Corso di Laurea in Ingegneria Aerospaziale Analisi Matematica 1 - Foglio di esercizi n.ro 5 del 29/10/19

- 1. Siano A, B due sottoinsiemi non vuoti di \mathbb{R} tali che a < b per ogni $a \in A, b \in B$. Per ciascuna delle seguenti affermazioni, si dica se sia vera o falsa, dimostrandola nel primo caso e fornendo un controesempio nel secondo.
 - (1) $\sup A < \inf B$.
 - (2) $\sup A \leq \inf B$.
 - (3) $\sup A = \inf B$.
- **2.** Sia $A = \{x \in \mathbb{Q} \mid x^3 < 2\}$. Si calcoli sup A, giustificando adeguatamente la risposta.
- **3.** Ragionando come si è fatto in aula per l'irrazionalità di $\sqrt{2}$, si mostri che l'equazione $x^3 = 3$ non ammette soluzioni razionali.
- **4.** Sia $A = \{x \in \mathbb{R} \mid x^2 + 2x 3 \le 0\}$. Si determini l'insieme dei maggioranti di A.
- **5.** Sia $A = \{x \in \mathbb{R} \mid 2^x \le 2\}$. Si dica se A ammetta maggioranti, e se A ammetta minoranti.
- **6.** Siano A, B sottoinsiemi non vuoti di \mathbb{R} . Si mostri che

$$\sup(A \cup B) = \max\{\sup A, \sup B\}, \qquad \inf(A \cup B) = \min\{\inf A, \inf B\}.$$

(Qui e nell'esercizio successivo, si intende che $\max\{+\infty, +\infty\} = \max\{+\infty, a\} = +\infty$, e $\min\{-\infty, -\infty\} = \min\{-\infty, a\} = +\infty$ per ogni $a \in \mathbb{R}$).

7. Siano A,B sottoinsiemi non vuoti di $\mathbb R$ tali che $A\subseteq B.$ Si dimostri che

$$\sup A \le \sup B\,, \qquad \inf A \ge \inf B\ .$$

8. Siano A, B sottoinsiemi non vuoti di \mathbb{R} tali che sup A = 1, sup B = 2, e sia

$$C = \{x \in \mathbb{R} \mid \text{esistono } a \in A, b \in B \text{ con } x = a + b\}$$
.

È possibile calcolare $\sup C$ a partire dai soli dati in nostro possesso? In caso affermativo, quanto vale?

In quanto segue, per ogni $a, b \in \mathbb{R}$ con a < b poniamo $(a, b) = \{x \in \mathbb{R} \mid a < x < b\}, [a, b] = \{x \in \mathbb{R} \mid a \le x \le b\}.$

9. Dati $a, b \in \mathbb{R}$ con a < b, si determinino $c, d \in \mathbb{R}$ in modo tale che la funzione $f : \mathbb{R} \to \mathbb{R}$ data da f(x) = cx + d verifichi le condizioni f(0) = a, f(1) = b. Si dimostri che f si

restringe a una bigezione tra [0,1] e [a,b], e se ne deduca che, dati comunque a,b,c,d con a < b e c < d, gli insiemi [a,b] e [c,d] hanno la stessa cardinalità.

- 10. Si consideri la funzione $f \colon \mathbb{R} \to \mathbb{R}$ data da $f(x) = 1/(1+x^2)$.
 - (1) La funzione f è iniettiva?
 - (2) La funzione f è surgettiva?
 - (3) Si mostri che la restrizione di f a $(0, +\infty)$ stabilisce una bigezione tra $(0, +\infty)$ e (0, 1).
- 11. Nel prosieguo del corso, definiremo la nozione di funzione continua, e saremo in grado di dimostrare che non esistono funzioni continue e bigettive (in realtà, nemmeno continue e surgettive) da [0,1] a (0,1). Questo esercizio mostra che è però possibile costruire una bigezione esplicita tra [0,1] e (0,1).

Si consideri la funzione $f: [0,1] \to (0,1)$ così definita:

- f(0) = 1/2;
- f(1) = 1/3;
- se esiste $n \in \mathbb{N}$, $n \ge 2$, tale che x = 1/n, allora f(x) = 1/(n+2);
- in tutti gli altri casi (cioè se $x \neq 0$ and $x \neq 1/n$ per ogni $n \in \mathbb{N}, n \geq 1$), allora f(x) = x.

Si dimostri che f è ben definita e bigettiva.