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ANNALS OF MATHEMATICS 

Vol. 59, No. 2, March, 1954 
Printed in U.S.A. 

DUAL PRESENTATIONS OF THE GROUP OF A KNOT 

BY G. TORRES AND R. H. Fox 

(Received July 30, 1953) 

In 1934 it was proved by H. Seifert [4] that the Alexander polynomial of a 
single knot is always a symmetric polynomial of even degree. In 1951 G. Torres 
[5] extended Seifert's method to multiple knots, and showed that the Alexander 
polynomial of a multiple knot has an analogous "symmetry" property. Although 
the proof of Seifert's theorem actually allows one to conclude the stronger state- 
ment that the equivalence class of Alexander matrices [2] is itself symmetric in 
a certain sense, the generalization of Seifert's method does not seem to lead to 
any information about the matrix class of a multiple knot. 

In this paper we attack the "symmetry problem" by an entirely different 
method, based on the discovery of a basic "duality" in the group of any knot, 
single or multiple. By this new method the previous results of Seifert and Torres 
are obtained (Corollaries 2 and 3) more easily and in better perspective. 

For a multiple knot the "symmetry property" of the matrix class turns out 
to be somewhat complicated, and this is doubtless the reason why generalization 
of Seifert's method failed to uncover it. 

The notations of [2] are used throughout. 

1. Statement of results 

A presentation [2] of a group G is a set of letters xi, , x, and a set of words 
77(X *... , xn) ... , 7m(x - , xn) in these letters such that G is isomorphic 
to X/(77), where X is the free group generated by xi , *---, xa and (77) is the 
consequence of 771, - -*, tm in X; G is the image of X under the associated 
homomorphism q,, whose kernel is (77). Along with G we consider also its com- 
mutator quotient group H and the associated homomorphism i,/ of G upon H. 
The homomorphisms 4,: X -* G and 4,/: G -> H extend linearly to homomorphisms, 
denoted also by 4, and 4,/, of the (integral) group rings: 4,: JX -* JG, i1: JG -* JH. 

The linear extension to the group ring JF of the anti-isomorphism f -* 

of any group F will be called conjugation and denoted by a bar. Thus Eaifi = 

adfd1, ai E J, fi E F. 
Two presentations (xi, * X*,xOn l1 * * *X) and (yi, %Yn * 

of G will be called dual if 

(1) xi-y' (mod 4,q), i = 1, *-- ,n; 

(2) 077'(x,-1) - a'4 (yj - 1)(mod t4,q), i, j = 1, ,n. 
axi a~Yj 

THEOREM. The group of any tame knot in 3-space has a dual pair of presenta- 
tions. 
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COROLLARY 1. The group of a tame single knot in 3-space has an Alexander 
matrix that is equivalent to the conjugate of its transpose. Consequently the elementary 
ideals dY, 2, * * - are invariant under conjugation. 

COROLLARY 2. The Alexander polynomial Av of a tame single knot in 3-space 
has the property 

(*1) A(t) = tmA(t-U) 

where m 0 (mod 2). 
COROLLARY 3. The Alexander polynomial A of a tame knot of multiplicity 

, > 1 in 3-space has the property 

M) A~(ti I .. Io Q (- )tM 1 ***tM"l\(- t- 
t1h where m, the linking number of the i component with the sum of the other com- 

ponents (mod 2). 

2. The over- and under-presentations 
In this section we shall indicate how to define presentations of a knot group 

that are adapted to our purpose. A tame knot in 3-space R3 is represented by 
the union K of ,u _ 1 disjoint simple closed polygons K1, -*. , K,. We may 
assume that each component is oriented and that the projection of K vertically 
on a given horizontal plane R2 is regular [3]. A double point of the projection 
K' corresponds to two points of K, of which the higher is called the overcrossing 
point and the lower the undercrossing point. On each component of K we select 
a positive even number of ordinary (i.e. not over- or undercrossing points), 
points, thus dividing the component into two classes of subarcs that alternate 
around it. The points of subdivision are to be chosen in such a way that one 
class of subarcs, called overpasses, contain no undercrossing point, and the other 
class of subarcs, called underpasses, contain no overcrossing point. This can, 
of course, be done in many different ways. We denote the overpasses of K by 
Al, X An and indicate them in the figures by heavy lines; the underpasses 
are indicated by light lines and denoted by B1, X * Bn . The ordering is arbi- 
trary except that, for each i, Ai and Bi are to belong to the same component 
of K. By a semi-linear isotopic deformation of K that displaces points vertically 
we can arrange it that the overpasses lie above R2 and the underpasses below R2 
(except, of course, their end-points, the original points of subdivision pi, 
P2, X.. , P2n, which lie in R2). 

The projection of Ai is denoted by A' and that of Bj by B; . We write A = 

A, u ... AXA' = A AnU ... UAnB = Bu ... uBnXB' = Blu ... uBn 

p = pl up2 U U P2n.. The set of points of R3 lying over (under) A, B, p etc. 
will be denoted A#, B#? p# etc. (A', B', p9 etc.) and oriented coherently with 
respect to A, B, p etc. 

The fundamental groups of R3 - K u B' and R3 - K u A# are denoted by 
X and Y respectively; the base point for X is infinitely high and the base point 
for Y is infinitely low. To any path w in R2 _ p whose initial point wo and end- 
point wi lie in R2 - K' we associate the element #(w) of X represented by the 
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path wo w (w) - ' and the element t (w) = wo W (wi)l In particular if w is a 
path disjoint to K' except that it crosses A' once from left to right the associated 
element #(w) of X is denoted by xi; similarly yj denotes the element b(w) of Y 
where w is a path disjoint to K' except that it crosses B; once from left to right. 

The complement of K u B' is of the same homotopy type as the complement 
of A u p'; hence X is seen [6] to be the free group generated by xi, , X . 
Similarly Y is the free group generated by yi, --, , . 

The elements #(w) of X and b (w) of Y may be expressed as words in x1, . , , 

and yi, , ye, respectively. Assuming that w is in general position with respect 
to K' it is easy to write these words down. In fact #(w) = xex . x* if w 
crosses the projected overpasses A l, A 2 , A', in the order named, and 
ok = ?1 or - 1 according as w is crossing A ik from left to right or from right 
to left; similarly b(w) = yjlly2 ... y" if w crosses the projected underpasses 
B;1, Bi2, ., Ba in the order named, and Ek = ?1 or-1 according as w is 
crossing Bk from left to right or from right to left. 

Let U1, , U. be disjoint Jordan regions in R2 such that A' C Us, and 
let V1 . , V. be disjoint Jordan regions in R2 such that B C Vj . The boundary 
curves ui of Ui and v; of Vj are to be in general position with respect to K' and 
so oriented that from above us appears clockwise and v; counterclockwise. Let 
ri be a path in R2 - B' to ui from a fixed exterior point e, and si a path in R2 - A' 
from e to vj . These paths r1, , r , Si, -.. , s. should be in general position 
with respect to K', and may, of course, be chosen in several ways. Let 77j = 
S(s1.v; s'), ti = L(ri us r-'), pi = b(ri), aj = #(sj). 

The group X is mapped onto G = ir(R3 - K) by cutting K u Bk with a plane 
RF parallel to R2 and below K. More precisely X = 7r(R3 - K u Br') 
7r((R3 - (K u B' - R)) 2 7 -(R -K) = G. The kernel of this homomorphism 4 
is easily seen [6] to be just the consequence of the elements 771, , . Similarly 
the group Y is mapped onto G by cutting K u A# with a plane R4 parallel to R2 
and above K; the kernel of this homomorphism, which we also denote by 4, 
is the consequence of the elements ti, , n. Thus we have derived, after a 
number of arbitrary choices, two presentations (xi, - , - Y lin l .71 * . ) and 
(Yi, , * * X y. i , -** , W) of G. We call these the over presentation and the 
under presentation respectively. It will be observed that the description of either 
one is obtainable from the description of the other by reversing the orientation 
of K and interchanging the meanings of "up" and "down." 

It may also be observed that one can obtain the classical Wirtinger presenta- 
tion [3] as an over presentation by choosing as the underpasses d short subares 
of K, one containing each of the d undercrossing points. Unless the projection 
is alternating the Wirtinger presentation is not the most economical over pres- 
entation. 

3. An example 

Diagram 1 shows a (non-alternating) projection of a knot of multiplicity 
= 2; it is divided, as economically as possible, into overpasses and underpasses. 

Only the eight overpasses are labelled. For each i = 1, - , 8 the underpass 



214 G. TORRES AND R. H. FOX 

following Ai is to be Bi. By way of illustration of the preceding constructions 
the path s2v2S 1 is indicated by dotted lines. An over-presentation has the eight 
generators xi, * *, X8 and eight relators 771, * , 778 where 

-1 -1 
771 = X1X3X2 X3 

772 = Xl(XoX4X2X4 X6 X31)L 
-1 -1 

773 = X3X1X4 Xi 
( 1 -1 -1 -1 

774 = X3(X7X2X4Xj2X7 xI )x3 

775 = Xi(X5X8X6 X8 I)X 

776 = X3(X2X6X2 X7 3)X 

777 = xi(x4x7x4 x5x8 X5)X1 
-1 -1 )X-1 778 = Xi (X8X6Xi'A 1)x 

The overpasses A1, l , A4 belong to K1 and the overpasses A5, * * , A8 belong 
to K2; accordingly x+ = t1 if i _ 4 and x++ = t2 if i > 5. The Alexander matrix 
iS 

Xi X2 X3 X4 X5 X6 X7 XA 

771 1 - t tii 0 0 0 0 0 
2 

772 0 ti t2 -tl tlt2(1 -t1) 0 t1(1 -ti) 0 0 

773 tl-1 0 1 -ti 0 0 0 0 

774 -t1 tIt2(1-t1) 0 ti t2 0 0 t1(1 -t1) 0 

775 0 0 0 0 t1 -tIt2 0 ti(t2 -1) 

776 0 tl(1 - t2) 0 0 0 ti -ti 0 

777 0 0 0 tl(l - t2) tl(t2 -1) 0 t -tlt2 

778 0 0 0 0 -tlt2 tl(t2-1) 0 tj 

which is equivalent to 

I1- tj + t 2 0 0 

0 (1 - t) (1 - 2t - 2tl t2 + t3t2) (1 - t2) (1- 2t - 2tl t2 + - t2) 

Thus [2] the Alexander polynomial is 

A(tl, t2) = (1 - tl + ti)((1 - 2ti) - tit2(2- t-)). 

The elementary ideal of deficiency 2 is 

= (1 - t1 + ti, (1 + tI)(1 + t2)). 

A corresponding under presentation may be constructed by the reader. 
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DIAGRAM 1 

4. Proof of the theorem 
The commutator quotient group H of G is free abelian of rank At and is generated 

by elements ti, * * *, t, where ti is represented by a path whose linking number 
with Kj is 3ij. From the description of xi and yj it is clear that x+ = yt = tk(i) 

where Kk(i) is the component of K to which At and Bi belong. Thus (1) is satisfied. 
To prove (2) we shall consider one particular crossing of K, say one of the 

crossings of Ai over Bj, and calculate the contributions of that crossing to the 
two members of (2). We may assume that in the neighborhood of this crossing 
the Jordan regions Ui and Vj intersect in a Jordan region W. Denote by ui 
and u0 the two arcs of ui outside W, and by v; and v* the two arcs of vj out- 
side W. We may assume that ri and si end at the point of ui n vj indicated on 
diagram 2. (If necessary ri may be prolonged around us and sj around vj.) 
Then we have 

{i = PiYJ0ZiY, at Pi 

5 -8 * -I 
7j = crjxa31x7 /Ojai, 

where E = ?1, a = ?1, cat = b(u;), = b(uO), Oj = #(v'), A* = #(v*), and 
the common end-point of ri and sj falls on the common end-point of a* and h* 

Suppose p+ = ITk= tk and 04'k = 1k1l tk. Since the intersection number 
of two oriented closed curves in R2, such as ris7' and Kkis equal to zero, and 
since ri crosses only projected overpasses while sj crosses only projected under- 
passes, it follows from (1) that Xk + Ok = 0. Thus pi = cT71 (mod A+). Applying 
the same reasoning to the oriented closed curves that make up the boundaries 

-f * J 8 5 i = - of the Jordan region Ui - W and 1j,- W, we get cai =x-i , ai= xi , f3 =Yj 



216 G. TORRES AND R. H. FOX 

* *1 '1', 

I 
I 

:g 
, 

& 
I es 

--,i*--- +- -- 

dX7-aj~ -Sj) 'l + l mo A,+ 

dyj~~~~~~U 

y' ( m Thus 

wher x+ = andty = -j. Hece(2 yils+ sdy-d~/z (mod h 

whnequenthe reminer Alermsande mtherigh1 tdy are cnrbtons from presentatiossings 
of the condjugate follsowseo that lxne arx1 Xj/z +o h rsna 

tion(x: ) Frthemorethe onjugt trnsos ofanminrofode - 

6. Proof of corollary 2 

The idal is a prncplidaliftelae knot, is sigl [2 and Hi the iniieAllcgru eerateder 

polneomia thAtie is, by meiition, of geeaorde of thisiealAi other matrixmiHnced 

up to a factor __t r. )Since L,1 = 1~1, we have A (t) = dtm, (C) for some integer m, 
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where E i?1. It is known [1] that A(1) = ?i1; it follows immediately that 
E +1. Writing A(t) = co + cit + + cmtM, we have ci = cm+i for i = 

1, 2, * . Therefore m must be even, for if m were odd we could have 1 A(1) 
2(co + Cl + * ?+ ct(m-1)) 0 (mod 2). 

7. Proof of corollary 3 

If we delete from each of the two matrices the last row and the last column, 
say, the determinants of the two minors obtained [2] will be A (t1, -, t ,) (tk - 1) 
and A(t, *, -(t - 1), where An and B. belong to Kk. Since A is only 
determined up to a factor ?trl ... troA it follows from the theorem that 

(3A) 
A (tl) .. * t,,) = stml-l . .. to M;&_l (t-l ... to 1). 

It remains to prove that E- (-1)' and m EJ=l lij (mod 2), where lij is 
the linking number of Ki and Kj if i F j and lsi = 0. The proof of these facts 
depends on the following property of the Alexander polynomial of a multiple 
knot [5]: 

a(ti, 1) = iti 1 A(ti) if = 2, 

t(tl ** tA- I 1) =(til " * A l ~~,*** el if ,u> 2, 

where Az(ti, ... , to) is an Alexander polynomial of K1 u * u K, and 
A(ti ... , tall) is a properly chosen Alexander polynomial of K1 u *.. u K_1. 
From (4,) it follows that 

t~tl, 1, , 1) - (th~ - i)(t".-' - 1) (ti'3 - 1) _ 1 ) 
ti- 

so that A (t1, * *, t,) is certainly different from zero if 1hi 5 0 for i = 2, 3, , 

(I) Suppose first that hi F 0 for i = 2, 3, *., 1A. If g = 2 we obtain from 
(32) and (42) that 

t112 - 1m- t7112 - 1 
tl 1 z(ti) =t-1 t1 -1 

Using Corollary 2, it follows that E- ?1 and ml 112 (mod 2). Proceeding 
by induction on At we assume , > 2 and obtain similarly from (3,) and (4,) 
that 

to tiA )(l t )=- tmi-liu-l tr ti'. A- ... C(l 1y) flzl i~l-il 

Since 11, 5 0 the factor (fHtili - 1) may be cancelled from both sides. Since 
11i 4 0 for i = 2, 3, , * - 1 it follows from the inductive hypothesis that 

A (tl , \ / 1 )A-it n -1 .. n,_l-l A I-i t- 10\ 
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where ni lij (mod 2). Since we are assured that A(ti, *., t,A-i) is 
not zero in this case, we conclude easily that E = (-1)' and ml,- ZJ=1 'i 
(mod 2), completing the induction. 

(II) Next we suppose that not all of 112, ***, 11, are different from zero. 
We adjoin a simple closed polygon Ko, disjoint to K, such that the linking 
number loi of Ko and Ki is different from zero for each i = 1, * , g. Then, by 
case (I), 

,A(to *** to.) = - )I+ltno-oi. tn A lt -1 ... 

where ni = J=0 lij (mod 2). Applying (4,+1), we get 

i= lX 1)= (t\ I t /oi t1A 

Since li=1 (tb' - 1) 5 0, there follows (3,), where ? = (-1)' and ml, 
ZJ=, li (mod 2). 

7. Concluding remarks 

Seifert has shown that a polynomial A(t) that satisfies A(t) = tmA(t-l) and 
zA(1) = i-1 is an Alexander polynomial of some single knot. Thus any ideal e 
in the ring JH of the infinite cyclic group H that is invariant under conjugation 
and is mapped by o onto all of J is the elementary ideal of deficiency 1 of some 
(single) knot. This suggests the more general problem: Given a chain of ideals 

l C 2 C 3 C .. in the ring of the infinite cyclic group such that each Ld 

is invariant under conjugation and is mapped by o onto all of J, under what 
conditions is this the chain of elementary ideals of some single tame knot? 

For multiple knots the situation is more complicated. Corollary 3 describes 
a property of Qi, a weakened form of which is the statement that 1 is invariant 
under conjugation. Does some analogous property hold for Ld when d > 1? 
In particular, are the ideals C2, C3, ..* invariant under conjugation? 

Finally, if a polynomial A(t1, , t,) satisfies (*,), under what additional 
conditions is it the Alexander polynomial of some knot? 
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