Partition regularity of nonlinear polynomials

Lorenzo Luperi Baglini

Università degli Studi di Pisa Dipartimento di Matematica

Terminology

We say that a polynomial $P(x_1, ..., x_n)$ is (injectively) partition regular on $\mathbb{N} = \{1, 2, ...\}$ if whenever the natural numbers are finitely colored there is a(n injective) monochromatic solution to the equation $P(x_1, ..., x_n) = 0$.

Theorem (Rado)

Let $P(x_1, ..., x_n) = \sum_{i=1}^n a_i x_i$ be a linear polynomial. The following conditions are equivalent:

•
$$P(x_1, ..., x_n)$$
 is partition regular on \mathbb{N} ;

2 there is a nonempy subset
$$J$$
 of $\{1, ..., n\}$ such that $\sum_{j \in J} a_j = 0$.

Hindman's Result

Question: Is the polynomial x + y - zw injectively partition regular on N? (P. Csikvári, K. Gyarmati and A. Sárközy) An affirmative answer has been given (in a much more general form) by Neil Hindman in 2011 (in "Monochromatic Sums Equal to Products in N"):

Theorem (Hindman)

For every natural numbers $n,m\geq 1,$ with $n+m\geq 3,$ the nonlinear polynomial

$$\sum_{i=1}^{n} x_i - \prod_{j=1}^{m} y_j$$

is injectively partition regular.

Translation in terms of Ultrafilters

Definition

Let $P(x_1,...,x_n)$ be a polynomial, and \mathcal{U} an ultrafilter on \mathbb{N} . Then:

- U is a σ_P-ultrafilter if and only if for every set A ∈ U there are a₁,..., a_n ∈ A such that P(a₁,..., a_n) = 0;
- U is a ℓ_P-ultrafilter if and only if for every set A ∈ U there are mutually distinct elements a₁,..., a_n ∈ A such that P(a₁,..., a_n) = 0.

Sets of Generators of $\ensuremath{\mathcal{U}}$

Let ${}^*\mathbb{N}$ be an hyperextension of $\mathbb N$ satisfying the $\mathfrak{c}^+\text{-enlarging}$ property.

Definition

Given an ultrafilter \mathcal{U} on \mathbb{N} , its set of generators is

$$G_{\mathcal{U}} = \{ \alpha \in \mathbb{N} \mid \mathcal{U} = \mathfrak{U}_{\alpha} \},\$$

where $\mathfrak{U}_{\alpha} = \{A \subseteq \mathbb{N} \mid \alpha \in A\}.$

Question: Given hypernatural numbers $\alpha, \beta \in \mathbb{N}$, is there a function $f : \mathbb{N}^2 \to \mathbb{N}$ such that $\mathfrak{U}_{f(\alpha,\beta)} = \mathfrak{U}_{\alpha} \oplus \mathfrak{U}_{\beta}$?

•N: the ω -hyperextension of $\mathbb{N}/1$

Definition

Let $\langle \mathbb{V}(X), \mathbb{V}(X), * \rangle$ be a single superstructure model of nonstandard methods. We call ω -hyperextension of \mathbb{N} , and denote by \mathbb{N} , the union of all hyperextensions $S_n(\mathbb{N})$:

 $^{\bullet}\mathbb{N}=\bigcup_{n\in\mathbb{N}}S_{n}(\mathbb{N}).$

Definition

Let $\alpha \in \mathbb{N} \setminus \mathbb{N}$. The **height** of α (denoted by $h(\alpha)$) is the least natural number n such that $\alpha \in S_n(\mathbb{N})$.

•N: the ω -hyperextension of $\mathbb{N}/2$

Proposition

Let $\alpha, \beta \in \mathbb{N}$, $\mathcal{U} = \mathfrak{U}_{\alpha}$ and $\mathcal{V} = \mathfrak{U}_{\beta}$, and suppose that $h(\alpha) = h(\beta) = 1$. Then:

$${f 0}$$
 for every natural number $n,\,{{\mathfrak U}}_lpha={{\mathfrak U}}_{S_n(lpha)};$

$$a + *\beta \in G_{\mathcal{U} \oplus \mathcal{V}};$$

$$a \cdot * \beta \in G_{\mathcal{U} \odot \mathcal{V}}.$$

Proposition

Let $\mathcal{U} \in \beta \mathbb{N}$. Then:

- \mathcal{U} is an additive idempotent ultrafilter $\Leftrightarrow \forall \alpha, \beta \in G_{\mathcal{U}}$ $\alpha + S_{h(\alpha)}(\beta) \in G_{\mathcal{U}} \Leftrightarrow \exists \alpha, \beta \in G_{\mathcal{U}} \ \alpha + S_{h(\alpha)}(\beta) \in G_{\mathcal{U}};$
- ② \mathcal{U} is a multiplicative idempotent ultrafilter $\Leftrightarrow \forall \alpha, \beta \in G_{\mathcal{U}}$ $\alpha \cdot S_{h(\alpha)}(\beta) \in G_{\mathcal{U}} \Leftrightarrow \exists \alpha, \beta \in G_{\mathcal{U}} \ \alpha \cdot S_{h(\alpha)}(\beta) \in G_{\mathcal{U}}.$

The Polynomial Bridge Theorem

Theorem (Polynomial Bridge Theorem)

Let $P(x_1, ..., x_n)$ be a polynomial, and \mathcal{U} an ultrafilter on $\beta \mathbb{N}$. Then the following two conditions are equivalent:

- **1** \mathcal{U} is a ι_P -ultrafilter;
- there are mutually distinct elements $\alpha_1, ..., \alpha_n$ in $G_{\mathcal{U}}$ such that $P(\alpha_1, ..., \alpha_n) = 0.$

Lemma (Reduction Lemma)

Let $P(x_1, ..., x_n)$ be a polynomial, and \mathcal{U} a ι_P -ultrafilter. Then there are mutually distinct elements $\alpha_1, ..., \alpha_n \in G_{\mathcal{U}} \cap^* \mathbb{N}$ such that $P(\alpha_1, ..., \alpha_n) = 0.$

An Example: Schur's Theorem

Theorem (Schur)

The polynomial P(x, y, z) : x + y - z is injectively partition regular.

Proof: Let \mathcal{U} be an additive idempotent ultrafilter, and $\alpha \in \mathbb{N}$ a generator of \mathcal{U} . Then $*\alpha \in \mathcal{U}$ (this holds for every ultrafilter) and $\alpha + *\alpha \in \mathcal{U}$ (since \mathcal{U} is an additive idempotent ultrafilter). And

$$P(\alpha,^*\alpha,\alpha+^*\alpha)=0,$$

so we can apply the Polynomial Bridge Theorem and conclude.

A Fundamental Lemma

Theorem

If $P(x_1, ..., x_n)$ is an homogeneous injectively partition regular polynomial then there is a nonprincipal multiplicative idempotent ι_P -ultrafilter.

P(x, y, z, w) : x + y - zw is injectively partition regular

Corollary

The polynomial P(x, y, z, t) : x + y - zw is injectively partition regular.

Step 1: Let R(x, y, z) : x + y - z.

Step 2: Let \mathcal{U} be a multiplicative idempotent ι_R -ultrafilter and let $\alpha, \beta, \gamma \in \mathbb{N}$ be generators of \mathcal{U} such that $\alpha + \beta - \gamma = 0$.

Step 3: We observe that

$$P(\alpha \cdot \gamma, \beta \cdot \gamma, \gamma, \gamma) = \alpha \cdot \gamma + \beta \cdot \gamma - \gamma \cdot \gamma = 0,$$

and we can conclude by the Polynomial Bridge Theorem.

Hindman's Theorem

Theorem (Hindman)

For every natural numbers $n, m \ge 1$, with $n + m \ge 3$, the nonlinear polynomial $P(x_1, ..., x_n, y_1, ..., y_m) : \sum_{i=1}^n x_i - \prod_{j=1}^m y_j$ is injectively partition regular.

Proof: Let $R(z_1, ..., z_{n+1}) : z_1 + ... + z_n - z_{n+1}, \mathcal{U}$ a multiplicative idempotent ι_R -ultrafilter, $\alpha_1, ..., \alpha_n, \beta \in \mathbb{N}$ mutually distinct generators of \mathcal{U} such that $\sum_{i=1}^n \alpha_i = \beta$, and $\gamma = \prod_{j=2}^m S_{j-1}(\beta)$. Then $P(\alpha_1 \cdot \gamma, ..., \alpha_n \cdot \gamma, \beta, S(\beta), ..., S_{m-1}(\beta)) = 0$

and we can apply the Polynomial Bridge Theorem.

Generalizing Hindman's Theorem/1

Definition

Let m be a positive natural number, and $\{y_1, ..., y_m\}$ a set of mutually distinct variables. For every finite set $F \subseteq \{1, ..., m\}$, we denote by $Q_F(y_1, ..., y_m)$ the monomial

$$Q_F(y_1, ..., y_m) = \begin{cases} \prod_{j \in F} y_j, & \text{if } F \neq \emptyset; \\ 1, & \text{if } F = \emptyset. \end{cases}$$

E.g., if m = 5 and $F = \{1, 4, 5\}$ then $Q_F(y_1, ..., y_5) = y_1 \cdot y_4 \cdot y_5$.

Generalizing Hindman's Theorem/2

Theorem

Let $n \geq 2$ be a natural number, $R(x_1, ..., x_n) = \sum_{i=1}^n a_i x_i$ an injectively partition regular polynomial, and m a positive natural number. Then, for every $F_1, ..., F_n \subseteq \{1, ..., m\}$ (with the request that, when n = 2, $F_1 \cup F_2 \neq \emptyset$), the polynomial

$$P(x_1, ..., x_n, y_1, ..., y_m) = \sum_{i=1}^n a_i x_i Q_{F_i}(y_1, ..., y_m)$$

is injectively partition regular.

A Nontrivial Example

Let us prove that

 $P(x_1, x_2, x_3, x_4, y_1, y_2) = 2x_1 + x_2y_1y_2 - 3x_3y_1 + x_4y_2$ is injectively partition regular.

Step 1: We consider $R(x, y, z, w) : 2x_1 + x_2 - 3x_3 + x_4$, and we take a multiplicative idempotent ι_R -ultrafilter.

Step 2: We take mutually distinct $\alpha, \beta, \gamma, \delta \in G_{\mathcal{U}}$ such that $R(\alpha, \beta, \gamma, \delta) = 0$.

Step 3: We take $\eta \in G_{\mathcal{U}}$, and we observe that

$$P(\alpha \cdot S_1(\eta) \cdot S_2(\eta), \beta, \gamma \cdot S_2(\eta), \delta \cdot S_1(\eta), S_1(\eta), S_2(\eta)) =$$
$$= S_1(\eta) \cdot S_2(\eta)(2\alpha + \beta - 3\gamma + \delta) = 0.$$

Definitions/1

Definition

A polynomial
$$P(x_1, ..., x_n) : \sum_{i=1}^k a_i M_i(x_1, ..., x_n)$$
 satisfies Rado's
Condition if there is a nonempty subset $J \subseteq \{1, ..., n\}$ such that
 $\sum_{j \in J} a_j = 0.$

Definition

Let

$$P(x_1, ..., x_n) : \sum_{i=1}^k a_i M_i(x_1, ..., x_n)$$

be a polynomial, and let $M_1(x_1, ..., x_n), ..., M_k(x_1, ..., x_n)$ be the distinct monic monomials of $P(x_1, ..., x_n)$. We say that a variable v is **exclusive** in $P(x_1, ..., x_n)$ if there is an index i such that for every $j \leq k$, $d_{M_i}(v) \geq 1 \Leftrightarrow j = i$.

Definitions/2

Definition

Given a polynomial $P(x_1, ..., x_n)$ we denote by **NL(P)** the set of nonlinear variables in $P(x_1, ..., x_n)$:

 $NL(P) = \{ x \in \{x_1, ..., x_n\} \mid d(x) > 1 \}.$

Definition

Let
$$P(x_1,...,x_n) = \sum_{i=1}^k a_i M_i(x_1,...,x_n)$$
 be a polynomial, and let $M_1(x_1,...,x_n),...,M_k(x_1,...,x_n)$ be its monic monomials. For every index $i \leq k$ we pose

 $l_i = \max\{d(x) - d_i(x) \mid x \in NL(P)\}.$

A Generalization

Theorem

Let

$$P(x_1, ..., x_n) = \sum_{i=1}^k a_i M_i(x_1, ..., x_n)$$

be a polynomial, and let $M_1(x_1, ..., x_n), ..., M_k(x_1, ..., x_n)$ be the monic monomials of $P(x_1, ..., x_n)$. Suppose that $k \ge 3$, that $P(x_1, ..., x_n)$ satisfies Rado's Condition and that, for every index $i \le k$, in the monomial $M_i(x_1, ..., x_n)$ there are at least $m_i = \max\{1, l_i\}$ linear exclusive variables. Then $P(x_1, ..., x_n)$ is injectively partition regular.

An Example/1

Consider the polynomial

$$P(x_1, x_2, x_3, x_4, y) : x_1y^2 + 2x_2y - x_3x_4.$$

Step 1: We pose y = 1 and consider

$$R(x_1, x_2, x_3, x_4) : x_1 + 2x_2 - x_3x_4.$$

Step 2: We take a multiplicative idempotent ι_R -ultrafilter \mathcal{U} .

An Example/2

Step 3: We take $\alpha, \beta, \gamma, \delta \in G_{\mathcal{U}}$ such that $\alpha + 2\beta - \gamma\delta = 0$. Step 4: We take any η in $G_{\mathcal{U}}$ and we pose $y = S_1(\eta)$. Step 5: We observe that

$$P(\alpha, \beta \cdot S_1(\eta), \gamma \cdot S_1(\eta), \delta \cdot S_1(\eta), S_1(\eta)) =$$

= $\alpha \cdot S_1(\eta)^2 + 2\beta \cdot S_1(\eta) \cdot S_1(\eta) - \gamma \cdot S_1(\eta) \cdot \delta \cdot S_1(\eta) =$
= $S_1(\eta)^2(\alpha + 2\beta - \gamma\delta) = 0,$

and we conclude by the Polynomial Bridge Theorem.

Final Remarks

1) The request on the existence of exclusive variables is not necessary: the polynomial

$$P(x, y, z) = xy + xz - yz$$

is injectively partition regular even if it doesn't admit any exclusive variable.

2) Rado's Condition is necessary for homogeneous partition regular polynomials, but it seems to be not necessary in general: e.g., the polynomial

$$P(x_1, x_2, x_3, y_1, y_2) = x_1 y_1 + x_2 y_2 + x_3$$

is injectively partition regular on \mathbb{Z} .

3) Rado's Condition is not sufficient to ensure the partition regularity of a nonlinear polynomial: the polynomial

$$x+y-z^2$$

is not partition regular.

Thank You!