Remarks on multiple recurrent points

Sabine Koppelberg Institut für Mathematik Freie Universität Berlin

- We recall the notion of a recurrent (uniformly recurrent, multiple recurrent) point in an arbitrary dynamical system X over a monoid S.
- Uniformly recurrent points do exist, and "usually" they are recurrent.
- Multiple recurrent points do not always exist.
- All of these points can be characterized by the arithmetic on βS and its action on X.
- We show that under a condition of equicontinuity (of the action of *S* on *X*), multiple recurrent points do exist.

Contents

A. Dynamical systems and recurrent points

B. The operation of βS on X. Characterizing recurrent points

- C. Large subsets of S. Uniformly recurrent points
- D. Multiple recurrent points
- E. Equicontinuity and multiple recurrent points

A. Dynamical systems and (uniformly) recurrent points

We assume that S is a monoid, i.e. a semigroup (S, \cdot) with an identity $\mathbf{1}_S$.

The most important example here is the monoid $(\omega, +)$, where $\omega = \{0, 1, 2, ...\}$.

• Definition

A dynamical system (DS) over S is a structure (X,m), X a compact Hausdorff space,

$$m: S \times X \to X$$

a continuous action (operation) of S on X. We write

$$sx = s \cdot x = m(s, x)$$

for $s \in S$ and $x \in X$ and view m as a left multiplication by S on X; then

$$-s(tx) = (st)x$$

$$-\mathbf{1}_s \cdot x = x$$

- the map $x \mapsto sx$ (from X to X) is continuous, for every $s \in S$.

Discrete systems

• Special case

A discrete DS is a system over the monoid $(\omega, +)$. It is determined by the continuous map $t : X \to X$ defined by $t(x) = 1 \cdot x$, because:

$$0 \cdot x = x, \ 1 \cdot x = t(x), \ 2 \cdot x = 1 \cdot (1 \cdot x) = t^2(x), \dots$$

$$n \cdot x = t^n(x).$$

We usually consider (X, t) as the discrete DS.

Return sets

• Definition

In a DS X over S, we define, for $x \in X$ and $U \subseteq X$, the *return set* of x to U

$$R(x,U) = \{s \in S : sx \in U\}.$$

If $x \in U$, then trivially, $\mathbf{1}_S \in R(x, U)$.

Recurrent points

• Definition

 $x \in X$ is *recurrent* if $R(x, U) \neq \{1_S\}$ holds for every neighbourhood U of x.

So in a discrete DS (X,t), x is recurrent iff for every neighbourhood U of x, there is some $n \ge 1$ such that $t^n x \in U$. • Example

Let S a compact topological group, operating on itself by left multiplication.

For $x \in X$ and $U \subseteq X$, $R(x, U) = Ux^{-1}$.

- If S is discrete (i.e.finite), then $no \ x \in S$ is recurrent.

- Otherwise every $x \in S$ is recurrent.

Syndetic sets

• Definition

 $A \subseteq S$ is syndetic if there is some finite $e \subseteq S$ such that

$$S = \bigcup_{x \in e} x^{-1}A$$

(where $x^{-1}A = \{s \in S : xs \in A\}$). I.e. if S is covered by finitely many (backwards left) translates of A.

• Example

In $(\omega, +)$, A is syndetic iff there is some $k \ge 1$ such that A intersects every interval of lenghth k, in ω .

Uniformly recurrent points

• Definition

A point x of X is *uniformly recurrent* if for every neighbourhood U of x, the return set R(x, U) is syndetic.

These points have a very pleasing characterization.

• Definition

 $Y \subseteq X$ is a *subsystem* of X if it is closed, non-empty, and $\{sy : y \in Y, s \in S\} \subseteq Y$. It is a *minimal subsystem* of X if it has no proper subsystem. By Zorn's lemma, every DS has a minimal subsystem.

• Theorem

 $x \in X$ is uniformly recurrent iff $x \in M$, for some minimal subsystem M of X. (Hence uniformly recurrent points do exist.)

• Remark

If S is not a finite group, then all uniformly recurrent points in DSs over S are recurrent.

B. βS and its operation on X. Characterizing (uniformly) recurrent points

We assume aquaintance with the following constructions.

- For an arbitrary set S, βS is the set of all ultrafilters on S, a compact Hausdorff space under the Stone topology. We identify S with a subset of βS .
- For (S, ·) a semigroup, the multiplication of S extends to βS in such a way that the functions x → sx (for s ∈ S) and x → xq (for q ∈ βS) are continuous.

βS as a dynamical system over S

• A standard example

The compact space βS is a DS over S, under the multiplication of points in βS with elements of S from the left – the universal dynamical system over S.

p-Limits

For a compact Hausdorff space X, $(x_s)_{s\in S}$ a family of points in X and $p \in \beta S$, the *p*-limit of $(x_s)_{s\in S}$ is the unique point

$$x = p - \lim_{s \in S} x_s$$

such that for every neighbourhood U of x there is some $A \in p$ such that $\{x_s : s \in A\} \subseteq U$.

$p \cdot x \in X$, for $x \in X$ and $p \in \beta S$

We apply the p-limit construction to a DS X over S:

• Definition

For $p \in \beta S$ and $x \in X$, put

$$p \cdot x = px = p - \lim_{s \in S} sx.$$

- The map $p \mapsto px$ is continuous, for fixed $x \in X$.

- But $x \mapsto px$ is not necessarily continuous, for fixed $p \in \beta S$.

in particular, $(p, x) \mapsto px$ is not (jointly) continuous.

- The function $(p, x) \mapsto px$ defines, in fact, an action of βS on X (which extends the action of S), but X is not a DS over βS .

Using the $p \cdot x$ construction

• Theorem

A point $x \in X$ is recurrent $\Leftrightarrow px = x$ holds for some $p \in \beta S$, $p \neq 1_S$ $\Leftrightarrow ex = x$ holds for some $e \in \beta S$ satisfying $e^2 = e$ (an *idempotent* of βS).

• Example

Assume $e = e^2 \in \beta S, e \neq 1_S$ (such an *e* exists if *S* is not a finite group) and $y \in X$. Then x = ey satisfies ex = x, so *x* is recurrent.

C. A combinatorial property of syndetic sets

The following consequence of the Hales-Jewett theorem is the principal tool used below to prove existence of multiple recurrent points.

• Theorem

Let (S, \cdot) be a commutative semigroup, $A \subseteq S$ syndetic and e a finite subset of S. Then there are $s \in S$ and $d \ge 1$ such that

$$\{sa^d : a \in e\} \subseteq A.$$

The van der Waerden property of syndetic sets

• Special case (van der Waerden)

Let A be a syndetic subset of the semigroup $(\omega, +)$ and $k \ge 1$. Then there are $s \in \omega$ and $d \ge 1$ such that

$$\{s, s+d, s+2d, \dots, s+kd\} \subseteq A.$$

I.e. A includes an arithmetic progression of length k.

Large subsets of S

• Remark

In fact, these results hold for sets $A \subseteq S$ with a weaker property, the *piecewise syndetic* ones.

There are other notions of largeness for subsets of a semigroup S (*thick, central, IP*), which will not be used in this survey.

A consequence for uniformly recurrent points

• Consequence

Assume X is a DS over a commutative monoid S, and $x \in X$ is uniformly recurrent. Let $e \subseteq S$ be finite (and without loss of generality, $1_S \in e$); let U be a neighbouthood of x. Then there are $y \in U$ and $d \ge 1$ such that $\{a^d y : a \in e\} \subseteq U$. *Proof.* The return set $A = R(x, U) = \{t \in S : tx \in U\}$ is syndetic; so pick $s \in S$ and $d \ge 1$ satisfying

$$\{sa^d : a \in e\} \subseteq A.$$

Then y = sx is as required: for $a \in e$, we have

$$sa^d x = a^d sx = a^d y \in U.$$

In particular for $a = 1_S$, we have $1_S \cdot y = y \in U$.

The point of this proof is that there is some $d \ge 1$ such that

$${sa^d : a \in e} \subseteq R(x, U).$$

D. Multiple recurrent points

• Definition

Let X be a dynamical system over S and $e \subseteq S$. A point x of X is *e*-recurrent if for every neighbourhood U of x, there is some $d \ge 1$ such that $\{a^d \cdot x : a \in e\} \subseteq U$, i.e.

$${a^d : a \in e} \subseteq R(x, U).$$

x is *multiple recurrent* if it is *e*-recurrent for every finite $e \subseteq S$.

Such points do not necessarily exist, even in minimal dynamical systems:

Simple remarks on *e*-recurrent points

• Remark

If x is e-recurrent and $a \in e$, then x is recurrent in the discrete dynamical system (X, m_a) where $m_a(y) = a \cdot y$.

Hence $x \in aX = m_a[X]$.

- So an *e*-recurrent point x is a *common* recurrent point of the discrete systems (X, m_a) , $a \in e$.

- If $a, b \in e$ and $aX \cap bX = \emptyset$, then no point of X is *e*-recurrent.

We will see that this situation is ruled out by commutativity of S.

Characterizing multiple recurrent points

• Notation

For $x \in X$, $a \in S$, and $p \in \beta \omega$, we define

$$a^p x = p - \lim_{n \in \omega} a^n x.$$

• Proposition (S. K.)

 $x \in X$ is multiple recurrent iff there is $p \neq 1_S \in \beta \omega$ such that $a^p x = x$ holds for every $a \in S$. I.e. the recurrence of x with respect to all $m_a, a \in S$, is certified by a *common* $p \in \beta \omega$.

Existence results for multiple recurrent points

The following classical result is a precursor of the Balcar-Kalašek-Williams theorem below.

• **Theorem** (the Multiple Birkhoff Recurrence Theorem)

Assume X is a compact metric space and F is a commuting finite set of continuous maps from X to itself. Then there exists a point x such that for every neighbourhood U of x there is $d \ge 1$ such that $\{f^d(x) : f \in F\} \subseteq U$.

The best known existence theorem for multiple recurrent points:

• Theorem (B.Balcar, P. Kalašek, S. W. Williams)

Let S be commutative and X a minimal dynamical system. Moreover assume that S is countable and X has a countable base. Then the set MR of multiple recurrent points of X is dense in X.

(A countable set $\{U_i : i \in I\}$ of dense open subsets of X is constructed such that $\bigcap_{i \in I} U_i \subseteq MR$. And $\bigcap_{i \in I} U_i$ is dense, by Baire's theorem.)

A discrete DS without *e*-recurrent points, $e = \{0, 1, 2\}$

• Example (Balcar, Kalasek)

We consider $S = (\omega, +)$ and $X = \beta \omega$, the universal system over S, here t(x) = x + 1. - For $k \in \omega$ and $p \in X$, we put

$$k \cdot p = p - \lim_{n \in \omega} kn.$$

(Attention: $2 \cdot p \neq p + p$, in general). - Then for $x \in X$ and $a \in \omega$,

$$a^p x = a \cdot p + x,$$

where + is the semigroup operation on $\beta\omega$ induced by addition on ω .

• Example (continued)

- Put $e = \{0, 1, 2\}$, a finite subset of ω .

Then $x \in \beta \omega$ is *e*-recurrent iff there is $p \neq 0$ in $\beta \omega$ satisfying

$$x = p + x = 2 \cdot p + x.$$

But it can be shown that this equation is unsolvable in $\beta \omega$.

(Here S is commutative and countable, but $X = \beta \omega$ does not have a countable base.)

E. Equicontinuity and multiple recurrent points

• Notation

For X a topological space, $C = (U_i)_{i \in I}$ a cover of X and $f : X \to X$, write

$$f^{-1}C = (f^{-1}[U_i])_{i \in I},$$

a cover of X (the preimage of C under f). So f is continuous iff for every open C, also $f^{-1}C$ is open iff for every open C, there is an open cover D such that $D \leq f^{-1}C$, i.e. D refines $f^{-1}C$. • Definition

A family $(f_k)_{k \in K}$ of functions from X to X is *equicontinuous* iff for every open cover C of X there is an open cover D satisfying

$$D \leq f_k^{-1}C$$
, for every $k \in K$.

• Example

Let (X, d) be a compact metric space and F a family of functions from X to X such that

$$d(fx, fy) \le d(x, y)$$

holds for all $f \in F$ and all $x, y \in X$. Then F is equicontinuous.

• Example

Assume P is compact Hausdorff and $f: P \times X \to X$ is (jointly) continuous. Then the family $(f_p)_{p \in P}$ where $f_p(x) = f(p, x)$ is equicontinuous.

• Proposition (S.K., probably folklore)

Assume X is compact Hausdorff. The family $(f_k)_{k \in K}$ is equicontinuous iff there is a compact Hausdorff space $P \supseteq K$ and a (jointly) continuous function $f : P \times X \to X$ such that $f_p(x) = f(p, x)$ holds for every $k \in K$.

E.g., put $P = \beta K$, K discrete, and

$$f(p,x) = p - \lim_{k \in K} f_k(x).$$

• Theorem (S.K.)

Assume S is a commutative monoid, X a dynamical system over S and for every $a \in S$, the family $(m_{a^n})_{n \in \omega}$ (where $m_{a^n}(x) = a^n \cdot x$) is equicontinuous. Then every uniformly recurrent point of X is multiple recurrent.

Sketch of proof.

Let x be uniformly recurrent. Put

 $I = \{(e, U) : e \subseteq S \text{ finite}, \mathbf{1}_S \in e, U \text{ a neighbourhood of } x\},$ a directed set under

$$(e, U) \leq (f, V) \Leftrightarrow e \subseteq f \text{ and } V \subseteq U.$$

Let q an ultrafilter over I containing the sets

$$A_i = \{j \in I : i \le j\}.$$

• Sketch of proof, continued.

- For $i = (e, U) \in I$, pick $x_i \in X$ and $1 \le n_i \in \omega$ such that

$$\{a^{n_i}x_i : a \in e\} \subseteq U.$$

Then $q - \lim_{i \in I} x_i = x$; put $p = q - \lim_{i \in I} n_i$ (in $\beta \omega$). For every $a \in S$, we have $a^p x = x$ because

$$\mu_a : \beta \omega \times X \to X, \ \mu_a(r, x) = a^r x$$

is (jointly) continuous and hence commutes with *q*-limits.

References

- B. Balcar, P. Kalašek, S. W. Williams: On the multiple recurrence theorem in dynamics; Comm. Math. Univ. Carlolinae, 28 (1977), 607 - 612
- B. Balcar, P. Kalašek: Nonexistence of multiple recurrent points in the ultrafilter dynamical system; Bull. Polish Acad. Sci. 37 (1989), 525 - 528
- A. Blass: Ultrafilters: where toplogical dynamics = algebra = combinatorics; Top. Proc. 18 (1993), 33 - 56

• N. Hindman, D. Strauss: Algebra in the Stone-Čech compactification, 2nd ed., de Gruyter 2012