S. Krzyska, I. Kubiaczyk Moreover, in some classes of spaces our pseudo solutions are also strong C-solutions (in separable Banach spaces for instance). ## References - O. Arino, S. Gautier, J. P. Penot, A fixed point theorem for sequentially continuous mappings with application to ordinary differential equations, Funkcial. Ekvac. - [2] J. Banas, J. Rivero, On measures of weak noncompactness, Ann. Mat. Pura Appl. 125 (1987), 213-224. - F. S. De Blasi, On a property of the unit sphere in a Banach space, Bull. Soc. Sci. Math. R.S. Roumanie 21 (1977), 259-262. - [4] M. Cichoń, On bounded weak solutions of a nonlinear differential equation in Banach spaces, Funct. Approx. Comment. Math. 21, (1992), 27-35. - [5] M. Cichoń, On measures of weak noncompactness, Publication Math. Debrecen 45 (1994), 93-102. - [7] E. Cramer, V. Lakshmikantham, A. R. Mitchell, On the existence of weak solutions of differential equations in nonreflexive Banach spaces, Nonl. Anal. Theory [8] Math. Appl. 2 (1978), 169-177. - J. L. Daleckii, M. G. Krein, Stability of solution of ordinary differential equations in a Banach space, Moscow (1970) (in Russian). - [9] M. Dawidowski, B. Rzepecki, On bounded solution of nonlinear equations in Banach spaces, Demonstratio Math. 18 (1985), 91-102. - [10] I. Kubiaczyk, On a fixed point for weakly sequentially continuous mappings, Discuss. Math. 15 (1995), 15-20. - J. L. Massera, J. J. Shaffer, Linear differential equations and function spaces, New York London (1966). - [12] A. R. Mitchell, Ch. Smith, An existence theorem for weak solutions of of differential equations in Banach spaces, Nonlinear Equations in Abstract Spaces (V. Lakshmikantham, ed.), (1978), 387-404. - [13] B. J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), - [14] S. Szufla, On the existence of bounded solutions of non-linear differential equations in Banach spaces, Funct. Approx. Comment. Math. 15 (1986), 117-123. FACULTY OF MATHEMATICS AND COMPUTER SCIENCE ADAM MICKIEWICZ UNIVERSITY Matejki 48/49 60-769 POZNAŃ, POLAND E-mail: kuba@math.amu.edu.pl Received May 18, 1998; revised version November 13, 1998. DEMONSTRATIO MATHEMATICA Vol. XXXII No 2 1999 #### Marina Ghisi # A NOTE ON THE ABSTRACT CAUCHY-KOVALEVSKAYA THEOREM Abstract. We give a version of the abstract Cauchy-Kovalevskaya Theorem for the Cauchy problem $$u'=A(t,u),\quad u(0)=u_0$$ when A is not necessarily a Lipschitz continuous operator. The operator A(t,u)=F(t,u,u) verifies 1) $F: I \times B_{r_1,R} \times B_{r,R} \to X_s$ for $s < r < r_0$ $(r_1 < r_0 \text{ is fixed}), F(t,u,\cdot)$ is Lipschitz continuous, and $F(t,\cdot,\cdot)$ is α -Lipschitz continuous or 2) $F: I \times B_{r_1,R} \times X_r \to X_s$ for $s < r < r_0$ $(r_1 < r_0 \text{ is fixed})$, and $F(t,\cdot,\cdot)$ is α -Lipschitz continuous, where $B_{r,R}$ denotes the ball of radius R in X_r . We prove the result by using Tonelli approximations and fixed point theorems. ## 1. Introduction Let us consider the Cauchy problem (1.1) $$\begin{cases} u' = A(t, u), & t \in I, \\ u(0) = u_0 \in X_{r_0} \end{cases}$$ where $A(t, \cdot)$ is a continuous (but non necessarily Lipschitz continuous) operator in a scale of Banach spaces $(X_r)_{0 < r \le r_0}$ (see Definition 2.1). Many authors considered this problem under a Lipschitz condition; i.e., there exist $^{1)}$ C, M > 0 such that for $s < \tau$ ¹⁹⁹¹ Mathematics Subject Classification: 34 A, 34 G, 35 A. Key words and phrases: Scale of Banach spaces, noncompactness measure, Tonelli approximations, fixed point Theorems, Cauchy problem. ¹⁾ $B_{r,R}(u_0)$ is the ball in X_r of radius R centered in u_0 (1.2) $$\begin{cases} \|A(t,u) - A(t,w)\|_{s} \leq \frac{C\|u - w\|_{r}}{r - s}, & \forall u, w \in B_{r,R}(u_{0}) \\ \|A(t,0)\|_{s} \leq \frac{M}{r_{0} - s} \end{cases}$$ (see for example [3], [8], [10], [11], [12], for a bibliography we refer to [7]). Moreover some authors proved that (1.1) has a local solution under non-Lipschitz assumptions. K. Deimling [6] assumed that $$A(t,u) = B(t)u + f(t,u),$$ where $B(t): X_{\tau} \to X_{\delta}$ (s < r) is a continuous linear operator for every $t \in I$ and $f: I \times B_{\tau,R} \to X_{\tau_0}$ $(\tau < \tau_0)$, is a uniformly continuous regularizing function such that for some constant K there is $$\alpha_{r_0}(f(t,B)) \le K\alpha_r(B) \quad (r < r_0), \quad \forall B \subseteq B_{r,R}(u_0)$$ where α_r is the Hausdorff noncompactness measure in X_r (see Definition 2.2). Furthermore some authors ([4], [9], [14]) treated (1.1), by assuming conditions of "compact type", i.e., they supposed that the imbeddings $X_r \hookrightarrow X_s$ (s < r) are compact, and that A is a continuous function, verifying: $$||A(t,u)||_s \leq \frac{M}{r-s}$$ if $||u||_r \leq \frac{R}{r-s}$ H. Begehr [4]; $$(1.3) ||A(t,u)||_s \leq \frac{M+C||u||_r}{r-s} \quad \forall t \in I, \quad u \in X_r, \quad \text{V. I. Nazarov [9]};$$ for some $0 < \varepsilon < 1$ and $u_0 = 0$: $$\|A(t,u)\|_s \leq C \frac{\|u\|_r}{r-s} + \frac{M}{(r_0-s)^s} \quad \forall t \in I, \quad u \in B_{r,R}(0)$$ in H. Reissig [14] (he treated some more general systems) Later on in [7] in H. Reissig [14] (he treated some more general systems) Later on in [7] it was considered the case in which the imbeddings $X_r \hookrightarrow X_s$ (s < r) are not necessary compact and $A: I \times X_r \to X_s$ (s < r) is a Carathéodory (weakly Carathéodory) operator ²⁾ such that: - 1. A verifies (1.3); - 2. there exists a constant K such that for every bounded set $U \subset X_r$ $$\alpha_s(A(I \times U)) \leq K \frac{\alpha_r(U)}{r-s}.$$ In this paper we give a generalization of the results of [6] and [7]. THEOREM 1.1. (see [6]) Let $(X_r)_{0 < r \le r_0}$ be a scale of Banach spaces and $0 < r_1 < r_0$. Let us assume that A(t, u) = B(t, u, u) and that: - (i) $B: I \times B_{r_1,R}(u_0) \times B_{r,R}(u_0) \to X_s \quad (s < r);$ - (ii) $B(\cdot, v, u)$ is measurable and $B(t, \cdot, \cdot)$ is continuous; - (iii) $B(t, v, \cdot)$ is uniformly Lipschitz continuous (i.e. verifies (1.2) independently from v); - (iv) there exists a constant K such that 3) for every bounded set $U \subseteq B_{r,R}(u_0)$, and $V \subseteq B_{r_1,R}(u_0)$: $$\limsup_{|J| \to 0} \alpha_s(B(J, V, U)) \le K(\frac{\alpha_r(U)}{r - s} + \alpha_{r_1}(V)) \qquad (s < r).$$ Then problem (1.1) has at least a local solution. The second one generalize [7]. THEOREM 1.2. Let $(X_r)_{0 < r \le r_0}$ be a scale of Banach spaces. Let $0 < r_1 < r_0$. Let us suppose that A(t, u) = B(t, u, u) and that: - (i) $B: I \times B_{r_1,R}(u_0) \times X_r \to X_s$ (s < r), - (ii) $B(\cdot, v, u)$ is measurable and $B(t, \cdot, \cdot)$ is continuous. - (iii) there exist C, M > 0 such that $$||B(t,v,u)||_s \le \frac{C||u||_r + M}{r-s} \quad (u \in X_r \quad v \in B_{r_1,R}(u_0)),$$ (iv) there exists a constant K such that for every bounded set $U \subseteq B_{r,R}(u_0)$, and $V \subseteq B_{r_1,R}(u_0)$ $$\limsup_{|J| \to 0} \alpha_s(B(J, V, U)) \le K(\frac{\alpha_r(U)}{r - s} + \alpha_{r_1}(V)) \qquad (s < r).$$ Then problem (1.1) has at least a local solution. Let us remark that in the case of a single Banach space the assumption (iv) of Theorems 1.1, 1.2 was introduced by G. Pianigiani [13]. These results may be applied to prove the existence of local analytic solutions of systems of PDE. For example by using Theorem 1.1, setting 4) $$B(t, V, U) = A(||v_1||_2^2, \dots, ||v_n||_2^2)U_x,$$ we can prove that the problem $$(1.4) U_t = A(\|u_1\|_2^2, \dots, \|u_n\|_2^2) U_x, U(0, x) = U_0(x)$$ 4) $||u||_2$ is the L^2 norm of u ²⁾ A is Carathéodory (weakly Carathéodory) if $A(t, \cdot)$ is continuous (weakly continuous) and $A(\cdot, u)$ is measurable (weakly measurable). J denote the Lebesgue measure of the interval J has a local L^2 -analytic solution, where $U=(u_1,\ldots,u_n)$ is a n-dimensional vector, $A(\cdot): \mathbb{R}^n \to \mathbb{R}$ is a continuous $n \times n$ matrix and U_0 is a L^2 -analytic vector, that is there exists $r_0 > 0$ such that $$\sum_{j\in \mathbb{N}}\left\|\frac{d^jU_0}{dx^j}\right\|_2^2\frac{\tau_0^{2j}}{(j!)^2}<\infty.$$ This result improves the one well known in the particular case of the Kirchhoff equation $u_{tt} = m(\|u_x\|_2^2)u_{xx}$, where $m \ge 0$ is a continuous real function. ## 2. Preliminaries DEFINITION 2.1. A scale of Banach spaces is a family of Banach spaces $(X_r)_r$ (where $0 < r \le r_0$) with norm $\|\cdot\|_r$ such that $$X_r \hookrightarrow X_s$$ and $\|\cdot\|_s \le \|\cdot\|_r$ $(s < r)$. DEFINITION 2.2. Let X be a Banach space, C a bounded subset of X. The Hausdorff noncompactness measure of C is $\alpha_X(C)$ = $\inf\{\varepsilon > 0 : C \text{ can be covered by a finite number of balls of radius } \varepsilon\}$. When the Banach space X is unambiguously determined by the context, we denote α_X only by α . Let C be a subset of X. Let us indicate by cl(C) the closure of C and by co(C) its convex hull. PROPOSITION 2.3. (see [6], p. 19). Let A, B be bounded subsets of X, then: - 1. $\alpha(co(A)) = \alpha(A);$ - 2. $\alpha(cl(A)) = \alpha(A)$; - 3. $\alpha(A \cup B) \leq \alpha(A) \vee \alpha(B)$; - 4. $\alpha(A) = 0$ if and only if A is relatively compact; - 5. $\alpha(\lambda A) = |\lambda|\alpha(A)$; - 6. $\alpha(A+B) \leq \alpha(A) + \alpha(B)$ - 7. $\alpha(A) \leq \alpha(B)$ if $A \subset B$. We recall now some well known results that we use in the sequel. THEOREM 2.4. (see [6] p. 25). Let C be a closed, bounded convex subset of X. Let $F: C \to C$ be continuous and F be α -condensing, that is there exists K < 1 such that: $\alpha(F(C)) \le K\alpha(C)$. Then F has at least one fixed point. PROPOSITION 2.5. (see [1], Lemma 2.1). Let $I := [0, a], L \subseteq C^{\circ}(I, X) = H$. Let us suppose that there exists K > 0 such that $$v \in L \Rightarrow ||v(t) - v(s)|| \le K|t - s|$$ $t, s \in I$. Then $\alpha_H(L) = \sup_{0 \le t \le a} \alpha_X(L(t))$, where $L(t) := \{x \in X : \exists u \in L \ x = u(t)\}$. PROPOSITION 2.6. (see [6] p. 25). Let $(X_n)_n$ be a nonincreasing sequence of nonempty bounded closed subsets of X such that $\lim_{n\to+\infty} \alpha(X_n) = 0$. Then $X_{\infty} = \bigcap X_n$ is a compact nonempty set. DEFINITION 2.7. A set valued map F is upper semicontinuous at x if for every open set $N \supseteq F(x)$ there exists a neighborhood M of x such that $F(M) \subseteq N$. Let us remark that if $F: X \to 2^X$, where X is a complete metric space and F(x) is relatively compact, then F is upper semicontinuous at x if and only if $$(2.1) \forall \varepsilon > 0 \exists \eta > 0 : v \in B(x, \eta) \Rightarrow F(v) \subseteq B(F(x), \varepsilon).$$ For the set valued maps the following fixed point theorem holds true. THEOREM 2.8. (see [2]). Let K be a convex compact subset of a Banach space X. Let $F: K \to 2^K$ be an upper semicontinuous map. Then F has a fixed point, i.e., there exists $x \in K$ such that $x \in F(x)$. We shall use also the known existence result for (1.1) in the case of Lipschitz continuous mappings. THEOREM 2.9. Let us suppose that $A: I \times B_{r,R}(u_0) \to X_s$ (s < r) and that $A(\cdot, u)$ is measurable and $A(t, \cdot)$ is Lipschitz continuous (see (1.2)). Then the problem (1.1) has a unique local solution u and for every $\varepsilon > 0$ there exists $S_{\varepsilon} = S_{\varepsilon}(R, M, C)$ such that $u(t) \in B_{r_{\varepsilon}(t),R}(u_0)$, where $r_{\varepsilon}(t) = 1 - \varepsilon - S_{\varepsilon}t$ for $t \leq \frac{1-\varepsilon}{S_{\varepsilon}}$. #### 3. Proofs of the result First of all let us remark that we can assume $u_0 = 0$, and $r_0 = 1$ without loss of generality; moreover in the following we denote $B_{r,R}(0)$ only by $B_{r,R}$. We divide the proofs in some parts. # 3.1. An "auxiliary" problem Let us set $$\begin{split} L &= C^{\circ}([0,a];B_{r_1,R}), \\ L_{\beta} &= \{v \in L : \|v(t) - v(s)\|_{r_1} \le \beta |t-s| \quad \forall t,s \in [0,a] \} \end{split}$$ for a > 0, $\beta > 0$. Let v be in L. In this section we discuss the problem of existence of local solutions for (3.1) $$u' = B(t, v, u), \quad u(0) = 0.$$ The following lemma is a straightforward consequence of Theorem 2.9. LEMMA 3.1. Let us suppose that the hypotheses of theorem 1.1 are verified. Then there exist a>0, $\beta>0$ such that for every $v\in L$ the problem (3.1) has a solution u defined on [0,a] such that $u(t)\in B_{r(t)+\beta,R}$, where $r(t)=1-St-\beta$ for some S>0 and $r(a)\geq r_1$. Now let us set (3.2) $$S = 4 \max \left\{ \frac{M}{\nu R} + C, 2K \right\}$$ $a = \frac{1}{4} S^{-1} (1 - r_1), \quad \nu = \frac{1}{12} (1 - r_1).$ LEMMA 3.2. Let us suppose that the hypotheses of Theorem 1.2 are verified. Then for every $v \in L$ the problem (3.1) has a solution u defined on [0,a] such that $u(t) \in B_{r(t)+\beta,R}$ where a, S are defined by (3.2), $r(t) = 1 - St - \frac{3}{4}(1 - r_1)$ and $\beta = \frac{1}{2}(1 - r_1)$. Proof. We can use the same method as in [7]; so we give only the outline of the proof. We introduce for $n \in \mathbb{N}$ the following approximate problems of Tonelli type (see [15]) (3.3) $$\begin{cases} u_n(t) = 0, & t \le 0 \\ u_n(t) = \int_0^t B(\tau, v(\tau), u_n(\tau - \frac{a}{n})) d\tau, & 0 \le t \le a. \end{cases}$$ It is easy to see that for every $n \in \mathbb{N}$ the problem (3.3) has a solution defined on [0, a] and that $u_n(t) \in X_r$ for every r < 1 and $t \in [0, a]$. Step 1 (some well-known estimate). Let us define: $$||v||_{s,t} = ||v||_s (1 - St - s).$$ It is easy to see that (see [3] and [7]): (3.4) $$||u_n(t)||_{s,t} \le \nu R \quad \forall t \le a, \quad s < 1 - St.$$ If we then set $\rho(t) = 1 - St - \nu$, we have $||u_n(t)||_{\rho(t)} \le R$. Step 2 (equicontinuity). Now let us define $\rho_1(t) = 1 - St - 2\nu$. For every $t \le a$ the functions $u_n : [0,t] \to B_{\rho_1(t),R}$ are equi-Lipchitz continuous. Indeed if $\sigma, \tau \in [0,t]$, $\sigma < \tau$, then $$||u_n(\sigma) - u_n(\tau)||_{\rho_1(t)} \le \int_{\sigma}^{\tau} ||B\left(x, v(x), u_n\left(x - \frac{a}{n}\right)\right)||_{\rho_1(t)} dx$$ $$\le \nu^{-1} (CR + M)|\tau - \sigma|.$$ Step 3 (compactness). For a subset U of X_s let us denote by $cl_s(U)$ the closure of U in X_s and by co(U) its convex hull. Let us set $$\Omega(t) = \{u_n(t) : n \in \mathbb{N}\}, \qquad \Omega(\sigma, t) = \bigcup_{\sigma \le \tau \le t} \Omega(\tau),$$ $\alpha(\Omega((0,a))) = \sup_{t \le a} \sup_{s < \rho_1(t)} (\rho_1(t) - s) \alpha_s(\Omega(t)).$ Let $\varepsilon > 0$, using step 2, we can find $\delta > 0$ such that $$0 < t - \tau \le \delta \Longrightarrow \Omega(\tau, t) \subseteq \Omega(t) + \varepsilon B_{\rho_1(t), 1}.$$ Now let $t \in [0, a]$, and $(\lambda_i), i = 0, \dots, 2^m - 1$ be a subdivision of [0, t] in 2^m equal parts, with $2^{-m} \le \delta$. Let $k \ge m$ and (t_j^k) be a finite partition of [0, t] in 2^k equal parts. Let $s < \rho_1(t)$. Then, as in [7], for all $n_0 \ge 1$ we get $$\Omega_{n_0}(t) \subseteq \sum_{j=0}^{2^k-1} (t_{j+1}^k - t_j^k) cl_s co(B([t_j^k, t_{j+1}^k], V, \Omega(t_j^k - \frac{1}{n_0}, t_{j+1}^k)) \cup \{0\}),$$ where $V = \{v(t) : t \in [0, a]\}, \Omega_{n_0}(t) = \{u_n(t) : n \ge n_0\}.$ We denote by i(j,k), the index i such that $t_j^k \in [\lambda_{i(j,k)}, \lambda_{i(j,k)+1}], j = 0, \ldots, 2^k - 1, k \ge m$. Then, if $\frac{1}{n_0} \le \delta$, we find $$\Omega(t_j^k - \frac{1}{n_0}, t_{j+1}^k) \subseteq \Omega(\lambda_{i(j,k)+1}) + 2 \varepsilon B_{\rho_1(\lambda_{i(j,k)+1}),1};$$ hence $$\Omega_{n_0}(t) \subseteq \sum_{j=0}^{2^k-1} (t_{j+1}^k - t_j^k) cl_s co(B([t_j^k, t_{j+1}^k], V, \Omega(\lambda_{i(j,k)+1}) + 2 \varepsilon B_{\rho_1(\lambda_{i(j,k)+1}), 1}) \cup \{0\}).$$ Furthermore let us set $$\phi_s(\tau) = \begin{cases} 1 & \text{if } \tau \leq 0, \\ \frac{1}{2}(\rho_1(\tau) + s) & \text{otherwise;} \end{cases}$$ and $$c_{k,j} = B([t_j^k, t_{j+1}^k], V, \Omega(\lambda_{i(j,k)+1}) + 2 \varepsilon B_{\rho_1(\lambda_{i(j,k)+1}), 1}).$$ By (iv) there exists \overline{k} such that for $k \geq \overline{k}$ and for every $j = 0, \ldots, 2^k - 1, i = 0, \ldots, 2^m - 1$ $$\alpha_s(c_{kj}) \leq K\left(\frac{\alpha_{\phi_s(\lambda_{i(j,k)+1})}(\Omega(\lambda_{i(j,k)+1})) + 2\varepsilon}{\phi_s(\lambda_{i(j,k)+1}) - s} + \alpha_{r_1}(V)\right) + \varepsilon.$$ Since V is compact in X_{r_1} , and $\Omega(t) \setminus \Omega_{n_0}(t)$ is a finite set, we obtain $$\alpha_s(\Omega(t)) \leq \varepsilon + K \sum_{j=0}^{2^k-1} (t_{j+1}^k - t_j^k) \left(\frac{\alpha_{\phi_s(\lambda_{i(j,k)+1})}(\Omega(\lambda_{i(j,k)+1})) + 2\varepsilon}{\phi_s(\lambda_{i(j,k)+1}) - s} \right)$$ $$\leq \varepsilon \left(1 + 2K \sum_{j=0}^{2^{k}-1} \frac{t_{j+1}^{k} - t_{j}^{k}}{\phi_{s}(\lambda_{i(j,k)+1}) - s}\right) \\ + K\alpha(\Omega(0,a)) \sum_{j=0}^{2^{k}-1} \frac{t_{j+1}^{k} - t_{j}^{k}}{(\phi_{s}(\lambda_{i(j,k)+1}) - s)^{2}}.$$ Moreover, by the choice of λ_i and t_i^k , we get $$\sum_{j=0}^{2^{k}-1} \frac{t_{j+1}^{k} - t_{j}^{k}}{(\phi_{s}(\lambda_{i(j,k)+1}) - s)^{q}} = \sum_{i=0}^{2^{m}-1} \frac{\lambda_{i+1} - \lambda_{i}}{(\phi_{s}(\lambda_{i+1}) - s)^{q}}, \quad q = 1, 2;$$ hence, by taking first $m \to +\infty$ and second $\varepsilon \to 0$, we have $$\alpha_s(\Omega(t)) \le K\alpha(\Omega(0,a)) \int_0^t \frac{1}{(\phi_s(\tau) - s)^2} d\tau$$ $$\le + \frac{4K}{S} \alpha(\Omega(0,a)) \frac{1}{(\rho_1(t) - s)}.$$ Therefore $$\alpha(\Omega(0,a))=0.$$ Now let us set $r_1(t) = 1 - St - 3\nu$; thanks to (3.5) for every $t \in [0, a]$, the set $\Omega(t)$ is compact in $B_{r_1(t),R}$. Step 4 (final step) By the Ascoli-Arzelà theorem and by a diagonal argument (see [14] and [7]) we can prove that there exists $u_{n_k} \to u$, where u is solution of (3.1) $u: [0,t] \to B_{r(t)+\beta,R}$, for $t \le a$: where $r(t) = r_1(t) - \beta$, $\beta = \frac{1}{2}(1-r_1), r_1(a) \ge r_1 + \beta$. ## 3.2. Properties of solutions Let us denote by u_{ν} the solutions of (3.1) as in Lemmas 3.1, 3.2. We have the following result. LEMMA 3.3. The functions u_v are equi-Lipschitz continuous, i.e. for every $t \in [0,a]$ there is $$\|u_v(\tau)-u_v(\sigma)\|_{\tau(t)+\frac{\beta}{2}}\leq \frac{2}{\beta}(CR+M)|\tau-\sigma|,\quad \tau,\sigma\in[0,t].$$ Proof. It is enough to use the method of step 2 in the proof of Lemma 3.2, by remarking that in both the cases $$\|B(t,v,u)\|_s \leq \frac{M+CR}{r-s} \quad (u \in B_{r,R}, \quad v \in B_{r_1,R}, \quad s < r).$$ Let us set $$\gamma = 2\frac{CR + M}{\beta}.$$ REMARK 3.4. Let a, β be as in Lemmas 3.1, 3.2 and $v \in L_{\gamma}$. Let u_v be a solution of (3.1) as in Lemmas 3.1–3.2. Then, thanks to Lemma 3.3, $u_v \in L_{\gamma}$. If we define $$V = \bigcup_{0 \le t \le a} \{v(t): v \in L_{\gamma}\}, \quad \Omega(t) = \{u_v(t): v \in L_{\gamma}\},$$ $$\alpha(\Omega(0,a)) = \sup_{0 \le t \le a} \sup_{s < r(t) + \frac{\theta}{2}} \left(r(t) + \frac{1}{2}\beta - s \right) \alpha_s(\Omega(t));$$ we can also prove the following lemma, using the method of step 3 in the proof of Lemma 3.2. LEMMA 3.5. It holds true $$\alpha(\Omega(0,a)) \leq \frac{4K}{S}\alpha(\Omega(0,a)) + K a \alpha_{r_1}(V). \quad \blacksquare$$ ## 3.3. Proof of Theorem 1 Let us remark that in Lemma 3.1 we can suppose $S \ge 5 K$ and replace a by a positive number a_1 such that $$r(a_1) - 5Ca_1 \ge r_1$$ and $\lambda = \frac{10 K a_1}{\beta} < 1$. Let us consider the map $F: L_{\gamma} \to L_{\gamma}$ (where γ is as in (3.6)) defined by $F(v) = u_v$ where u_v is the solution of (3.1). Thanks to Remark 3.4, the map F is well defined. If we prove that - 1. F is continuous; - 2. F is α -condensing, then, by Theorem 2.4, the map F has at least one fixed point. Ad 1. Let $v_n \to v$ in L_{γ} . Define $\rho(t) = r(a_1) - 5Ct + \frac{\beta}{2}$. Let $t \in [0, a_1]$, $s < \rho(t)$ and $$h_s(\tau) = \begin{cases} 1 & \text{if } \tau \leq 0 \\ \frac{\rho(\tau) + s}{2} & \text{otherwise.} \end{cases}$$ Hence $$||u_{v_n}(t) - u_v(t)||_s \le \int_0^t ||B(\tau, v_n(\tau), u_{v_n}(\tau)) - B(\tau, v(\tau), u_v(\tau))||_s d\tau$$ $\leq \int_{0}^{t} \frac{C \|u_{v_{n}}(\tau) - u_{v}(\tau)\|_{h_{s}(\tau)}}{h_{s}(\tau) - s} d\tau$ $+ \int_{0}^{t} \|B(\tau, v_{n}(\tau), u_{v}(\tau)) - B(\tau, v(\tau), u_{v}(\tau))\|_{s} d\tau.$ Let us set $$||u_{v_n} - u_v|| = \sup_{0 \le t \le a_1} \sup_{s < \rho(t)} (\rho(t) - s) ||u_{v_n}(t) - u_v(t)||_s.$$ Therefore $$\begin{aligned} \|u_{v_n}(t) - u_v(t)\|_s &\leq \frac{4}{5} \|u_{v_n} - u_v\| \frac{1}{\rho(t) - s} \\ &+ \int\limits_0^t \|B(\tau, v_n(\tau), u_v(\tau)) - B(\tau, v(\tau), u_v(\tau))\|_s d\tau. \end{aligned}$$ Since $s < r(a_1) + \frac{\beta}{2}$, we have $$|||u_{v_n}-u_v||| \leq 5 \int_0^{a_1} ||B(\tau,v_n(\tau),u_v(\tau)) - B(\tau,v(\tau),u_v(\tau))||_{\tau(a_1)+\frac{\beta}{2}} d\tau;$$ hence, for some $\delta_1 > 0$ one gets $$\sup_{0 \le t \le a_1} \|u_{v_n}(t) - u_v(t)\|_{r_1}$$ $$\leq \delta_1 \int_{0}^{a_1} \|B(\tau, v_n(\tau), u_v(\tau)) - B(\tau, v(\tau), u_v(\tau))\|_{r(a_1) + \frac{\beta}{2}} d\tau.$$ Finally, by the Lebesgue theorem, for the dominate convergence $u_{\nu_n} \to u_{\nu}$ in L; so F defined by (3.6), is continuous. Ad 2. By Lemma 3.5, we get $\sup_t \alpha_{r_1}(\Omega(t)) \leq \lambda \alpha_{r_1}(V)$. Then, by Proposition 2.5, we have $\alpha_H(F(L_7)) \leq \lambda \alpha_H(L_7)$, where α_H is the Hausdorff noncompactness measure in $H = C^{\circ}([0, a_1], X_{r_1})$. Since $\lambda < 1$, then F is α -condensing. #### 3.4. Proof of Theorem 2 We can suppose that $$\lambda = \frac{10 \, K \, a}{\beta} < 1.$$ Let us consider the map $F:L_{\gamma}\to 2^{L_{\gamma}}$ (where γ is as in (3.6)) defined as follows: $u_v \in F(v)$ if u_v is a solution of (3.1), that for every $t \in [0,a]$ and $s < r(t) + \frac{\beta}{2}$ verifies $$u_v(t) \in B_{s,R}$$ and $||u_v(\sigma) - u_v(\tau)||_s \le \gamma |\tau - \sigma|$ for $\sigma, \tau \in [0, t]$. Thanks to Lemmas 3.2, 3.3 and Remark 3.4, the map F is well defined, since for every v the set F(v) is not empty. If we prove that: - 1. there exists a compact convex set $N \subseteq L_{\gamma}$ such that $F: N \to 2^N$; - 2. $F|_N$ is upper semicontinuous, then, by Theorem 2.8 the map F has at least one fixed point, solution of (1.1). Ad 1. By Lemma 3.5 and Proposition 2.5, we get $\sup_{0\leq t\leq a}\alpha_{r_1}(\Omega(t))\leq \lambda\alpha_{r_1}(V)$ and (3.7) $$\alpha_H(F(L_{\gamma})) \le \lambda \alpha_H(L_{\gamma})$$ where α_H is the Hausdorff noncompactness measure in $H=C^{\rm o}([0,a],X_{r_1})$. Define $$Y_n = cl_{r_1}co\Big(\bigcup_{v \in L_r} F^n(v)\Big),$$ where $cl_{r_1}(U)$, denotes the closure of U and co(U) its convex hull in X_{r_1} . Let us remark that Y_n is a nonincreasing sequence of nonempty closed convex bounded sets and, by (3.7) $\lim_{n\to+\infty} \alpha_H(Y_n) = 0$. By Proposition 2.6, $N = \bigcap Y_n$ is a nonempty convex compact set; moreover $F: N \to 2^N$. Ad 2. For every $v \in N$, the set F(v) is relatively compact. Now let us assume, by contradiction, that there exists v_0 such that F is not upper semicontinuous at v_0 . Then (see (2.1)), there exist $\varepsilon > 0$, $v_n \in N$ and $u_n \in F(v_n)$ such that ⁵⁾ (3.8) $$||v_0 - v_n||_H \le \frac{1}{n}$$ and $||u_n - w||_H \ge \varepsilon \quad \forall w \in F(v_0).$ Since $(u_n)_n \subseteq N$, there exists a subsequence $u_{n_k} \to u$ in H. Therefore by the Lebesgue theorem for the dominate convergence. $$u(t) = \lim_{k \to +\infty} u_{n_k}(t) = \int_0^t B(\tau, v_0(\tau), u(\tau)) d\tau.$$ Now let us prove that $u \in F(v_0)$. Remark that $$\alpha_{r_1}(\bigcup_{0\leq t\leq a}\{v_n(t):n\in\mathbf{N}\})=0.$$ Let us set $$\Omega_1(t) = \{u_n(t) : n \in \mathbb{N}\},\$$ $$(0,a) = \sup_{t \in \mathbb{N}} \{u_n(t) + \frac{\beta}{2} - a\}_{0} (a)$$ $$\alpha(\Omega_1(0,a)) = \sup_{0 \le t \le a} \sup_{s < r(t) + \frac{\beta}{2}} \left(r(t) + \frac{\beta}{2} - s \right) \alpha_s(\Omega_1(t)).$$ ⁵⁾ $\|\cdot\|_H$ is the norm in H As in Lemma 3.5 we have $\alpha(\Omega_1(0,a)) = 0$. Therefore, by Proposition 2.5, for every $t \in [0,a]$ the sequence u_{n_k} is relatively compact in $C^{\circ}([0,t],B_{s,R})$ for every $s < r(t) + \frac{\beta}{2}$. By this fact, $u(t) \in B_{s,R}$ for every $s < r(t) + \frac{\beta}{2}$, and $||u(\tau) - u(\sigma)||_s \le \gamma |\tau - \sigma| \quad \sigma, \tau \in [0, t].$ Hence $u \in F(v_0)$, but, by (3.8); $||u-w||_{r_1} \ge \varepsilon \ \forall w \in F(v_0)$. By this contradiction, F must be upper semicontinuous at v_0 . ### Final remarks It is also possible to prove Theorems 1.1, 1.2 directly (i.e., without introducing the auxiliary problem (3.1)), using Tonelli approximations instead of fixed point theorems. By using this latter method, one can prove also the analogous of Theorems 1.1, 1.2 with respect to the weak topology, i.e. these results are still true if we replace: measurable by weakly measurable, continuous by weakly continuous and the noncompactness measure by the weak noncompactness measure ⁶. #### References - [1] A. Ambrosetti, Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Sem. Mat. Univ. Padova 36 (1967), 349-361. - [2] J. P. Aubin and A. Cellina, Differential Inclusions, Springer Verlag Berlin, 1984 (A series of comprehensive studies in Mathematics No 264). - [3] M. S. Baouendi and C. Goulaouic, Remarks on the abstract form of the nonlinear Cauchy-Kovalevsky Theorem, Comm. Partial Differential Equations 2 (11) (1977), 1151-1162. - [4] H. Begehr, Eine Bemerkung zum nichtlinearen klassichen Satz von Cauchy-Kowalewski, Math. Nachr. 131 (1987), 175-181. - [5] F. S. De Blasi, On a property of the unit sphere in a Banach space, Bull. Math. Sci. Soc. Sci. Ser. Sci. Math. S. Roumanie (N.S.) 21 (1977), 259-262. - [6] K. Deimling, Ordinary differential equations in Banach spaces, Lect. Notes Math. 596, Springer, Berlin, 1977. - [7] M. Ghisi, The Cauchy-Kovalevsky Theorem and noncompactness measures, to appear in J. Math. Sci., Univ. of Tokyo. - [8] M. Nagumo, Über das Anfangswertproblem partieller Differentialgleichungen, Japan J. Math. 18 (1941) 41-47. - V. I. Nazarov, The Cauchy problem for differential equations in scale of Banach spaces with completely continuous imbeddings, (Russian) Differentsial'nye Uravneniya 27 (1991), 1976-1980. - [10] L. Nirenberg, An abstract form of the nonlinear Cauchy-Kovalevsky theorem, J. Differential Geom. 6 (1972), 561-576. - [11] T. Nishida, A note on a Theorem of Nirenberg, J. Diff. Geom., 12 (1977), 629-633. - [12] L. V. Ovsjannikov, A nonlinear Cauchy problem in a scale of Banach spaces, Dokl. Akad. Nauk. SSSR 200 (1971), 789-792 (Trans. Soviet Math. Dokl. 12 (1971), 1497-1500). - [13] G. Pianigiani, Existence of solutions of ordinary differential equations in Banach spaces, Bull. Acad. Polon. Sci. 23 (1975), 853-857. - [14] M. Reissig, A generalized theorem of Peano in scales of completely continuous imbedded Banach spaces, in: Funkcial. Ekvac. - [15] L. Tonelli, Sulle equazioni funzionali del tipo di Volterra, Bull. Calcutta Math. Soc. 20 (1928) 31 DIPARTIMENTO DI MATEMATICA UNIVERSITÀ DI PISA via Buonarroti 2 56100 PISA, ITALY E-mail: Ghisi@dm.unipl.it fax +39(50)844224 Received July 3rd, 1998. ⁶⁾ If U is a bounded subset of a Banach space X, the weak noncompactness measure of U is (see [5]): $[\]alpha_w(U) = \inf\{\varepsilon > 0 : \exists K_\varepsilon, \text{ weakly compact, such that} \quad U \subset K_\varepsilon + \varepsilon B_1\}.$