Elementary numerosity and measures

Emanuele Bottazzi, University of Trento

January 24-25, 2013, Pisa

Finitely additive measures

Elementary
numerosity
and measures

Bottazzi

Preliminary notions

Definition

A finitely additive measure is a triple $(\Omega, \mathfrak{A}, \mu)$ where:

- The space Ω is a non-empty set;

■ \mathfrak{A} is a ring of sets over Ω, i.e. a non-empty family of subsets of Ω satisfying the conditions: $A, B \in \mathfrak{A} \Rightarrow A \cup B, A \cap B, A \backslash B \in \mathfrak{A}$;

- $\mu: \mathfrak{A} \rightarrow[0,+\infty]_{\mathbb{R}}$ is an additive function, i.e.
$\mu(A \cup B)=\mu(A)+\mu(B)$ whenever $A, B \in \mathfrak{A}$ are disjoint. We also assume that $\mu(\emptyset)=0$.

The measure $(\Omega, \mathfrak{A}, \mu)$ is called non-atomic when all finite sets in \mathfrak{A} have measure zero.

Elementary numerosities

Elementary
numerosity and measures

Definition

An elementary numerosity on a set Ω is a function

$$
\mathfrak{n}: \mathcal{P}(\Omega) \rightarrow[0,+\infty)_{\mathbb{F}}
$$

defined for all subsets of Ω, taking values into the non-negative part of a non-archimedean field \mathbb{F}, and satifying the conditions:

- $\mathfrak{n}(\{x\})=1$ for every point $x \in \Omega$;
- $\mathfrak{n}(A \cup B)=\mathfrak{n}(A)+\mathfrak{n}(B)$ whenever A and B are disjoint.

Numerosity measures

Elementary
numerosity and measures

Proposition

Let $\mathfrak{n}: \mathcal{P}(\Omega) \rightarrow[0,+\infty)_{\mathbb{F}}$ be an elementary numerosity, and for every $\beta>0$ in \mathbb{F} define the function $\mathfrak{n}_{\beta}: \mathcal{P}(\Omega) \rightarrow[0,+\infty]_{\mathbb{R}}$ by posing

$$
\mathfrak{n}_{\beta}(A)=\operatorname{sh}\left(\frac{\mathfrak{n}(A)}{\beta}\right) .
$$

Then \mathfrak{n}_{β} is a finitely additive measure defined for all subsets of Ω. Moreover, \mathfrak{n}_{β} is non-atomic if and only if β is an infinite number.

The main result (1)

Elementary
numerosity and measures

Emanuele
Bottazzi

Theorem

Let $(\Omega, \mathfrak{A}, \mu)$ be a non-atomic finitely additive measure. Then there exist

- a non-archimedean field $\mathbb{F} \supseteq \mathbb{R}$;
- an elementary numerosity $\mathfrak{n}: \mathcal{P}(\Omega) \rightarrow[0,+\infty)_{\mathbb{F}}$;
such that for every positive number of the form $\beta=\frac{\mathfrak{n}\left(A^{*}\right)}{\mu\left(A^{*}\right)}$ one has

$$
\mu(A)=\mathfrak{n}_{\beta}(A) \text { for all } A \in \mathfrak{A}
$$

Moreover, if $\mathfrak{B} \subseteq \mathfrak{A}$ is a subring whose non-empty sets have all positive measure, then we can also assume that

$$
\mathfrak{n}(B)=\mathfrak{n}\left(B^{\prime}\right) \text { for all } B, B^{\prime} \in \mathfrak{B} \text { such that } \mu(B)=\mu\left(B^{\prime}\right)
$$

Idea of the proof

Elementary
numerosity and measures

$$
\mathfrak{n}(X)=\langle | X \cap \lambda|: \lambda \in \Lambda\rangle \mathcal{U}
$$

satisfies the desired properties.

The main result (2)

Elementary
numerosity and measures

Emanuele
Bottazzi

Theorem

Let \mathfrak{A} be a ring of subsets of Ω and let $\mu: \mathfrak{A} \rightarrow[0,+\infty]_{\mathbb{R}}$ be a non-atomic pre-measure. Then, along with the associated outer measure $\bar{\mu}$, there exists an "inner" finitely additive measure

$$
\underline{\mu}: \mathcal{P}(\Omega) \rightarrow[0,+\infty]_{\mathbb{R}}
$$

such that:
1 There exists an elementary numerosity $\mathfrak{n}: \mathcal{P}(\Omega) \rightarrow \mathbb{F}$ such that $\underline{\mu}=\mathfrak{n}_{\beta}$ for every positive β of the form $\beta=\frac{\mathfrak{n}\left(A^{*}\right)}{\mu\left(A^{*}\right)}$.
$2 \underline{\mu}(C)=\bar{\mu}(C)$ for all $C \in \mathfrak{C}_{\mu}$, the Caratheodory σ-algebra associated to μ.
$3 \underline{\mu}(X) \leq \bar{\mu}(X)$ for all $X \subseteq \Omega$.

An application to Lebesgue measure

Elementary
numerosity and measures

Corollary

Let $\left(\mathbb{R}, \mathfrak{L}, \mu_{L}\right)$ be the Lebesgue measure over \mathbb{R}. Then there exists an elementary numerosity $\mathfrak{n}: \mathcal{P}(\mathbb{R}) \rightarrow \mathbb{F}$ such that:

■ $\mathfrak{n}([x, x+a))=\mathfrak{n}([y, y+a))$ for all $x, y \in \mathbb{R}$ and for all $a>0$.
■ $\mathfrak{n}([x, x+a))=a \cdot \mathfrak{n}([0,1))$ for all rational numbers $a>0$.

- $\operatorname{sh}\left(\frac{\mathfrak{n}(X)}{\mathfrak{n}([0,1))}\right)=\mu_{L}(X)$ for all $X \in \mathfrak{L}$.
- $\operatorname{sh}\left(\frac{\mathfrak{n}(X)}{\mathfrak{n}([0,1))}\right) \leq \bar{\mu}_{L}(X)$ for all $X \subseteq \mathbb{R}$.

Some ideas for further research

Elementary
numerosity and measures

Emanuele
Bottazzi

- From Lebesgue measure to Lebesgue integral;
- representing more measures with the same numerosity (e.g. Hausdorff measures);
- applications to (non-archimedean) probability.

