Secondo compitino di Ist. Mat., Prima parte, Tema GIALLO

26 marzo 2019

- 1) Il coniugato del numero complesso $\frac{2+11i}{3+4i} \frac{3-5i}{2i}$ è uguale a A: (9+5i)/2; B (9-5i)/2; C: (9+5i)/4; D: (9-5i)/4; E: N.A.
- 2) L'equazione differenziale $y'' = 2y^2 + e^{y'} + x$ con y'(1) = 2A: non ha soluzione; B: ha soluzione unica; C: ha solo 2 soluzioni; D: N.A.; E: ha infinite soluzioni.
- 3) La soluzione di $y' = y^2$ tale che y(1) = -1/2 è A: limitata; B: crescente; C: definita su tutto \mathbb{R} ; D: convessa; E: N.A.
- 4) La funzione $f(x) = \sin^2(x) + \cos(x)$ ha in $x = \pi/3$ un punto di A: massimo locale; B: minimo locale; C: N.A.; D: flesso; E: discontinuità.
- 5) Il valore di $\int_0^2 \frac{x}{\sqrt{2+3x^2}} dx$ è: A: $\frac{\arcsin h(\sqrt{6})}{\sqrt{3}}$; B: $\frac{\sqrt{2}(\sqrt{7}-1)}{3}$; C: $\sqrt{14} + \frac{\arcsin h(\sqrt{6})}{\sqrt{3}}$; D: N.A.; E: $\frac{2}{\sqrt{14}}$.
- 6) Calcolare la derivata di $f(x) = \int_2^{x^2} \frac{\arctan(t)}{t^2 + 2 + \cos(t)} dt$: A: $\frac{2x \arctan(x^2)}{x^4 + 2 + \cos(x^2)}$; B: 0; C: $-\frac{2x \arctan(x)}{x^2 + 2 + \cos(x)}$; D: $\frac{2x \arctan(x^2)}{x^4 + 2 + \cos(x^2)} - \frac{4 \arctan(4)}{258 + \cos(16)}$; E: N.A.
- 7) L'intervallo massimo in cui è definita la soluzione di $\begin{cases} y' = y^2 2y + 2 \\ y(0) = 0 \end{cases}$ è A: $\left(-\frac{\pi}{4}, \frac{3\pi}{4}\right)$; B: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$; C: \mathbb{R} ; D: $\left(0, +\infty\right)$; E: N.A.
- 8) Il volume del solido ottenuto dalla rotazione attorno all'asse x del sottografico di $\sqrt[4]{x^3}, \ x \in [0,5]$ è

A:
$$\frac{2\sqrt{5}}{5}\pi$$
; B: $25\sqrt{5}\pi$; C: $10\sqrt{5}\pi^2$; D: $10\sqrt{5}\pi$; E: N.A.

	1	2	3	4	5	6	7	8
RISPOSTE	В	Е	В	A	В	A	A	D

Secondo compitino di Ist. Mat., Prima parte, Tema ARANCIO 26 marzo 2019

- 1) L'intervallo massimo in cui è definita la soluzione di $\begin{cases} y' = y^2 2y + 2 \\ y(0) = 1 \end{cases}$ è A: $\left(-\frac{\pi}{4}, \frac{3\pi}{4}\right)$; B: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$; C: \mathbb{R} ; D: $(0, +\infty)$; E: N.A.
- 2) Il volume del solido ottenuto dalla rotazione attorno all'asse x del sottografico di $\sqrt[4]{x^3}$, $x \in [0, 2]$ è
 A: $\frac{8\sqrt{2}\pi}{5}$; B: $24\sqrt{3}\pi$; C: $\frac{4}{5}\sqrt{2}\pi^2$; D: $\frac{4}{5}\sqrt{2}\pi$; E: N.A.
- 3) L'equazione differenziale $y'' = 2y^2 + e^{y'} + x$ con y'(2) = 2, y(2) = 0A: non ha soluzione; B: ha soluzione unica; C: ha solo 2 soluzioni; D: N.A.; E: ha infinite soluzioni.
- 4) Il modulo del numero complesso $\frac{3-5i}{2i}+i+2$ è uguale a A: 1/2; B 3/4; C: $1/\sqrt{2}$; D: 1/4; E: N.A.
- 5) La soluzione di $y' = -y^2$ tale che y(1) = -1/2 è A: crescente; B: limitata; C: definita su tutto \mathbb{R} ; D: convessa; E: N.A.
- 6) Il valore di $\int_0^3 \frac{x}{\sqrt{2+3x^2}} dx$ è: A: $\frac{\arcsin h(\sqrt{\frac{27}{2}})}{\sqrt{3}}$; B: N.A.; C: $\frac{3\sqrt{14}}{2} + \frac{\arcsin h(\sqrt{\frac{27}{2}})}{\sqrt{3}}$; D: $\frac{(\sqrt{29}-\sqrt{2})}{3}$; E: $\frac{3}{\sqrt{29}}$.
- 7) La funzione $f(x) = \sin^2(x) \cos(x)$ ha in $x = -2\pi/3$ un punto di A: flesso; B: minimo locale; C: N.A.; D: massimo locale; E: discontinuità.
- 8) Calcolare la derivata di $f(x) = \int_{x^3}^6 \frac{\arctan(t)}{t^2 + 2 + \cos(t)} dt$: A: $\frac{2x \arctan(x^2)}{x^4 + 2 + \cos(x^2)}$; B: $\frac{\arctan(x^2)}{x^4 + 2 + \cos(x^2)}$; C: $-\frac{2x \arctan(x)}{x^2 + 2 + \cos(x)}$; D: $-\frac{3x^2 \arctan(x^3)}{x^6 + 2 + \cos(x^3)}$; E: N.A.

	1	2	3	4	5	6	7	8
RISPOSTE	В	A	В	С	D	D	D	D

Secondo compitino di Ist. Mat., Prima parte, Tema VERDE

26 marzo 2019

- 1) L'equazione differenziale $y'' = 2y + e^{y'} + x$ con y'(2) = 0, y''(2) = 1A: non ha soluzione; B: ha soluzione unica; C: ha solo 2 soluzioni; D: N.A.; E: ha infinite soluzioni.
- 2) Il valore di $\int_0^3 \frac{x}{\sqrt{2+3x^2}} dx$ è: A: $\frac{\arcsin h(\sqrt{\frac{27}{2}})}{\sqrt{3}}$; B: N.A.; C: $\frac{3\sqrt{14}}{2} + \frac{\arcsin h(\sqrt{\frac{27}{2}})}{\sqrt{3}}$; D: $\frac{(\sqrt{29}-\sqrt{2})}{3}$; E: $\frac{3}{\sqrt{29}}$.
- 3) L'intervallo massimo in cui è definita la soluzione di $\begin{cases} y' = y^2 + 2y + 2 \\ y(0) = 0 \end{cases}$ è A: $\left(-\frac{3\pi}{4}, \frac{\pi}{4}\right)$; B: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$; C: \mathbb{R} ; D: $(0, +\infty)$; E: N.A.
- 4) Il volume del solido ottenuto dalla rotazione attorno all'asse x del sottografico di $\sqrt[6]{x^5}$, $x \in [0, 2]$ è
 A: $\frac{5\sqrt[3]{2}\pi}{2}$; B: $\frac{3\sqrt[3]{4}\pi}{2}$; C: $\frac{12\sqrt{2}\pi}{2}$; D: $\frac{12\sqrt{2}\pi^2}{2}$; E: N.A.
- 5) La funzione $f(x) = \cos^2(x) + \sin(x)$ ha in $x = \pi/6$ un punto di A: flesso; B: N.A.; C: minimo locale; D: massimo locale; E: discontinuità.
- 6) Calcolare la derivata di $f(x) = \int_{9}^{2x} \frac{\arctan(t)}{t^2 + 2 + \cos(t)} dt$: A: $\frac{2x \arctan(x^2)}{x^4 + 2 + \cos(x^2)}$; B: 0; C: $-\frac{2x \arctan(x)}{x^2 + 2 + \cos(x)}$; D: $\frac{2x \arctan(x^2)}{x^4 + 2 + \cos(x^2)} - \frac{4 \arctan(4)}{258 + \cos(16)}$; E: N.A.
- 7) La parte immaginaria del numero complesso $i+2-\frac{1-2i}{3+4i}$ è uguale a A: 9/5; B 7/5; C: 7/10; D: 11/5; E: N.A.
- 8) La soluzione di $y' = -y^2$ tale che y(0) = 3A: ha limite 0 a $+\infty$; B: è limitata; C: è pari; D: è crescente; E: N.A.

	1	2	3	4	5	6	7	8
RISPOSTE	В	D	A	В	D	Ε	В	A

Secondo compitino di Ist. Mat., Prima parte, Tema AZZURRO 26 marzo 2019

- 1) La soluzione di $y' = -y^2$ tale che y(0) = 1A: è crescente; B: è limitata; C: vale 1/2 in x = 1; D: è definita su tutto \mathbb{R} ; E: N.A.
- 2) L'equazione differenziale $y'' = 2y^2 + e^{y'} + x$ con y'(1) = 0, y''(1) = -2 A: non ha soluzione; B: ha soluzione unica; C: ha solo 2 soluzioni; D: N.A.; E: ha infinite soluzioni.
- 3) Il valore di $\int_0^2 \frac{x}{\sqrt{2+3x^2}} dx$ è: A: $\frac{\arcsin h(\sqrt{6})}{\sqrt{3}}$; B: $\frac{\sqrt{2}(\sqrt{7}-1)}{3}$; C: $\sqrt{14} + \frac{\arcsin h(\sqrt{6})}{\sqrt{3}}$; D: N.A.; E: $\frac{2}{\sqrt{14}}$.
- 4) L'intervallo massimo in cui è definita la soluzione di $\begin{cases} y' = y^2 2y + 2 \\ y(1) = 1 \end{cases}$ è A: $\left(-\frac{\pi}{4}, \frac{3\pi}{4}\right)$; B: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$; C: \mathbb{R} ; D: $(0, +\infty)$; E: N.A.
- 5) Il volume del solido ottenuto dalla rotazione attorno all'asse x del sottografico di $\sqrt{x^3}, x \in [0,2]$ è A: $\frac{4\pi}{3}$; B: $\frac{4\sqrt{2}}{3}\pi$; C: $\frac{6\sqrt[3]{4}}{5}\pi$; D: 4π ; E: N.A.
- 6) La funzione $f(x) = \sin^2(x) + \cos(x)$ ha in x = 0 un punto di A: massimo locale; B: minimo locale; C: N.A.; D: flesso; E: discontinuità.
- 7) Calcolare la derivata di $f(x) = \int_{x^2}^2 \frac{\arctan(t)}{t^2 + 2 + \cos(t)} dt$: A: $\frac{2x \arctan(x^2)}{x^4 + 2 + \cos(x^2)}$; B: 0; C: $-\frac{2x \arctan(x^2)}{x^4 + 2 + \cos(x^2)}$; D: $\frac{2x \arctan(x^2)}{x^4 + 2 + \cos(x^2)} - \frac{4 \arctan(4)}{258 + \cos(16)}$; E: N.A.
- 8) La parte reale del numero complesso $i + 2 \frac{1-2i}{3+4i}$ è uguale a A: 9/5; B 21/10; C: 19/10; D: 11/5; E: N.A.

	1	2	3	4	5	6	7	8
RISPOSTE	С	A	В	Е	D	В	С	D

Secondo compitino di Ist. Mat., Prima parte, Tema ROSSO

26 marzo 2019

- 1) Il valore di $\int_0^2 \frac{x}{\sqrt{2+3x^2}} dx$ è: A: $\frac{\arcsin h(\sqrt{6})}{\sqrt{3}}$; B: $\frac{\sqrt{2}(\sqrt{7}-1)}{3}$; C: $\sqrt{14} + \frac{\arcsin h(\sqrt{6})}{\sqrt{3}}$; D: N.A.; E: $\frac{2}{\sqrt{14}}$.
- 2) Calcolare la derivata di $f(x) = \int_2^{x^2} \frac{\arctan(t)}{t^2 + 2 + \cos(t)} dt$: A: $\frac{2x \arctan(x^2)}{x^4 + 2 + \cos(x^2)}$; B: 0; C: $-\frac{2x \arctan(x)}{x^2 + 2 + \cos(x)}$; D: $\frac{2x \arctan(x^2)}{x^4 + 2 + \cos(x^2)} - \frac{4 \arctan(4)}{258 + \cos(16)}$; E: N.A.
- 3) Il coniugato del numero complesso $\frac{2+11i}{3+4i} \frac{3-5i}{2i}$ è uguale a A: (9+5i)/2; B (9-5i)/2; C: (9+5i)/4; D: (9-5i)/4; E: N.A.
- 4) L'equazione differenziale $y'' = 2y^2 + e^{y'} + x$ con y'(1) = 2A: non ha soluzione; B: ha soluzione unica; C: ha solo 2 soluzioni; D: N.A.; E: ha infinite soluzioni.
- 5) L'intervallo massimo in cui è definita la soluzione di $\begin{cases} y' = y^2 2y + 2 \\ y(0) = 0 \end{cases}$ è A: $\left(-\frac{\pi}{4}, \frac{3\pi}{4}\right)$; B: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$; C: \mathbb{R} ; D: $(0, +\infty)$; E: N.A.
- 6) Il volume del solido ottenuto dalla rotazione attorno all'asse x del sottografico di $\sqrt[4]{x^3}$, $x \in [0,5]$ è A: $\frac{2\sqrt{5}}{5}\pi$; B: $25\sqrt{5}\pi$; C: $10\sqrt{5}\pi^2$; D: $10\sqrt{5}\pi$; E: N.A.
- 7) La soluzione di $y' = y^2$ tale che y(1) = -1/2 è A: limitata; B: crescente; C: definita su tutto \mathbb{R} ; D: convessa; E: N.A.
- 8) La funzione $f(x) = \sin^2(x) + \cos(x)$ ha in $x = \pi/3$ un punto di A: massimo locale; B: minimo locale; C: N.A.; D: flesso; E: discontinuità.

	1	2	3	4	5	6	7	8
RISPOSTE	В	A	В	Ε	A	D	В	A

Secondo compitino di Ist. Mat., Prima parte, Tema NERO

26 marzo 2019

COGNOME: NOME: MATR.:

1) Il volume del solido ottenuto dalla rotazione attorno all'asse x del sottografico di $\sqrt[4]{x^3}$, $x \in [0,2]$ è

A: $\frac{8\sqrt{2}\pi}{5}$; B: $24\sqrt{3}\pi$; C: $\frac{4}{5}\sqrt{2}\pi^2$; D: $\frac{4}{5}\sqrt{2}\pi$; E: N.A.

2) Il valore di $\int_0^3 \frac{x}{\sqrt{2+3x^2}} dx$ è: A: $\frac{\arcsin h(\sqrt{\frac{27}{2}})}{\sqrt{3}}$; B: N.A.; C: $\frac{3\sqrt{14}}{2} + \frac{\arcsin h(\sqrt{\frac{27}{2}})}{\sqrt{3}}$; D: $\frac{(\sqrt{29}-\sqrt{2})}{3}$; E: $\frac{3}{\sqrt{29}}$.

3) La funzione $f(x) = \sin^2(x) - \cos(x)$ ha in $x = -2\pi/3$ un punto di A: flesso; B: minimo locale; C: N.A.; D: massimo locale; E: discontinuità.

4) Calcolare la derivata di $f(x) = \int_{x^3}^6 \frac{\arctan(t)}{t^2 + 2 + \cos(t)} dt$: A: $\frac{2x \arctan(x^2)}{x^4 + 2 + \cos(x^2)}$; B: $\frac{\arctan(x^2)}{x^4 + 2 + \cos(x^2)}$; C: $-\frac{2x \arctan(x)}{x^2 + 2 + \cos(x)}$; D: $-\frac{3x^2 \arctan(x^3)}{x^6 + 2 + \cos(x^3)}$; E: N.A.

5) L'equazione differenziale $y'' = 2y^2 + e^{y'} + x$ con y'(2) = 2, y(2) = 0A: non ha soluzione; B: ha soluzione unica; C: ha solo 2 soluzioni; D: N.A.; E: ha infinite soluzioni.

6) Il modulo del numero complesso $\frac{3-5i}{2i}+i+2$ è uguale a A: 1/2; B 3/4; C: $1/\sqrt{2}$; D: 1/4; E: N.A.

7) La soluzione di $y' = -y^2$ tale che y(1) = -1/2 è A: crescente; B: limitata; C: definita su tutto \mathbb{R} ; D: convessa; E: N.A

8) L'intervallo massimo in cui è definita la soluzione di $\begin{cases} y' = y^2 - 2y + 2 \\ y(0) = 1 \end{cases}$ è A: $\left(-\frac{\pi}{4}, \frac{3\pi}{4}\right)$; B: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$; C: \mathbb{R} ; D: $(0, +\infty)$; E: N.A.

	1	2	3	4	5	6	7	8
RISPOSTE	A	D	D	D	В	С	D	В

Secondo compitino di Ist. Mat., Prima parte, Tema BLU 26 marzo 2019

- 1) L'intervallo massimo in cui è definita la soluzione di $\begin{cases} y' = y^2 + 2y + 2 \\ y(0) = 0 \end{cases}$ è A: $\left(-\frac{3\pi}{4}, \frac{\pi}{4}\right)$; B: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$; C: \mathbb{R} ; D: $(0, +\infty)$; E: N.A.
- 2) Il volume del solido ottenuto dalla rotazione attorno all'asse x del sottografico di $\sqrt[6]{x^5}$, $x \in [0,2]$ è A: $\frac{5\sqrt[3]{2}\pi}{2}$; B: $\frac{3\sqrt[3]{4}\pi}{2}$; C: $\frac{12\sqrt{2}\pi}{2}$; D: $\frac{12\sqrt{2}\pi^2}{2}$; E: N.A.
- 3) L'equazione differenziale $y'' = 2y + e^{y'} + x$ con y'(2) = 0, y''(2) = 1A: non ha soluzione; B: ha soluzione unica; C: ha solo 2 soluzioni; D: N.A.; E: ha infinite soluzioni.
- 4) La parte immaginaria del numero complesso $i+2-\frac{1-2i}{3+4i}$ è uguale a A: 9/5; B 7/5; C: 7/10; D: 11/5; E: N.A.
- 5) La soluzione di $y' = -y^2$ tale che y(0) = 3A: ha limite 0 a $+\infty$; B: è limitata; C: è pari; D: è crescente; E: N.A.
- 6) Il valore di $\int_0^3 \frac{x}{\sqrt{2+3x^2}} dx$ è: A: $\frac{\arcsin h(\sqrt{\frac{27}{2}})}{\sqrt{3}}$; B: N.A.; C: $\frac{3\sqrt{14}}{2} + \frac{\arcsin h(\sqrt{\frac{27}{2}})}{\sqrt{3}}$; D: $\frac{(\sqrt{29}-\sqrt{2})}{3}$; E: $\frac{3}{\sqrt{29}}$.
- 7) La funzione $f(x) = \cos^2(x) + \sin(x)$ ha in $x = \pi/6$ un punto di A: flesso; B: N.A.; C: minimo locale; D: massimo locale; E: discontinuità.
- 8) Calcolare la derivata di $f(x) = \int_{9}^{2x} \frac{\arctan(t)}{t^2 + 2 + \cos(t)} dt$: A: $\frac{2x \arctan(x^2)}{x^4 + 2 + \cos(x^2)}$; B: 0; C: $-\frac{2x \arctan(x)}{x^2 + 2 + \cos(x)}$; D: $\frac{2x \arctan(x^2)}{x^4 + 2 + \cos(x^2)} - \frac{4 \arctan(4)}{258 + \cos(16)}$; E: N.A.

	1	2	3	4	5	6	7	8
RISPOSTE	A	В	В	В	A	D	D	Е

Secondo compitino di Ist. Mat., Prima parte, Tema VIOLA

26 marzo 2019

COGNOME: NOME: MATR.:

1) Il volume del solido ottenuto dalla rotazione attorno all'asse x del sottografico di $\sqrt{x^3},\,x\in[0,2]$ è

A: $\frac{4\pi}{3}$; B: $\frac{4\sqrt{2}}{3}\pi$; C: $\frac{6\sqrt[3]{4}}{5}\pi$; D: 4π ; E: N.A.

2) La funzione $f(x) = \sin^2(x) + \cos(x)$ ha in x = 0 un punto di A: massimo locale; B: minimo locale; C: N.A.; D: flesso; E: discontinuità.

3) Calcolare la derivata di $f(x) = \int_{x^2}^2 \frac{\arctan(t)}{t^2 + 2 + \cos(t)} dt$: A: $\frac{2x \arctan(x^2)}{x^4 + 2 + \cos(x^2)}$; B: 0; C: $-\frac{2x \arctan(x^2)}{x^4 + 2 + \cos(x^2)}$; D: $\frac{2x \arctan(x^2)}{x^4 + 2 + \cos(x^2)} - \frac{4 \arctan(4)}{258 + \cos(16)}$; E: N.A.

4) La parte reale del numero complesso $i + 2 - \frac{1-2i}{3+4i}$ è uguale a A: 9/5; B 21/10; C: 19/10; D: 11/5; E: N.A.

5) La soluzione di $y' = -y^2$ tale che y(0) = 1A: è crescente; B: è limitata; C: vale 1/2 in x = 1; D: è definita su tutto \mathbb{R} ; E: N.A.

- 6) L'equazione differenziale $y'' = 2y^2 + e^{y'} + x$ con y'(1) = 0, y''(1) = -2 A: non ha soluzione; B: ha soluzione unica; C: ha solo 2 soluzioni; D: N.A.; E: ha infinite soluzioni.
- 7) Il valore di $\int_0^2 \frac{x}{\sqrt{2+3x^2}} dx$ è: A: $\frac{\arcsin h(\sqrt{6})}{\sqrt{3}}$; B: $\frac{\sqrt{2}(\sqrt{7}-1)}{3}$; C: $\sqrt{14} + \frac{\arcsin h(\sqrt{6})}{\sqrt{3}}$; D: N.A.; E: $\frac{2}{\sqrt{14}}$.
- 8) L'intervallo massimo in cui è definita la soluzione di $\begin{cases} y'=y^2-2y+2\\ y(1)=1 \end{cases}$ è A: $\left(-\frac{\pi}{4},\frac{3\pi}{4}\right)$; B: $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$; C: \mathbb{R} ; D: $(0,+\infty)$; E: N.A.

	1	2	3	4	5	6	7	8
RISPOSTE	D	В	С	D	С	A	В	Е