Corso di Geometria e Topologia Differenziale

Appello del 13/6/2018

La durata della prova è di 2 ore e 30 minuti.

Esercizio 1. (8 punti)

Sia $x \colon \Omega \to U \subseteq S$ una parametrizzazione di un aperto U di una superficie S. Si dia la definizione dei simboli di Christoffel $\Gamma^1_{1,1}, \Gamma^2_{1,1}$ associati a tale parametrizzazione, e si dimostri che $\Gamma^1_{1,1}, \Gamma^2_{1,1}$ sono intrinseci.

Soluzione.

Svolto a lezione.

Esercizio 2. (11 punti)

Sia $\alpha\colon I\to\mathbb{R}^3$ una curva biregolare parametrizzata per lunghezza d'arco avente triedro di Frenet (t,n,b), curvatura κ e torsione τ . Si supponga inoltre $\tau(s)\neq 0$ per ogni $s\in I$, e sia $a\colon I\to\mathbb{R}$ definita da

$$a(s) = \arctan \frac{\kappa(s)}{\tau(s)}$$
.

(i) Si mostri che, per ogni $s \in I$, si ha

$$||n'(s)||^2 = \kappa(s)^2 + \tau(s)^2$$
,

per cui in particolare $n'(s) \neq 0$.

(ii) Si mostri che, per ogni $s \in I$, si ha

$$\frac{\langle n(s) \wedge n'(s), n''(s) \rangle}{\|n'(s)\|^2} = a'(s) .$$

(iii) Sia $\beta \colon I \to \mathbb{R}^3$ un'altra curva biregolare parametrizzata per lunghezza d'arco avente torsione τ_{β} tale che $\tau_{\beta}(s) \neq 0$ per ogni $s \in I$, e sia n_{β} il versore normale di β . Si supponga che $n_{\beta}(s) = n(s)$ per ogni $s \in I$, e che esista $s_0 \in I$ tale che $\tau(s_0) = \tau_{\beta}(s_0)$. Si dimostri che le curve α e β sono congruenti.

Soluzione. (i): Per le formule di Frenet si ha $n' = -\kappa t - \tau b$ da cui, essendo t, b ortonormali,

$$||n'(s)||^2 = ||-\kappa(s)t(s) - \tau(s)b(s)||^2 = \kappa(s)^2 + \tau(s)^2.$$

Poiché $\tau(s) \neq 0$, questo implica in particolare che $n'(s) \neq 0$ per ogni $s \in I$.

(ii): Derivando l'equazione $n' = -\kappa t - \tau b$ e sfruttando ancora le formule di Frenet si ottiene

$$n'' = -\kappa' t - \kappa^2 n - \tau' b - \tau^2 n = -\kappa' t - (\kappa^2 + \tau^2) n - \tau' b.$$

D'altronde

$$n \wedge n' = n \wedge (-\kappa t - \tau b) = -\tau t + \kappa b$$
,

per cui

$$\langle n \wedge n', n'' \rangle = \kappa' \tau - \kappa \tau'$$

e

$$\frac{\langle n(s) \wedge n'(s), n''(s) \rangle}{\|n'(s)\|^2} = \frac{\kappa'(s)\tau(s) - \kappa(s)\tau'(s)}{\kappa(s)^2 + \tau(s)^2} .$$

D'altronde,

$$a'(s) = \frac{(\kappa/\tau)'(s)}{1 + (\kappa/\tau)^2(s)} = \frac{(\kappa'(s)\tau(s) - \kappa(s)\tau'(s))/\tau(s)^2}{(\kappa(s)^2 + \tau(s)^2)/\tau(s)^2)} = \frac{\kappa'(s)\tau(s) - \kappa(s)\tau'(s)}{\kappa(s)^2 + \tau(s)^2} ,$$

da cui la tesi.

(iii): Sia $a_{\beta} \colon I \to \mathbb{R}$ la funzione definita da $a_{\beta}(s) = \arctan(\kappa_{\beta}(s)/\tau_{\beta}(s))$, dove κ_{β} è la curvatura di β . Poiché $n_{\beta} = n$ (e dunque $n'_{\beta} = n'$ e $n''_{\beta} = n''$), per quanto visto al punto (ii) si ha $a'_{\beta}(s) = a'(s)$ per ogni $s \in I$. Inoltre, da $n'(s_0) = n'_{\beta}(s_0)$ si ha, per quanto visto in (i),

$$\kappa(s_0)^2 + \tau(s_0)^2 = ||n'(s_0)||^2 = ||n'_{\beta}(s_0)||^2 = \kappa_{\beta}(s_0)^2 + \tau_{\beta}(s_0)^2$$
.

Da $\tau(s_0) = \tau_{\beta}(s_0)$ si ha allora, usando che κ e κ_{β} sono positivi in ogni istante, anche $\kappa(s_0) = \kappa_{\beta}(s_0)$, per cui $a(s_0) = a_{\beta}(s_0)$. Le funzioni a e a_{β} coincidono pertanto in s_0 , ed hanno derivata uguale su tutto I, per cui coincidono su tutto I. Usando anche il punto (i) ed il fatto che la funzione arcotangente è iniettiva abbiamo allora

$$\kappa(s)^2 + \tau(s)^2 = \kappa_{\beta}(s)^2 + \tau_{\beta}(s)^2$$
, $\frac{\kappa(s)}{\tau(s)} = \frac{\kappa_{\beta}(s)}{\tau_{\beta}(s)}$

per ogni $s \in I$. Poiché la curvatura è sempre positiva, dalla seconda uguaglianza segue anche che $\tau(s)$ e $\tau_{\beta}(s)$ hanno lo stesso segno per ogni $s \in I$.

Riscrivendo la prima uguaglianza come

$$\tau(s)^{2} \left(1 + \frac{\kappa(s)^{2}}{\tau(s)^{2}} \right) = \tau_{\beta}(s)^{2} \left(1 + \frac{\kappa_{\beta}(s)^{2}}{\tau_{\beta}(s)^{2}} \right)$$

e usando la seconda si ottiene $\tau(s)^2 = \tau_{\beta}(s)^2$, da cui $\tau(s) = \tau_{\beta}(s)$ in quanto τ e τ_{β} hanno lo stesso segno. Da ciò e dalla seconda uguaglianza si ottiene allora $\kappa(s) = \kappa_{\beta}(s)$ per ogni $s \in I$. La conclusione segue allora dal Teorema Fondamentale delle Curve.

Esercizio 3. (11 punti)

Sia $S \subseteq \mathbb{R}^3$ la superficie di rotazione ottenuta facendo ruotare intorno all'asse z la curva $\gamma \colon (-1,1) \to \mathbb{R}^3$ data da $\gamma(t) = (t+1,0,t^3)$.

- (i) Si calcoli la curvatura gaussiana di S in ogni suo punto.
- (ii) Siano q = (1, 0, 0), v = (0, 1, 0). Si mostri che $q \in S$ e $v \in T_qS$.
- (iii) Sia $I \subseteq \mathbb{R}$ un intervallo contenente 0, e sia $\alpha \colon I \to S$ una geodetica con $\alpha(0) = q$, $\alpha'(0) = v$. Si mostri che $z(\alpha(t)) \ge 0$ per ogni $t \in I$.

Soluzione. (i): Come visto a lezione, la superficie S ammette la parametrizzazione $x \colon \mathbb{R} \times (-1,1) \to S$ data da

$$x(u, v) = ((v + 1)\cos u, (v + 1)\sin u, v^3)$$
.

Si ha

$$x_u = (-(v+1)\sin u, (v+1)\cos u, 0), \quad x_v = (\cos u, \sin u, 3v^2),$$

per cui la prima forma fondamentale è data da

$$I = \left(\begin{array}{cc} (v+1)^2 & 0\\ 0 & 1+9v^4 \end{array}\right) .$$

Inoltre

$$N = \frac{x_u \wedge x_v}{\|x_u \wedge x_v\|} = \frac{(3v^2 \cos u, 3v^2 \sin u, -1)}{\sqrt{9v^4 + 1}}$$

e

 $x_{uu} = (-(v+1)\cos u, -(v+1)\sin u, 0)\,, \quad x_{uv} = (-\sin u, \cos u, 0)\,, \quad x_{vv} = (0,0,6v)\,\,,$ per cui la seconda forma fondamentale è data da

$$II = \frac{1}{\sqrt{9v^4 + 1}} \begin{pmatrix} -3v^2(v+1) & 0\\ 0 & -6v \end{pmatrix} .$$

La curvatura gaussiana è data perciò da

$$K = \frac{\det II}{\det I} = \frac{18v^3}{(9v^4 + 1)^2(v + 1)}$$

- (ii): Si ha q = x(0,0) e $v = x_u(0,0)$, da cui la tesi.
- (iii): Per il Teorema di Clairaut, se denotiamo con $\varphi(t)$ e con R(t) l'angolo formato da $\alpha'(t)$ ed il parallelo passante per $\alpha(t)$ e la distanza di $\alpha(t)$ dall'asse z, allora la quantità $R(t)\cos\varphi(t)$ è costante. Ora abbiamo $\varphi(0)=0$ ed R(0)=1, per cui $R(t)\cos\varphi(t)=1$ per ogni t, ed $R(t)\geq 1$ per ogni t, in quanto il coseno varia tra -1 ed 1. Ora, la distanza del punto $x(u,v)\in S$ dall'asse z è data da $\sqrt{(v+1)^2\cos^2u+(v+1)^2\sin^2u}=v+1$, ed è perciò maggiore o uguale a 1 se e solo se $v\geq 0$. Poiché la terza coordinata di x(u,v) è uguale a v^3 , ciò equivale al fatto che la terza coordinata di x(u,v) sia non negativa, come richiesto.