1. Introduction

Let E be a set of finite perimeter in \mathbb{R}^n. The isoperimetric deficit of E is defined as

$$D(E) := \frac{P(E) - P(B_r)}{P(B_r)}$$

where B_r is the ball having the same volume of B, that is $|E| = \omega_n r^n$. For a general set of finite perimeter the Fraenkel asymmetry of E, measuring in a natural way how far is E from being a ball of the same volume, is defined as

$$\lambda(E) = \min \left\{ \frac{|E \triangle B_r(x)|}{r^n} : x \in \mathbb{R}^n, \ |E| = \omega_n r^n \right\}.$$

We recall the following quantitative version of the classical isoperimetric inequality proved in [2] see also [?]

$$\lambda(E) \leq c \sqrt{D(E)}$$

where c is a constant depending only on the dimension.

The deviation from spherical shape of a set $K \in \mathcal{K}$ is defined by

$$\lambda_H(K) = \min_{x \in \mathbb{R}^n} \left\{ \frac{d_H(K, B_r(x))}{r} : |K| = \omega_n r^n \right\}.$$

The main result of the paper is the following:

Theorem 1.1. Let $0 < \gamma < 1$. There exists $0 < \delta_\gamma < 1$ such that for any $K \in \mathcal{C}_\gamma$ with $D(K) < \delta_\gamma$ then

$$\lambda_H(K) \leq C \begin{cases} D(K)^{\frac{1}{2}} & \text{for } n = 2 \\ D(K)^{\frac{1}{2}} \left(\log \frac{1}{D(K)} \right)^{\frac{1}{2}} & \text{for } n = 3 \\ D(K)^{\frac{n-1}{n-2}} & \text{for } n \geq 4 \end{cases}$$

where C is a constant depending only on γ and n.

Preliminary version – July 30, 2009 – 16:45
Remark 1.2. (provv.) We point out that, up to a suitable rescaling in the definition of λ_H, equality (2) coincides with the one proved in Theorem 1.2 in [1] in the particular case of nearly spherical domains. This inequality is known to be optimal in case $n = 2$ or $n = 3$ see Example 3.1 in [1].

2. Preliminaries

- Richiami sugli insiemi di perimetro finito funzioni BV
- Formule di area e coarea
- Formule per il calcolo della superficie e del volume di un dominio nearly spherical

Throughout we will denote by $B_r(x)$ the closed ball centered in x with radius r and we will write simply B_r if the center is at the origin. The volume of the unit ball will be denoted by ω_n.

We denote by K the family of all compact subsets of \mathbb{R}^n, and recall that if $H, K \in K$ the Hausdorff distance between K and H is defined as

$$d_H(K, H) = \inf\{\varepsilon > 0 : H \subset K + B_{\varepsilon}, K \subset H + B_{\varepsilon}\}.$$

Let us now introduce a class of sets of finite perimeter satisfying a mild regularity property, namely an interior cone property with aperture $\frac{\pi}{2}$. To this aim, given $x_0 \in \mathbb{R}^n$, $\gamma > 0$ and $\nu \in S^{n-1}$ the spherical sector with vertex in x_0, axis of symmetry parallel to ν and height γ is defined as

$$S_{x_0, \gamma, \nu} := \left\{ x \in \mathbb{R}^n : |x - x_0| \leq \gamma, \langle x - x_0, \nu \rangle \geq \frac{\sqrt{2}}{2} |x - x_0| \right\}.$$

Finally for $\gamma > 0$ we set

$$C_\gamma = \left\{ E \in C : |E| < \infty \text{ and } \forall x \in \partial E \; \exists \nu \in S^{n-1} \; \text{with} \; S_{x, \gamma', \nu} \subset E, \; \gamma' = \gamma |E|^{\frac{n}{n-2}} \omega_n^{\frac{2}{n}} \right\}.$$

Remark 2.1. We point out that the interior cone property required for sets in C_γ is a very mild regularity assumption. Indeed one can construct a compact set of finite perimeter $K \subset \mathbb{R}^2$ satisfying a uniform interior sphere condition such that $H^1(\partial E \setminus \partial^* E) > 0$ as shown by the next example.

Example 2.2. This example is inspired to Example 4.1 in ADD (Colombo-Marigoand, see also Mantegazza -Mennucci pag. 10). Let $C \subset S^1$ be a compact set with $H^1(C) > 0$ and empty interior. Set

$$K = B_1 \cup (B_4 \setminus \text{int}B_2) \cup \left(\bigcup_{x \in C} B_1(x) \right).$$

Since C is closed it is easily check that K is compact (recall that with $B_r(x)$ we denote a closed ball). Let $A = S^1 \setminus C$ then $A = \bigcup_{i=1}^{\infty} \Gamma_i$, where each Γ_i is a connected open arc such that $\Gamma_i \cap \Gamma_j = \emptyset$ if $i \neq j$. By adding to C finitely many points if needed we may assume w.l.o.g. that $B_1 \subset \text{int}K$. Thus $\partial(K) \subset \partial B_1 \cup \partial B_2 \cup \partial \bigcup_{x \in C} B_1(x)$. We claim that K is a set of finite perimeter. To prove this, by theorem ADD (Federer) it is enough to show that $H^1(\partial^M K) < \infty$ which in turn is true if we prove that $H^1(\partial \bigcup_{x \in C} B_1(x) \cap \text{int}B_2 < \infty$. To this
Lemma 3.2. \(\text{continuity} \)

Let us denote by \(a_i, b_i \) the end points of \(\Gamma_i \) and by \(S_i, T_i \) the open arcs of \(B_1(a_i), B_1(b_i) \), respectively, whose projection on \(S^1 \) coincides with \(\Gamma_i \). Clearly

\[
\mathcal{H}^1(S_i \cap T_i) \leq c \mathcal{H}^1(\Gamma_i).
\]

(3)

Proof. Let \(\chi \) and this implies the contradiction \(|E \Delta B_1(x)| > \varepsilon \).

Moreover by compactness properties of the Hausdorff distance in \(Q \), there exists \(\bar{y}_n \) such that \(\pi(\bar{x}_n) = x_n \) and \(y_n \in intB_2 \setminus (B_1(a_{n_0}) \cap B_1(b_{n_0})) \).

By construction each \(y_n \notin K \) and the sequence \(y_n \) converges to \(2x \). On the other hand since \(B_1(x) \subset K \) is tangent to \(\partial K \) in \(2x \) and \(B_1(3x) \subset K \) is also tangent to \(\partial K \) in \(2x \) we get that the \(\Theta_n(2x, K) = 1 \) thus proving that \(2x \in \partial K \setminus \partial M K \).

Therefore \(\mathcal{H}^1(\partial K \setminus \partial M K) \geq 2 \mathcal{H}^1(C) > 0. \)

3. PROOF OF THE MAIN RESULT

We observe that since all the quantities considered are scaling invariant, it is not restrictive to work in the class

\[C^1_\gamma = \{ E \in C_\gamma : |E| = \omega_n \}. \]

In the following, when the dependence on \(x_0 \) and \(\nu \) is not relevant, we will use the notation \(S_\gamma \) to denote a generic spherical sector \(S_{x_0, \gamma, \nu} \).

Lemma 3.1. There exist \(\delta_0 \) and \(L > 0 \) such that for any \(E \in C^1_\gamma \) with \(D(E) < \delta_0 \) we have \(\text{diam}(E) < L \).

Proof. Let \(\varepsilon = \frac{|S_\gamma|}{2} \) and \(\delta_0 = \varepsilon^2 c \), where \(c \) is the constant appearing in (1). Then \(L := 2 + 2 \text{diam}(S_\gamma) \) and \(\delta_0 \) satisfy the required property. Indeed, by contradiction, assume that \(\text{diam}(E) \geq L \); then there exists \(y \in \partial E \) with \(\text{dist}(y, B_1(x_0)) > \text{diam}(S_\gamma) \), where \(B_1(x_0) \) is such that \(\lambda(E) = |E \Delta B_1(x_0)| \). Since \(E \in C^1_\gamma \) there exists \(S_{y, \gamma, \nu} \subset E \) with \(S_{\gamma} \subset E \setminus B_1(x_0) \) and this implies the contradiction \(|E \Delta B_1(x_0)| > 2 \varepsilon \).

From the previous result, w.l.o.g. we may suppose that all the sets are contained in \(Q_L = [-L, L]^n \).

Lemma 3.2. For any \(\varepsilon > 0 \) there exists \(\delta_1 > 0 \) such that for any \(E \in C^1_\gamma \) with \(D(E) < \delta_1 \) we have \(\lambda(E) < \varepsilon \).

Proof. Arguing by contradiction there exist \(\varepsilon_0 > 0 \) and a sequence \(\{E_j\} \subset C^1_\gamma \) such that \(\lim_{j \to \infty} D(E_j) = 0 \) and \(\lambda(E_j) \geq \varepsilon_0 \). Since \(\chi_{E_j} \) is precompact in \(BV(Q_L) \), then, up to a subsequence not relabeled, we may assume \(\chi_{E_j} \to \chi_F \) in \(L^1(Q_L) \) for a suitable set \(F \). Note that \(|F| = \omega_n \) and, by lower semicontinuity of the perimeter, \(D(F) \leq \lim \inf_{j \to \infty} D(E_j) = 0. \)

The isoperimetric inequality yields at ones that \(F \) coincides a.e. with a unit ball, say \(B_1 \). Moreover by compactness properties of the Hausdorff distance in \(Q_L \), we may assume also \(E_j \to E_\infty \) in \(d_H \). We claim that \(E_\infty = B_1 \). Indeed, the inclusion \(B_1 \subset E_\infty \) is straightforward, since a.e. \(x \in B_1 \) is limit of a sequence \(\{x_j\} \) with \(x_j \in E_j \). For the opposite inequality if \(E_\infty \not\subset B_1 \) then there exists \(\bar{x} \in \partial E_\infty \setminus B_1 \), and in particular \(\text{dist}(\bar{x}, B_1) \geq r_0 > 0. \) By Hausdorff convergence \(\bar{x} \) is limit of points \(\bar{x}_j \in \partial E_j \). Letting \(S_{\bar{x}_j, \gamma, \nu} \subset E_j \) be the interior cones relative to \(\bar{x}_j \), we easily get that \(|S_{\bar{x}_j, \gamma, \nu} \setminus B_1| > 0 \) for \(j \) large enough (so that...
Lemma 3.3. There exists $\varepsilon_0 = \varepsilon_0(\gamma)$ such that for any $0 < \varepsilon \leq \varepsilon_0$ there exists $1 - \varepsilon < s_\varepsilon < 1$ with the property that for any $s_\varepsilon < r < 1$, $y \in \partial B_r$ and $z \in K_{y,s_\varepsilon,r}$, with

$$K_{y,s_\varepsilon,r} := \left\{ z \in B_1 \setminus B_r \mid \langle y, \frac{z - y}{|y - z|} \rangle \geq s_\varepsilon \right\}$$

it holds

$$|S_{z,\gamma,\nu} \setminus B_1| \geq \varepsilon \quad \forall \nu \in S^{n-1} \text{ with } \langle \nu, \frac{y - z}{|y - z|} \rangle \leq \frac{1}{\sqrt{2}}$$

Proof. Let $\varepsilon_0 = \varepsilon_0(\gamma) = |S_{\varepsilon_0,\gamma,\nu} \setminus B_1|$ with $\nu = \frac{\varepsilon_1 + \varepsilon_2}{\sqrt{2}}$. Arguing by contradiction there exist $0 < \tilde{\varepsilon} < \varepsilon_0$ and sequences $\{r_j\}$, with $1 - \frac{1}{j} < r_j < 1$, $\{y_j\} \subset \partial B_{r_j}$, $\{z_j\} \subset B_1 \setminus B_{r_j}$ and $\{\nu_j\} \subset S^{n-1}$ satisfying

$$\langle y_j, \frac{y_j - z_j}{|y_j - z_j|} \rangle \geq 1 - \frac{1}{j} \quad \text{and} \quad \langle \nu_j, \frac{y_j - z_j}{|y_j - z_j|} \rangle \leq \frac{1}{\sqrt{2}}$$

and

$$|S_{z_j,\gamma,\nu_j} \setminus B_1| < \tilde{\varepsilon} < \varepsilon_0.$$

By a compactness argument up to subsequences we have $\nu_j \to \nu_0$, $z_j \to z_0$, $y_j \to y_0$ and $\frac{y_j - z_j}{|y_j - z_j|} \to \zeta_0$. Taking into account that $|y_j - z_j| \leq \varepsilon/j$ we easily get that $z_0 = y_0$. Moreover since

$$r_j \geq \langle y_j, \frac{y_j - z_j}{|y_j - z_j|} \rangle \geq 1 - \frac{1}{j}$$

passing to the limit we deduce $y_0 = \zeta_0$. Similarly from (4) we get $\langle y_0, \nu_0 \rangle \leq \frac{1}{\sqrt{2}}$. Finally, since $S_{z_j,\gamma,\nu_j} \to S_{z_0,\gamma,\nu_0}$ in the Hausdorff topology, passing to the limit in (5) we infer

$$|S_{z_0,\gamma,\nu_0} \setminus B_1| < \varepsilon < \varepsilon_0.$$

The last inequality contradicts the definition of ε_0.

Proposition 3.4. For all $0 < \varepsilon < \varepsilon_0$ there exist $\delta, r_1, r_2 > 0$ with $1 > r_1 > r_2$ such that for any $E \in C^1$ with $D(E) < \delta$, we have

$$B_{r_1}(x_0) \setminus B_{r_2}(x_0) \subset E,$$

where $B_1(x_0)$ realizes $\lambda(E) = |E \Delta B_1(x_0)|$.

Proof. Let s_ε as in Lemma 3.3 and define $r_2 = s_\varepsilon \vee 1 - \varepsilon$. In order to define r_1, we consider, for any $s_\varepsilon < r < 1$, $k_r = |K_{y,s_\varepsilon,r}|$. By continuity of k_r we may define r_1 such that $k_{r_1} = \frac{k_r}{2}$. Finally choose δ such that

$$D(E) \leq \delta \Rightarrow \lambda(E) < \varepsilon \wedge \frac{k_{r_2}}{2}.$$

By contradiction assume that there exists $y \in \partial B_{r_1}(x_0) \setminus E$ for a suitable $r \in (r_2, r_1]$. Since $k_r \geq k_{r_1}$ we claim that there exists $z \in K_{y,s_\varepsilon,r} \cap \partial E$. Indeed if $K_{y,s_\varepsilon,r} \cap \partial E = \emptyset$ we would have $\lambda(E) \geq |K_{y,s_\varepsilon,r}| \geq k_r \geq \frac{k_{r_2}}{2}$. Let $S_{z,\gamma,\nu} \subset E$ be the internal cone relative to z; since $y \notin E$ we have $\langle \nu, \frac{y - z}{|y - z|} \rangle < \frac{1}{\sqrt{2}}$. Then by Lemma 3.3 we get the contradiction $\lambda(E) \geq |S_{z,\gamma,\nu} \setminus B_{r_1}(x_0)| \geq \varepsilon$.

□
Lemma 3.5. There exists $\delta > 0$ such that for any $E \in C^1_\gamma$ with $D(E) < \delta$ one of the following holds true

(i) $\lambda_H(E) \leq D(E)^{\frac{n-1}{n}}$;
(ii) there exists $\tilde{E} \in C^1_{\gamma/2}$ with $B_{r_1}(x_0) \subset \tilde{E}$ satisfying

$$\lambda_H(E) \leq \lambda_H(\tilde{E}) + c\sqrt{D(E)}$$
and
$$D(\tilde{E}) \leq D(E).$$

Proof. ADD (chi delta). Let $E \in C^1_\gamma$ with $D(E) \leq \delta$ be fixed. We define $H = B_{r_1}(x_0) \setminus E$, $F = E \cup H$, $\tilde{E} = \alpha F$ with $\alpha = \left(\frac{\omega_n}{\omega_n + |H|}\right)^\frac{1}{n}$ and

$$h = \sup\{r > 0 : B_r(x) \subset H \text{ for some } x \in H\}.$$

Case I: Assume that $h \geq \frac{1}{2} \lambda_H(E)$.

By Proposition 3.4 we have

$$D(E) = \frac{P(E) - n\omega_n}{n\omega_n} = \frac{P(F) + P(H) - n\omega_n}{n\omega_n}$$

$$\geq \frac{P(F) + P(B_h) - n\omega_n}{n\omega_n}$$

$$= \frac{P(F) + n\omega_nh^{n-1} - n\omega_n}{n\omega_n}.$$ \hspace{1cm} (6)

We observe that $P(F) - n\omega_n \geq 0$: indeed, by the classical isoperimetric inequality, since $\alpha < 1$ and $|E| = \omega_n$, it holds

$$P(F) - n\omega_n = \frac{1}{\alpha^{n-1}}P(\tilde{E}) - n\omega_n \geq \frac{1}{\alpha^{n-1}}P(B_1) - n\omega_n$$

$$\geq n\omega_n \left(\frac{1}{\alpha^{n-1}} - 1\right) > 0.$$

Taking into account the last inequality in (6) we thus infer

$$D(E) \geq h^{n-1} \geq \frac{1}{2^{n-1}} \lambda_H(E)^{n-1}.$$

Hence in Case I property (i) holds.

Case II: Assume that $h < \frac{1}{2} \lambda_H(E)$.

Note that, being B^∞ a ball realizing the infimum in $\lambda_H(E)$, it is easy to show that

$$\lambda_H(E) = d_H(E, B^\infty) = d_H(F, B^\infty).$$

Moreover we have

$$\lambda_H(\tilde{E}) = \lambda_H(\alpha F) = d_H(\alpha F, B^0)$$

$$\geq d_H(F, B^0) - d_H(F, \alpha F) \geq d_H(F, B^\infty) - 2(1 - \alpha).$$

An easy computation leads to

$$1 - \alpha = 1 - \left(\frac{\omega_n}{\omega_n + |H|}\right)^\frac{1}{n} \leq c|H| \leq c\lambda(E) \leq cD(E)^{\frac{1}{2}}.$$

Thus Case II is proved to hold. \hfill \square
Lemma 3.6. There exist $\varepsilon > 0$ and $\delta > 0$ such that if $E \in \mathcal{C}^1$ with $B_{1-\varepsilon} \subset E$ and $D(E) < \delta$, then for any $\xi \in \mathbb{S}^{n-1}$ there exists a unique $t > 0$ such that $x_0 + tv \in \partial(E)$.

Proof. Let $\varepsilon := \gamma/4 \land 1 - s_{\varepsilon_0}$ being s_{ε_0} as in Lemma 3.3. By using Lemma 3.2 we can choose δ such that $\lambda(H(E) < \varepsilon$ and $\lambda(E) < \varepsilon_0$. This implies that

\[
\text{eq:7} \quad d_H(E, B_{1-\varepsilon}(x_0)) \leq 4\varepsilon < \gamma.
\]

Indeed, denoted by $B_1(x_\infty)$ the unit ball realizing $\lambda(E) = d_H(E, B_1(x_\infty))$, we have

\[
d_H(E, B_{1-\varepsilon}(x_0)) \leq d_H(E, B_1(x_\infty)) + d_H(B_1(x_\infty), B_{1-\varepsilon}(x_0)) \leq \varepsilon + \varepsilon + |x_0 - x_\infty| \leq 4\varepsilon.
\]

Assume by contradiction that there exist $\xi \in \mathbb{S}^{n-1}$, $0 < t_1 < t_2$ such that $z_i = x_0 + t_i\xi \in \partial E$ for $i = 1, 2$. According to (7) we have that the interior cone related to z_2, $S_{zz,\gamma,\nu} \subset E$, is such that $\langle \nu, \frac{z_i - z_2}{|z_i - z_2|} \rangle \leq \frac{1}{\sqrt{2}}$; indeed if it is not the case, z_1 would lie in \emph{interno}E. It remains to apply Lemma 3.3 to infer the contradiction $\lambda(E) \geq \varepsilon_0$.

\[\square\]

Remark 3.7. As a direct consequence of Lemma 3.6, ∂E can be represented in spherical coordinates as the graph of a suitable function $\rho : \mathbb{S}^{n-1} \to \mathbb{R}$. The regularity properties of such a function will be investigated in the sequel.

In the following we will assume that all the hypotheses required for ∂E being a graph are satisfied. In particular we assume that $D(E)$ is sufficiently small to ensure that $d_H(E, B_1(x_0)) \leq s_\varepsilon$ with s_ε defined as in Lemma 3.3.

Lemma 3.8. The function ρ is a $W^{1,1} (\mathbb{S}^{n-1})$ function.

Proof. We start by proving that $\rho \in BV (\mathbb{S}^{n-1})$. We will argue locally using the spherical coordinates Φ. Let $J \in \mathbb{S}^{n-1}$ be a neighborhood of e_n and set $V = \{ x \in \mathbb{R}^n : \frac{x}{|x|} \in J, \ 1 - \eta < |x| < 1 + \eta \}$. Set $I \times (1 - \eta, 1 + \eta) = \Phi^{-1}(V)$. Since Φ is a diffeomorphism and $E \cap V$ is a set of finite perimeter, so is $U = \Phi^{-1}(E \cap V)$. Define $\sigma : I \to \mathbb{R}$ as $\sigma(v) = \rho(\Phi(v, 0))$ and note that U is the subgraph of σ. Applying Theorem B in [?] we get that $\sigma \in BV(I)$. The claim will follows once we show that $\sigma \in W^{1,1}(I)$. Let Γ_σ^* be the extended graph ?? of σ, i.e.

\[
\text{eq:8} \quad \Gamma_\sigma^* = \{ (v, t) \in I \times (1 - \eta, 1 + \eta) : \sigma^-(v) \leq t \leq \sigma^+(v) \}.
\]

It is enough to show that for \mathcal{H}^{n-1}-a.e. $z \in \Gamma_\sigma^*$ it holds $\langle \nu_{\mathcal{G}_\sigma^*}(z), e_n \rangle \neq 0$, where $\nu_{\mathcal{G}_\sigma^*}(z)$ is the measure theoretic unit normal to Γ_σ^*.

Assume by contradiction that there exists $z \in \Gamma_\sigma^*$ such that $\langle \nu_{\mathcal{G}_\sigma^*}(z), e_n \rangle = 0$, since by Federer theorem ADD Γ_σ^* coincides \mathcal{H}^{n-1}-a.e. with $\partial * (U)$ we may assume that $z \in \partial * (U)$. Hence, denoted by $B_r(z, \nu) = \{ x \in B_r(z) : \langle x - z, \nu \rangle \leq 0 \},$

\[
\text{eq:9} \quad \lim_{r \to 0^+} \frac{|U \cap B_{r}^-(z, \nu_{\mathcal{G}_\sigma^*}(z))|}{|r^n|} = 0.
\]

By the area formula

\[
\text{eq:9} \quad |U \cap B_{r}^-(z, \nu_{\mathcal{G}_\sigma^*}(z))| = \int_{E \cap V \cap \Phi(B_r^-(z, \nu_{\mathcal{G}_\sigma^*}(z)))} J(\Phi^{-1}) dy.
\]

Moreover, by the uniform bound on $J(\Phi)$ we have that

\[
\Phi(B_r^-(z, \nu_{\mathcal{G}_\sigma^*}(z))) \supset B_{r/2}(\Phi(z), \xi(z)),
\]

Preliminary version – July 30, 2009 – 16:45
with

\[\langle \xi(z), \Phi(z) \rangle = 0. \tag{10} \]

Without loss of generality we may assume \(\Phi(z) \in \partial^*(E) \), and, by (8) and (9), we get

\[\lim_{r \to 0^+} \frac{|E \cap V \cap B_{r/2}^-(\Phi(z), \xi(z))|}{|(r/2)^n|} = 0. \tag{11} \]

From (11) we immediately infer that \(\xi(z) \) is the measure theoretical inner normal to \(\partial^*(E) \) in \(\Phi(x) \). By Lemma 3.3, the interior cone property and (10) we get a contradiction. \(\square \)

Lemma 3.9. The function \(\rho \) is a \(W^{1,\infty}(S^{n-1}) \) function.

Proof. As usual we will work locally and by rotation invariance it is sufficient to prove the statement in a neighborhood of \(e_n \). Let \(y_0 \) such that \(\Phi(y_0) = e_n \). We note that we have \(\frac{\partial \Phi(e_n)}{\partial y_i} = e_i \) for \(i \in \{1, \ldots, n-1\} \). Moreover \(y \to \Phi(y)\rho(\Phi(y)) \) is a parametrization of \(\partial E \) in a neighborhood of \(P = \rho(e_n)e_n \) and the tangent space is spanned by the the vectors

\[\frac{\partial \Phi(y)\rho(\Phi(y))}{\partial y_i} \big|_{y_0} = \rho(\Phi(y_0))e_i + \langle \nabla \rho(\Phi(y_0)), e_i \rangle e_n. \]

Hence the outer normal to \(\partial E \) in \(P \) is given by

\[\nu = \frac{e_n - \frac{1}{\rho(e_n)} \sum_{i=1}^{n-1} \langle \nabla \rho(e_n), e_i \rangle e_i}{\sqrt{1 + \frac{1}{\rho^2(e_n)}|\nabla \rho(e_n)|^2}} \]

where \(\nabla \tau \rho \) is the tangential gradient of \(\rho \). Let \(\theta > 0 \) be the angle between \(\nu \) and \(e_n \). An easy computation shows that

\[\cos(\theta) = |\langle \nu, e_n \rangle| = \frac{1}{\sqrt{1 + \frac{1}{\rho^2(e_n)}|\nabla \tau \rho(e_n)|^2}}. \tag{12} \]

Let \(M > 0 \) be fixed. If \(|\nabla \tau \rho(e_n)| > M \) then

\[\cos(\theta) \leq \frac{1}{\sqrt{1 + \frac{1}{4}M^2}}. \tag{13} \]

By Lemma ADD (geometrico) it also holds that \(\theta \in [0, \frac{\pi}{2} - \beta] \) for a given \(\beta > 0 \) which, combined with (11) provides a uniform bound on \(M \). This concludes the proof. \(\square \)

In the following we will denote by \(u(x) = \rho(x) - 1 \).

Lemma 3.10. There exists a constant \(c = c(n, c_0, M) \) such that for any \(u \in W^{1,\infty}(S^{n-1}) \) with

\[|u|_\infty \leq c_0 < 1, \quad |\nabla u|_\infty \leq M \]

it holds

\[|u|_{n-1, \infty} \leq c \lambda_H(E) \]

where \(E = \{ x \in \mathbb{R}^n : |x| \leq u(\frac{x}{|x|}) + 1 \} \).
References

(N. Fusco) Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università di Napoli “Federico II” via Cintia, 80126 Napoli, Italy

(M.S. Gelli) Dipartimento di Matematica, Università di Pisa, Italy

(G. Pisante) Dipartimento di Matematica, Seconda Università di Napoli via Cintia, 81100 Caserta, Italy

E-mail address, G. Pisante: giovanni.pisante@unina2.it