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Printed in U.S.A.

DUAL PRESENTATIONS OF THE GROUP OF A KNOT

By G. Torres AnDp R. H. Fox
(Received July 30, 1953)

In 1934 it was proved by H. Seifert [4] that the Alexander polynomial of a
single knot is always a symmetric polynomial of even degree. In 1951 G. Torres
[5] extended Seifert’s method to multiple knots, and showed that the Alexander
polynomial of a multiple knot has an analogous ‘‘symmetry” property. Although
the proof of Seifert’s theorem actually allows one to conclude the stronger state-
ment that the equivalence class of Alexander matrices [2] is itself symmetric in
a certain sense, the generalization of Seifert’s method does not seem to lead to
any information about the matrix class of a multiple knot.

In this paper we attack the ‘“‘symmetry problem” by an entirely different
method, based on the discovery of a basic ‘“duality” in the group of any knot,
single or multiple. By this new method the previous results of Seifert and Torres
are obtained (Corollaries 2 and 3) more easily and in better perspective.

For a multiple knot the “symmetry property’” of the matrix class turns out
to be somewhat complicated, and this is doubtless the reason why generalization
of Seifert’s method failed to uncover it.

The notations of [2] are used throughout.

1. Statement of results

A presentation [2] of a group @ is a set of letters 2, ,- - - , x, and a set of words
m@y, -, X)), *++, Mm@, -+, Tx) in these letters such that G is isomorphic
to X/(n), where X is the free group generated by 2;, -+, =, and () is the
consequence of 71, ---, 7. in X; G is the image of X under the associated
homomorphism ¢, whose kernel is (1). Along with G we consider also its com-
mutator quotient group H and the associated homomorphism ¢ of G upon H.
The homomorphisms ¢: X — G and ¢: @ — H extend linearly to homomorphisms,
denoted also by ¢ and ¢, of the (integral) group rings:¢: JX — JG, ¢: JG— JH.

The linear extension to the group ring JF of the anti-isomorphism f — f~ !

of any group F will be called conjugation and denoted by a bar. Thus D_a.f; =
a;ffl, a; € J,fi EF.

Two presentations (T, <+, Za:m, ~-*,mx) and (Y1, ~=* , Yn i &1, -+, &n)
of G will be called dual if
(1) zi = y7 (mod ¥¢), i=1,--,n;
an; 0, ..
(2) . (x: — 1) 3, (y; — D(mod ¢¢), 4,j=1,---,n

TueoreM. The group of any tame knot in 3-space has a dual pair of presenta-
tions.
211



212 G. TORRES AND R. H. FOX

CoROLLARY 1. The group of a tame single knot in 3-space has an Alexander
matrix that s equivalent to the conjugate of its transpose. Consequently the elementary
tdeals €, , €., - - - are tnvariant under conjugation.

CoROLLARY 2. The Alexander polynomial A of a tame single knot in 3-space
has the property

(#1) At) = AT,

where m = 0 (mod 2).
CoroLLARY 3. The Alexander polynomial A of a tame knot of multiplicity
u > 1 en 3-space has the property

(*Il) A(tl y T tﬁl) = (—'1){1’”—1 tee t:'“-lA(tl_l7 ) t;l)’

where m; = the linking number of the i component with the sum of the other com-
ponents (mod 2).

2. The over- and under-presentations

In this section we shall indicate how to define presentations of a knot group
that are adapted to our purpose. A tame knot in 3-space R’ is represented by
the union K of u = 1 disjoint simple closed polygons K;, -+, K,. We may
assume that each component is oriented and that the projection of K vertically
on a given horizontal plane R’ is regular [3]. A double point of the projection
K’ corresponds to two points of K, of which the higher is called the overcrossing
point and the lower the undercrossing point. On each component of K we select
a positive even number of ordinary (i.e. not over- or undercrossing points),
points, thus dividing the component into two classes of subarcs that alternate
around it. The points of subdivision are to be chosen in such a way that one
class of subarcs, called overpasses, contain no undercrossing point, and the other
class of subarcs, called underpasses, contain no overcrossing point. This can,
of course, be done in many different ways. We denote the overpasses of K by
Ay, -+, A, and indicate them in the figures by heavy lines; the underpasses
are indicated by light lines and denoted by Bi, ---, B,. The ordering is arbi-
trary except that, for each 7, A; and B; are to belong to the same component
of K. By a semi-linear isotopic deformation of K that displaces points vertically
we can arrange it that the overpasses lie above R* and the underpasses below R
(except, of course, their end-points, the original points of subdivision pi,
P2, *** , Pam, Which lie in R?).

The projection of A; is denoted by A and that of B; by B;. We write 4 =
Aiu---ud,, A =4v---vd,,B=B,u---uB,,B = Biu ---uB,,
D = PiUPU - U ps, . The set of points of R’ lying over (under) 4, B, p etc.
will be denoted A* Bf, p# etc. (A°, B", p® etc.) and oriented coherently with
respect to A, B, p ete.

The fundamental groups of R* — K u B” and R* — K u A* are denoted by
X and Y respectively; the base point for X is infinitely high and the base point
for Y is infinitely low. To any path w in R* — p whose initial point wy, and end-
point w; lie in R® — K’ we associate the element #(w) of X represented by the
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path wi-w- (w})™ and the element, b(w) = wh-w- (wi)™". In particular if w is a
path disjoint to K’ except that it crosses A once from left to right the associated
element #(w) of X is denoted by z; ; similarly y; denotes the element b(w) of ¥
where w is a path disjoint to K’ except that it crosses B once from left to right.

The complement of K u B’ is of the same homotopy type as the complement
of A u p’; hence X is seen [6] to be the free group generated by 1, - - , @, .
Similarly Y is the free group generated by y1, - - , ¥n .

The elements #(w) of X and b(w) of ¥ may be expressed as wordsinz, , --- , x,
and y;, - -+, y. respectively. Assuming that w is in general position with respect
to K’ it is easy to write these words down. In fact #(w) = x;lx --- x5l if w
crosses the projected overpasses A',-1 , A:', , -+, A%, in the order named, and
& = +1 or —1 according as w is crossing A7, from left to right or from right
to left; similarly b(w) = yjily;2 --- y5' if w crosses the projected underpasses
B}l , B, -, Bj, in the order named, and & = +1 or —1 according as w is
crossing Bj, from left to right or from right to left.

Let Uy, ---, U, be disjoint Jordan regions in R’ such that A; C U;, and
let Vi, - -+, V,bedisjoint Jordan regions in R’ such that B; C V; . The boundary
curves u; of U; and v; of V; are to be in general position with respect to K’ and
so oriented that from above u; appears clockwise and »; counterclockwise. Let
r; be a path in R® — B’ to u; from a fixed exterior point ¢, and s, a pathin R* — A4’
from e to v; . These pathsry, ---, r,, 81, ---, 8, should be in general position
with respect to K’, and may, of course, be chosen in several ways. Let 7, =
$(sjv;87), £ = b(ri-usr), pi = b(ry), o5 = #(s,).

The group X is mapped onto G = #(R* — K) by cutting K u B® with a plane
R? parallel to R* and below K. More precisely X = #(R* — K u B") —
m(R' — (Ku B" — R%) ~ n(R* — K) = G. The kernel of this homomorphism ¢
is easily seen [6] to be just the consequence of the elements 7; , - - - , 7, . Similarly
the group Y is mapped onto G by cutting K u A* with a plane R} parallel to R’
and above K; the kernel of this homomorphism, which we also denote by ¢,
is the consequence of the elements &, -- -, £ . Thus we have derived, after a
number of arbitrary choices, two presentations (@1, -, Zn:m, -, 7.) and
Wy, * ¢y Ynt &1, -+, &) of G. We call these the over presentaiion and the
under presentation respectively. It will be observed that the description of either
one is obtainable from the description of the other by reversing the orientation
of K and interchanging the meanings of ‘““‘up” and “down.”

It may also be observed that one can obtain the classical Wirtinger presenta-
tion [3] as an over presentation by choosing as the underpasses d short subares
of K, one containing each of the d undercrossing points. Unless the projection
is alternating the Wirtinger presentation is not the most economical over pres-
entation.

3. An example

Diagram 1 shows a (non-alternating) projection of a knot of multiplicity
w = 2;it is divided, as economically as possible, into overpasses and underpasses.
Only the eight overpasses are labelled. For each ¢ = 1, --- | 8 the underpass
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following A; is to be B;. By way of illustration of the preceding constructions
the path swssz' is indicated by dotted lines. An over-presentation has the eight
generators x;, - -+, 2s and eight relators #;, - -- , 73 where

m = TATTz T3

2 = 21(TeTaToTs T T3 )TT'
n3 = 5133131504_1%?1
M = Ty(ToTATT T7 T1)T5
15 = T1(25Tss X5 )T
M6 = T3(ToT6T3 X7 )T5
m = 21(Tatixy TsTs 25 )T
s = T1(TsTexs T5 )T

The overpasses A1, - - - , A4 belong to K; and the overpasses A5, - -+ , 45 belong
to K, ; accordingly z!* = & if 1 < 4 and 2¥® = t,if ¢ = 5. The Alexander matrix
is

I T2 T3 T4 s e 7 g
w1 4 4-1 0 0 0 0 0
m| 0 tity —t A —t)] 0 H@—&) O 0
mlh — 1 0 1 —t 0 0 0 0
m| —t bt(l—t) O fity 0 0 uwl—# O
-1; 0 0 0 0 t —tt 0 tlt, — 1_)
m| 0 w(l—1t) O 0 0 t1 —t 0
m| 0 0 0 tl—t)|l@—1 0 t —tity
ns| 0 0 0 0 —tty bt —1) 0 t

which is equivalent to

1—t+t 0 0
< 0 Q-1 —20—20GL+ 66 1—)1—2—20t+14 t2)>'
Thus [2] the Alexander polynomial is
Alh, ) = (1 — 6+ (A — 20) — (62 — &)
The elementary ideal of deficiency 2 is
G=0-t+t, +ul+hn).

A corresponding under presentation may be constructed by the reader.
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Diagram 1

4. Proof of the theorem

The commutator quotient group H of G is free abelian of rank u and is generated
by elements ¢, - -, t, where {; is represented by a path whose linking number
with K ;is 8;; . From the description of z; and y; it is clear that z¥* = y7%* = tics
where K is the component of K to which A;and B; belong. Thus (1) is satisfied.

To prove (2) we shall consider one particular crossing of K, say one of the
crossings of 4; over B;, and calculate the contributions of that crossing to the
two members of (2). We may assume that in the neighborhood of this crossing
the Jordan regions U; and V; intersect in a Jordan region W. Denote by u;
and uT the two arcs of u; outside W, and by v; and v} the two ares of v, out-
side W. We may assume that r; and s; end at the point of u; n »; indicated on
diagram 2. (If necessary r; may be prolonged around u; and s; around »;.)
Then we have

e % —1
& = pyioyi eips,

] - ok =1
n; = oixiB;x; BioF ,

where ¢ = 1,6 = %1, a; = b(wi), af = b(ul), B; = #(3), 8] = %), and
the common end-point of r; and s; falls on the common end-point of o and 87 .

Suppose p¥* = JTi it and o%* = J]%, t%. Since the intersection number
of two oriented closed curves in R®, such as r;s7' and K}, is equal to zero, and
since r; crosses only projected overpasses while s; crosses only projected under-
passes, it follows from (1) that Az + 6; = 0. Thus p; = 7" (mod ¥¢). Applying
the same reasoning to the oriented closed curves that make up the boundaries

of the Jordan region U; — W and V; — W, we get a; = 27°, af = 23, 8; = y7°,
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Diagram 2
B8 = y5 (mod ¥¢). Thus
9&; y; — 1
-—Epi(l—ai) + - (mod )
dy; Yy — 1 ¥o)
31],' - Al (172 -1
6x,~ = 0;,(1 61) i — 1 + (mOd ‘I’¢)>

where the remainder terms on the right are contributions from other crossings
of A; and B . It follows that

P71 — N - 1) + -

9¢;

Sy —1

ayj(y )
=001 —-2D@ -1+ ---

_ O,
= (x; — 1) (mod y¢).

5. Proof of corollary 1

If K is a single knot, 4 = 1 and H is the infinite cyclic group generated by ¢,
where z¢® = ¢ and y¥* = . Hence (2) yields 9¢,/0y; = dn;/dz; (mod ¥¢).
Consequently the Alexander matrix || 9£;/dy; ||*® of the presentation (y: &)
is the conjugate transpose of the Alexander matrix || 87;/62: ||*® of the presenta-
tion (z: 5). Furthermore the conjugate transpose of any minor of order n — d
of one of the matrices is a minor of order n — d of the other matrix. Hence

Gy = Giforeachd = 0,1,2, --- .
6. Proof of corollary 2

The ideal G, is a principal ideal if the tame knot is single [2] and the Alexander
polynomial A is, by definition, a generator of this ideal. (A is only determined
up to a factor +¢".) Since &, = @ , we have A(t) = et"A(t™") for some integer m,
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where ¢ = 1. It is known [1] that A(1) = =1; it follows immediately that
e = +1. Writing A(() = ¢ + et + -+ + cat™, we have ¢; = cpy; for ¢ =
1,2, - - - . Therefore m must be even, for if m were odd we could have 1 = A(1) =
2(cc+a+ -+ + ciym—p) = 0 (mod 2).

7. Proof of corollary 3

If we delete from each of the two matrices the last row and the last column,

say, the determinants of the two minors obtained [2] will be A(¢;, -« - , £)(t — 1)
and A(ty, -+, t)(&" — 1), where A, and B, belong to K . Since A is only
determined up to a factor ==f1* - - - t;* it follows from the theorem that

(3w Alty, -+, t) = &7 oo A, -, ).

It remains to prove that ¢ = (—1)* and m; = 2 % l;; (mod 2), where I;; is
the linking number of K; and K; if ¢ # j and l;; = 0. The proof of these facts
depends on the following property of the Alexander polynomial of a multiple
knot [5]:

t{n -1 .
Al, 1) = A(ty) ifu=2
(4) h— 1
A(h) HRI M 1) = (t:“ cte t‘f“——ll“ - I)A(tly Tty tn-—-l) if > 2)
where A(t;, ---, f) is an Alexander polynomial of K; u --- u K, and
A(ty, -+, tu1) is a properly chosen Alexander polynomial of Kyu --- u K,_;.
From (4,) it follows that
1 ! ! i — 1
Alty, 1, -+, 1) = @™ — D™ = 1) -+ ("™ — 1) o1 AW
-

so that A(ty, - - -, t,) is certainly different from zero if l; # O forz = 2,3, - - - , u.
(I) Suppose first that l;; # 0 for ¢ = 2,3, ---, u. If 4 = 2 we obtain from
(3;) and (4) that

1 — 1 et T2 — 1
Alt) = ettt ———— A(t7).
P— (t) &ty p (t)

Using Corollary 2, it follows that ¢ = 41 and m; = l;» (mod 2). Proceeding
by induction on p we assume p > 2 and obtain similarly from (3,) and (4,)
that

= St (T L 1 1
(Ill poe — 1)A(t1, e ,tu—l) = __Szlt’i"z'— i (H b — 1> A(tl— . t;—l .

=1

Since I, # 0 the factor (J]¢i* — 1) may be cancelled from both sides. Since
L #0fori=2,3,---,u — 1it follows from the inductive hypothesis that

Aty ooy b)) = (D707 e g AW, -0, 62,
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where n; = 2 *Z11;; (mod 2). Since we are assured that A(, «--, f,_1) is
not zero in this case, we conclude easily that ¢ = (—1)* and m; = 2 % li;
(mod 2), completing the induction.

(IT) Next we suppose that not all of liz, ---, L, are different from zero.
We adjoin a simple closed polygon K,, disjoint to K, such that the linking
number lp; of K, and K is different from zero for each ¢ = 1, - -+, u. Then, by
case (I),

Alto, ==+, ) = (=" e gAY, -0, 8,

where n; = D _%_ol;; (mod 2). Applying (4,41), we get
B u P
IL e = DaG, -+, 1) = = (=D ILepm (IItf“— 1) A, - ).

i=1 =1
Since []4.: (¢ — 1) s 0, there follows (3,), where ¢ = (—1)* and m; =
>k 1 1i; (mod 2).

7. Concluding remarks

Seifert has shown that a polynomial A(f) that satisfies A(f) = ("A(™") and
A(1) = =1 is an Alexander polynomial of some single knot. Thus any ideal €
in the ring JH of the infinite cyclic group H that is invariant under conjugation
and is mapped by o onto all of J is the elementary ideal of deficiency 1 of some
(single) knot. This suggests the more general problem: Given a chain of ideals
G, C G C G C --- in the ring of the infinite cyclic group such that each &,
is invariant under conjugation and is mapped by o onto all of J, under what
conditions is this the chain of elementary ideals of some single tame knot?

For multiple knots the situation is more complicated. Corollary 3 describes
a property of €, , a weakened form of which is the statement that €, is invariant
under conjugation. Does some analogous property hold for &; when d > 1?
In particular, are the ideals @, , &;, - - - invariant under conjugation?

Finally, if a polynomial A(¢;, ---, {,) satisfies (x,), under what additional
conditions is it the Alexander polynomial of some knot?
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