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MaTeM C6opHHK Math. USSR Sbornik
TOM 119( 161) (1982), Bun. 1 Vol. 47( 1984), No. 1

DISTRIBUTIVE GROUPOIDS IN KNOT THEORY
UDC 513.83

S. V. MATVEEV

ABSTRACT. A sequence of new knot invariants is constructed by using the relationship
between the theory of distributive groupoids and knot theory.

Bibliography: 3 titles.

The simplest and most common method of establishing the equivalence of two knots

Kv K2C S 3 which are given by their projections AT, and K2 consists in the step-by-step

alteration of K{ to K2 (see Figure 1). A careful analysis of the process of alteration shows

that K2 can always be obtained from Κλ by a sequence of isotopic deformations and

transformations of the form I—III (see Figure 2). From this it follows that any property of

the projection of a knot which is preserved under transformations I—III is an invariant of

the knot itself. A good example of such a property is found in the book of Crowell and

Fox ([1], pp. 92-93, Exercises 6 and 7). Each passage of the knot projection is assigned

one of three colors in such a way that at each double point the three passages either have

all distinct colors or all the same color. The coloring will be called a multicoloring if more

than one color is used. It is easy to verify that the property "the projection has a

multicoloring" is invariant under transformations I—III and is thus an invariant of the

knot. The standard circle does not have this property, since it has only one passage and

therefore any coloring of it is singly-colored. Thus, any knot whose projection admits a

multicoloring is nontrivial. As suggested in [1], this fact can also be proved by constructing

a homomorphism of π](Ξ3\Κ) onto the symmetric group of order 3. This property also

helps to distinguish nontrivial knots. For example, the trefoil knot admits a multicoloring

while the figure-eight knot does not.

It is natural to try to generalize the above invariant by using a richer palette. Let Γ be

an arbitrary set. We call the elements of Γ colors. Suppose that α: Γ Χ Γ -> Γ is an

arbitrary binary operation (we denote a(a, b) by a ° b). By a colored oriented projection Κ

of a knot Κ we mean an assignment of a color to each passage of Κ in such a way that at

each double point Ρ the colors of the overpass (color b) and the passage on the left (color

a) and the right (color c) are related by a ° b = c (see Figure 3). What sort of conditions

must the operation α satisfy in order that the property of admitting a "multicoloring" be

preserved under transformations I—III? It is not difficult to see that this property will be

preserved under transformation I if α is left-invertible; that is, if for any a, b e Γ the
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74 S. V. MATVEEV

equation χ ° a = b has a unique solution. To preserve the property under transformation
II it is sufficient that every element be an idempotent: a ° a — a. The property is
preserved under III if α is right distributive; that is, if (a ° b) ° c = (a ° c) ° (b ° c) for
any a, b, c £ Γ. Thus, the property "the projection has a multicoloring" is a knot
invariant if the palette is taken to be a left-invertible, idempotent, right-distributive
groupoid Γ. For brevity, we will call such a groupoid simply a distributive groupoid. The
set of three elements {a, b, c) with the operation given by the table in Figure 4 is an
example of a distributive groupoid.
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We have mentioned that a knot whose projection admits a multicoloring by the colors
of some distributive groupoid is nontrivial. The converse is also true: the projection of any
nontrivial knot admits a multicoloring by colors of some distributive groupoid Γ. The
groupoid Γ may be taken, for example, to be the set πλ{8*\Κ) with the operation
a ° b — bab'x. In this context, each passage of the projection Κ is colored by the
associated generator in the corresponding Wirtinger presentation [1] of the group
7r,(S3\K). Another method of constructing a groupoid which yields a multicoloring is to
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define a distributive groupoid T(Aj^\R^) using generators and relations. The set of
generators A ̂ consists of passages of the projection K, and the set of relations R% consists
of relations of the form a ° b — c—one for each double point of the projection K. The
groupoid Τ (Aj^\R^) does not change under transformations I—III and is therefore an
invariant of the knot Κ itself. The invariant T(A^\R^) is universal in the sense that each
coloring of the projection Κ by colors of an arbitrary distributive groupoid Γ is generated
by some representation of the groupoid T(A^\R^) onT. The main result of this paper is
the following theorem.

THEOREM. The knots K{ and K2 are equivalent only if the groupoids T(A^ \R^) and
Γ ( A ̂  | R ̂  ) are isomorphic.

Thus, the invariant T(A^\R^) is complete in the sense that it completely characterizes
the knot K. All other invariants of the knot (the fundamental group, the Alexander
module, and so on) must be expressible in terms of it. The existence of different knots
with isomorphic fundamental groups shows that colorings of the projection of a knot by
elements of groupoids do not reduce to coloring the projection by elements of groups; that
is, to representations of the knot group.

This paper is arranged as follows. In §1, we introduce the notation we shall use.
Definitions, examples, and properties of distributive groupoids are given in §2. A stock of
examples of distributive groupoids can also be extracted from the theory of distributive
semigroups, set forth in Belousiv's book [2]. However, as far as the author knows, there is
no specific treatment of distributive groupoids in the literature. The definition of the
associated group, introduced in §3, is somewhat different from the generally accepted
definition of an associated group as a group generated by translations. The specification
of a distributive groupoid by generators and relations, as well as the presentation of the
group associated with it, is described in §§4 and 5. In §6, we construct a geometric
groupoid Γ^ for each knot K. The elements of Γ̂ · are homotopy classes of paths beginning
at a base point and ending on K. Following some necessary preliminaries, which are
handled in §§7 and 8, a presentation of Γ^ (Theorem 1) is given in §9. The main result of
the paper (Theorem 2) is proved in §10. In §11 we outline some applications of our results.
In particular, a countable family of new knot invariants is constructed.

§1. Notation

A knot will be understood to be a tame simple closed curve Κ in S3 together with a
fixed orientation of its normal bundle. The knots K] and K2 are equivalent if there exists a
homeomorphism of the pair (5 3 , AT,) to the pair (S 3, K2) preserving the orientations of
the normal bundles. Note that a choice of orientation of the sphere S3 uniquely defines a
direction of circuit of the knot K. For, it determines the third vector of an oriented frame
in S3; the first two define the orientation of the normal bundle. We will assume that each
knot Κ is equipped with a tubular neighborhood NK, a base point xK G EK, a point
x'K G dNK and a path sK C EK going from xK to x'K. Here, EK = S 3\Int NK. Let sK define
an inclusion of π^Νκ, x'K) into GK = π{(Εκ, xK) by the formula η -»[sKns]}], where
[«] = n. The image under this inclusion is the peripheral subgroup HK. For a point
a e 3Λ^ let rha denote the oriented rim of the disk cut out by the fiber of the normal
bundle passing through a. The image of rhx, in HK is denoted by mK and is called a
meridian. Any simple closed curve in dNK which intersects mx, only at the point x'K, and
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there transversally, is called a parallel. The image in HK of a parallel will also be called a

parallel. If s is an equivalence class, then s will denote a representative of the class. The

class containing the element a is denoted by [a]. Thus [i] = s.

§2. Definitions, examples, and properties of distributive groupoids

DEFINITION 1. A set Γ together with a bilinear operation is called a distributive groupoid

if for any a, b, c ε Γ the following axioms hold:

1) The equation χ ° a — b has a unique solution.

2) a ° a — a.

3) (α ο b) ° c = (a ° c) ° (b ° c).

EXAMPLE 1. Let t be an invertible element of a ring A with unit and let Μ be a left

A -module. Then Μ is a distributive groupoid with respect to the operation a ° b = ta +

(1 — t)b. This groupoid will be denoted by Mr

EXAMPLE 2. Let G be an arbitrary group and η an integer. Then G is a distributive

groupoid with respect to the operation a ° b — b"ab~". This groupoid will be denoted by

G(n). Note that any homomorphism of a group G, to a group G2 is simultaneously a

homomorphism of the groupoid G\n) to the groupoid G^"\

EXAMPLE 3. Let Η be a subgroup of a group G and let m be an element in the center of

H. Define an operation ο on the set G/H of left residue classes by setting aH ° bH =

bmb'xati. This operation is well defined because m lies in the center of H. The resulting

distributive groupoid will be denoted by (G/H, m).

One verifies directly that each of the three examples above satisfies axioms l)-3) of

Definition 1.

The left inverse operation to ° in the distributive groupoid Γ will be denoted by / . In

other words, b/a is the solution to the equation χ ° a = b. It follows from axioms l)-3) of

Definition 1 and the definition of / that:

1) the equation x/a = b has a unique solution;

2) a/a = a;

3)(a/b)/c = (a/c)/(b/c);

4) (a/b) °b = a;

5) (a ° b)/b = a;

6) (a ° b)/c = (a/c) ° (b/c);

l)(a/b)o c = (a ° c)/(b ° c).

EXAMPLE 4. If Γ is a distributive groupoid, then Γ is also a distributive groupoid with

respect to the operation / . We denote this groupoid by Γ"1.

EXAMPLE 5. Let Γ be a distributive groupoid. Define the operation ° " inductively by

the relations a ° " b = (a °""' b) ° b and a °' b = a ° b. Then for each integer η the set Γ

with the operation ° " is a distributive groupoid which we will denote by Γ".

§3. The associated group of a groupoid

DEFINITION 2. A group G with a fixed homomorphism /0: Γ -> G ( 1 ) is said to be

associated with the distributive groupoid Γ if for any group G, and homomorphism /:

Γ -> G'," there exists a unique group homomorphism h: G -» G, such that hf0 = /.

The uniqueness of the associated group follows from the usual category type arguments.

The existence will be established in §5. We let As(F) denote the group associated with the

groupoid Γ.

Let Aut Γ denote the group of all isomorphisms of Γ to itself. For any α Ε Γ define the

right translation Ra: Γ -» Γ by setting Ra(x) = χ ° a. It follows from 3) of Definition 1
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that right translation is a homomorphism. We can express the homomorphism Ra

l by the

formula R~\x) - x/a. Define a map/: Γ -> (Aut Γ) ( 1 ) by setting/(a) = Ra. Since

f(a ° b)(x) =xo(aob) = ((x/b) °a)ob = RhRaRj,l(x)

= {Ra°Rh){x) = (f{a)of{b)){x),

the map / is a homomorphism. By Definition 2, there exists a homomorphism h:

As(F) — A u t F such that hfo—f. Thus, the group As(T) acts on Γ by the formula

g(x) = h(g)(x), and/0(a)(x) = hfo(a)(x) = f(a)(x) = χ ° a. The homomorphism h need
be neither a monomorphism nor an epimorphism.

LEMMA 1. For any element a of a distributive groupoid Γ and any g,, g2 G As(T),

g,(a) ° g2(a) - g2f0(a)g2

lg](a).

PROOF. We have

\(a) ° 82(0) = giig^gM ° a)

§4. The specification of distributive groupoids by

generators and relations

Let A be an arbitrary alphabet. By a word in the alphabet A we shall mean any arbitrary

finite sequence consisting of elements of the set A and the symbols (,), ° and / . Define

inductively the set ty(A) of admissible words in the alphabet A as follows:

1) the word a, where a E A is admissible;

2) if w, and w2 are admissible words, then the words (wx ° w2) and (w]/w2) are also

admissible.

Let Λ be a set of relations; that is, a set of sequences of the form r = s, where r,

s e ^(A). We introduce an equivalence relation — on the set ^(A). Write w, — w2 if H>,

can be transformed into w2 by a sequence of operations of the form Ι), Γ), II), III), IV):

i) ((χ/y) ° y) - χ;
i') ((χ ° y)/y)« *;
II) (χ ° x) <-» x;

I I I ) ( ( X o F ) ο Z ) « ( ( X 0 2 ) 0 ( ^ 0 Z ) ) ;

IV) r «-»i.

Here, x, y, ζ ε ^(^4), (r = j ) £ R, and υ, <-> u2 denotes the operation of selecting a

subword ν, and replacing it by the subword v2 or vice versa.

We introduce the operation .0 on the set ^(A)/— by setting w, ° w2 = [(wr ° w2)]. One

then verifies that axioms l)-3) of Definition 1 hold using transformations Ι, Γ, II, and III.

For example, the equation χ ° a = b has the solution χ = [(b/ά)] = b/a and if x, were

another solution, then χ, = (χ, ° α)/α = ft/fl- Thus, %(A)/~ is a distributive groupoid

with respect to the operation ° . We will denote it by Γ (A \R).

§5. The presentation of the group associated with the groupoid Γ ( A \ R )

Let A' be the alphabet obtained from the alphabet A by adding a prime to each letter.

Let {A'\ ) be the free group generated by A'. Define the map /: A — A' by setting

i(a) — a' for all a E A. Since the groupoid T(A \ ) is free, the map / can be extended to

an isomorphism /: Τ (A | )-» (A' | > ( l ). If Λ is a set of relations, let R' denote the set of

relations of the form /'(/·) = i(s) where (r = s) G R.
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P R O P O S I T I O N 1. The group (A'\R') is associated with the groupoid Τ (Α \ R).

PROOF. The homomorphism i: T(A\ )-> (A'\ ) ( l ) carries relations to relations and
thus induces a homomorphism/0: T(A \ R)-+ (A'\ R')°\ We must show that /0 is
universal. Let /: T(A | Λ)-> G ( l ) be another homomoφhism. Then a unique "closing"
hcmomorphism is defined on the generators by the formula h(a') — f(a). It can be
extended to a homomorphism of the entire group (A' \ R') to G, because if i(r) = i(s) is a
defining relation in (A'\ R'), then r = s is a relation in T(A \ R) and, thus, hi(r) = f(r)
= f(s) = hi(s) in G.

COROLLARY. //Γ is any distributive groupoid, then the group As(F) exists.

The proof consists in observing that any distributive groupoid Γ can be written as
Τ (A \R) upon taking A to be the set Γ and R the set of relations of the form (a ° b) = c
whenever a ° b = c in Γ.

FIGURE 5

§6. The geometric groupoid of a knot

Let Κ be a knot in 5 3 . We let TK denote the set of homotopy classes of loops in EK

which begin at xK and end on dNK (the condition on the initial points and the endpoints
must be preserved in the process of homotopy). By way of definition, set a ° b =
[bmΰλ)6~λά], where fe(l) denotes the endpoint of the loop b. In Figure 5, we have drawn a
representative of the class a ° b using a dotted line. The arrow on ΘΛ̂  indicates the
orientation of the normal bundle. We verify that axioms l)-3) of Definition 1 hold. The
equation χ ° a = b has the unique solution

x =

a° a= [άιήάΟ)ά'}ά\ = [amd(1)] = a, since mam C dNK;

(a°c)°{b°c)= [(b 6 c)mibicW(b ° c)~\a ° c)]

= [cmmc~lbm,;wb-la\ = (a ° b) ° c.
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In the second to last equality we have replaced m(h h c ) ( 1 ) by wft'(1) because the endpoint of

the path (b ° c) coincides with the endpoint of b. Thus, l)-3) are satisfied and TK is a

distributive groupoid.

We can define an action of the group GK on Γ^ by setting g(a) = [ga]. Note that

g(a) ° g(b) =[g6m i f t-(1)ft- |g- |gd] =[gb'ritl;O)b-1a] = g(a ° b)

and, thus, for each g G GK the action of g on Γ^ is a homomorphism of Γ^ to Γ^. It should

be noted that, as a set, Γ^ coincides with the set ττ\(Εκ, dNK U xK, xK). Our definition of

the action of the group GK = π\{Εκ, xK) on TK coincides with the canonical left action of

GK on ir](EK, dNK U xK, xK).

LEMMA 2. The action of the group GK on YK is transitive. The isotopy subgroup of the

element sK—[sK]^YK coincides with HK.

PROOF. Suppose that a, b (Ξ Γκ, and let η C dNK be a path starting from the endpoint

of b and running to the endpoint of ά. Define g G GK by setting g = [bna~l]. We have

g(«) = [ga] = [6ήά~]ά] — [bn] = b. This establishes transitivity.

By the defintion of HK, each h £ HK has the form h = \sKnsj}}, where ή is a loop in

dNK starting and ending at x'K. Thus, h(sK) = [iKns'^lsK] = [sKn] = sK. This means that

HK acts trivially on sK. On the other hand, if g{sK) = sK, then the paths gsK and sK are

homotopic. Let ή C dNK be the path traced by the endpoint of the path gsK under this

homotopy. Then the path gsKnsj) is homotopic to a constant; that is, g = [sKn~]s^1]. This

means that g lies in HK.

PROPOSITION 2. The map y: (GK/HK, mK) -> TK defined by y(gHK) = g(sK) is an

isomorphism of groupoids.

PROOF. The map γ is well defined and injective, because HK is the isotropy subgroup of

the element sK by Lemma 2. The subjectivity of γ follows from the transitivity of the action

of GK on Γ^. We prove that γ is a homomorphism. We have

since mK = \sKmx, s~£\. On the other hand,

K) = gx{sK) ο g2(SfC)

It remains to observe that the path g2sK ends at the point x'K and thus m ^ = m • s ^.

§7. The groupoid Γ(A%\ R^ } and the group associated with it

Let Κ be Ά knot in ΛΎΖ-space R3 = S3\{*} which is in regular position with respect to

the projection of R3 onto the place XOY. We adhere to the widely accepted convention of

representing AT by its projection K. We break Κ into pieces by cutting at the lower double

points. The words " lower" and " higher" are to be understood with reference to the values

of the ζ coordinate. The set of connected components obtained by cutting the projection

in this manner (the set of passages) will be denoted by Αχ. Note that the orientation of the

normal bundle of Κ together with the XYZ-orientation of R3 defines a direction of circuit

of Κ and of K. Let Ρ be the double point on the juncture of the passages a, c e A% and on
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FIGURE 6

the overpass b Ε Λ "̂ (see Figure 3 in the Introduction). We write the relation (α ° b) = c,

where a is the passage on the left of b and c is the passage on the right. The set of all these

relations (one for each double point) is denoted by R%. Our next task is to identify the

group As(T(Ajt\RKr)).

To each passage α Ε Αχ we associate a loop ά' Ε E^, with endpoints at xK, satisfying

the following conditions:

1. The projection of a' is transverse to K.

2. At every point of intersection of Κ and the projection of a', except one, a' passes

above K.

3. The unique point of intersection at which a' passes below lies on a, and at this point

a' intersects a from right to left (see Figure 6). :

It is clear that the homotopy class a' of the loop a' is defined uniquely bjy conditions

1-3. '

PROPOSITION 3. The assignment a -> a' induces a homomorphism fQ: T(A%\ Λ^)-> G^'.

The group GK is associated with Γ ( Λ ^ | R%) with respect to this homomorphism.

PROOF. Let A'j£ = {a'\a Ε A£}. For each relation (a ° b) — c in R^, write the relation

b'a'(b')'1 = c'. Denote the set of such relations by R'%. By Proposition 1 the presentation

(A'x\ R'j^) is a presentation of the associated group. On the other hand, the presentation

(A'K\ R'K) coincides with the well-known Wirtinger presentation of GK(see [1]).

§8. Two lemmas i

We label the elements of the set ^ b y a0, ax,... ,an^l in order of their position on Κ

with respect to the direction of circuit of K. The passage a0 is chosen to be the one on

which the center of the normal disk with boundary mx, C <$NK is situated. The integer η

denotes the number of passages in K. Except for the case of the standard circle, the

number of double points in Κ is also equal to n. The relations in RK are! of the form

(a / e,a r ) = ai+i, where e, means ° if a, lies to the left of an and/ if it lies on the right (in

the latter case, the relation (α,./α ) = α 1 + 1 is equivalent to the relation (a, + 1 ° ar) = a,).

The indices are taken modulo n. We can write the relations in Λ'^ίη the form

i+l '
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where 5, = 1 if ε, signifies ° and δ, = — 1 if ε, is / . Let

By changing the path sK, if necessary, it may be assumed that the projection of sK is

transverse to Κ and that, at all points of intersection of the projection of sK with A", the

path sK passes above. Then we can take a'o to be the path sKmx.Ks~KK This means that

a'o = mK. It is not difficult to see that o'n is then a parallel in HK.

LEMMA 3. For each i, the relations σ/(α0)
 = a, and σ / α ό( σ /) ' = a\ hold.

PROOF. Both relations hold for / = 0 because σ0' = 1. Suppose that they hold for

i = m— 1. Since a'm — (a'r^ ) s " ' l a ^ _ : , we have

a'm{a0) = {a'rm)K-'o^x{a0) = (^./""(««-,) = (a^e^a^ ,) = am.

Similarly,

LEMMA 4. The isotropy subgroup of the element a0 contains HK.

PROOF. The group HK is generated by the meridian a'o and the parallel a'n. It remains to

observe that a'0(a0) = (a0 ° a0) = a0, that ση'(α0) = αη by Lemma 3, and that an coin-

cides with a0.

§9. The isomorphism between Γ ( A%\ Rj^ ) and Γ^

THEOREM 1. For any projection Κ of the knot Κ the groupoids T(A^\R^) and TK are

isomorphic.

PROOF. By Proposition 2, the groupoids Γ^ and {GK/HK, mK) are isomorphic. Thus, it

suffices to prove that the groupoids V(A^\ R^) and (GK/HK, mK) are isomorphic. We

define Φ,: Λ^-> {GK/H,K, mK)by setting Φ,(α,) = ο[Ηκ. Recall that we have identified

a'o and mK. Since

°,ΗΚ= {a'J o'HK

by Lemma 3, and {α'Γγ'σΙΗκ = o'i+^HK, the map Φ, carries relations in R^lo relations

which are valid and thus extends to a homomorphism Φ: T(A^\R^)-> (GK/HK, mK).

We remark that Φ is equivariant with respect to the action GK. This is the case because if

a\ is any generator of GK and ay any generator of Γ(A^\Rj^), then

Φ(α;(β ; ) ) = Φ(α ; ο α,) = o;HK Ο Ο,ΉΚ = a,'a'0(o;rlajHK = a',oJHK

by Lemma 3.

Define the map * : {GK/HK, mK) -+ T(A^\R^) by setting ¥(gHK) = g(a0). This is
well defined because the group HK acts trivially on a0 by Lemma 4. We prove that Ψ is a

homomorphism. In fact,

* ( * \ Η κ ° 82HK) = *(g2a'og;1glH) = g2a'ogilgl(ao) = gl(a0) ° g2(a0)

by Lemma 1. It remains to check that ΦΨ = 1 and ΨΦ = 1. We have ΨΦ(α,) = Ψ(σ-Ηκ)

= σ,'(α0) = α, by Lemma 3. Since Φ is equivariant,

Φ Ϋ ( ί ^ ) = Φ ( * ( α 0 ) ) = ̂ Φ ( α 0 ) = gHK.

Theorem 1 is proved.
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REMARK. An analysis of the isomorphisms γ: (GK/HK, mK) -> Γ^ and Φ:

Υ {A^\ Λ*)-» (GK/HK, mK) shows that as a path representative of a class γΦ(α,) ε Τκ

one can take any path ά, joining xK to the passage ai such that the projection of at is

transverse to Κ and such that at all points where it intersects Κ the path a, passes above K.

In particular, γΦ(α 0 ) = sK. Thus, there is one and only one element a'o in GK correspond-

ing to the elements a0 and sK and, as noted in §8, this path coincides with the meridian

mK.

COROLLARY. For any knot Κ the group GK is associated with the groupoid YK. The isotropy

subgroup of the element sK is HK, and the meridian mK& HK is the image of sK under the

homomorphism f0: TK -» G^\

The corollary follows from Theorem 1, Lemma 2 and the preceding remark.

§10. Knots with isomorphic groupoids are equivalent

We need a theorem proved by Waldhausen in [3].

THEOREM OF WALDHAUSEN. Suppose that Μ and Ν are irreducible and boundary

irreducible. Let Μ be sufficiently large and let ψ: w,(iV) -» w,(M) be an isomorphism

preserving the peripheral structure. Then there exists a homeomorphism f: Ν -> Μ inducing

Ψ-

THEOREM 2. For the knots A", and K2 to be equivalent, it is necessary and sufficient that

the groupoids YK and YK^ be isomorphic.

PROOF. The necessity is obvious. We prove sufficiency. Let φ: Τκ -* Γ^ be an

isomorphism. We remark that the manifolds EK and EK^ are irreducible and sufficiently

large. If the knots A", and K2 are nontrivial, then they are also boundary irreducible.

Suppose, first, that one of the knots (say A",) is trivial. Then GK — Z. Since GK ~

AsCr^) — AsiF^ ) — GK, the knot K2 is also trivial and the theorem holds in this case.

Consider the case that both K] and K2 are nontrivial. Since the action of GKi on TKi is

transitive by Lemma 2, there exists g ε GK, such that g(<p(sK])) = sKi. By composing the

isomorphism φ with the action of g we may assume at the outset that φ carries sK to j y /

By the corollary to Theorem 1, the groups GK are associated to Γ^ (/' = 1,2). Thus, the

isomorphism φ: Γ^ -> Γ^̂  induces an isomorphism ψ: GK -* GKi. Since HK coincides

with the isotropy subgroup of the element sK and since <p(sK ) = sK, the map ψ is an

isomorphism of HK to HK and it carries the meridian mK to mK . According to

Waldhausen's theorem, there exists a homeomorphism /: EK> -> EKi inducing ψ. Since

$(mK ) = mK ' t n e map/extends to the desired homeomorphism/': S3 -> 513.

§11. Applications

Let 5" denote the category of distributive groupoids. The objects of ?T are distributive

groupoids and the morphisms are homomoφhisms of groupoids. Let F: β -» ?Γ be a

functor from some category β to 9". Let Γ ε Ob 5".

DEFINITION. An object A £ Ob Q is said to be associated to the groupoid Γ by the

homomorphism/0: Γ -» F(A) if for any other object Β ε Ob β and any other homomor-

phism/: Γ -» F(B) there is a unique homomorphism h: A -> Β such that/ = F(h)f0.

The uniqueness of the associated object follows from general category theoretic consid-

erations. We will denote it by AsF(T). It is clear that, for any knot A", the object A s ^ r ^ )

is an invariant of the knot K.
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EXAMPLE 1. Let 8 be the category of groups and homomorphisms. For every integer η

let Fn be the functor which associates to each G ε Ob S the groupoid G{n). Then the

groups A s ^ F ^ ) are invariants of the knot K. The invariants As , \(TK) coincide with the

fundamental group of the knot K. The invariant A s ^ F ^ ) is trivial. It is unclear as to

whether the invariants AsF(FA-), η ¥= 0, ± 1 , can be expressed in terms of known

invariants.

EXAMPLE 2. The association to each group G of its core (that is, the set G with the

operation a ° b = ba'lb) defines a functor F: Q ~* ?T. The object A s ^ F ^ ) is called the core

of the knot Κ (the terminology is borrowed from the theory of semigroups). The core of a

knot is a new invariant.

EXAMPLE 3. Let 91L be the category of left modules over the ring Z[/, t'1] of Laurent

polynomials, and let F be the functor which associates to each module Μ e Ob 9tl the

groupoid M, (see Example 1 in §2). Then the module AsF(F^) coincides with the

Alexander module of the knot K.

EXAMPLE 4. Let % denote the category of commutative distributive semigroups and let

F: tK -» 5" be the natural inclusion. Then the commutative semigroup A s ^ F ^ ) is a new

invariant of the knot K. In fact it coincides with the abelianization of F^. Unlike the

abelianized knot group, the invariant A s ^ F ^ ) is nontrivial. It differentiates the trefoil

from the figure-eight knot.

REMARK 1. The existence of the associated objects in Examples 1-4 is established by

construction. If F^ is given by generators A^and relations R%, then the associated object

is given with the help of the generators A% and relations R'^. The set of relations R'%

consists of relations of the form b"ab~n = c in Example 1, of the form ba~]b = c in

Example 2, and of the form ta + (1 — t)b — c in Example 3. We get one such relation for

each relation a ° b = c in R%. In Example 4, the sets of relations coincide.

REMARK 2. A groupoid F^ can be defined for links Κ in an arbitrary oriented

3-manifold Μ in a manner similar to what has been done for knots in S3.
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