L('r, g)—>+® ag r—>+ @
5

® |Py,1(r, 8)— g s, 8) ]2SC¢1.2.(7, s) for some constant C.

By following [7], the purpose of this paper is to study the problem of exis-
tence of A-analytie solutions (see Definition 2.1) for (1.2). We observe that, in
contrast with the cases considered in the literature, in our situation we have
not necessarily a positive conserved energy and the funetions m and n in (1.2}
in general are not bounded.

We remark that (1.2) is an abstract equation modeling the Klein-Gordon
nonloeal equation: : :

a8 s~ o, (VP du -+ o, 9y w=0.

In fact we treat (1.2) if there exists a conserved energy (see Theorem 3.1-
8.3) or a semi-conserved energy (see Theorem 3.5). In particular we prove the
global well-posedness in the class of analytic 2z-periodic functions for the
Cauchy problem to (see example 3.7): '

g — (| Vadl?) A + m(fuff) w = 0 _
where m 2 0 and 'Tn(s) ds e R. Another equ_ation to which our resulis apply
is (see example 3.11):
g — [Vl 4u + [Vulfu=0.

In Section 2 we give some definitions and a result of extension of solutions of
the linear equation u" + m(f) Au + nw{t) u =0.

In Section 3 we state the main results and give some applications.

In Section 4 we give the proofs.
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9. - Preliminaries-Linear case.
2.1. Preliminaries.
' LetV,H,V', A be ss in the Introduction. We give the following (see [9]):
. DeFINITION 2.1. — A vector veV is called A-analytic if there exist con-
stants K, A such that e
‘AlyeV and [(A%, )| B < KA for each j=0,1,...
In the following we denote the class of A-analytic vectors by A.
Since the embedding Ve—V" is compact, the Hilbert space H has a or-
thonormal basis (o) cV guch that for each k=1,2,..
@1) Avg=Aiu, Ag>0 and >k 28 b+,
Let us remark that we can asswne that (i) i a nondecreasing gequence, Now
let us give the following (see [2], Proposition 1)
PROPOSITION 2.2. — A vector %= S wyv, is in A if ond only if there exists
some &> 0 such that: L :

E::‘ I'Mk.lze'”"‘< +ee,

At this point we recall some examples of A-analytic vectors, when A = — 4 (see

(21, p- 3). :
Let H per (R") be the space of the functions & H(R™), o-periodic in each

variable (a>0). )

1. Let us set V= Hip(®B"), a0d V' = Hle(R*);then A: V-V’ and if
ueVis analytic, then it is A-analytic. |

2. Let @ ¢ R* be a bounded open gubset. Let us set V= Hg(£2) and V'=
H1(Q),thenA: V—V'. Moreover if % 15 analytic in some neighborhood of &2
and ' :

A*u=0 on 2Q for eax:h k=0,1...
then ueV and u is A-analytic. B
29, Linear equation.
Let us consider the Cauchy problem

{u"+m(t)Au+n(t)%=0

2.2) o, W1 EA
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where the coefficients m, » satisfy the following conditions:

; C

T
(2.8) m=0, Jm(s)ds<+m,' f|n(s)]ds<+oo.
[ .

The following lemma is proved by usi

| : y using the method of perturbed energy of in-
finite n.rder, firstly introduced by [4] and already used by [2], [6], [7T] gg - tl}I:e
convenience of the reader we sketch the procf. R

LEMMA 23. - Let us suppose that m ]
CZ([O, ﬂ, V) bﬂ a sol‘ut'im of (22)' y Sat?,sw (2.3) ﬂ'nd lﬂt urE

Then u ond 4’ can be extended as A-analytic functions on [0, T].

PROOF; - Let o ,(£) be a fami . .. .
positive fan ctionzg e a family of Friedrics mollifiers and let us define the

my(£) = it * o, () + & + |7 * 0, — M1,

where # denote the hull extension of
th .
We have (see [2]): m on the whole real axis R.
24) l m,—m
¥ ms

Now let i i i
s bus :(enoiuezh Ey using the Fourier's expansion, the considered solution
2) by u(t) = g.l‘u..k(t) vy, then u; satisfies the Cauchy problem:

i m—)O as e—0.
L]

{ uf +m(t) Aiu, +nt) w, =0
up(0) = o, ks il (0) = g1,

. ‘o
where g = =5
U k§=:1 U, k¥ and u; = 121 Uy, bV

If we define
iy a(8) = [ ) |2+ m,(8) | Ao %
we find easily: - |
E!, < m, —m m,) '
k = B+ - E, e+ |l Joeg |

< (] m\’/;z_:’n Ak+CE(1+IAiI))E,,a- .

k
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Henee, by 21)+2.3), we obtain:

j? m,(8) — m(8) \ds '
B, () < C,rEex @& | As] \_——-—-—m

Let & (see Proposition 2.2) be guch that:

55 goin(juy p 2+ a0
k=1

then, by 24) there exists €7 0 such that

A<+ =

+§.‘4 Ei,k(t) [ 1M < K!,T% g% E,
g | analytic functions on

! a5 A-
Therefore as in 2] » and ' call by extended
io, T

3 - Results-Applications.

3.1. Principal resulis. .
: 0, +w[bea conhnu'ous
ﬁ“";:‘;: i‘f[gc’):a]?lo Eq:;[o the greatest golution of
y =L
#0) =%
subsets of 10, + =l

(1.2} a continuous funetion
for all solution %€

fumction. We say L admissible

is bounded from above on the boun;l;d s ¢
In the following we call conserv me'rg'ys y for Ot
E(w, r,8) =W+ M(r, 8) defined for w, 7,87

c([0, T, V) of 1.2
Bl ), a2, (A%

that we indicate by ¢ the
can state:

w(t) = Ecfua i o I, {Avio, %))+

call constant in (1.1).
Let us re
At this point we
e that
THEOREM 3.1. — Let_us suppose LK
least one of the following 18 verified:
1. the functiohs m, 7 are hounded; .
2. Eisa conserved energy for (1.2), moreover:

the initial duia o, €A ond that @b
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(@) M(r, 8) = Mo(r, 3) + K(r), with K<0 and

@1 r,.ao.i!r{u,meo(r’ s)eR;
(b for all ﬁ?—O, the function L(y)=y+p —K(y) (3 an admissible
(c) for each I=1[0,z]c[0, + o[

(3.2) lim min E(w,r,8)=+w.

wt+s—+w rel,r<(lf)s

Then problem (1.2) has a global A-analytic solution e C([0, + =f, V).
An immediate consequence of Theorem 3.1 is the following;

COROLLARY 3.2, — Let us suppose that E is a conserved energy for (1.2)
and: .
_ Blw, r, 8)=+cw.
) r+wta—+eo )
Then problem (1.2) has o global A-analytic solution ueC*([0, + «[, V) if
Uy, Uy A. ' '

Let us remark that the result of {6] is not contained in the previous theo-
rem, since in that case there exists a conserved energy, but not verifies
necessary (3.2). Now we give a generalization of such result.

THEOREM 3.3. — Let us suppose that E is o conserved energy for (1.2) such
that M(r, 8) = My(r, 8) + K(r), with K<0 and:
3.3} r.,;ug{ (maMu('r, seR.

Moreover let us assume that for all g = 0, the function L{y) =y +  — E(y)
is an admissible function and that for some conlinuous function v and
r<c¢ls:
3.4) |nlr, 8)| < w(r, M{r, 8)).

Then the Cauchy probléem (1.2) with wug, w, €A has a global A-analytic solu-
tion ue C*([0, + »[, V).

Let us observe that in case of 2 corhpletely general M we can not assure the
existence of a global analytic solution. In fact we have:
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R), V' = Hikper B fd? = ﬁf wiz)f de ond

= Hins
Exameis 34. — Let V= Hinper & such that the Cauchy problem

A=—4. Then there exist some Yo 1

. i o
- Au —‘“’M“A‘M ’
% T

ul0, %) = Up» '"’0(0’ x} =‘."’l’

bal analytic solution .
has not a glo 4 the hypotheses of Theorem

case of Example 3  enorgy, then

t that in the if E is a conserv

et us point out
3.1-3.3 are not verified. Indeed

1 ).‘ﬁ+con5tant-
E(q,u+w:c's=!m‘! 3 .

E(w, 7,8} = |
<~ L for
. if we want gatisfy (8.1) (resp (3.3)) then must be K(r) .3 |
re, if we ; 5 .
Tlal;z:? then L & 2 o adthBs:l:lz f;‘x?c:o ich do not exists & conserved
’ e

Let us consider 1OW umetion. We ll

: =0besa continuous «
enEiE:; E(w,r, =% + hgé:,(;)z')%ff, :h’;e e(:ﬁsts o continuous function %o(7 8)
E semi-caw:seruedcz(w V) is & solution of (1.2) then |
guch that, if %€ L P ol
4 o s Tl (A0, D) = o Qs (A, ) 5 ORI
% ‘
We can therefore state: —

i d
that E8 G semi-conserve
o 3.5. — Liet u8 suppose ”
wit’}fHBEJ(()::ﬂs) 2 0. Moreover let Us suppose th;m e .
‘ <c ls, W nomdecre
2 s'réK(M('r,s)_),fo'rr-. e ‘ .
timl. mTi.(;) =y + Kly) 18 o admissible Fumction.
9. At least oné of the follownng
' 1cto, +ol

M(r, 8) =+ %3

conditions is verified:
(@ for each 1=10:2

85 .E‘?m rei, (108

continuous function ¥ and
\ndr, 8 < ylr, M(r, 5))

rs.c"'st

() for some
36
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(c) for some continuous functions ¢, y with ._1_?11“ @(8) = + o
X)) [nolr, 8) |¢(5) <y(r, M(r, 8)Xr<c's)

and for some continuous function y(-,-,-), nondecreasing in each varie-
ble:

(3.8) |n(r, 8)| < y(r, M(r, ), ny(r, 8)) (r éc:l 8).

Then Problem (12) has a global A-analytic solution % e C?([0, + [, V) as
200m 08 Uy, €A, } .

An immediate consequence of Theorem 3.5 is the following:

COROLLARY 3.6. — Lef us suppose that E is a semi-conserved energy for
(1.2) -such that

ni(r, eyr<c, +cMlr,s) and lm M(r,8) =+,

r+a—++w

Then Problem (1.2) has o global A-analytic solution we CE([0, + o[, V) as
8007 QS Uy, W 4.

3.2. Applications.
Now we get some examples in which we can apply Theorem 3.1-3.5.
In these examples, we assume V=H. . (R"), V' = H,.(R"), and A= — 4.

Moreover, in all the considered case, we suppose that the inifial data
g, €V are A-analytic, and ||-]| denotes the usual L2 norm.-

EXAMPLE 8.7. — Let us suppose that m, n:[0, + w[—R are continuous
Sfunctions and that:

@39 m=0 and inf [no)docR.
r=0 0
Then the Cauchy problem

.10) { s — ol [Vl A+ m(ll®) = 0

’M(O, 27) = Ug, ut(oi w) =

has a global analytic solution ueC2([0, + =], V).
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b blem: ]
e g — [VallP Au — (o5 ol + 1) =0
@10 { w0, &) = tip) W(0, 2) =%

has o global analiytic solution weCH10, + ool ‘

The Cauchﬁ problem:

8. -
ExXaMPLE 3 vulf ., Mu= 0 |
Uy — Tﬂm; (1 o |
(3.12) (0, %) = Ugs u(0, ) =U ,:

, V)
has o global analytic solution we C2(0, + =L

The Cauchy problem: |
bl gyt arctan (Ve =0
e 1y (val?
w0, ) = %o, W0, ) =%
weC(0, +=L V)

EXAWLE 3.10. -

3.13)

has o globel am_dyt'bc solution
ExaMpLE 3.11. - The Cauchy problem:

s — |Vl A+ [Vulf =0
LA(O, %) = g, %0, X) =W,

eCH10, +=L V)

(3.14)

has o global analytic solution %

4, — Proofs. ' N
fix a notation that we use in the following proofl;,{ 1.; .
" ] = 'ﬂ(“’v(t) SAWTE), -
Av(t), M) Tt
Firstly we prove: I "

A there exists O t'mw
’ _ For every My, 1€ e e
LEMII)AM:LGP.) has o solution weCX0,TLV)
mﬂoer w,u" are A-analytic.
— (we follow the outline of 2D

C“([D, T]! V)'

PrOOF.
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Lét Vi be the linear space spanned by i, ..., v, (the first h-eigenvectors)
and let P,: H—V; be defined by:

B
Pyu:= kzl (%, )y V.

Let us consider the Cauchy problem in Va:

i + s |, (Auy, 1)) Ag@_’l' nlleen (B, (Aot )y w = 0

{CP;) {
u;,(0) =Pkup, uy (0) = Pyuy,

Since V), is finite dimensional, by the Peano’s Theorem, pmﬁlern (CP;) has a lo-
cal golution, which can be extended to a maximal solution %;:[0, T[>V,
Now let us prove that T, = 7> 0 for all heXN.
Ii we set y:(t) := (uy(£), v.)y, then we can define:
1 .
e (uy, 1) := E(A% [ @) |2+ Jo) |2+ g (£ ]2).

It is easy to prove that:

i i
exuis, 1) < g (uy, O)exp( fik|1~m(s)|ds+f]1—nu,,(a)|ds)
: 0 0 )

=: & (up, 0) y (),
therefore one has

3
@1 el + Ao, ) <2 3 a1, 0) 4.

On the 6ther part, by the A-analyticity of ug, u; (see Proposition 2.2), there
exists some & > 0 such that: : o

+

42) 2 k§1 e (1, 0) X< 018
where we have set, for C':=¢®

Bi=1+C S (o vy P21+ |, ) [*+ [ 53[5
Now let us define:

-1
T:=(1+ sup |L—mlr, 8)| + sup ]1—n(r,s)|) 5.
Osrasg

O&Eresg
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' N, and
Let us prove that Tn> T for all hE

o, T1.
) “uh‘ﬁh (A'“'h: 'H‘h} é-ﬁ on [
4.3
= <f on 1o, t1t.
Let T# = gup {tE[O, Th[" “‘u'h“%i!(Aﬂh! u’h) ﬁ ad-cﬁon that T'r sT. o
. 1
h that T#>T- Let us BUPPOEE by contr
all prove > '
W? - epby the definition of T
this case, B . )
) (o) |ds+ J 11-ma @182
“ o “ i i ceint.hiBBituation
‘ . also that T = 7', is not ?.dmiss.lble 1(1amma ptacwpn
Now i wa;sunded and then the S(;uh';!;eru:;:fe e o
o B then must be T < Th- X

tended on {0, T h -
e BT + {Aun(TE (TN <2C kgl e (s
k g

one obtains
), wTEN=h-

by the definition of T&
B T + (Asin

contradiction- So we have
7T we obtain:

Whereas,

s ual®)
. 1) < Ce® () (ko VA (243 + |G w0 T @, Ve
ety U=

d=>0 . 2
hence, for some - N .
5 <S ron({ug Wi PAE | ttgs )z 1+ |
S, Atex(tn ty<d 2
£el , o

this, the sequences (A%ui) .lﬁl.d V(i b
B Nov;r the compactness of AT
there exists 2 subsequence (u,;

! —>

and Ay, —> At

U, > Uos u'hi:" ”
in (CPy} We 8ee that s~
and a

. +@ 20k g, (4 0) < 4o,
§ gttre,u, )< ,,%103 el

k=1

We recall that, by (-

un
b2y,) are boﬁ’s Theorer ensure

uch that Aue c°qo, Th

i 0 O’T],V).
?gl%ﬂ([o, T}, V) % salve

w is @ solution of (1.2) _then we have:

fulf < s -
a4 )

ded in C°(10, T V)

)mdamncﬁonus oz, by } ting k—>+ =
g provlem (.2)
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Let » be & local A-analytic solution (see Lemma 4.1} of (1.2) defined on
[0, TT, T > 0. If we prove that % can be extended on the whole {0, 7] as an
A-anslytic funetion, then by standard arguments we can easy obtain the
global existence of %. In fact we prove Theorem 8.1-3.3-3.5 if we show that

. we can apply Lemma 2.3.

Proof of Theorem 3.1 . )
o Case m, n bounded. We can a.(pgly directly Lemma 2.3.
@& Case 1)-3) hold true, .
By (3.1), there exists & such that My(r, 2) = 8 on the strip r < % Moreover
sinee (4.4) holds true and E is a conserved energy, then, for some 5= 0:

e (B == ExCllues I, [l Mz, (Ato, wa) — Moleclllr, (A, 2)) — Kl
< B — K(ul),

henee;
Clallf)’ = 20u”, udy < ol + e e

< |lully + B — Bl

Now, if we define y := |[ulf}; we obtain the ordinary differential inequality 3’ <
%+ f - K(y), and since y + f — K(y) is an admissible function, by a standard
comparison argument i must be bounded on [¢, 7T. Hence |’ [ and, by (3.2),
{Au, u) must be also bounded on [0, TT.

Therefore m,(1), n,(t) are bounded, and we can apply Lemma
23. =m

Proof of Theorem 3.3.
We only have to prove thai we can apply Lemma 2.3, that is

T T
45) Jmu(syds+ [ |na(s) |ds < + .
0 b}

As in the second case of the previous theorem, we can prove that [[ulf%, and
hence |lu' [ are bounded on [0, 7. By this fact, since

M(Jlulfl, (A, w)) = Bz, lloeollr, (Ao, wo)) — e’ [,

then M([lulf%, (Au, #)) is bounded too.
Let us define )

Eo(t) ==l + o’ [+ Jully + M(Jlullyr, (Ao, ).
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Then, since E i8 3 conserved energy and Ml (A%, w)) is pounded, one can
easy see that for some constant Cr:

i = — 2O, 1)~ 2mal 2 i+ 4> W
— 9 —my(tHAu, )~ g (Ol + 2K ' | ledli)
< 2( — My (EHAY w) - o (5 oel + 2E,+ Cr) -
Since fulfy and Ml (Aw, w)) are pounded, then by assumption (34),
'rb(\M\%;,(Au, w)) is pounded on [0, (. Hence: :

T

[ ol w0 N <

0

Moreover, for some constant cr _
Bl < —omlullls, (At wyAu, w)+ort 2E,.

By this, for some constant Br:

T .
J-Zm(\\u\\%,, (Au, DAY w) ds < Ep(0) e*? + Br

13

hence it i8 a]so_bounded

ol (w9 88 = il (Aw, 1) 98

o, LN {tAs, © > 1}

. ol (AU uyds. B
1o, TLn{{As, wy=1}

Proof of Theorem 3.5. ,
Firstly, we prove thiat, '\, and hence Yulffy are pounded on [0, 71 1

fact:

B < {moChullir, (8% ) el s e < lz(n.% (foulfr, (At ol + ' 1)+
Hence, since M Z oand Ki8 pondecreasing B’ < £ + K(E). Since L=yt
K{y)is an admissible function, then by a standard argument for the ordinary
differential inequalities, & must be bounded on {0, TT. Then oo 1 and M (and
hence [l and nd (el (A%, ulplliy are bounded.

~ Moreover if (3.5) hold true, then {Au, u) i8 bounded, and hence the fune-
tione mChalfy, (At w)) and allull, (A, w) &€ bounded too and we can apply
Lemma 23.
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If it is no 1
ot the case, let us deﬁne, as in pl'DDf of Th
. , eorem 3.3:
E "M (] ”H2 i “uﬂﬂ2 M("“Mﬂz ,(Au, u))

Then, since E i

) E is :

bounded ' 18 a semi-conserved ener| an .

unded function, we have, for some comg'y : éi -no("MHEI’(Au, Dl is 2
tan T

By =2(—
s = 2( — my (EXAu, u) — O lelly + b’ [E) +

a(u, w)y + 2 (ull, (Au, 'u))(u’; -

e i -

s 2(— m, (£)Au, u) — m, ) ullfr) + 5’ B
+ 2l + nd Chully, (An, w)) ey

< 2(~ my, (D) Au, u)
» ) — 7y (8) |l
@ Case (3.6) holds true. fleell? + C) .

The funetion 7(||u} .
previous theor;”:‘ |vlr;é(z:a't:; u)) is bounded, hence as in the s
prove that econd case of the

T
J il T
J ol o, a0 s + f |l (A, u)) |ds < +
and apply Lemma 2.3, | |

Since: ga:(?nésﬂ)-(s.& hold true. -
e » - .
Since y 12 creasing in each variable, then there exist two
constant a,, a,

| reCllell, (A,
j w) | < ¥(ay, oz, noClullh, (Au, u))

=: 'J’U(nu(”u”%:(Au! 'M))) .

Let us set

r= f

[0, TN {4, 4) Sos} Yolnollulfy, (Au, w)) dr

red

[0, TT (4w, w>a) yD(’"’ﬂ("”"%’(Au, u)) ¢((A;u, u))) dT.'

where, fi
or 8 ag, we have ¢(s) =1. Since

T
nf v omoChdlls, (Aw, u)) de < Ty + T,
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we can conclude, by 3.7), that

hmwmmﬂum@<+w

| Therefore as in the previous theorem we can prove that |

T
f el (A, w)) ds < + o
n .
snd apply Lemma 23. B8 l
Proof of Ezample 8.4. B I bhow-ap in |
We shall prove that there exist some initial data such that [lu{f} p
a finite tlme In fact we have that:
“v““ 2 6
=TTVl + g [P+ P
(e W =~ T Tl |

hence, integrating over [0, T}: ‘;

vl

t
g B dr — _[ T _dr.
(g, W = (2, Uodm + (;l' “’“ft [P+ [fulf® dz J1x Vel
Let us assume that ¢ <1 and (1, %ig)u > 1, therefore
i
(ot = [ Tl

i

If we denote 3 = [lulf, yo= lfuol¥, we obtain, for t<1:

~

i
y'azfy”(r)dr.
0

(g [ freos])

Then we have proved that:

2
v -
(4.6) —4 = 4 (Iya(r) d’l.")

hence
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Now let us define

3
zi= fys(r) dr.
0
. By (4.6) we deduce:

. (2B =y + 422,
" hence by a standard compa:riaunr argument, if ¥, is sufficiently big, z blows-up

in a time Ty <1, and therefore ¥ blows-up too. ®

Proof of Example 3.7.
The function

Ew,r,s)=w+ fm(m) dx + fn(h:) dx =w+ Ml(r, 8)
[1] 1] .

is a conserved energy, that, by (3.9) verifies (8.3) with M =M, and K=0.
Moreover L(y) =y + 8 is obviously an admissible function, and » depends only
from v, hence we can apply Theorem 3.3. B

Proof of Example 3.8.
In this case a conserved energy is the flmctmn

2 601.2

E(w’ T, 5)=w+ 'S? - _'r=w+M0(1", g)—=r.

" Moreover Mo(r, ) is nonnegative on the strip » < % and L(y) =2y + fis an

admissible funetion for all §= 0. Then we can apply Theorem 3.3. =

Proof of Example 3.9.
The function

Ew,r 8)=w+t =w+ M(r, s)

2(1+r?)
is a conserved energy. Therefore all the hypotheses of Theorem 3.1 as obvious-
ly verified, by assuming My(r, s) =M(r, 8) and K(r)=0. =&
Proof of Example 8.10.
The function _
E(w, r, 8) =w + arctan (3) r =w + M(r, 5)

is a conserved energy that verifies (3.3) with My(r, 8) = M(r, 5) and K(r) =
Moreover L(y) =y + 8 is an admissible function, and % is bounded. Then we
can apply Theorem 33, =
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Proof of Example 3.11.
We can apply Corollary 8.6, since the function

3
Ew,r,s)=w+ % =w+ M{r, 5)

is a semi-conserved energy, with ny(r, 8) = —s, and for r < ¢y s (where (1.1)
is verified with ¢ = cp):

ng(r, s)r=s’r<es s, =m
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