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• We recall the notion of a recurrent (uniformly re-
current, multiple recurrent) point in an arbitrary dy-
namical system X over a monoid S.

• Uniformly recurrent points do exist, and “usually”they
are recurrent.

• Multiple recurrent points do not always exist.

• All of these points can be characterized by the arith-
metic on βS and its action on X.

• We show that under a condition of equicontinuity
(of the action of S on X), multiple recurrent points
do exist.
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A. Dynamical systems and (uniformly)
recurrent points

We assume that S is a monoid, i.e. a semigroup (S, ·)
with an identity 1S.

The most important example here is the monoid (ω,+),

where ω = {0,1,2, . . .}.
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• Definition

A dynamical system (DS) over S is a structure

(X,m), X a compact Hausdorff space,

m : S ×X → X

a continuous action (operation) of S on X.

We write

sx = s · x = m(s, x)

for s ∈ S and x ∈ X and view m as a left multipli-

cation by S on X; then

– s(tx) = (st)x

– 1s · x = x

– the map x 7→ sx (from X to X) is continuous, for

every s ∈ S.
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Discrete systems

• Special case

A discrete DS is a system over the monoid (ω,+).

It is determined by the continuous map t : X → X

defined by t(x) = 1 · x, because:

0 · x = x, 1 · x = t(x), 2 · x = 1 · (1 · x) = t2(x), . . .

n · x = tn(x).

We usually consider (X, t) as the discrete DS.
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Return sets

• Definition

In a DS X over S, we define, for x ∈ X and U ⊆ X,

the return set of x to U

R(x, U) = {s ∈ S : sx ∈ U}.

If x ∈ U , then trivially, 1S ∈ R(x, U).
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Recurrent points

• Definition

x ∈ X is recurrent if R(x, U) 6= {1S} holds for every

neighbourhood U of x.

So in a discrete DS (X, t), x is recurrent iff for every

neighbourhood U of x, there is some n ≥ 1 such that

tnx ∈ U .
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• Example

Let S a compact topological group, operating on

itself by left multiplication.

For x ∈ X and U ⊆ X, R(x, U) = Ux−1.

– If S is discrete (i.e.finite), then no x ∈ S is recur-

rent.

– Otherwise every x ∈ S is recurrent.
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Syndetic sets

• Definition

A ⊆ S is syndetic if there is some finite e ⊆ S such
that

S =
⋃
x∈e

x−1A

(where x−1A = {s ∈ S : xs ∈ A}). I.e. if S is covered
by finitely many (backwards left) translates of A.

• Example

In (ω,+), A is syndetic iff there is some k ≥ 1 such
that A intersects every interval of lenghth k, in ω.
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Uniformly recurrent points

• Definition

A point x of X is uniformly recurrent if for every
neighbourhood U of x, the return set R(x, U) is
syndetic.

These points have a very pleasing characterization.

• Definition

Y ⊆ X is a subsystem of X if it is closed, non-empty,
and {sy : y ∈ Y, s ∈ S} ⊆ Y .
It is a minimal subsystem of X if it has no proper
subsystem.
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By Zorn’s lemma, every DS has a minimal subsystem.

• Theorem

x ∈ X is uniformly recurrent iff x ∈ M , for some

minimal subsystem M of X.

(Hence uniformly recurrent points do exist.)

• Remark

If S is not a finite group, then all uniformly recurrent

points in DSs over S are recurrent.
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B. βS and its operation on X.
Characterizing (uniformly)
recurrent points

We assume aquaintance with the following construc-
tions.

• For an arbitrary set S, βS is the set of all ultrafilters
on S, a compact Hausdorff space under the Stone
topology. We identify S with a subset of βS.

• For (S, ·) a semigroup, the multiplication of S ex-
tends to βS in such a way that the functions x 7→ sx

(for s ∈ S) and x 7→ xq (for q ∈ βS) are continuous.
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βS as a dynamical system over S

• A standard example

The compact space βS is a DS over S, under the

multiplication of points in βS with elements of S

from the left – the universal dynamical system over

S.
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p-Limits

For a compact Hausdorff space X, (xs)s∈S a family of

points in X and p ∈ βS, the p-limit of (xs)s∈S is the

unique point

x = p− lim
s∈S

xs

such that for every neighbourhood U of x there is some

A ∈ p such that {xs : s ∈ A} ⊆ U .
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p · x ∈ X, for x ∈ X and p ∈ βS
We apply the p-limit construction to a DS X over S:

• Definition

For p ∈ βS and x ∈ X, put

p · x = px = p− lim
s∈S

sx.

– The map p 7→ px is continuous, for fixed x ∈ X.
– But x 7→ px is not necessarily continuous, for fixed
p ∈ βS.
in particular, (p, x) 7→ px is not (jointly) continuous.
– The function (p, x) 7→ px defines, in fact, an action of
βS on X (which extends the action of S), but X is not
a DS over βS.
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Using the p · x construction

• Theorem

A point x ∈ X is recurrent

⇔ px = x holds for some p ∈ βS, p 6= 1S
⇔ ex = x holds for some e ∈ βS satisfying e2 = e

(an idempotent of βS).

• Example

Assume e = e2 ∈ βS, e 6= 1S (such an e exists if S is

not a finite group) and y ∈ X. Then x = ey satisfies

ex = x, so x is recurrent.
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C. A combinatorial property
of syndetic sets

The following consequence of the Hales-Jewett theo-

rem is the principal tool used below to prove existence

of multiple recurrent points.

• Theorem

Let (S, ·) be a commutative semigroup, A ⊆ S syn-

detic and e a finite subset of S. Then there are

s ∈ S and d ≥ 1 such that

{sad : a ∈ e} ⊆ A.
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The van der Waerden property
of syndetic sets

• Special case (van der Waerden)

Let A be a syndetic subset of the semigroup (ω,+)

and k ≥ 1. Then there are s ∈ ω and d ≥ 1 such

that

{s, s+ d, s+ 2d, . . . , s+ kd} ⊆ A.

I.e. A includes an arithmetic progression of length

k.
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Large subsets of S

• Remark

In fact, these results hold for sets A ⊆ S with a

weaker property, the piecewise syndetic ones.

There are other notions of largeness for subsets of

a semigroup S (thick, central, IP), which will not

be used in this survey.
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A consequence for uniformly recurrent
points

• Consequence

Assume X is a DS over a commutative monoid S,

and x ∈ X is uniformly recurrent. Let e ⊆ S be

finite (and without loss of generality, 1S ∈ e); let U

be a neighbouthood of x. Then there are y ∈ U and

d ≥ 1 such that {ady : a ∈ e} ⊆ U .
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Proof. The return set A = R(x, U) = {t ∈ S : tx ∈ U} is

syndetic; so pick s ∈ S and d ≥ 1 satisfying

{sad : a ∈ e} ⊆ A.

Then y = sx is as required: for a ∈ e, we have

sadx = adsx = ady ∈ U.

In particular for a = 1S, we have 1S · y = y ∈ U .

The point of this proof is that there is some d ≥ 1 such

that

{sad : a ∈ e} ⊆ R(x, U).
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D. Multiple recurrent points

• Definition

Let X be a dynamical system over S and e ⊆ S.

A point x of X is e-recurrent if for every neigh-

bourhood U of x, there is some d ≥ 1 such that

{ad · x : a ∈ e} ⊆ U , i.e.

{ad : a ∈ e} ⊆ R(x, U).

x is multiple recurrent if it is e-recurrent for every

finite e ⊆ S.

Such points do not necessarily exist, even in minimal

dynamical systems:
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Simple remarks on e-recurrent points

• Remark

If x is e-recurrent and a ∈ e, then x is recurrent in the

discrete dynamical system (X,ma) where ma(y) =

a · y.

Hence x ∈ aX = ma[X].

– So an e-recurrent point x is a common recurrent

point of the discrete systems (X,ma), a ∈ e.
– If a, b ∈ e and aX ∩ bX = ∅, then no point of X is

e-recurrent.

We will see that this situation is ruled out by com-

mutativityof S.
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Characterizing multiple recurrent points

• Notation

For x ∈ X, a ∈ S, and p ∈ βω, we define

apx = p− lim
n∈ω

anx.

• Proposition (S. K.)

x ∈ X is multiple recurrent iff there is p 6= 1S ∈ βω
such that apx = x holds for every a ∈ S.

I.e. the recurrence of x with respect to all ma, a ∈ S,

is certified by a common p ∈ βω.
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Existence results for multiple recurrent
points

The following classical result is a precursor of the Balcar-

Kalašek-Williams theorem below.

• Theorem (the Multiple Birkhoff Recurrence Theo-

rem)

Assume X is a compact metric space and F is a

commuting finite set of continuous maps from X

to itself. Then there exists a point x such that for

every neighbourhood U of x there is d ≥ 1 such that

{fd(x) : f ∈ F} ⊆ U .
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The best known existence theorem for multiple recur-

rent points:

• Theorem (B.Balcar, P. Kalašek, S. W. Williams)

Let S be commutative and X a minimal dynamical

system. Moreover assume that S is countable and X

has a countable base. Then the set MR of multiple

recurrent points of X is dense in X.

(A countable set {Ui : i ∈ I} of dense open subsets

of X is constructed such that
⋂
i∈I Ui ⊆ MR. And⋂

i∈I Ui is dense, by Baire’s theorem.)
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A discrete DS without e-recurrent points,
e = {0,1,2}

• Example (Balcar, Kalasek)

We consider S = (ω,+) and X = βω, the universal
system over S, here t(x) = x+ 1.
– For k ∈ ω and p ∈ X, we put

k · p = p− lim
n∈ω

kn.

(Attention: 2 · p 6= p+ p, in general).
– Then for x ∈ X and a ∈ ω,

apx = a · p+ x,

where + is the semigroup operation on βω induced
by addition on ω.
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• Example (continued)

– Put e = {0,1,2}, a finite subset of ω.

Then x ∈ βω is e-recurrent iff there is p 6= 0 in βω

satisfying

x = p+ x = 2 · p+ x.

But it can be shown that this equation is unsolvable

in βω.

(Here S is commutative and countable, but X = βω

does not have a countable base.)
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E. Equicontinuity and multiple recur-
rent points

• Notation

For X a topological space, C = (Ui)i∈I a cover of

X and f : X → X, write

f−1C = (f−1[Ui])i∈I ,

a cover of X (the preimage of C under f).

So f is continuous iff for every open C, also f−1C

is open iff for every open C, there is an open cover

D such that D ≤ f−1C, i.e. D refines f−1C.
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• Definition

A family (fk)k∈K of functions from X to X is equicon-

tinuous iff for every open cover C of X there is an

open cover D satisfying

D ≤ f−1
k C, for every k ∈ K.

• Example

Let (X, d) be a compact metric space and F a family

of functions from X to X such that

d(fx, fy) ≤ d(x, y)

holds for all f ∈ F and all x, y ∈ X. Then F is

equicontinuous.
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• Example

Assume P is compact Hausdorff and f : P ×X → X
is (jointly) continuous. Then the family (fp)p∈P
where fp(x) = f(p, x) is equicontinuous.

• Proposition (S.K., probably folklore)

Assume X is compact Hausdorff. The family (fk)k∈K
is equicontinuous iff there is a compact Hausdorff
space P ⊇ K and a (jointly) continuous function
f : P × X → X such that fp(x) = f(p, x) holds for
every k ∈ K.

E.g., put P = βK, K discrete, and

f(p, x) = p− lim
k∈K

fk(x).
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• Theorem (S.K.)

Assume S is a commutative monoid, X a dynami-
cal system over S and for every a ∈ S, the family
(man)n∈ω (where man(x) = an · x) is equicontinu-
ous. Then every uniformly recurrent point of X is
multiple recurrent.

Sketch of proof.
Let x be uniformly recurrent. Put

I = {(e, U) : e ⊆ S finite,1S ∈ e, U a neighbourhood of x},
a directed set under

(e, U) ≤ (f, V )⇔ e ⊆ f and V ⊆ U.

Let q an ultrafilter over I containing the sets

Ai = {j ∈ I : i ≤ j}.
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• Sketch of proof, continued.

– For i = (e, U) ∈ I, pick xi ∈ X and 1 ≤ ni ∈ ω such

that

{anixi : a ∈ e} ⊆ U.

Then q− limi∈I xi = x ; put p = q− limi∈I ni (in βω).

For every a ∈ S, we have apx = x because

µa : βω ×X → X, µa(r, x) = arx

is (jointly) continuous and hence commutes with

q-limits.
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