Elementary numerosity and measures

> Emanuele Bottazzi

Preliminary notions

The main results

Some ideas fo further research

Elementary numerosity and measures

Emanuele Bottazzi, University of Trento

January 24-25, 2013, Pisa

Finitely additive measures

Elementary numerosity and measures

> Emanuele Bottazzi

Preliminary notions

The main results

Some ideas fo further research

Definition

A finitely additive measure is a triple $(\Omega, \mathfrak{A}, \mu)$ where:

- The space Ω is a non-empty set;
- A is a ring of sets over Ω, i.e. a non-empty family of subsets of Ω satisfying the conditions:
 A, B ∈ A ⇒ A ∪ B, A ∩ B, A \ B ∈ A;
- $\mu : \mathfrak{A} \to [0, +\infty]_{\mathbb{R}}$ is an additive function, i.e. $\mu(A \cup B) = \mu(A) + \mu(B)$ whenever $A, B \in \mathfrak{A}$ are disjoint. We also assume that $\mu(\emptyset) = 0$.

The measure $(\Omega, \mathfrak{A}, \mu)$ is called *non-atomic* when all finite sets in \mathfrak{A} have measure zero.

Elementary numerosities

Elementary numerosity and measures

> Emanuele Bottazzi

Preliminary notions

The main results

Some ideas for further research

Definition

An elementary numerosity on a set Ω is a function

$$\mathfrak{n}:\mathcal{P}(\Omega)
ightarrow [0,+\infty)_{\mathbb{F}}$$

defined for all subsets of Ω , taking values into the non-negative part of a non-archimedean field \mathbb{F} , and satisfying the conditions:

• $\mathfrak{n}(\{x\}) = 1$ for every point $x \in \Omega$;

• $\mathfrak{n}(A \cup B) = \mathfrak{n}(A) + \mathfrak{n}(B)$ whenever A and B are disjoint.

Numerosity measures

Elementary numerosity and measures

> Emanuele Bottazzi

Preliminary notions

The main results

Some ideas fo further research

Proposition

Let $\mathfrak{n} : \mathcal{P}(\Omega) \to [0, +\infty)_{\mathbb{F}}$ be an elementary numerosity, and for every $\beta > 0$ in \mathbb{F} define the function $\mathfrak{n}_{\beta} : \mathcal{P}(\Omega) \to [0, +\infty]_{\mathbb{R}}$ by posing

$$\mathfrak{n}_{eta}(A) \;=\; sh\left(rac{\mathfrak{n}(A)}{eta}
ight).$$

Then \mathfrak{n}_{β} is a finitely additive measure defined for all subsets of Ω . Moreover, \mathfrak{n}_{β} is non-atomic if and only if β is an infinite number.

The main result (1)

Elementary numerosity and measures

> Emanuele Bottazzi

Preliminary notions

The main results

Some ideas for further research

Theorem

Let $(\Omega, \mathfrak{A}, \mu)$ be a non-atomic finitely additive measure. Then there exist

- a non-archimedean field $\mathbb{F} \supseteq \mathbb{R}$;
- \blacksquare an elementary numerosity $\mathfrak{n}:\mathcal{P}(\Omega)\to [0,+\infty)_{\mathbb{F}}$;

such that for every positive number of the form $\beta = \frac{n(A^*)}{\mu(A^*)}$ one has

$$\mu(A) = \mathfrak{n}_{\beta}(A)$$
 for all $A \in \mathfrak{A}$.

Moreover, if $\mathfrak{B} \subseteq \mathfrak{A}$ is a subring whose non-empty sets have all positive measure, then we can also assume that

 $\mathfrak{n}(B) = \mathfrak{n}(B')$ for all $B, B' \in \mathfrak{B}$ such that $\mu(B) = \mu(B')$.

Idea of the proof

Elementary numerosity and measures

> Emanuele Bottazzi

Preliminar notions

The main results

Some ideas for further research Let Λ be the family of all finite subsets of Ω . We need to find a suitable ultrafilter \mathcal{U} over Λ in a way that, if $\mathbb{F} = \mathbb{R}^{\Lambda}/\mathcal{U}$ is the ordered field obtained as the ultrapower of \mathbb{R} modulo \mathcal{U} , the numerosity defined by by posing

 $\mathfrak{n}(X) = \langle |X \cap \lambda| : \lambda \in \Lambda \rangle_{\mathcal{U}}$

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

satisfies the desired properties.

The main result (2)

Elementary numerosity and measures

> Emanuele Bottazzi

Preliminary notions

The main results

Some ideas for further research

Theorem

Let \mathfrak{A} be a ring of subsets of Ω and let $\mu : \mathfrak{A} \to [0, +\infty]_{\mathbb{R}}$ be a non-atomic pre-measure. Then, along with the associated outer measure $\overline{\mu}$, there exists an "inner" finitely additive measure

$$\underline{\mu}:\mathcal{P}(\Omega)
ightarrow [0,+\infty]_{\mathbb{R}}$$

such that:

- **1** There exists an elementary numerosity $\mathfrak{n} : \mathcal{P}(\Omega) \to \mathbb{F}$ such that $\underline{\mu} = \mathfrak{n}_{\beta}$ for every positive β of the form $\beta = \frac{\mathfrak{n}(A^*)}{\mu(A^*)}$.
- **2** $\underline{\mu}(C) = \overline{\mu}(C)$ for all $C \in \mathfrak{C}_{\mu}$, the Caratheodory σ -algebra associated to μ .
- 3 $\underline{\mu}(X) \leq \overline{\mu}(X)$ for all $X \subseteq \Omega$.

An application to Lebesgue measure

Elementary numerosity and measures

Emanuele Bottazzi

Preliminary notions

The main results

Some ideas fo further research

Corollary

Let $(\mathbb{R}, \mathfrak{L}, \mu_L)$ be the Lebesgue measure over \mathbb{R} . Then there exists an elementary numerosity $\mathfrak{n} : \mathcal{P}(\mathbb{R}) \to \mathbb{F}$ such that:

- $\mathfrak{n}([x, x + a)) = \mathfrak{n}([y, y + a))$ for all $x, y \in \mathbb{R}$ and for all a > 0.
- n([x, x + a)) = a · n([0, 1)) for all rational numbers a > 0.
 sh (n(X)/n([0,1))) = µ_L(X) for all X ∈ L.
 sh (n(X)/n([0,1))) ≤ µ_L(X) for all X ⊆ R.

Some ideas for further research

Elementary numerosity and measures

> Emanuele Bottazzi

Preliminary notions

The main results

Some ideas for further research

- From Lebesgue measure to Lebesgue integral;
- representing more measures with the same numerosity (e.g. Hausdorff measures);

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

applications to (non-archimedean) probability.