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Introduction



Aim

Given operations F, . . . and relations P, . . . on X, we

shall show that there is a natural way to extend them

to operations F̃ , . . . and relations P̃ , . . . on ββX. Thus

the model

A = (X, F, . . . , P, . . .)

extends to the model

ββA = (ββX, F̃ , . . . , P̃ , . . .).

The extension procedure is canonical: it is unique,

it lifts model-theoretic interrelations, and it is the

largest such extension.



Historical remarks

Largest compactifications were discovered indepen-

dently by Čech and M. Stone (1937) for Tychonoff

spaces and by Wallman (1938) for T1 spaces.

Our ultrafilter extension procedure, applied to unary

maps and relations, gives concepts described in these

classical works in 30s.

Several instances of ultrafilter extensions of maps and

relations of greater arities were discovered only in 60s.

We isolate three areas where such instances arose.



The first area: iterated ultrapowers

Frayne, Morel, and Scott (1958) shown that finite

iteration of ultrapowers gives ultrapowers by using (in

our terms) ultrafilter extensions of taking n-tuples:
∏

〈u1,...,un〉̃
A '

∏
u1

. . .
∏
un

A.

Here 〈 〉˜ is the ultrafilter extension of taking n-tuples.

The general construction of iterated ultrapowers, in-

vented by Gaifman and elaborated by Kunen, has be-

came standard in model theory and set theory.



The second area: ultrafilter extensions of semigroups

Such structures appeared as subspaces of function

spaces in 60s. The first explicit construction is due

to Ellis (1969):

u1 ·̃ u2 =
{
S ⊆ Y : {x1 ∈ X : {x2 ∈ X :

x1 · x2 ∈ S} ∈ u2} ∈ u1

}
.

In 70s Galvin and Glazer applied it to give an easy

proof of Hindman’s Finite Sums Theorem; the key

idea was to use idempotent ultrafilters.

The method was used by Hindman, van Douwen,

Blass, Strauss, and many others, and gave numerous

applications in number theory, combinatorics, alge-

bra, and dynamics. Many results have no (known)

elementary proofs.



The third area: modal logic

Characterizing modal definability, van Benthem (1988)

extended binary relations of frames to ultrafilters.

Goldblatt (1989) and then Goranko generalized this

construction to relations of arbitrary arity. Their ex-

tensions coincide with our extensions only for unary

relations.

Goranko (2007, unpublished) considered extensions

of operations to filters and, in another way, to ultra-

filters, and proved a theorem analogous to the First

Extension Theorem below.

***

Our construction of ultrafilter extensions of models,

together with the basic results, has appeared in 2010.



The construction and the

First Extension Theorem



Topology on ultrafilters

For every S ⊆ X let

S̃ = {u ∈ ββX : S ∈ u}.
The sets S̃ form an open basis generating the stan-

dard topology on ββX. The space ββX is:

(i) Hausdorff,

(ii) zero-dimensional (basic sets S̃ are clopen),

(iii) extremally disconnected (the closures of open

sets are open),

(iv) contains X (identified with the set of principal

ultrafilters) as an open dense subspace,

(v) compact (under a dose of AC).

It follows that the space ββX is a compactification of

the discrete space X. Moreover, ββX is the largest

(Stone–Čech or Wallman) compactification of X:

(vi) Any map h of X into any compact Hausdorff

space Y uniquely extends to a continuous map h̃

of ββX into Y .



Extending maps

Lemma. Given an n-ary map F : X1 × . . .×Xn → Y,

for all ultrafilters u1 ∈ ββX1, . . . , un ∈ ββXn let

F̃ (u1, . . . , un) =
{
S ⊆ Y : {x1 ∈ X1 : . . . {xn ∈ Xn :

F (x1, . . . , xn) ∈ S} ∈ un . . .} ∈ u1

}
.

Then F̃ : ββX1× . . .× ββXn → ββY and F̃ ¹dom(F ) = F.

Definition. F̃ is the ultrafilter extension of F .



Extending relations

Lemma. Given an n-ary relation P ⊆ X1 × . . . ×Xn,

for all ultrafilters u1 ∈ ββX1, . . . , un ∈ ββXn let

〈u1, . . . , un〉 ∈ P̃ iff{
x1 ∈ X1 : . . . {xn ∈ Xn : 〈x1, . . . , xn〉 ∈ P} ∈ un . . .

}
∈ u1.

Then P̃ ⊆ ββX1× . . .×ββXn and P̃ ∩(X1× . . .×Xn) = P.

Definition. P̃ is the ultrafilter extension of P .

A redefinition:

Proposition. Let P ⊆ X1 × . . .×Xn. Then

〈u1, . . . , un〉 ∈ P̃ iff P ∈ 〈u1, . . . , un〉̃
for all u1 ∈ ββX1, . . . , un ∈ ββXn.

Here 〈 〉˜ is the ultrafilter extension of taking n-tuples.



Extending models

Definition. Given a model A = (X, F, . . . , P, . . .), the

model

ββA = (ββX, F̃ , . . . , P̃ , . . .)

is the ultrafilter extension of the model A.



Lifting homomorphisms

Lemma. Let h1 : X1 → Y1, . . . , hn : Xn → Yn,

and u1 ∈ ββX1, . . . , un ∈ ββXn.

(i) For any G : Y1 × . . .× Yn → Z,

G̃(h̃1(u1), . . . , h̃n(un)) =
{
S ⊆ Z : {x1 : . . . {xn :

G(h1(x1), . . . , hn(xn)) ∈ S} ∈ un . . .} ∈ u1

}
.

(ii) For any P ⊆ X1 × . . .×Xn,

〈h̃1(u1), . . . , h̃n(un)〉 ∈ P̃ iff

{x1 : . . . {xn : 〈h1(x1), . . . , hn(xn)〉 ∈ P} ∈ un . . .} ∈ u1.

As a corollary, we get our first result:

The First Extension Theorem. Let A and B be

two models. If h is a homomorphism of A into B,

then h̃ is a homomorphism of ββA into ββB.



Topological properties of

extended models and the

Second Extension Theorem



Topology provides a natural language to express some

properties of ultrafilter extensions. We describe topo-

logical properties of extended mapping and relations,

then we isolate them in abstracto, for mapping and

relations on topological spaces.

This leads to a certain class of models endowed with

topologies (which is wider than the class of usual

topological models). Our aim is to show that ultra-

filter extensions are largest extensions in this class.



Extended maps, topology

Unary case. F : X → Y extends by

F̃ (u) =
{
S ⊆ Y : {x ∈ X : F (x) ∈ S} ∈ u

}
.

This gives the standard unique continuous extension

of F .

Binary case. F : X1 ×X2 → Y extends by

F̃ (u1, u2) =
{
S ⊆ Y : {x1 ∈ X1 : {x2 ∈ X2 :

F (x1, x2) ∈ S} ∈ u2} ∈ u1

}
.

The extension can be fulfilled in two steps: first one

extends left translations of F , then right translation

of the partial extension. In result: all right transla-

tions of F̃

u1 7→ F̃ (u1, u2)

are continuous, and all its left translations

u2 7→ F̃ (u1, u2)

by principal ultrafilters u1 ∈ ββX1 are continuous.



General case

Lemma. Let F : X1×. . .×Xn → Y and 1 ≤ i ≤ n.

For every principal u1 ∈ ββX1, . . . , ui−1 ∈ ββXi−1 and

arbitrary ui+1 ∈ ββXi+1, . . . , un ∈ ββXn, the map

u 7→ F̃ (u1, . . . , ui−1, u, ui+1, . . . , un)

of ββXi into ββY is continuous. Moreover, F̃ is the only

such extension of F .

Remark. This description of continuiuty of extended

maps cannot be improved.



We isolate this property:

Definition. Let X1, . . . , Xn, Y be topological spaces,

and let C1 ⊆ X1, . . . , Cn ⊆ Xn. An n-ary map F :

X1× . . .×Xn → Y is right continuous w.r.t. C1, . . . , Cn

iff for each i, 1 ≤ i ≤ n, and all c1 ∈ C1, . . . , ci−1 ∈ Ci−1

and xi+1 ∈ Xi+1, . . . , xn ∈ Xn, the map

x 7→ F (c1, . . . , ci−1, x, xi+1, . . . , xn)

of Xi into Y is continuous.

In these terms, the previous lemma states:

Lemma. For any map F on X1×. . .×Xn its ultrafilter

extension F̃ is right continuous w.r.t. X1, . . . , Xn.



Extended relations, topology

Unary case. If P ⊆ X, then

u ∈ P̃ iff P ∈ u.

Thus P̃ is a basic (cl)open set of ββX.

Binary case. If P ⊆ X1 ×X2, then

〈u1, u2〉 ∈ P̃ iff{
x1 ∈ X1 : {x2 ∈ X2 : 〈x1, x2〉 ∈ P} ∈ u2

}
∈ u1.

All sections of P̃

P̃u2 = {u1 ∈ ββX1 : 〈u1, u2〉 ∈ P̃}
are clopen in ββX1, and all its sections

P̃u1 = {u2 ∈ ββX2 : 〈u1, u2〉 ∈ P̃}
by principal ultrafilters u1 ∈ ββX1 are clopen in ββX2.



General case

Lemma. Let P ⊆ X1 × . . . × Xn and 1 ≤ i ≤ n.

For every principal u1 ∈ ββX1, . . . , ui−1 ∈ ββXi−1 and

arbitrary ui+1 ∈ ββXi+1, . . . , un ∈ ββXn, the set

P̃u1,...,ui−1,ui+1,...,un =

{u ∈ ββXi : 〈u1, . . . , ui−1, u, ui+1, . . . , un〉 ∈ P̃}
of ββXi is clopen.



We isolate this property:

Definition. Let X1, . . . , Xn be topological spaces,

and let C1 ⊆ X1, . . . , Cn ⊆ Xn. An n-ary relation

P ⊆ X1× . . .×Xn is right open w.r.t. C1, . . . , Cn iff for

each i, 1 ≤ i ≤ n, and every c1 ∈ C1, . . . , ci−1 ∈ Ci−1

and xi+1 ∈ Xi+1, . . . , xn ∈ Xn, the subset

Pc1,...,ci−1,xi+1,...,xn =

{x ∈ Xi : 〈c1, . . . , ci−1, x, xi+1, . . . , xn〉 ∈ P}
of Xi is open. Likewise for right closed (right clopen,

etc.) relations.

In these terms, the previous lemma states:

Lemma. For any relation P on X1× . . .×Xn its ultra-

filter extension P̃ is right clopen w.r.t. X1, . . . , Xn.



Extended models, topology

Definition. Let A = (X, F, . . . , P, . . .) be a model

equipped with a topology, and C ⊆ X. Then A is

right open with C its topological center iff all its

operations are right continuous w.r.t. C and all its

relations are right open w.r.t. C. Likewise for right

closed (right clopen, etc.) models.

In these terms, two last lemmas state

Theorem. For any model A its ultrafilter extension

ββA is right clopen with A a dense topological center.



Lifting homomorphisms, refined

The following theorem concerns rather arbitrary right

open and right closed models with dense topological

centers than ultrafilter extensions.

Theorem. Let a model A be right open, a model B

a Hausdorff right closed, and C ⊆ A a dense submodel

and a topological center of A. Let h be a continuous

mapping of A into B such that

(i) h¹C is a homomorphism, and
(ii) h“C is a topological center of B.

Then h is a homomorphism of A into B.



Two last theorems give our main result:

The Second Extension Theorem. Let A and C be

two models, and let C be compact Hausdorff right

closed. If h be a homomorphism of A into C such

that h“A is a topological center of C, then h̃ is a ho-

momorphism of ββA into C.

(The First Extension Theorem is a partial case when

C is ββB.)

Thus ββA is the largest compactification of A lifting

homomorphisms. This shows that the construction

provides a right generalization of the Stone–Čech (or

Wallman) compactification of a discrete space to the

situation when the space carries a model-theoretic

structure.



Further problems



Other relationships between models

The established facts about homomorphisms hold for

embeddings and other relationships between models:

Theorem. Both Extension Theorems remain true if

one replaces homomorphisms by isomorphic embed-

dings, as well as homotopies and isotopies.

Problem. Characterize relationships between models

that are stable under ultrafilter extensions.



Specific ultrafilters

Certain ultrafilters form natural submodels of ββA.

Theorem. Let A be a model and κ a cardinal.

(i) The subset {u ∈ ββA : u is κ-complete} forms

a submodel of ββA.

(ii) The subset {u ∈ ββA : u is κ-uniform} forms

a closed submodel of ββA if the operations of A are

“sufficiently cancellative” (a technical condition).

(Similarly for several other types of ultrafilters.)

Also it is possible to show that the Second Extension

Theorem remains true if one replaces ‘compact’ by

‘finally κ-compact’ and ββA by its submodel consisting

of κ-complete ultrafilters.

Problem. Study the role of specific ultrafilters in

ultrafilter extensions.



Connections with ultraproducts

Problem. Study an interplay of ultrafilter extensions

and ultraproducts.

A simple related result:

Theorem. If F̃ (u1, . . . , un) = v then

j :
∏
v

A ≺
∏
u

A

where u = 〈u1, . . . , un〉̃ and j is defined by j = [f ◦F ]u
for all f .

Corollary. If v ≤RK u then
∏
v

A ≺
∏
u

A.



Formulas stable under ultrafilter extensions

Ultrafilter extensions are highly complicated objects,

their equational theories quite differ from equational

theories of extended models.

Problem. Characterize (atomic) formulas that are

stable under ultrafilter extensions.

We have a sufficient condition:

Theorem. Let s and t be terms such that

(i) the common variables of s and t appear in the

same ordering, and

(ii) any common variable occurs in each of the

terms only once.

Then the idenitity s = t is stable.

Perhaps this condition is also necessary:

Conjecture. Every identity stable under ultrafilter

extensions is equivalent to an identity from Theorem.



Examples. The following identities (in the language

of groupoids) are stable:

(i) xy = (xy)z,

(ii) xy = xx (is equivalent to xy = xz),

(iii) xy = (yx)z (is equivalent to xy = wz),

(iv) (xy)z = x(yz) (associativity),

(v) (xy)(zw) = x(y(zw)),

while the next two identities are not:

(vi) x = xx (idempotency),

(vii) xy = yx (commutativity).

This was applied to generalize Hindman’s theorem to

certain non-associatice groupoids (2008).



Properties of models versus properties of their

ultrafilter extensions

Ultrafilters can encode complex properties of the un-

derlying models.

Basic examples.

(i) Ramsey’s theorem corresponds to (arbitrary)

nonprincipal ultrafilters.

(ii) Hindman’s theorem corresponds to idempo-

tent nonprincipal ultrafilters.

Problem. A translation of statements about models

to statements about their ultrafilter extensions et vice

versa.


