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Introduction

In combinatorics of numbers one can find deep and fruitful
interactions among diverse non-elementary methods, namely:

Ergodic theory

Fourier analysis

Topological dynamics

Algebra in the space of ultrafilters βN
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Also the methods of nonstandard analysis have recently started to
give contributions in this area, and they seem to have interesting
potentialities.

Theorem (R.Jin 2000)

If A and B are sets of integers with positive upper Banach density,
then A + B is piecewise syndetic.

(A set is piecewise syndetic if it has bounded gaps on arbitrarily
large intervals. The Banach density is a refinement of the upper
asymptotic density.)
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Jin’s result raised the attention of several researchers (including
V.Bergelson, H. Furstenberg, and B. Weiss), who tried to find
other proofs expressed into more familiar terms, and to improve on
it.

Recently, M. Beiglböck found a really nice ultrafilter proof of Jin’s
theorem.

Ultrafilters are essential in constructing models of nonstandard
analysis (which in fact can be characterized as limit
ultrapowers).

Every point ξ in the hyper-extension ∗X corresponds to an
ultrafilter Uξ on X .

Mauro Di Nasso Hypernatural numbers and idempotent ultrafilters



Introduction
Nonstandard analysis, hyper-quickly

Hyper-natural numbers as ultrafilters
Applications

Plan of the talk

A quick introduction to nonstandard analysis.

Hyper-natural numbers ξ ∈ ∗N of nonstandard analysis as
representatives of ultrafilters on N.

A peculiar manageable “algebra” in the nonstandard setting
to manipulate linear combinations of idempotent ultrafilters.

Use of that “algebra” in the study of partition regularity
problems.

Mauro Di Nasso Hypernatural numbers and idempotent ultrafilters



Introduction
Nonstandard analysis, hyper-quickly

Hyper-natural numbers as ultrafilters
Applications

As examples of applications, I will sketch nonstandard proofs of:

Ramsey Theorem

Rado’s Theorem

Milliken-Taylor Theorem

This technique also applies in the study of partition regularity of
non-linear equations.
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Nonstandard Analysis, hyper-quickly

Nonstandard analysis is essentially grounded on the following two
properties:

1 Every object X can be extended to an object ∗X .

2 ∗X is a sort of “weakly isomorphic” copy of X , in the sense
that it satisfies exactly the same “elementary properties” as X .

E.g., ∗R is an ordered field that properly extends the real line R.
The two structures R and ∗R cannot be distinguished by any
“elementary property”.

Here we shall focus on ∗N, which is the positive part of the
discretely ordered ring ∗Z.
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Star-map

To every mathematical object X is associated its hyper-extension
(or nonstandard extension) ∗X .

X 7−→ ∗X

So, ∗N is the set of hyper-natural numbers, ∗R is the set of
hyper-real numbers, etc.

(It is assumed that ∗r = r for all numbers r ∈ R, and the
non-triviality condition A  ∗A for all infinite A ⊆ R.)
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Transfer principle

If P(x1, . . . , xn) is any property expressed in “elementary terms”,
then

P(A1, . . . ,An)⇐⇒ P(∗A1, . . . ,
∗An)

P is expressed in “elementary terms” if it is written in the
first-order language of set theory (everything is expressed by only
using the equality and the membership relations).

Moreover, quantifiers must be used in the bounded forms:

“∀x ∈ A P(x , . . .)” and “∃x ∈ A P(x , . . .)”.
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The transfer principle
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All basic set properties: “A ⊆ B”, “C = A ∪ B”, “C = A ∩ B”,
“C = A \ B” etc., can be directly expressed in elementary terms.

Besides, it is a well-known fact that virtually all mathematical
objects can be “coded” as sets (e.g., an ordered pair (a, b) can be
defined as a Kuratowski pair {{a}, {a, b}}; a function can be
defined as a suitable set of ordered pairs; etc.).

As a consequence, virtually all mathematical properties can be
expressed in elementary terms.

E.g., by transfer, the following are easily proved.
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The transfer principle
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1 A ⊆ B ⇔ ∗A ⊆ ∗B.

2 ∗(A ∪ B) = ∗A ∪ ∗B
3 ∗(A ∩ B) = ∗A ∩ ∗B
4 ∗(A \ B) = ∗A \ ∗B
5 ∗(A× B) = ∗A× ∗B
6 f : A→ B ⇔ ∗f : ∗A→ ∗B

7 The function f is 1-1 ⇔ the function ∗f is 1-1, etc.

Moreover:

∗{x ∈ X | P(x ,A1, . . . ,An)} = {x ∈ ∗X | P(x , ∗A1, . . . ,
∗An)}
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By transfer, ∗R is an ordered field where the sum and product
operation are the hyper-extensions of the binary functions
+ : R× R→ R and · : R× R→ R; and the order relation is the
hyper-extension ∗{(a, b) ∈ R× R | a < b}.

Moreover:

The hyper-rational numbers ∗Q are dense in ∗R.

Every ξ ∈ ∗R has an integer part, i.e. there exists a unique
hyper-integer ν ∈ ∗Z such that ν ≤ ξ < ν + 1.

and so forth.
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As a proper extension of the reals, the hyper-real field ∗R contains
infinitesimal numbers ε 6= 0 such that:

−1

n
< ε <

1

n
for all n ∈ N

as well as infinite numbers

|Ω| > n for all n ∈ N.

Note that ∗R is not Archimedean, and hence it is not complete (the
bounded set of infinitesimals does not have a least upper bound).
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The hyper-integers

By transfer, one can easily show that the hyper-integers ∗Z are a
discretely ordered ring whose positive part are the hyper-natural
numbers ∗N.

∗N =
{

1, 2, . . . , n, . . .︸ ︷︷ ︸
finite numbers

. . . ,N − 2,N − 1,N,N + 1,N + 2, . . .︸ ︷︷ ︸
infinite numbers

}

Hyper-integers can be used as a convenient setting for the study of
certain density properties and certain aspects of additive number
theory.
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Nonstandard characterizations

We now recall a few basic notions of “largeness” for sets of
integers, along with their nonstandard characterizations:

Definition

A is thick if for every k there exists x such that [x , x + k] ⊆ A.

Definition (Nonstandard)

A is thick if there exists an infinite interval [ν, µ] ⊆ ∗A.
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Definition

A is syndetic if there exists k ∈ N such that every interval
[x , x + k] ∩ A 6= ∅. (That is, if Ac is not thick.)
Equivalently, there exists a finite F such that F + A = Z.

Definition (Nonstandard)

A is syndetic if ∗A has only finite gaps,
i.e. ∗A ∩ I 6= ∅ for every infinite interval I .
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Definition

A is piecewise syndetic if A = B ∩ C where B is thick
and C is syndetic.
Equivalently, there exists a finite F such that F + A is thick.

Definition (Nonstandard)

A is piecewise syndetic if ∗A has only finite gaps on some infinite
interval.
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Theorem

Piecewise syndetic sets are partition regular.

Nonstandard proof.

Let A be piecewise syndetic. By induction, it is enough to check
the property for 2-partitions A = C1 ∪ C2.

Pick an infinite interval I where ∗A has only finite gaps.

If ∗C1 has only finite gaps in I then C1 is piecewise syndetic.

Otherwise, there exists an infinite interval J ⊆ I such that
J ∩ ∗C1 = ∅. But then J ∩ ∗C2 = J ∩ ∗A has only finite gaps, and
hence C2 is piecewise syndetic.
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Hyper-natural numbers as ultrafilters

Every hyper-natural number ξ ∈ ∗N generates an ultrafilter on N:

Uξ = {A ⊆ N | ξ ∈ ∗A}

If ∗N is c+-saturated, then every ultrafilter is generated by some
number ξ ∈ ∗N (actually, by at least c-many).

In some sense, in the nonstandard setting every ultrafilter becomes
a principal ultrafilter!
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Differently from the usual approach to nonstandard analysis, we
work in a suitable framework where one can take the
hyper-extension of any object.
In particular, one can iterate hyper-extensions and consider:

The hyper-hypernatural numbers ∗∗N

The hyper-extension ∗ξ ∈ ∗∗N of an hyper-natural number
ξ ∈ ∗N, and so forth.

WARNING: The foundational aspects require some attention.
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By transfer, one proves that:

The natural numbers are an initial segment of the
hyper-natural numbers: N < ∗N \ N

The hyper-natural numbers are an initial segment of the
hyper-hyper-natural numbers: ∗N < ∗∗N \ ∗N; etc.
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A nonstandard proof of Ramsey theorem

As a warm-up application of iterated hyper-extensions, let us see a
nonstandard proof of Ramsey theorem for pairs.

Theorem (Ramsey 1928)

Given a finite colouring [N]2 = C1 ∪ . . . ∪ Cr of the pairs of natural
numbers, there exists an infinite H whose pairs are
monochromatic: [H]2 ⊆ Ci .
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We have the finite coloring [∗∗N]2 = ∗∗C1 ∪ . . . ∪ ∗∗Cr .

Pick an infinite ξ ∈ ∗N. Then {ξ, ∗ξ} ∈ ∗∗Ci for some i .

ξ ∈ {x ∈ ∗N | {x , ∗ξ} ∈ ∗∗Ci} = ∗{x ∈ N | {x , ξ} ∈ ∗Ci} = ∗A.

Pick a1 ∈ A, so {a1, ξ} ∈ ∗Ci .

Then ξ ∈ ∗{x ∈ N | {a1, x} ∈ Ci} = ∗B1.

ξ ∈ ∗A ∩ ∗B1 ⇒ A ∩ B1 is infinite: pick a2 ∈ A ∩ B1 with a2 > a1.

a2 ∈ B1 ⇒ {a1, a2} ∈ Ci .

a2 ∈ A⇒ {a2, ξ} ∈ ∗Ci ⇒ ξ ∈ ∗{x ∈ N | {a2, x} ∈ ∗C1} = ∗B2.

ξ ∈ ∗A ∩ ∗B1 ∩ ∗B2 ⇒ we can pick a3 ∈ A ∩ B1 ∩ B2 with a3 > a2.

a3 ∈ B1 ∩ B2 ⇒ {a1, a3}, {a2, a3} ∈ Ci , and so forth.

The infinite set H = {an | n ∈ N} is such that [H]2 ⊂ Ci .
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Definition

We say that two elements α, β ∈ ∗N are u-equivalent, and write
α∼u β, when they generate the same ultrafilter:

Uα = Uβ.

For n ∈ N

1 α + n ∼u α′ + n,

2 α− n ∼u α′ − n,

3 n · α ∼u n · α′,
4 α/n ∼u α′/n, provided α is divisible by n.
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Denote by k∗X the k-iterated hyper-extension of a set X .

If ν ∈ k∗N, we extend the notion of generated ultrafilter by putting

Uν = {A ⊆ N | ν ∈ k∗A}.

The u-equivalence relation is extended accordingly to all pairs of
numbers in the following union

?N =
⋃
k∈N

k∗N.

Remark 1. The above definitions are coherent.

Remark 2. The maps X 7−→ k∗X and the map X 7−→ ?X are
nonstandard embeddings, i.e. they satisfy the transfer principle.
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Proposition

Let α, β ∈ ∗N and A ⊆ N. Then

A ∈ Uα ⊕ Uβ ⇐⇒ α + ∗β ∈ ∗∗A

Proof.

Consider the set Â = {n ∈ N | A− n ∈ Uβ} and its
hyper-extension:

∗Â = ∗{n ∈ N | β + n ∈ ∗A} = {γ ∈ ∗N | ∗β + γ ∈ ∗∗A}

Then the following equivalences yield the thesis:

A ∈ Uα ⊕ Uβ ⇐⇒ Â ∈ Uα ⇐⇒ α ∈ ∗Â ⇐⇒ ∗β + α ∈ ∗∗A.
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Corollary

For every ξ0, ξ1, . . . , ξk ∈ ∗N, and for every a0, a1, . . . , ak ∈ N,
the ultrafilter a0Uξ0 ⊕ a1Uξ1 ⊕ . . .⊕ akUξk is generated by
a0ξ0 + a1

∗ξ1 + . . .+ ak
k∗ξ ∈ (k+1)∗N.

Particularly relevant for applications is the class of
idempotent ultrafilters: U ⊕ U = U .

Proposition

The ultrafilter Uξ is idempotent if and only if ξ ∼u ξ + ∗ξ.
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Remark. In general sums in ∗N are not coherent with
u-equivalence, i.e. it can be the case that α∼u α′ and β∼u β′, but
α + β 6∼

u
α′ + β′.

However, one has that α + ∗β ∼u α′ + ∗β′ in ∗∗N, as they generate
the same ultrafilter Uα ⊕ Uβ = Uα′ ⊕ Uβ′ .
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Definition

The u-equivalence ≈u between strings of integers is the smallest
equivalence relation such that:

The empty string ε≈u 〈0〉.
〈a〉≈u 〈a, a〉 for all a ∈ Z.

≈u is coherent with concatenations, i.e.

σ≈u σ′ and τ ≈u τ ′ =⇒ σ_τ ≈u σ′_τ ′.

Example:

〈1, 1, 3, 7, 0, 7, 7, 0, 4〉 ≈u 〈1, 0, 3, 3, 7, 4, 4, 4〉 ≈u 〈1, 3, 7, 4〉
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The following characterization will be used to handle linear
combinations of idempotent ultrafilters.

Theorem

Let Uξ be idempotent. Then the following are equivalent:

1 a0ξ + a1
∗ξ + . . .+ ak · k∗ξ ∼u b0ξ + b1

∗ξ + . . .+ bh · h∗ξ
2 〈a0, a1, . . . , ak〉 ≈u 〈b0, b1, . . . , bh〉.
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Theorem (Bergelson-Hindman 1990)

Let U be an idempotent ultrafilter. Then every set A ∈ 2U ⊕ U
contains a 3-term arithmetic progression.

Pick ξ ∈ ∗N such that U = Uξ and consider the following 3-AP:

ν = 2ξ + 0 + ∗∗ξ  〈2, 0, 1〉
µ = 2ξ + ∗ξ + ∗∗ξ  〈2, 1, 1〉
λ = 2ξ + 2∗ξ + ∗∗ξ  〈2, 2, 1〉

Notice that ν ∼u µ ∼u λ and the generated ultrafilter

W = Uν = Uµ = Uλ = U2ξ+∗ξ = U2ξ ⊕ Uξ = 2U ⊕ U

If A ∈ W then a 3-AP in A is proved to exist by backward transfer:

∃ ν, µ, λ ∈ ∗∗∗A s.t. µ− ν = λ− µ > 0.
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We now elaborate on this example and generalize.

Definition

A function F (x1, . . . , xn) is injectively partition regular (IPR) on N
if for every finite coloring of N there exist distinct monochromatic
elements a1, . . . , an such that F (a1, . . . , an) = 0.

Theorem

A function F (x1, . . . , xn) is IPR on N iff there exists distinct
numbers ξ1, . . . , ξn ∈ ?N which are u-equivalent to each other and
?F (ξ1, . . . , ξn) = 0.
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Rado’s Theorem

We now give a nonstandard ultrafilter proof of the following
version of Rado’s theorem.

Theorem

Let c1X1 + . . .+ cnXn = 0 be a diophantine equation with n ≥ 3.
If c1 + . . .+ cn = 0 then there exist a1, . . . , an−1 ∈ N such that
for every idempotent U , the ultrafilter

V = a1U ⊕ . . .⊕ an−1U

witnesses that the equation is IPR (i.e. for every A ∈ V there exist
distinct a1, . . . , an ∈ A with c1a1 + . . .+ ckak = 0.)
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Let U = Uξ be any idempotent ultrafilter.

For simplicity, denote by u1 = ξ, u2 = ∗ξ, u3 = ∗∗ξ, etc.

Let a1, . . . , an−2 be arbitrary integers, and consider the following
elements in ?N =

⋃
k

k∗N:

ζ1 = a1u1 + a1u2 + a2u3 + a3u4 + . . . + an−2un−1 + an−1un
ζ2 = a1u1 + 0 + a2u3 + a3u4 + . . . + an−2un−1 + an−1un
ζ3 = a1u1 + a2u2 + 0 + a3u4 + . . . + an−2un−1 + an−1un

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
ζn−1 = a1u1 + a2u2 + a3u3 + . . . + an−2un−2 + 0 + an−1un
ζn = a1u1 + a2u2 + a3u3 + . . . + an−2un−2 + an−1un−1 + an−1un

ζ1 ∼u ζ2 ∼u . . . ∼u ζn all generate the same ultrafilter:

V = a1U ⊕ a2U ⊕ . . .⊕ an−1U
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Now, c1ζ1 + . . .+ cnζn = 0 if and only if the coefficients ai fulfill
the following conditions:



(c1 + c2 + . . .+ cn) · a1 = 0

c1 · a1 + (c3 + . . .+ cn) · a2 = 0

(c1 + c2) · a2 + (c4 + . . .+ cn) · a3 = 0
...

(c1 + c2 + . . .+ cn−3) · an−3 + (cn−1 + cn) · an−2 = 0

(c1 + c2 + . . .+ cn−2) · an−2 + cn · an−1 = 0

(c1 + c2 + . . .+ cn) · an−1 = 0
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The first and the last equations are trivially satisfied because of the
hypothesis c1 + c2 + . . .+ cn = 0.

The remaining n − 2 equations are satisfied by (infinitely many)
suitable a1, . . . , an−1 ∈ N, that can be explicitly given in terms of
the ci .

Since all the ai 6= 0, the numbers ζi s are mutually distinct, and we
can apply the nonstandard characterization of IPR.

Remark

This technique can be extended and applied to study of partition
regularity of non-linear equations.
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For a nonempty set X , consider its finite sums:

FS(X ) =

{∑
x∈F

x
∣∣∣F nonempty finite subset of X

}
.

A fundamental result in combinatorics is

Theorem (Hindman 1974)

For every finite coloring of N there exists an infinite X such that all
sums in FS(X ) are monochromatic.
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The original proof consisted in really intricate combinatorial
arguments.

“Anyone with a very masochistic bent is invited to wade through
the original combinatorial proof.” (Neil Hindman)

The very next year, Galvin and Glazer found an elegant (and much
simpler) proof by using an idempotent ultrafilter.

In fact, if U is idempotent then every A ∈ U includes a set FS(X )
where X is infinite.
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Milliken-Taylor Theorem

Theorem

Let U be any idempotent ultrafilter, and let a1, . . . , ak ∈ N.
For every A ∈ a1U ⊕ . . .⊕ akU there exists an infinite

X = {x1 < x2 < . . . < xn < . . . }

such that for every sequence I1 < . . . < Ik of nonempty finite sets∑
i∈I1

a1xi + . . . +
∑
i∈Ik

akxi ∈ A.
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One example: let A ∈ 7Uξ ⊕ 5Uξ where Uξ idempotent.

We want to find X = {x1 < x2 < . . . < xn < . . .} such that for
every nonempty finite sets of indexes I < J, one has∑

i∈I

7xi +
∑
j∈J

5xj ∈ A.

We start by picking x1 such that

1 7x1 + 5ξ ∈ ∗A
2 7x1 + 7ξ + 5∗ξ ∈ ∗∗A

This is possible because 7ξ + 5∗ξ ∼u 7ξ + 7∗ξ + 5∗∗ξ, and so

7ξ + 5∗ξ ∈ ∗∗A⇒ ξ ∈ ∗{n ∈ N | 7n + 5ξ ∈ ∗A}
7∗ξ + 5∗∗ξ ∈ ∗∗∗A⇒ ξ ∈ ∗{n ∈ N | 7n + 7ξ + 5∗ξ ∈ ∗∗A}

and hence {n ∈ N | 7n + 5ξ ∈ ∗A & 7n + 7ξ + 5∗ξ ∈ ∗∗A} 6= ∅.
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We now look for x2 > x1 such that

1 7x1 + 5x2 ∈ A

2 7x1 + 7x2 + 5ξ ∈ ∗A
3 7x1 + 7x2 + 7ξ + 5∗ξ ∈ ∗∗A
4 7x2 + 5ξ ∈ ∗A
5 7x2 + 7ξ + 5∗ξ ∈ ∗∗A

This is possible because

7x1 + 5ξ ∈ ∗A⇒ ξ ∈ ∗{n | 7x1 + 5n ∈ A} = ∗B1

7x1 + 7ξ + 5∗ξ ∈ ∗∗A⇒ ξ ∈ ∗{n | 7x1 + 7n + 5ξ ∈ ∗A} = ∗B2

7x1 + 7ξ + 7∗ξ + 5∗∗ξ ∈ ∗∗∗A⇒
ξ ∈ ∗{n | 7x1 + 7n + 7ξ + 5∗ξ ∈ ∗∗A} = ∗B3

7ξ + 5∗ξ ∈ ∗∗A⇒ ξ ∈ ∗{n | 7n + 5ξ ∈ ∗A} = ∗B4

7x1 + 5ξ ∈ ∗A⇒ ξ ∈ ∗{n | 7x1 + 5n ∈ A} = ∗B5
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ξ ∈
5⋂

s=1

∗Bs = ∗

(
5⋂

s=1

Bs

)
implies that B1 ∩ . . .∩B5 is an infinite set, and any x2 > x1 in that
intersection has the desired properties.

We then inductively iterate the process to find the set
X = {x1 < x2 < . . . < xn < . . .} we are looking for.

Note that X ⊆ {k ∈ N | (A− 7k)/5 ∈ U} ∈ U .
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Conclusions

Certain ultrafilter techniques can be conveniently
accommodated in the nonstandard setting.
In fact, there is a natural way of identifying ultrafilters with
the hyper-natural numbers ∗N of nonstandard analysis.

The resulting “algebra” is suitable to study partition regularity
problems, also in the case of non-linear equations.

Several “nonstandard” directions are still to be explored.
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THANK YOU

for your attention
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