Compito di Analisi Matematica, Prima parte, Tema GIALLO

17 febbraio 2020

COGNOME: NOME: MATR.:

- 1) La derivata seconda della funzione $f(x) = x \cos(x) x \arcsin(x)$ in x = 0A: non esiste; B: vale 1; C: vale -2; D: vale 0; E: N.A.
- 2) La successione $\frac{n^2-1}{1+\ln(1+e^n)}$ tende a A: 1; B: $+\infty$; C: $-\infty$; D: N.A.; E: 0
- 3) Il numero complesso di argomento $\frac{83}{4}\pi$ e modulo $(\sqrt{2})^3$ è uguale a A: 2i-1; B: 2i-2; C: 0; D: 2i; E: N.A.
- 4) La serie $\sum_{n=2}^{+\infty} \frac{\cos(n)}{n \ln^2(1+n)}$

A: converge; B: diverge a $+\infty$; C: N.A.; D: diverge a $-\infty$; E: è indeterminata.

- 5) Il valore dell'integrale $\int_{-1}^{1} x \arcsin(x) dx$ è A: 1; B: π ; C: $-\pi$; D: $\pi/4$; E: N.A
- 6) L'insieme $\{x \in \mathbb{R} : |x-3| > 6\} \cap \{x \in \mathbb{R} : x > -2\}$ A: è limitato; B: ha estremo inferiore -2; C: ammette massimo; D: ammette minimo; E: N.A.
- 7) Il numero di soluzioni di y''(x) = (1-x)y(x), y(1) = y''(1) = 3 è A: 0; B: 1; C: infinito; D: 2; E: N.A.
- 8) La funzione $f(x) = \sin(x) + e^{-x^2}$ è A: concava; B: convessa; C: discontinua; D: limitata; E: N.A.

	1	2	3	4	5	6	7	8
RISPOSTE	С	В	В	A	D	E	A	D

Compito di Analisi Matematica, Prima parte, Tema ARANCIO

17 febbraio 2020

COGNOME: NOME: MATR.:

- 1) Il numero di soluzioni di y''(x) = (1-x)y(x), y(1) = y'(1) = 1 è A: 0; B: 1; C: infinito; D: 2; E: N.A.
- 2) La funzione $f(x) = e^x + x^2 \sin(x)$ è A: limitata; B: convessa; C: concava; D: discontinua; E: N.A.
- 3) La successione $\frac{3-n^2}{n+\ln(1+e^n)}$ tende a A: 1; B: $+\infty$; C: $-\infty$; D: N.A.; E: 0.
- 4) La derivata seconda della funzione $f(x) = x \sin(x) x \arccos(x)$ in x = 0A: non esiste; B: vale e; C: vale 0; D: vale 4; E: N.A.
- 5) Il coniugato del numero complesso di argomento $\frac{83}{4}\pi$ e modulo $(\sqrt{2})^3$ è uguale a A: 2i + 2; B: 2i + 1; C: 0; D: 2i; E: N.A.
- 6) Il valore dell'integrale $\int_0^1 2x\arcsin(x)\,dx$ è A: $\pi/4$; B: π ; C: $-\pi$; D: $-\pi/4$; E: N.A.
- 7) La serie $\sum_{n=2}^{+\infty} \frac{3 + \cos(n)}{n \ln(1+n)}$

A: converge; B: diverge a $+\infty$; C: N.A.; D: diverge a $-\infty$; E: è indeterminata.

8) L'insieme $\{x \in \mathbb{R} : |x+1| > 3\} \cap \{x \in \mathbb{R} : x > -2\}$ A: è limitato; B: ha estremo inferiore 2; C: ammette massimo; D: ammette minimo; E: N.A.

	1	2	3	4	5	6	7	8
RISPOSTE	В	В	С	D	Е	A	В	В

Compito di Analisi Matematica, Prima parte, Tema VERDE

17 febbraio 2020

COGNOME: NOME: MATR.:

- 1) La successione $\frac{n-3\sin(n)}{3\ln(1+n^n)}$ tende a A: 0; B: $+\infty$; C: $-\infty$; D: N.A.; E: 1.
- 2) Il valore dell'integrale $\int_{-1}^1 3x \arcsin(x) dx$ è A: $\pi/2$; B: $3\pi/4$; C: $-\pi$; D: $\pi/4$; E: N.A.
- 3) Il numero di soluzioni di y''(x) = 3xy(x), y(0) = 1, y''(0) = 0 è A: 2; B: 1; C: infinito; D: 0; E: N.A.
- 4) La funzione $f(x) = \cos(x) e^x x^2$ è A: limitata; B: convessa; C: concava; D: discontinua; E: N.A.
- 5) La serie $\sum_{n=2}^{+\infty} \frac{\cos(n)}{n^2 \ln(1+n)}$ A: converge; B: diverge a $+\infty$; C: N.A.; D: diverge a $-\infty$; E: è indeterminata.
- 6) L'insieme $\{x \in \mathbb{R} : |x+1| > 3\} \cap \{x \in \mathbb{R} : x > -2\}$ A: è limitato; B: ha estremo inferiore -2; C: ammette massimo; D: ammette minimo; E: N.A.
- 7) La derivata seconda della funzione $f(x) = \sin^3(x) + x^2 \arcsin(x)$ in x = 0 A: non esiste; B: vale 1; C: vale 0; D: vale 2; E: N.A.
- 8) Il numero complesso di argomento $\frac{83}{4}\pi$ e modulo $(\sqrt{2})^3$ è uguale a A: 2i-1; B: 2i-2; C: 0; D: 2i; E: N.A.

	1	2	3	4	5	6	7	8
RISPOSTE	A	В	С	С	A	Е	С	В

Compito di Analisi Matematica, Prima parte, Tema AZZURRO

17 febbraio 2020

COGNOME: NOME: MATR.:

- 1) Il coniugato del numero complesso di argomento $\frac{83}{4}\pi$ e modulo $(\sqrt{2})^3$ è uguale a A: 2i+2; B: 2i+1; C: 0; D: 2i; E: N.A.
- 2) La successione $\frac{n!+2}{2+\ln(1+n^n)}$ tende a A: 0; B: $+\infty$; C: $-\infty$; D: N.A.; E: 1
- 3) Il valore dell'integrale $\int_{-1}^{1} 4x \arcsin(x) dx$ è A: 1; B: π ; C: $-\pi$; D: $\pi/2$; E: N.A.
- 4) Il numero di soluzioni dI $y''(x) = \cos(x)y(x), y(0) = y''(0) = 1$ è A: 0; B: 1; C: infinito; D: 2; E: N.A.
- 5) La funzione $f(x) = \cos(x) e^{-x^2}$ è A: concava; B: convessa; C: discontinua; D: limitata; E: N.A.
- 6) La serie $\sum_{n=3}^{+\infty} \frac{(-1)^n}{e^n(1+n)^2}$ A: diverge a $-\infty$; B: diverge a $+\infty$; C: N.A.; D: converge; E: è indeterminata.
- 7) L'insieme $\{x \in \mathbb{R} : |x-3| < 6\} \cap \{x \in \mathbb{R} : x > -2\}$ A: è limitato; B: ha estremo inferiore -2; C: ammette massimo; D: ammette minimo; E: N.A.
- 8) La derivata seconda della funzione $f(x) = \cos^2(x) + x^2 \arcsin(x)$ in x = 0A: vale -2; B: vale -1; C: vale 0; D: vale 1; E: N.A.

	1	2	3	4	5	6	7	8
RISPOSTE	E	В	В	С	D	D	Α	Α

Compito di Analisi Matematica, Prima parte, Tema ROSSO

17 febbraio 2020

COGNOME: NOME: MATR .:

- 1) Il valore dell'integrale $\int_{-1}^{1} x \arcsin(x) dx$ è B: π ; C: $-\pi$; D: $\pi/4$; A: 1;
- 2) L'insieme $\{x \in \mathbb{R} : |x-3| > 6\} \cap \{x \in \mathbb{R} : x > -2\}$ A: è limitato; B: ha estremo inferiore -2; C: ammette massimo; D: ammette minimo; E: N.A.
- 3) La derivata seconda della funzione $f(x) = x\cos(x) x\arcsin(x)$ in x = 0A: non esiste; B: vale 1; C: vale -2; D: vale 0; E: N.A.
- 4) La successione $\frac{n^2-1}{1+\ln(1+e^n)}$ tende a B: $+\infty$; C: $-\infty$; D: N.A.; E: 0.A: 1;
- 5) Il numero di soluzioni di y''(x) = (1-x)y(x), y(1) = y''(1) = 3 è A: 0; B: 1; C: infinito; D: 2; E: N.A.
- 6) La funzione $f(x) = \sin(x) + e^{-x^2}$ è A: concava; B: convessa; C: discontinua; D: limitata; E: N.A.
- 7) Il numero complesso di argomento $\frac{83}{4}\pi$ e modulo $(\sqrt{2})^3$ è uguale a A: 2i-1; B: 2i-2; C: 0; D: 2i; E: N.A.

 8) La serie $\sum_{n=2}^{+\infty} \frac{\cos(n)}{n \ln^2(1+n)}$

A: converge; B: diverge $a + \infty$; C: N.A.; D: diverge $a - \infty$; E: è indeterminata.

	1	2	3	4	5	6	7	8
RISPOSTE	D	Е	С	В	A	D	В	A

Compito di Analisi Matematica, Prima parte, Tema NERO

17 febbraio 2020

COGNOME: NOME: MATR.:

- 1) La funzione $f(x) = e^x + x^2 \sin(x)$ è A: limitata; B: convessa; C: concava; D: discontinua; E: N.A.
- 2) Il valore dell'integrale $\int_0^1 2x \arcsin(x) dx$ è A: $\pi/4$; B: π ; C: $-\pi$; D: $-\pi/4$; E: N.A.
- 3) La serie $\sum_{n=2}^{+\infty} \frac{3 + \cos(n)}{n \ln(1+n)}$

A: converge; B: diverge a $+\infty$; C: N.A.; D: diverge a $-\infty$; E: è indeterminata.

- 4) L'insieme $\{x \in \mathbb{R} : |x+1| > 3\} \cap \{x \in \mathbb{R} : x > -2\}$ A: è limitato; B: ha estremo inferiore 2; C: ammette massimo; D: ammette minimo; E: N.A.
- 5) La successione $\frac{3-n^2}{n+\ln(1+e^n)}$ tende a A: 1; B: $+\infty$; C: $-\infty$; D: N.A.; E: 0.
- 6) La derivata seconda della funzione $f(x) = x \sin(x) x \arccos(x)$ in x = 0 A: non esiste; B: vale e; C: vale 0; D: vale 4; E: N.A.
- 7) Il coniugato del numero complesso di argomento $\frac{83}{4}\pi$ e modulo $(\sqrt{2})^3$ è uguale a A: 2i+2; B: 2i+1; C: 0; D: 2i; E: N.A.
- 8) Il numero di soluzioni di y''(x) = (1 x)y(x), y(1) = y'(1) = 1 è A: 0; B: 1; C: infinito; D: 2; E: N.A.

	1	2	3	4	5	6	7	8
RISPOSTE	В	A	В	В	С	D	Е	В

Compito di Analisi Matematica, Prima parte, Tema BLU

17 febbraio 2020

COGNOME: NOME: MATR.:

- 1) Il numero di soluzioni di y''(x) = 3xy(x), y(0) = 1, y''(0) = 0 è A: 2; B: 1; C: infinito; D: 0; E: N.A.
- 2) La funzione $f(x) = \cos(x) e^x x^2$ è A: limitata; B: convessa; C: concava; D: discontinua; E: N.A.
- 3) La successione $\frac{n-3\sin(n)}{3\ln(1+n^n)}$ tende a A: 0; B: $+\infty$; C: $-\infty$; D: N.A.; E: 1.
- 4) La derivata seconda della funzione $f(x) = \sin^3(x) + x^2 \arcsin(x)$ in x = 0 A: non esiste; B: vale 1; C: vale 0; D: vale 2; E: N.A.
- 5) Il numero complesso di argomento $\frac{83}{4}\pi$ e modulo $(\sqrt{2})^3$ è uguale a A: 2i-1; B: 2i-2; C: 0; D: 2i; E: N.A.
- 6) Il valore dell'integrale $\int_{-1}^1 3x \arcsin(x) dx$ è A: $\pi/2$; B: $3\pi/4$; C: $-\pi$; D: $\pi/4$; E: N.A.
- 7) La serie $\sum_{n=2}^{+\infty} \frac{\cos(n)}{n^2 \ln(1+n)}$

A: converge; B: diverge a $+\infty$; C: N.A.; D: diverge a $-\infty$; E: è indeterminata.

8) L'insieme $\{x \in \mathbb{R} : |x+1| > 3\} \cap \{x \in \mathbb{R} : x > -2\}$ A: è limitato; B: ha estremo inferiore -2; C: ammette massimo; D: ammette minimo; E: N.A.

	1	2	3	4	5	6	7	8
RISPOSTE	С	С	A	С	В	В	A	Е

Compito di Analisi Matematica, Prima parte, Tema VIOLA

17 febbraio 2020

COGNOME: NOME: MATR.:

- 1) La funzione $f(x) = \cos(x) e^{-x^2}$ è A: concava; B: convessa; C: discontinua; D: limitata; E: N.A.
- 2) La serie $\sum_{n=3}^{+\infty} \frac{(-1)^n}{e^n(1+n)^2}$ A: diverge a $-\infty$; B: diverge a $+\infty$; C: N.A.; D: converge; E: è indeterminata.
- 3) L'insieme $\{x \in \mathbb{R} : |x-3| < 6\} \cap \{x \in \mathbb{R} : x > -2\}$ A: è limitato; B: ha estremo inferiore -2; C: ammette massimo; D: ammette minimo; E: N.A.
- 4) La derivata seconda della funzione $f(x) = \cos^2(x) + x^2 \arcsin(x)$ in x = 0A: vale -2; B: vale -1; C: vale 0; D: vale 1; E: N.A.
- 5) Il coniugato del numero complesso di argomento $\frac{83}{4}\pi$ e modulo $(\sqrt{2})^3$ è uguale a A: 2i+2; B: 2i+1; C: 0; D: 2i; E: N.A.
- 6) La successione $\frac{n!+2}{2+\ln(1+n^n)}$ tende a A: 0; B: $+\infty$; C: $-\infty$; D: N.A.; E: 1
- 7) Il valore dell'integrale $\int_{-1}^{1} 4x \arcsin(x) dx$ è A: 1; B: π ; C: $-\pi$; D: $\pi/2$; E: N.A
- 8) Il numero di soluzioni dI $y''(x) = \cos(x)y(x), y(0) = y''(0) = 1$ è A: 0; B: 1; C: infinito; D: 2; E: N.A.

	1	2	3	4	5	6	7	8
RISPOSTE	D	D	A	A	E	В	В	С