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Finitely additive measures

Definition

A finitely additive measure is a triple (Ω,A, µ) where:

The space Ω is a non-empty set;

A is a ring of sets over Ω, i.e. a non-empty family of
subsets of Ω satisfying the conditions:
A,B ∈ A⇒ A ∪ B,A ∩ B,A \ B ∈ A;

µ : A→ [0,+∞]R is an additive function, i.e.
µ(A ∪ B) = µ(A) + µ(B) whenever A,B ∈ A are disjoint.
We also assume that µ(∅) = 0.

The measure (Ω,A, µ) is called non-atomic when all finite sets
in A have measure zero.
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Elementary numerosities

Definition

An elementary numerosity on a set Ω is a function

n : P(Ω)→ [0,+∞)F

defined for all subsets of Ω, taking values into the non-negative
part of a non-archimedean field F, and satifying the conditions:

n({x}) = 1 for every point x ∈ Ω ;

n(A ∪ B) = n(A) + n(B) whenever A and B are disjoint.
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Numerosity measures

Proposition

Let n : P(Ω)→ [0,+∞)F be an elementary numerosity, and for
every β > 0 in F define the function nβ : P(Ω)→ [0,+∞]R by
posing

nβ(A) = sh

(
n(A)

β

)
.

Then nβ is a finitely additive measure defined for all subsets of
Ω. Moreover, nβ is non-atomic if and only if β is an infinite
number.
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The main result (1)

Theorem

Let (Ω,A, µ) be a non-atomic finitely additive measure. Then
there exist

a non-archimedean field F ⊇ R ;

an elementary numerosity n : P(Ω)→ [0,+∞)F ;

such that for every positive number of the form β = n(A∗)
µ(A∗) one

has
µ(A) = nβ(A) for all A ∈ A.

Moreover, if B ⊆ A is a subring whose non-empty sets have all
positive measure, then we can also assume that

n(B) = n(B ′) for all B,B ′ ∈ B such that µ(B) = µ(B ′).
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Idea of the proof

Let Λ be the family of all finite subsets of Ω. We need to find a
suitable ultrafilter U over Λ in a way that, if F = RΛ/U is the
ordered field obtained as the ultrapower of R modulo U , the
numerosity defined by by posing

n(X ) = 〈|X ∩ λ| : λ ∈ Λ〉U
satisfies the desired properties.
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The main result (2)

Theorem

Let A be a ring of subsets of Ω and let µ : A→ [0,+∞]R be a
non-atomic pre-measure. Then, along with the associated outer
measure µ, there exists an “inner” finitely additive measure

µ : P(Ω)→ [0,+∞]R

such that:

1 There exists an elementary numerosity n : P(Ω)→ F such

that µ = nβ for every positive β of the form β = n(A∗)
µ(A∗) .

2 µ(C ) = µ(C ) for all C ∈ Cµ, the Caratheodory σ-algebra
associated to µ.

3 µ(X ) ≤ µ(X ) for all X ⊆ Ω.
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An application to Lebesgue measure

Corollary

Let (R,L, µL) be the Lebesgue measure over R. Then there
exists an elementary numerosity n : P(R)→ F such that:

n([x , x + a)) = n([y , y + a)) for all x , y ∈ R and for all
a > 0.

n([x , x + a)) = a · n([0, 1)) for all rational numbers a > 0.

sh
(

n(X )
n([0,1))

)
= µL(X ) for all X ∈ L.

sh
(

n(X )
n([0,1))

)
≤ µL(X ) for all X ⊆ R.
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Some ideas for further research

From Lebesgue measure to Lebesgue integral;

representing more measures with the same numerosity
(e.g. Hausdorff measures);

applications to (non-archimedean) probability.
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