Partition regularity of nonlinear polynomials

Lorenzo Luperi Baglini

Università degli Studi di Pisa
Dipartimento di Matematica

Terminology

We say that a polynomial $P\left(x_{1}, \ldots, x_{n}\right)$ is (injectively) partition regular on $\mathbb{N}=\{1,2, \ldots\}$ if whenever the natural numbers are finitely colored there is a(n injective) monochromatic solution to the equation $P\left(x_{1}, \ldots, x_{n}\right)=0$.

Theorem (Rado)

Let $P\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} a_{i} x_{i}$ be a linear polynomial. The following conditions are equivalent:
(1) $P\left(x_{1}, \ldots, x_{n}\right)$ is partition regular on \mathbb{N};
(2) there is a nonempy subset J of $\{1, \ldots, n\}$ such that $\sum_{j \in J} a_{j}=0$.

Hindman's Result

Question: Is the polynomial $x+y-z w$ injectively partition regular on \mathbb{N} ? (P. Csikvári, K. Gyarmati and A. Sárközy) An affirmative answer has been given (in a much more general form) by Neil Hindman in 2011 (in "Monochromatic Sums Equal to Products in \mathbb{N}^{11}):

Theorem (Hindman)

For every natural numbers $n, m \geq 1$, with $n+m \geq 3$, the nonlinear polynomial

$$
\sum_{i=1}^{n} x_{i}-\prod_{j=1}^{m} y_{j}
$$

is injectively partition regular.

Translation in terms of Ultrafilters

Definition

Let $P\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial, and \mathcal{U} an ultrafilter on \mathbb{N}. Then:
(1) \mathcal{U} is a $\sigma_{\mathbf{P}}$-ultrafilter if and only if for every set $A \in \mathcal{U}$ there are $a_{1}, \ldots, a_{n} \in A$ such that $P\left(a_{1}, . ., a_{n}\right)=0$;
(2) \mathcal{U} is a $\iota_{\mathbf{P}}$-ultrafilter if and only if for every set $A \in \mathcal{U}$ there are mutually distinct elements $a_{1}, \ldots, a_{n} \in A$ such that $P\left(a_{1}, . ., a_{n}\right)=0$.

Sets of Generators of \mathcal{U}

Let ${ }^{*} \mathbb{N}$ be an hyperextension of \mathbb{N} satisfying the \mathfrak{c}^{+}-enlarging property.

Definition

Given an ultrafilter \mathcal{U} on \mathbb{N}, its set of generators is

$$
G_{\mathcal{U}}=\left\{\alpha \in^{*} \mathbb{N} \mid \mathcal{U}=\mathfrak{U}_{\alpha}\right\},
$$

where $\mathfrak{U}_{\alpha}=\left\{A \subseteq \mathbb{N} \mid \alpha \in^{*} A\right\}$.

Question: Given hypernatural numbers $\alpha, \beta \in \mathbb{N}$, is there a function $f: * \mathbb{N}^{2} \rightarrow \mathbb{N}$ such that $\mathfrak{U}_{f(\alpha, \beta)}=\mathfrak{U}_{\alpha} \oplus \mathfrak{U}_{\beta}$?

$\bullet \mathbb{N}$: the ω-hyperextension of $\mathbb{N} / 1$

Definition

Let $\langle\mathbb{V}(X), \mathbb{V}(X), *\rangle$ be a single superstructure model of nonstandard methods. We call ω-hyperextension of \mathbb{N}, and denote by $\bullet \mathbb{N}$, the union of all hyperextensions $S_{n}(\mathbb{N})$:

$$
\bullet \mathbb{N}=\bigcup_{n \in \mathbb{N}} S_{n}(\mathbb{N})
$$

Definition

Let $\alpha \in \bullet \mathbb{N} \backslash \mathbb{N}$. The height of α (denoted by $h(\alpha))$ is the least natural number n such that $\alpha \in S_{n}(\mathbb{N})$.

$\bullet \mathbb{N}$: the ω-hyperextension of $\mathbb{N} / 2$

Proposition

Let $\alpha, \beta \in \bullet \mathbb{N}, \mathcal{U}=\mathfrak{U}_{\alpha}$ and $\mathcal{V}=\mathfrak{U}_{\beta}$, and suppose that $h(\alpha)=h(\beta)=1$. Then:
(1) for every natural number $n, \mathfrak{U}_{\alpha}=\mathfrak{U}_{S_{n}(\alpha)}$;
(2) $\alpha+{ }^{*} \beta \in G_{\mathcal{U} \oplus \mathcal{V}}$;
(3) $\alpha \cdot{ }^{*} \beta \in G_{\mathcal{U} \odot \mathcal{V}}$.

Proposition

Let $\mathcal{U} \in \beta \mathbb{N}$. Then:
(1) \mathcal{U} is an additive idempotent ultrafilter $\Leftrightarrow \forall \alpha, \beta \in G_{\mathcal{U}}$

$$
\alpha+S_{h(\alpha)}(\beta) \in G_{\mathcal{U}} \Leftrightarrow \exists \alpha, \beta \in G_{\mathcal{U}} \alpha+S_{h(\alpha)}(\beta) \in G_{\mathcal{U}} ;
$$

(2) \mathcal{U} is a multiplicative idempotent ultrafilter $\Leftrightarrow \forall \alpha, \beta \in G_{\mathcal{U}}$

$$
\alpha \cdot S_{h(\alpha)}(\beta) \in G_{\mathcal{U}} \Leftrightarrow \exists \alpha, \beta \in G_{\mathcal{U}} \alpha \cdot S_{h(\alpha)}(\beta) \in G_{\mathcal{U}} .
$$

The Polynomial Bridge Theorem

Theorem (Polynomial Bridge Theorem)

Let $P\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial, and \mathcal{U} an ultrafilter on $\beta \mathbb{N}$.
Then the following two conditions are equivalent:
(1) \mathcal{U} is a ι_{P}-ultrafilter;
(2) there are mutually distinct elements $\alpha_{1}, \ldots, \alpha_{n}$ in $G_{\mathcal{U}}$ such that $P\left(\alpha_{1}, \ldots, \alpha_{n}\right)=0$.

Lemma (Reduction Lemma)

Let $P\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial, and \mathcal{U} a ι_{P}-ultrafilter. Then there are mutually distinct elements $\alpha_{1}, \ldots, \alpha_{n} \in G_{\mathcal{U}} \cap * \mathbb{N}$ such that $P\left(\alpha_{1}, \ldots, \alpha_{n}\right)=0$.

An Example: Schur's Theorem

Theorem (Schur)

The polynomial $P(x, y, z): x+y-z$ is injectively partition regular.

Proof: Let \mathcal{U} be an additive idempotent ultrafilter, and $\alpha \in{ }^{*} \mathbb{N}$ a generator of \mathcal{U}. Then ${ }^{*} \alpha \in \mathcal{U}$ (this holds for every ultrafilter) and $\alpha+{ }^{*} \alpha \in \mathcal{U}$ (since \mathcal{U} is an additive idempotent ultrafilter). And

$$
P\left(\alpha,{ }^{*} \alpha, \alpha+{ }^{*} \alpha\right)=0,
$$

so we can apply the Polynomial Bridge Theorem and conclude.

A Fundamental Lemma

Theorem

If $P\left(x_{1}, \ldots, x_{n}\right)$ is an homogeneous injectively partition regular polynomial then there is a nonprincipal multiplicative idempotent ι_{P}-ultrafilter.

$P(x, y, z, w): x+y-z w$ is injectively partition regular

Corollary

The polynomial $P(x, y, z, t): x+y-z w$ is injectively partition regular.

Step 1: Let $R(x, y, z): x+y-z$.
Step 2: Let \mathcal{U} be a multiplicative idempotent ι_{R}-ultrafilter and let $\alpha, \beta, \gamma \in * \mathbb{N}$ be generators of \mathcal{U} such that $\alpha+\beta-\gamma=0$.

Step 3: We observe that

$$
P\left(\alpha \cdot{ }^{*} \gamma, \beta \cdot{ }^{*} \gamma, \gamma,{ }^{*} \gamma\right)=\alpha \cdot{ }^{*} \gamma+\beta \cdot{ }^{*} \gamma-\gamma \cdot{ }^{*} \gamma=0
$$

and we can conclude by the Polynomial Bridge Theorem.

Hindman's Theorem

Theorem (Hindman)

For every natural numbers $n, m \geq 1$, with $n+m \geq 3$, the nonlinear polynomial $P\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right): \sum_{i=1}^{n} x_{i}-\prod_{j=1}^{m} y_{j}$ is injectively partition regular.

Proof: Let $R\left(z_{1}, \ldots, z_{n+1}\right): z_{1}+\ldots+z_{n}-z_{n+1}, \mathcal{U}$ a multiplicative idempotent ι_{R}-ultrafilter, $\alpha_{1}, \ldots, \alpha_{n}, \beta \in{ }^{*} \mathbb{N}$ mutually distinct generators of \mathcal{U} such that $\sum_{i=1}^{n} \alpha_{i}=\beta$, and $\gamma=\prod_{j=2}^{m} S_{j-1}(\beta)$. Then

$$
P\left(\alpha_{1} \cdot \gamma, \ldots, \alpha_{n} \cdot \gamma, \beta, S(\beta), \ldots, S_{m-1}(\beta)\right)=0
$$

and we can apply the Polynomial Bridge Theorem.

Generalizing Hindman's Theorem/1

Definition

Let m be a positive natural number, and $\left\{y_{1}, \ldots, y_{m}\right\}$ a set of mutually distinct variables. For every finite set $F \subseteq\{1, . ., m\}$, we denote by $Q_{F}\left(y_{1}, \ldots, y_{m}\right)$ the monomial

$$
Q_{F}\left(y_{1}, \ldots, y_{m}\right)= \begin{cases}\prod_{j \in F} y_{j}, & \text { if } F \neq \emptyset \\ 1, & \text { if } F=\emptyset\end{cases}
$$

E.g., if $m=5$ and $F=\{1,4,5\}$ then $Q_{F}\left(y_{1}, \ldots, y_{5}\right)=y_{1} \cdot y_{4} \cdot y_{5}$.

Generalizing Hindman's Theorem/2

Theorem

Let $n \geq 2$ be a natural number, $R\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} a_{i} x_{i}$ an injectively partition regular polynomial, and m a positive natural number. Then, for every $F_{1}, \ldots, F_{n} \subseteq\{1, . ., m\}$ (with the request that, when $n=2, F_{1} \cup F_{2} \neq \emptyset$), the polynomial

$$
P\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)=\sum_{i=1}^{n} a_{i} x_{i} Q_{F_{i}}\left(y_{1}, \ldots, y_{m}\right)
$$

is injectively partition regular.

A Nontrivial Example

Let us prove that
$P\left(x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}\right)=2 x_{1}+x_{2} y_{1} y_{2}-3 x_{3} y_{1}+x_{4} y_{2}$ is injectively partition regular.

Step 1: We consider $R(x, y, z, w): 2 x_{1}+x_{2}-3 x_{3}+x_{4}$, and we take a multiplicative idempotent ι_{R}-ultrafilter.

Step 2: We take mutually distinct $\alpha, \beta, \gamma, \delta \in G_{\mathcal{U}}$ such that $R(\alpha, \beta, \gamma, \delta)=0$.
Step 3: We take $\eta \in G_{\mathcal{U}}$, and we observe that

$$
\begin{gathered}
P\left(\alpha \cdot S_{1}(\eta) \cdot S_{2}(\eta), \beta, \gamma \cdot S_{2}(\eta), \delta \cdot S_{1}(\eta), S_{1}(\eta), S_{2}(\eta)\right)= \\
=S_{1}(\eta) \cdot S_{2}(\eta)(2 \alpha+\beta-3 \gamma+\delta)=0 .
\end{gathered}
$$

Definitions/1

Definition

A polynomial $P\left(x_{1}, \ldots, x_{n}\right): \sum_{i=1}^{k} a_{i} M_{i}\left(x_{1}, \ldots, x_{n}\right)$ satisfies Rado's
Condition if there is a nonempty subset $J \subseteq\{1, \ldots, n\}$ such that $\sum_{j \in J} a_{j}=0$.

Definition

Let

$$
P\left(x_{1}, \ldots, x_{n}\right): \sum_{i=1}^{k} a_{i} M_{i}\left(x_{1}, \ldots, x_{n}\right)
$$

be a polynomial, and let $M_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, M_{k}\left(x_{1}, \ldots, x_{n}\right)$ be the distinct monic monomials of $P\left(x_{1}, \ldots, x_{n}\right)$. We say that a variable v is exclusive in $P\left(x_{1}, \ldots, x_{n}\right)$ if there is an index i such that for every $j \leq k, d_{M_{j}}(v) \geq 1 \Leftrightarrow j=i$.

Definitions/2

Definition

Given a polynomial $P\left(x_{1}, \ldots, x_{n}\right)$ we denote by $N L(P)$ the set of nonlinear variables in $P\left(x_{1}, \ldots, x_{n}\right)$:

$$
N L(P)=\left\{x \in\left\{x_{1}, \ldots, x_{n}\right\} \mid d(x)>1\right\} .
$$

Definition

Let $P\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{k} a_{i} M_{i}\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial, and let $M_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, M_{k}\left(x_{1}, \ldots, x_{n}\right)$ be its monic monomials. For every index $i \leq k$ we pose

$$
l_{i}=\max \left\{d(x)-d_{i}(x) \mid x \in N L(P)\right\} .
$$

A Generalization

Theorem

Let

$$
P\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{k} a_{i} M_{i}\left(x_{1}, \ldots, x_{n}\right)
$$

be a polynomial, and let $M_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, M_{k}\left(x_{1}, \ldots, x_{n}\right)$ be the monic monomials of $P\left(x_{1}, \ldots, x_{n}\right)$. Suppose that $k \geq 3$, that $P\left(x_{1}, \ldots, x_{n}\right)$ satisfies Rado's Condition and that, for every index $i \leq k$, in the monomial $M_{i}\left(x_{1}, \ldots, x_{n}\right)$ there are at least $m_{i}=\max \left\{1, l_{i}\right\}$ linear exclusive variables.
Then $P\left(x_{1}, \ldots, x_{n}\right)$ is injectively partition regular.

An Example/1

Consider the polynomial

$$
P\left(x_{1}, x_{2}, x_{3}, x_{4}, y\right): x_{1} y^{2}+2 x_{2} y-x_{3} x_{4}
$$

Step 1: We pose $y=1$ and consider

$$
R\left(x_{1}, x_{2}, x_{3}, x_{4}\right): x_{1}+2 x_{2}-x_{3} x_{4}
$$

Step 2: We take a multiplicative idempotent ι_{R}-ultrafilter \mathcal{U}.

An Example/2

Step 3: We take $\alpha, \beta, \gamma, \delta \in G_{\mathcal{U}}$ such that $\alpha+2 \beta-\gamma \delta=0$.
Step 4: We take any η in $G_{\mathcal{U}}$ and we pose $y=S_{1}(\eta)$.
Step 5: We observe that

$$
\begin{gathered}
P\left(\alpha, \beta \cdot S_{1}(\eta), \gamma \cdot S_{1}(\eta), \delta \cdot S_{1}(\eta), S_{1}(\eta)\right)= \\
=\alpha \cdot S_{1}(\eta)^{2}+2 \beta \cdot S_{1}(\eta) \cdot S_{1}(\eta)-\gamma \cdot S_{1}(\eta) \cdot \delta \cdot S_{1}(\eta)= \\
=S_{1}(\eta)^{2}(\alpha+2 \beta-\gamma \delta)=0
\end{gathered}
$$

and we conclude by the Polynomial Bridge Theorem.

Final Remarks

1) The request on the existence of exclusive variables is not necessary: the polynomial

$$
P(x, y, z)=x y+x z-y z
$$

is injectively partition regular even if it doesn't admit any exclusive variable.
2) Rado's Condition is necessary for homogeneous partition regular polynomials, but it seems to be not necessary in general: e.g., the polynomial

$$
P\left(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}\right)=x_{1} y_{1}+x_{2} y_{2}+x_{3}
$$

is injectively partition regular on \mathbb{Z}.
3) Rado's Condition is not sufficient to ensure the partition regularity of a nonlinear polynomial: the polynomial

$$
x+y-z^{2}
$$

is not partition regular.

Thank You!

