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	Outline

1. General Nonsense.

2. A short, inadequate introduction to/review of Nonstandard
Analysis.

3. Nonstandard measure spaces; Loeb construction

4. Discrete arguments in Analysis via NSA

5. Applications of NSA to uniform and asymptotic properties in
discrete math, additive number theory, etc
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	A remarkable result, not about combinatorics?

Theorem 0.1. (G. Keller, 1972) Let V be a variety of groups.
Then V is uniformly amenable iff every group in V is amenable.

• What does uniformly amenable mean? (What does amenable
mean?)

• What properties of variety are used here? Does it hold for
other classes of groups?

• Are there similar results for mathematical properties other
than amenability, or objects other than groups? What is
really going on here?
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Relevance for this audience:

• The proof is a recipe for proving results of the form:
If every element of a class C has property P , then C is
uniformly P .

• The proof shares elements with recent nonstandard proofs of
results in combinatorics and additive number theory (cf Jin,
Elek, Szegedy, Tao, et al)
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A group G is amenable if there is a left-invariant, finitely-
additive probability measure µ on (G,P(G)) with P (G) = 1.

Finite groups are amenable; abelian groups are amenable; homo-
morphic images and subgroups of amenable groups are amenable;. . .

A variety of groups is a class determined by a (finite) set of
words
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Theorem 0.2. (Følner): G is amenable if and only if:

∀A ⊆ G finite ∀ε > 0∃E ⊆ G finite ∀a ∈ A ‖E4aE‖
‖E‖

< ε

A group G is uniformly F6olner, or uniformly amenable if ‖E‖ can
be chosen to depend only on ‖A‖ and ε, that is, if there is a
function F : N × (0,1)→ N such that

∀n ∈ N ∀A ⊆ G s.t. ‖A‖ < n ∀ε > 0

∃E ⊆ G s.t. ‖E‖ < F(n, ε) & ∀a ∈ A ‖E4aE‖
‖E‖

< ε

A class D of groups is uniformly amenable if there is a single
function F : N× (0,1)→ N that witnesses amenability for all the
groups in D
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Remark. This is not the best definition of uniformly amenable.
Better is:

G is uniformly amenable if ∗G is amenable.

D is uniformly amenable if every G in ∗D is amenable.
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	TWO FOLK EQUATIONS

NONSTANDARD ANALYSIS::ULTRAFILTERS
=

REAL NUMBERS::DEDEKIND CUTS
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DISCRETE OR FINITARY ARGUMENTS + NONSTANDARD
METHODS

=
INFINITARY OR CONTINUOUS RESULTS IN STANDARD

MATHEMATICS
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	Examples

(Anderson et al) Continuous time stochastic processes “are”
random walks

(R) The Riesz Representation Theorem “is” the Farkas Lemma

(Artstein; R) Selecting from a random closed set “is” a Mar-
riage Lemma

(R) Marriage Lemma can be used to build invariant measures on
topological spaces
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Review: Components of the nonstandard model

(I) Start with a (standard) mathematical universe (or super-
structure) V :

• A large set containing every other mathematical object we
might want to talk about, such as all natural numbers 0,1,2, . . . ;
real numbers

√
2, π, e, . . . ; the set N of natural numbers as

an object; the set R of real numbers; every function from R
to R, and the set of all such functions; etc.

• We call the elements of this mathematical universe standard.
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(II) An infinite cardinal κ bigger than ℵ0. It is often convenient
to take κ >card(V ).

(III) A first-order language LV with constant, function, and
relation symbols for every constant, function, and relation in V .

The nonstandard model consists of a new (bigger) superstruc-
ture ∗V , and an injection ∗ : V → ∗V , satisfying transfer and
(κ−)saturation:
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	Transfer:

If S is a statement about objects in V , then S is true in V
if and only if it true in ∗V .

(Technically: every bounded first-order LV-sentence holds in V
if and only if it holds in ∗V .)
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Examples:

“N is Well-ordered”:

[∀A ∈ P(N)] [(A 6= ∅)⇒ (∃n ∈ A∀x ∈ An ≤ x)]

“∗N is ∗-Well-ordered”:

[∀A ∈ ∗P(N)] [(A 6= ∅)⇒ (∃n ∈ A∀x ∈ An∗ ≤x)]

“∗N is Well-ordered” (false):

[∀A ⊆ ∗N] [(A 6= ∅)⇒ (∃n ∈ A∀x ∈ An∗ ≤x)]
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More Examples:

If G is a group, then ∗G is a group. Any ∗group is a group.

If A is an algebra of sets, then so is ∗A

Combinatorial results such as the ∗Marriage Lemma holds of
appropriate objects in the nonstandard model.

Remark: We might imagine a standard mathematician living in
universe V , and a nonstandard mathematician living in ∗V .
The transfer principle says that both these mathematicians
experience exactly the same true statements. The reason this
is possible is that they both speak the same language - the
language of V . In particular, the ‘nonstandard’ mathematician
will not be able to refer to any particular element of ∗V that
is not the ∗−image of an element of V .
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	κ-Saturation:

Suppose that S is a collection of fewer than κ statements
about an object X, and that for every finite subcollection of
S there is an object in ∗V for which they hold; then there
is an object in ∗V for which all the statements in S hold
simultaneously.

16



Example: Consider the statements: “x is a natural number,”
“x ≥ 1”, “x ≥ 2”, “x ≥ 3”,· · ·

Any finite subset of these statements refers to a largest num-
ber N which satisfies this finite set of statements.

It follows that there is a an element H of ∗N satisfying all the
statements, that is, such that for every (standard) natural
number n, H > n

Such an H is an infinite hyperfinite number.

Since 1/H is less than every standard real number, it is a
positive infinitesimal in ∗R.

Since ∗R (sometimes called the set of “hyperreal numbers”) is,
like the usual set of real numbers, closed under the basic
arithmetic operations, it is a non-Archimedean field, and looks
roughly like this :
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(figure taken from Keisler’s Calculus text)
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It turns out that every finite hyperreal s differs infinitesimally
from some unique standard real r; call r the standard part
of s, r = st(s).

In other words, st() takes any finite hyperreal to the closest
standard real number.

There is a similar situation for any reasonable nice topological
space:
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	κ-Saturation (alternate):

There is an equivalent formulation in terms of internal sets.
The internal sets are a distinguished subcollection of sets in
∗V that includes (i) ∗A for every A ∈ V ; (ii) Every LV-definable
set in ∗V ; (iii) Every element of another internal set.

In terms of internal sets, κ-saturation becomes: Suppose
{Ai}i<λ is a collection of sets such that

(a) λ < κ;

(b) The sets Ai are internal; and

(c) The collection {Ai}i<λ satisfies the finite intersection prop-
erty:

for any i1 < i2 < · · · iN < λ, (Ai1 ∩ Ai2 ∩ · · · ∩ AiN) 6= ∅

Then
⋂
i<λAi 6= ∅.
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More easy consequences of saturation:
∗N is not well-ordered. (There is no least infinite hyperinteger.)

if A1 ⊇ A2 ⊆ · · ·An ⊇ are internal and A =
⋂
n∈N

An is internal

then for some n An = A.

If A is a standard infinite set then ∗A is strictly bigger than
A

If A is any standard set then there is a hyperfinite Â such
that A ⊆ Â ⊆ ∗A
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Hyperfinite sets

Definition: A set E in ∗V is hyperfinite if there is a ∗one-to-one
correspondence between E and {0,1,2, . . . , H} for some H in
∗N. Equivalently, if the mathematical statement “E is finite”
holds in ∗V .

Examples: 1. Every finite set is hyperfinite.

2. If H is an infinite integer, {0,1,2, · · · , H} = {n ∈ ∗N : n ≤
H} is a hyperfinite subset of ∗N

3. If H is an infinite integer, {0, 1H,
2
H, · · · ,

H−1
H ,1}is a hyperfi-

nite subset of ∗[0.1]
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Theorem: If A is an infinite set in V then there is a hyperfinite
set Â ⊆ ∗A in ∗V such that every element of A is in Â

Proof: Consider the statements: (i) X is finite; (ii) a ∈ X (one
such statement for every element a of A); (iii) X ⊆ A.
Given any finite number of these statements, a corresponding
finite number {a1, . . . , an} of elements of A are mentioned, so
X = {a1, . . . , an} satisfies those statements. By the satura-
tion principle there is therefore a set X in ∗V satisfying all
the statements simultaneously; let Â be this X.

Corollary: There is a hyperfinite set containing R.
This gives another way of proving that ∗R has infinitesimals. If

R̂ is a hyperfinite set extending R, then the least element

of R̂ ∩ ∗(0,∞) is a positive infinitesimal.

“Nonstandard analysis is the art of making infinite sets
finite by extending them.” –M. Richter
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	Nonstandard measure spaces

Recall that a finite measure space is a triple (X,A, µ) such
that

1. A is a σ-algebra on X

2. µ : A→ [0,∞) is an additive set function with µ(∅) = 0

3. µ is σ-additive (= countably additive):

µ(
⋃
i∈N

Ai) =
∑
i∈N

µ(Ai)

provided the sets Ai are all disjoint
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It follows that a ∗measure space would be a triple (X,A, µ)
such that

1. A is a ∗σ-algebra on ∗X (whatever that means; note that
“algebra”=“∗algebra”)

2. µ : A→ ∗[0,∞) is an ∗additive set function with µ(∅) = 0

3. µ is ∗σ-additive:

µ(
⋃
i∈∗N

Ai) =
∗ ∑
i∈∗N

µ(Ai)

provided the sets Ai are all disjoint

What do the last two mean? (2) says that Pµ is additive
for any standardly finite sequence of sets, and for a hyperfinite
sequence of sets, so is stronger than standard additivity. (3)
says that µ is additive even for a sequence of sets indexed
by the nonstandard natural numbers; however, it generally will
not be additive for a sequence indexed by the standard natural
numbers (such a sum will generally not even be defined).
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Nonstandard measure spaces can arise in two natural ways:

I. As the star of a standard measure space. If (X,A, µ) is a
standard measure space, then (∗X,∗A,∗ µ) is a nonstandard
measure space.

II. As something constructed internally. For example, if N is an
infinite integer, we could define (Ω,P(Ω), µ) by

• Ω = {H, T}N = all possible sequences of coin flips of length
N

• µ(A) = ‖A‖
2N
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	Conversion to standard spaces

Observation If (X,A, µ) is a finite-valued nonstandard measure
space, st(µ) is a real-valued function on (X,A) satisfying
all the properties of a standard measure space except the
countable ones.

In fact, if A0 ⊇ A1 ⊇ A2 ⊇ A3 · · · are elements of A, then
∩n∈NAn can only be in A if the sequence is eventually con-
stant; this is an immediate consequence of κ−saturation. It
follows that A is not a σ-algebra except in trivial cases.

Loeb (1972) noticed that this means that st(µ) is trivially
σ-additive when restricted to A, and by the Carathéodory
Extension Theorem from measure theory st(µ) has a natural,
well-behaved extension µL to a σ-algebra AL extending A.
The standard probability space (X,AL, µL) (now called the Loeb
Space) retains many of the properties of the nonstandard
space from which it is obtained.
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Example Let (Ω,P(Ω), P ) be the infinite coin-flipping example from
before (Ω=all sequences of length N from {H, T}, where N is
infinite, and P(Ω) is the internal power set of Ω, namely
the internal algebra of all internal subsets of Ω). Then for
any given sequence ω ∈ Ω of coin flips, P ({ω}) = 2−N, but
PL({ω}) = 0.
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	Some observations about Loeb measures

• It requires AC in an essential way

• In practice, the nonstandard measure constructed is often
taken to be an internal weighted counting ∗measure on a
hyperfinite set, and is often based on an intuitive finitary
approximation of the problem. (EG, random walk to approxi-
mate Brownian Motion.)

• When using these measures one moves frequently back and
forth between the hyperreal-valued measure µ and the real-
valued counterpart µL, depending on need at the moment.
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Typical applications to analysis

See any modern (post 1975) graduate-level text in
nonstandard analysis.

30



�
�

�

Examples of nonstandard arguments

Theorem 0.3. (Ramsey)

1. If N is k-colored there is an infinite monochromatic subset

2. For all m ∈ N there exists an n ∈ N such that if {0, ..., n−1}
is k-colored then there is a monochromatic subset of size m
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Proof. (Joram Hirshfeld, 1988) Mauro proved (1) yesterday, let’s
prove that (1)⇒ (2).

Suppose m witnesses failure of (2).

For all n there is a k-coloring of n with no monochrome subset
of size m.

By saturation there is an infinite n ∈ ∗N and a k-coloring C of
n with no (internal) monochrome subset of size m.

The restriction of C to N is a k-coloring of N, so by (1) N
has an infinite monochrome subset.

Any finite subset of size > m from this monochrome subset is
an internal subset of ∗N which is monochrome with respect
to C, witnessing a contradiction.

a
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Theorem 0.4. (van der Waerden)

1. If N is k-colored there are arbitrarily long monochromatic arith-
metic progressions

2. For all m ∈ N there exists an n ∈ N such that if {0, ..., n−1}
is k-colored then there is a monochromatic arithmetic progres-
sion of size m
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Proof. Note (2)⇒ (1). Let’s prove that (1)⇒ (2).

Suppose m witnesses failure of (2).

For all n there is a k-coloring of n with no monochrome arith-
metic progression of size m.

By saturation there is an infinite n ∈ ∗N and a k-coloring C of
n with no monochrome ∗-arithmetic progression of size m.

The restriction of C to N is a k-coloring of N, so by (1) N
has arbitrarily large monochrome arithmetic progressions.

Any such monochromatic arithmetic progression of size > m is
(since a finite vector of standard numbers) a monochrome
∗-arithmetic progression, witnessing a contradiction.

a
Results like (2) can of course be proved in more general par-

tition regularity situations.
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Theorem 0.5. (Szemeredi) Let E ⊆ N have positive upper density,

that is, lim supn
‖E∩[0,n]‖

n = δ > 0. Then E contains arbitrarily long
arithmetic sequences.

Proof. Let ` be arbitrary.

For some infinite N, ‖
∗E∩[0,N−1]‖

N ≈ δ

Let Ω = {1,2, . . . , N},A = ∗P(Ω), µ(A) = ‖A‖N for A ∈ A.

(Ω,A, µ) is a finite ∗measure space, can convert to standard
measure space (Ω,AL, µL) using the Loeb construction.

Note µL(EN) = δ, where EN = ∗E ∩ [0, N − 1]

Define T : Ω→ Ω by T (x) = x+1 mod N. Then (Ω,AL, µL, T ) is a
standard dynamical system.

Recall Furstenberg’s Multiple Recurrence Theorem: If (X,B, ν) is a
finite measure space and T1, . . . , T` are commuting measure-
preserving transformations of (X,B, ν) then for any set A
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with ν(A) > 0 there is an integer n ≥ 1 with

ν(A ∩ T−n1 A ∩ T−n2 A ∩ · · · ∩ T−n` A) > 0

Like yesterday, let T1 = T, T2 = T2, . . . , T` = T`, these obviously
commute.

Apply Furstenburg recurrence to thee Ts and A = EN to get a
(standard, finite) n

Let e ∈ EN ∩ T−n1 EN ∩ T−n2 EN ∩ · · · ∩ T−n` EN. (Assume that e is
not finite.)

Exercise: show that e, e + n, e + 2n, . . . , e + `n ∈ EN ⊆ ∗E
So: “(∃e ∈ ∗N)(e ∈ ∗E

∧
e + n ∈ ∗E

∧
e + 2n ∈ ∗E

∧
· · ·

∧
e + `n ∈

∗E)” is true.

By transfer, “(∃e ∈ N)(e ∈ E
∧
e + n ∈ E

∧
e + 2n ∈ E

∧
· · ·

∧
e +

`n ∈ E)” is true.
a
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Remark: substituting “Banach upper density” for “upper den-
sity” in the above does not change the proof, except that
Ω = [M,M + N − 1] for some infinite M. R. Jin has exploited in
several results the fact that the nonstandard version of these
proofs makes it clear when hypotheses like this can be weakened
in this way.
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