—— 8. Krzyska, I. Kubiaczyk

Moreover, in some classes of spaces our pseudo solutions are also strong

C-solutions (in separable Banach spaces for instance).
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A NOTE ON THE ABSTRACT '
CAUCHY-KOVALEVSKAYA THEOREM

| - for th
Abstract. We give a version of the abstract Cauchy-Kovalevskaya Theorem for the

Ceuchy problem
: . u' = A(t,u), u(0) =up
when A is not. necessarily = Lipschitz continuous operator. The operator A(t,z) =
iﬁes * - . N
F(t'lt;';? 'v;rx B, g% Bpp— X, for s < v < rg (r1 < rg is fixed), F(¢,¢,-) is Lipschitz
’ rl " s M E . .

continuous, and F(2,., ) is q—Llpsdutz continuous

or

2) F: Ix By,
a-Lipschitz continuous,

ius R in X,
here B, p denotes the ball of radius o . -
" We ;;I:ve the result by using Tonelli approximations and fixed point theorems .

;i&cxr — X, for s < v < vy (r1 < rg is fixed), and F(¢,.,-) is

1. Introduction |
Let us consider the Cauchy problem

{w=Aww, tel,

{L.1) u(0) = ug € Xr,

where A(f,) is a continuous (but non necessarily Lipsc%:i.tz c20111tinuous)
operator u; a scale of Banach spaces (Xr}ocr<ro (see'Deﬁx_utmn - ) y
Many ﬁuthors considered this problem under a Lipschitz condition; i.e.,

there exist 2 C, M > 0 such that for s < r

\ { ] lassification: 34 A, 34 G, 35 A. )
}{935;1 uﬂ:{:‘:ttil.;ﬂ::: ?hf:!z:c tSEale S;JE Banach apa'ces, noncompactness measure, Tonelli

imati ir 13, Cauchy problem,
roximations, fixed point Theoren?s,
El:_'pll By, rlus) i's the ball in X, of redius R centered in ug
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4G, - A wily s 2=, v,y € B, puo)
(L.2)
M
[eon. <22

I(see for example [3], [8], [10], {11], [12], for a bibliography we refer to [7]).
Moreover some authors proved that (1.1) has a local solution under non-
* Lipachitz assumptions.
K. Deimling [6] assumed that '
A(t,u) = B()u + f(t, ),
where B(t) : X; — X, (s < r) is a continuous linear operator for every ¢ € I
and f : I X Brp — Xy, (v < 7o)}, is a uniformly continuous regularizing
function such that for some constant K there is
ar(f(t,B)) £ Kar(B) (r<m), VB G Brr(un)
where @, is the Hansdorff noncompactness measure in X, (see Definition
2.2). :
. Furthermore some anthors ([4], [9], [14]} treated (1.1), by assuming con-
ditions of “compact type”, i.e., they supposed that the imbeddings X, — X,
(s'< r) are compact, and that A is a continuous functiom, verifying:
M

r—s

R
lAG, w)ll. < i Jull- < -— H. Begehr [4];

M + Cllulle
r—3

(1.3} JjA(t,w)]s £ .Vt €I, uweX, V.L Nazarov |[9);

for some 0 < £ < 1 and uy = 0:

s ol s Mo ves, uwena@

in H. Reissig [14] (he treated some more general systems) Later on in [7]
it was considered the case in which the imbeddings X, — X, (s < 7} are
not necessary compact and 4 : I x X — X, (s < r) is a Carathéodory
(weakly Carathéodory} operator 2 anch that: -

1. A verifies (1.3);
2, there exists a constant K such that for every bounded set U C X,
o .
a(A(I x U)) < K%.

2} A ia Carathéodory (weakly Carathéodnry) if A(t,-) is contimuous (weakly continuous) and
A(:,u) is measurable (weakly measurable). ‘
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In this paper we give a generalization of the results of [6] and f7].

THEOREM 1.1. (see [6]) Let (X, )ocr<ro be a scale of Banach spuces and
0 <ry <rp. Let us assume that A(t,u) = B{t,u,u) and that:
(i) B : I x By, r{up) x Brrlug) — X, (s<r);
(it} B(-,v,u) is megsurable and B(t,-,-} is continuous;
{ili) B(t,v,-) is uniformly Lipschitz continuous (i.e. verifies (1.2) indepen-
dently from v);

- (iv) there ezists a constant K such that ¥ for every bounded set U c

Br.r(uo), and V C By, n{ug):

moway(B(1V,0) < KED o) (<)

Then problem (1.1) has at least a local solution.

The second one generalize [7].

THEOREM 1.2. Let (X, )ocr<r, be 2 scale of Banach spaces. Let 0 < 7y < 7y,
Let us suppose that A(t,u) = B(t,u,u) and that:

(1) B:Ix By r{ug) x X, =X, (s<r),

(i) B(-,v,u) is measurable and B(t,-, ) is continuous,

(iii) there ezist C, M > 0 such that
Cllullr + M
%s_- {u € X, v€ B, glup))

(iv) there exists o constant K such that for every bounded set U C B, p(uy)
and V' C Bry,p(uo)

1B{t, v, w)]ls <

?

imeupe, (B, V,0) < KD Lop (v) (s <),
|J1—0 Tr—s

Then problem (1.1) has at least a local solution,

Let us remark that in the case of a single Banach space the assumption
(iv} of Theorems 1.1, 1.2 was introduced by G. Pianigiani [13].

These results may be applied to prove the existence of local analytic
solutions of systems of PDE. For example by using Theorem 1.1, setting 1)

- BV U) = Alllodll3, - -, liwal3)T,
we can prove that the problem

(1‘4) U= A(ﬂﬂl"%: LRRE ”“'ﬂ“%)Um U(O: z) = UO(E)

3)|J1 denote the Labesgue measurs of the interval J

4 flulfz is the L? norm of u
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has a local L’-analytic solution, where I = {u1,...,%n) is a n-dimensional -

vector, A(-) : R™ — R is a continuous n x 7 matrix and Up is a L%-analytic
vector, that is there ‘exists rg > 0 such that _

P LAl [ Ll
. e Ty 00,
sencll @27 ||, (1)

This result improves the one well known in the particular case of the

Kirchhoff equation uy = M(lus)|)uee, where m > 0'is a continuous real

function.
LY

2. Preliminaries .

DEFINITION 2.1. A scale of Banach spaces is a f; .
- amily of Banach spaces { X,
{where 0 < r < 70) with norm fl - [l such that ach spaces (X,),

Koo Xy end |-l (s<r).

DEFINITION 2.2. Let X be a Banach space, C' a bounded subset of X, The -

Hausdorff noncompactness measure of C is
ax(0)
= inf{e > 0: C can be covered by a finite number of balls of radius e}
When the Banach space X is unambi i
guously det
we demote vy aute b y determined by the context,

Let C be a subset of X. Let us indicate by el{(C) th
by co(C) its convex hull. Y '( ) the closuze of G and

PRoPosITION 2.3. (see [6], p. 19). Let A, B be bounded subsets of X, then:
afco(4)) = a(4);

2. a(cl(A)) = af4);

- (AU B) < a(A) V a(B);

a(A) =0 if and only if A is relatively compact;

- a(Ad) = [Ala(4);

. o{A+ B) < a(4) + a(B)

. a(A) S o(B)if ACB.

We recall now some well known results that we use in the sequel.

THEOREM 2.4. (see [§] p. 25). Let C be o closed, bounded conver subset of X,
Let F : C — C be continuous and F be a-condensing, that is there ezists
K <1 such that: a(F(C)) < Ka(C). Then F has at least one fized point,
PROPOSITION 2.5. (see [1], Lemma 2.1). Let I := [0

, 1). i=[0,a], L € C°(I,X) = H.
Let us suppose that there exists K > 0 such that ] e

vE L= ||lo(t) - v(s)| <Klt—sf tsel

a

NS
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Then oy (L) = suppgege ax(L(1)), where L{t) :={z € X: Fuel ==

~u(t)}

PROPOSITION 2.6. {see [6] p. 25). Let (Xn)n be a nonincreasing sequence of

nonempty bounded closed subsets of X such that imn 400 @{X5) = 0. Then

KXo = M Xr i3 & compact nonemply set.

DEFINITION 2.7. A sel valued map F is upper semicontinuous at z if for -
every open set N 2 F{xz) there exists a neighborhood M of x such that

FIMYCN. . '

Let us remark that if F/: X — 2%, where X is a complete metric space
and F(z) is relatively compact, then F is upper semicontinuous at z if and
only if
{2.1) Ve>0 3In>0:ve€ Bz,n) = F(v)< B(F(z)e).

For the set valued maps the following fixed point theorem holds true.
THEOREM 2.8. (see [2]). Let K be a convex compact subset of a Banach space
X Let F: K — 2% be an upper semicontinuous map. Then F hos a fized
point, i.e., there ezists x € K such that z € F(z). :

We shall use also the known existence result for (1.1} in the case of

b Lipschitz continuous mappings.

il iasii

THEOREM 2.9. Let us suppose that A4 : I x By p(up) — X, (5 <) and that
Af,u} is measurable and A(t,-) is Lipschitz continuous (see (1.2)).

Then the problem (1.1) has a unigque local solution u and for every e > 0
there ezists 5. = S.(R, M, C) such that u(t) € B, s r{uo), where re(t) =

1—c
'
L3

l—E'—SEthTfST

3. Proofs of the result
First of all let us remark that we can assume up = 0, and rp = 1 without
loss of generality; moreover in the following we denote By, (0) only by Bra.

We divide the proofs in some parts,
3.1. An “auxiliary” problem
Let us set
L= Co([os a.]; Bfl.ﬂ)r
Lg={veLl:|u(t)—v(s), <Blt—s| Vi se[0,a]}
fora > 0, § > 0. Let v be in L. In this section we discuss the problem of
existence of local solutions for

{3.1) u' = B(t,v,u), u(0)=0.
The following lemma is a straightforward consequence-of Theorem 2.9.
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LEMMA 3.1. Let us suppose that the hypotheses of theorem 1.1 are verified.
Then there exist @ > 0, [ > 0 auch that for every v € L the problem

(8.1) has a solution u defined on [0,a] such thot u(t) € Byy),gr, where

rit)=1— 8§t — 8 for some § > 0 and r{a} > r1.
Now let us set

_ _ M Ll 1.
(3.2) S-4max{;~§+0,2K} a=157M1-m), v=rs(i-m).

LEMMA 3.2. Let us suppose that the hypotheses of Theorem 1.2 are verified.
" Then for everyv € L the problemn (3.1) has a solution  defined on [0, a] such
. thatu(t) € Byyyyp,r wherea, S are defined by (3.2), r(t) = 1-85t—2(1—ry)
and 3 = %(1 —71).

-Proof. We can use the same method as in [7]; s0 we give only the outline
of the proof. We introduce for n € N the following approximate problems

" of Tonelli type (see [15])

u,n(i‘) =0, t£0°

(3.3 t ,
O =B mir - 2yan 0sige

It is easy to see that for every n € N the problem (3.3} has a solutlon defined
on [0,a] and that u,(t) € X foreveryr <l andte [0 al.

Step 1 (some well-known estimate). Let us define:
ol = Holla(1 — 5t —s).
It is easy to see that (see [3] and [7]):
(3.4) lun(®)lst S ¥R Vi<a, s<1-S85t
'If we then set p(t) = 1 — St — v, we bave ||Jun(t}[l¢) < R.

Step 2 (equicontinuity). Now let us define py(t) = 1 — St — 2v. For every
t < o the functions uy, : [0,1] ~ B,, (1), » are equi-Lipchitz continuons. Indeed
" (@) — wn(T oy < §

ifa,7€[0,8], o <r7,then
) B(z,‘u(m),un(m - %))

< v YCR+ M)|r - gl

Step 3 (compactneas) For a subset U of X, let us denote by cl,(U) the
closure of U in X, and by eo{lV) its convex hull. Let us set :

) = {m@):neN},  od= |J %),

o<t

r

dx
m(t)

Cauchy—Kovalevskaya Thearem 337
a(Q((0,a))) = sup sup (p(t) — s)as(R(2)).
. . i<a g<p1(t)

Let £ > 0, using step 2, we can find § > 0 such that

I<i—17Lbé= Q(T,t) c Q(t) +€Bp1(t),1'
Now let ¢ € [0,2], and (X)), =0,...,2™ — 1 be a subdivision of [0,1] ir 2™
equal parts, with 2~™ < é. Let k > m and (t}) be a finite partition of [0,4]
in 2* equal parts. Let s < p1(t). Then, as in [7], for all ng > 1 we get

ak_1
Qﬂn(t) c Z (t,'p+1 - t?%dﬂm(B([tfrtJ+1] v, Q‘ - t +1)) u {0})1

where V= {'u(t) 1t €10,a]}, Rnot) = {ua(t) :n > nu}.'
‘We denote by i(j, k), the index i such that f.f € igpy Mga+1), § =
0,...,2° —1, k 2 m. Then, if - < §, we find

1
a(f - n—n:t?ﬂ) € Qg k)+1) T 26Bpy (0 49400005

hence -
21

Ona(H) € 3 (th41 — tH)cluco( B, 1], V, Uiy 1)
=0

+2 EBPI(Ai(j,I:)-i-l)vl) u {0})

Furthermore let us sef

bs(r) = { ifr<0,
L(p1(7) + s) otherwise; -
and
ek = Bltf, ti1], VOt ) + 2 €Bpy oy in))-
By (iv) there exists & such that for k > k and forevery j = 0,...,26 -1, i =

0,...,9m _1
B, itz ) itz 0y 41)) + 2 )
8 i) < K( - - v
) Bs(Mstjpy41) — 8 ton(V) ) +e

Since V is compact in X, and Q(%) \ 2n,(2) is a finite set, we obtain

= : Qi (g pye0) (U NG y41)) + 26
i gk Sl (d.k}+
) s etk :z=1:1 (G = )( BalAigskye1) — 8 )
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2kt k- k
> i1 — 3 )
i P(Mpmy) — s
2k_1 . tk f"s -

Kol ,Q 41 T by )
+K {20 ) g (¢f"(’\i(.f:-'¢)+]_-)_3)2

SE(1+2K

Morecover, by the choice of J; and t}’, we get

251 k k am_y ’
b — b . Aig1 — X

izt (Bahigayer) — 8)9 - & (9s(Aiva) —8)' e
hence, by taking first n — +-o00 and second & — 0, we have

t
1
el < Ka(@(0,0) | oy dr

=1,2;

4K 1
< ‘+"'STQ(Q(O, G))m
Therefore _
(3.5) a0, a)) = 0.

- Now let us set r1(¢) = 1 — St — 3v; thanks to (3.5) for every ¢ € o, aj, the

set {(t) is compact in B, (4 z-

Step 4 (final step) By the Ascoli-Arzeld theorem and by a diagonal argu-
ment (see [14] and [7]) we can prove that there exists u,, — u, where u is

solution of (3.1} u : [0,8] — By(y4g,r: for ¢t < a: where r(t) = ri(t) — 8,

B=31-r)r@2n+p

3.2. Properties of solutions

Let us denote by u, the solutions of (3.1) as in Lemmas 3.1, 3.2.
We have the following result.

LEMMA 3.3. The functions u, are equi-Lipschitz continuous, i.e. for every
t € [0,a] there is
2
{|n(T) — '”"’(‘7)”1-(#,)+§ < E(GR +M)r—o|, T,0€[0,].

Proof. It is enough to use the method of step 2 in the proof of Lemma 3.2,
by remarking that in both the cases

- . M+CR
"B(ti”ru)llas_:';'- ('U-E-Br,R, vEBunr 8<r).um
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Let ua set _20R+M

e r=2g

‘REMAR.K 3.4 Let e, be as in Lemmas 3.1, 3.2 and v € L.. Let u, be 2

solution of (3.1) as in Lemmas 3:1-3.2. Then, thanks to Lemma 3.3, uy € L.

'If we define _
V= | {v(t):vel,}, Q)= {uy(t) v € Ly},
0sisa - o _
' 1
‘a(D(0,a)} = sup sup (’r(t) + 5'6 - s)o:, (£2(2));
' 05t ser(t)+§ _

we can also prove the following lemma, using the method of step 3 in the
proof of Lemma 3.2. ' '
LEMMA 3.5. It holds true

(00, 0) < ‘-*-S{{-a(n(o,a)) + Kac (V). =

3.3. Proof of Theorem 1
Let us remark that in Lemma 3.1 we can suppose S > 5 K and replace

a by a positive number a; such that

10K a
r(a) ~5Cam 201 and A= —3 <l

Let us consider the map F : Ly — Lq (v}here v is as in (3.6)) defined by
F(v) =1t _
where u,, is the solution of (3.1). Thanks to Remark 3.4, the map F is well -

defined.
If we prove that

1. F is coptinuous;
2. F is a-condensing,

then, by Theorem 2.4, the map F has at least one fixed point.
Ad 1. Let v — v in Lo, Define p(t) = r(a1)—5Ct+5. Let t € [0,01), 5 <
p(t) and .
: 1 if v<0
h =
. o(7) ____p('r)2+ ¥ otherwise.

Hence

lltn (£) — ()5 < § 1B(7s vn(7)s 0 (7)) — Blr,u(r), wolr )l dr
0 .
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£ Gl (7) = 1) lnetr
= ‘S) he(T) — 8 dr

; .
+ S | B{r; va(T), uy(7)) = Blr, v(7), uu(7))]|s 2.
i}

Let us set

fuv, —usll = sup sup (p(t) — 8)|lwu, (£) — 2o (£) -
0<t<a; s<plt) -
Therefore
. a1
4 - -
T () = 08 < S, = toll s —

¢ :
+ HIB(7,un(7), we(7)) — B(r,0(7), 1y (7)) | .
0.

Since 5 < r(a1) + g, we have
a1

liwn = 2l < 5 § [B(r, vn(r), wa(1)) = BT, 0(7), ()l 8 s
0 .

~ hence, for some §; > 0 one gets

sup  J|uy, () — uy(£) |y,
0<i<ay

ay

S 80§ 1B(7,va(7), un(r)) - B(r, v(7), (7)o (o). -
0

Finally, by the Lebesgue theorem, for the dominate CONVETEENCE Uy, — 1y
in L; so F defined by (3.6), is continuous.

Ad 2. By Lemma 3.5, we get sup, oy, (2(t)) < Aay, (V). Then, by Propo-
sition 2.5, we have ay(F(L,)} < X eg(L,), where ay is the Hausdorf
noncompactness measure in H = C°([0, a1], X, ). Since A < I, then F is
a-condensing. = '

3.4, Proof of Theorem 2
We can suppose that

. 4o WKa

8
Let us consider the map F : L, — 257 (where « is as in {3.6)) defined as
follows:

4 € F(v) if uy i3 a solution of (3.1), that for every ¢ ¢ [0,4] and
8 < r(t) + £ verifies

uy(t) € B,z and ||u,,(cr) — uy{T)ls < 'y['rA—cr! for &,7€[0,1.

< 1.
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Thanks to Lervmas 3.2, 3.3 and Remark 3.4, the map F is well defined, since
for every v the set F(v) is not empty. If we prove that:

1. there exists a cdmpa.ct convex set N C L, such that F: N — 2V H
2. Fly is upper semicontinuous,

then, by Theorem 2.8 the map F has at least one fixed point, solution

. of (1.1).

Ad 1. By Lemma 3.5 and Proposition 2.5, we Bet SuDp<sc, ary (2(E)) <
Aay, (V) and '
@7 g (F(Ly)) < dag(Ly)
where ay is the Hausdorff noncompactness measure in F = ([0, a}, X, ).

Define ;

Y, =cIr1co( U F"('u)),
vEL,

where cly, (7), denotes the closure of 17 and co(U) its convex hull in X,

Let us remark that ¥, is a nonincreasing sequence of nonempty closed
convex bounded sets and, by (3.7) limy_, 400 & 1(Yn) = 0. By Proposition 2.8,
N =Y, is 2 norempty convex compact set; moreover F : N — 2N,

Ad 2. For every v € N, the set F(v) is relatively compact. Now let

us assume, by contradiction, that there exists vg such that ¥ is not upper

sermjcontinuous at vg. Then (see (2.1)), there exist ¢ > 0, v, € N and
Uy, € F(vp) such that %

.
(3.8) flvo — vl < - and lun ~wllg >  Vw e F(u).

Since (un)n C N, there exists a subsequence Un; — u in H. Therefore by
the Lebesgue theorem for the dominate convergence,

ut) = Im_um,(t) = § Blr, o(r), u(r)) dr.
[¢] .

Now let us prove that u € F(v). Remark that

en( U {m(®):neN) =o.
0<i<a

() = {ua(t) : n € N},

| a(2:1(0,a)) = e a<f(1:f+g (r(t) + g - s) aa((2)).

Lel:'us set

8 ||« |g is the norm In H
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As in Lemma 3.5 we have a(:(0,a)) = 0. Therefore, by Proposition 2.5,

for every t € [0, q] the sequence upn, is relatively compact in C°([0,t], By r)
for every s < 7(t) + g By this fact, u(t) € B, p for every 8 < r(t) + g, and

Ilul) = w(o)ls S vir ol o7 € 0,4,

Hence u € F(vg), but, by (38); flu —wllr, > e Yuw € F(vp). By this contra-
diction, F must be upper semicontinuous at vy. g

Final remarks

1t is also possible to prove Theorems 1.1, 1.2 directly (i.e., without intro-
ducing the auxiliary problem (3.1}), using Tonelli approximations instead
of fixed point theorems. By using this latter method, one can prove also
the analogous of Theorems 1.1, 1.2 with respect to the weak topology, i.e.
these results are still true if we replace: measurable by weakly measurable,
continuous by weakly continuous and the noncompactness measure by the
weak noncompactness measure 9
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