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Abstract. This paper consists of a quick introduction to the “hyper-methods”

of nonstandard analysis, and of a review of eight different approaches to the subject,

which have been recently elaborated by the authors.

Those who follow the noble Eightfold
Path are freed from the suffering and
are led ultimately to Enlightenment.

(Gautama Buddha)
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Introduction. Since the original works [42, 43] by Abraham Robinson,
many diffent presentations to the methods of nonstandard analysis have
been proposed over the last forty years. The task of combining in a sat-
isfactory manner rigorous theoretical foundations with an easily accessible
exposition soon revealed very difficult to be accomplished. The first pio-
neering work in this direction was W.A.J. Luxemburg’s lecture notes [38].
Based on a direct use of the ultrapower construction, those notes were very
popular in the “nonstandard” community in the sixties. Also Robinson
himself gave a contribution to the sake of simplification, by reformulating
his initial type-theoretic approach in a more familiar set-theoretic frame-
work. Precisely, in his joint work with E. Zakon [45], he introduced the
superstructure approach, by now the most used foundational framework.
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To the authors’ knowledge, the first relevant contribution aimed to make
the “hyper-methods” available even at a freshman level, is Keisler’s book
[35], which is a college textbook for a first course of elementary calculus.
There, the principles of nonstandard analysis are presented axiomatically
in a nice and elementary form (see the accompanying book [34] for the
foundational aspects). Among the more recent works, there are the “gentle”
introduction by W. Henson [28], R. Goldblatt’s lectures on the hyperreals
[27], and K. Stroyan’s textbook [49].

Recently the authors investigated several different frameworks in alge-
bra, topology, and set theory, that turn out to incorporate explicitly or
implicitly the “hyper-methods”. These approaches show that nonstandard
extensions naturally arise in several quite different contexts of mathemat-
ics. An interesting phenomenon is that some of those approaches lead in
a straightforward manner to ultrafilter properties that are independent of
the axioms of Zermelo-Fraenkel set theory ZFC.

Contents. This article is divided into two parts. The first part consists
of an introduction to the hyper-methods of nonstandard analysis, while
the second one is an overview of eight different approaches to the subject
recently elaborated by the authors. Most proofs are omitted, but precise
references are given where the interested reader can find all details.

Part I contains two sections. The longest Section 1 is a soft introduc-
tion to the basics of nonstandard analysis, and will be used as a reference
for the remaing sections of this article. The three fundamental “hyper-
tools” are presented, namely the star -map, the transfer principle, and the
saturation property, and several examples are given to illustrate their use
in the practice. The material is intentionally presented in an elementary
(and sometimes semi-formal) manner, so that it may also serve as a quick
presentation of nonstandard analysis for newcomers. Section 2 is focused
on the connections between the hyper-extensions of nonstandard analysis
and ultrapowers. In particular, a useful characterization of the models of
hyper-methods is presented in purely algebraic terms, by means of limit
ultrapowers.

Each of the eight Sections 3–10 in Part II presents a different possible
“path” to nonstandard analysis. The resulting eight approaches, although
not strictly equivalent to each other, are all suitable for the practice, in that
each of them explicitly or implicitly incorporates the fundamental “hyper-
tools” introduced in Section 1.

Section 3 is about a modified version of the so-called superstructure ap-
proach, where a single superstructure is considered both as the standard
and the nonstandard universe (see [3].) In Section 4, we present a purely
algebraic approach presented in [7, 8], which is based on the existence of
a “special” ring homomorphism. Starting from such a homomorphism, we



4 VIERI BENCI, MAURO DI NASSO, AND MARCO FORTI

define in a direct manner a superstructure model of the hyper-methods, as
defined in Section 3.

In Section 5, the axiomatic theory ∗ZFC of [18] is presented, that can
be seen as an extension of the superstructure approach to the full gener-
ality of set theory. Section 6 is dedicated to the so-called Alpha Theory,
an axiomatic presentation that postulates five elementary properties for
an “ideal” (infinite) natural number α (see [5].) These axioms suffice for
defining a star-map on the universal class of all mathematical objects.

Section 7 deals with topological extensions, a sort of “topological comple-
tions” of a given set X, introduced and studied in [10, 20]. These structures
are spaces ?X where any function f : X → X has a continuous ?-extension,
and where the ?-extension ?A of a subset A ⊆ X is simply its closure in
?X. Hyper-extensions of nonstandard analysis, endowed with a natural
topology, are characterized as those topological extensions that satisfy two
simple additional properties. Moreover, several important features of non-
standard extensions, such as the enlarging and saturation properties, can
be naturally described in this topological framework. Section 8, following
[26], further simplifies the topological approach of the preceding section.
By assuming that the ?-extensions of unary functions satisfy three simple
“preservation properties” having a purely functional nature, one obtains
all possible hyper-extensions of nonstandard analysis.

Section 9 deals with natural ring structures that can be given to suitable
subspaces of βZ, the Stone-Čech compactification of the integers Z (see
[22].) Such rings turn out to be sets of hyperintegers with special prop-
erties that are independent of ZFC. In the final Section 10, we consider a
new way of counting that has been proposed in [6] and which maintains
the ancient principle that “the whole is larger than its parts”. This count-
ing procedure is suitable for all those countable sets whose elements are
“labelled” by natural numbers. We postulate that this procedure satisfies
three natural “axioms of compatibility” with respect to inclusion, disjoint
union, and Cartesian product. As a consequence, sums and products of
numerosities can be defined, and the resulting semi-ring of numerosities
becomes a special set of hypernatural numbers, whose existence is inde-
pendent of ZFC.

Disclaimer. A disclaimer is in order. By no means the approaches
presented here have been choosen because they are better than others,
or because they provide an exhaustive picture of this field of research.
Simply, this article surveys the authors’ contributions to the subject over
the last decade. In particular, throughout the paper we stick to the so-
called external viewpoint of nonstandard methods, based on the existence
of a star-map ∗ providing an hyper-extension ∗A for each standard object
A. This is to be confronted with the internal approach of Nelson’s IST [39],



THE EIGHTFOLD PATH TO NONSTANDARD ANALYSIS 5

and other related nonstandard set theories where the standard predicate st
is used in place of the star-map (cf. e.g. the recent book [32]; see also
Hrbàc̆ek’s article in this volume). Extensive treatments of nonstandard
analysis based on the internal approach are given e.g. in the books [23, 24,
41].

Part I – The “Hyper-methods”

§1. What are the “hyper-methods”? Roughly, nonstandard analy-
sis essentially consists of two fundamental tools: the star -map ∗ and the
transfer principle. In most applications, a third fundamental tool is also
considered, namely the saturation property.

There are several different frameworks where the methods of nonstandard
analysis (the “hyper-methods”) can be presented. The goal of this section
is to introduce the basic notions in such a way that their formulations do
not depend on the specific approach that one is adopting. Of course, there
is a price we have to pay to reach this generality. Sometimes, the definitions
as given here are not entirely formalized (at least from the point of view of
a logician). However we are confident that they are still sufficiently clear
and unumbiguous to the point that some “practitioners” may find them
suitable already. To reassure the suspicious reader, we anticipate that each
of the eight Sections 3–10 consists of a specific approach where all notions
presented here are given rigorous foundations.

Besides the fundamental tools, this section also contains the definition of
internal element, sketchy proofs of the first consequences of the definitions,
as well as a bunch of relevant examples. It is not a complete introduction
(e.g. overspill and hyperfinite sets are not treated), but it may be used as
a first reading for beginners interested in nonstandard analysis.

1.1. The basic definitions. In order to correctly formulate the fun-
damental tools of hyper-methods, we need the following

Definition 1.1. A universe U is a nonempty collection of “mathemat-
ical objects” that is closed under subsets (i.e. a ⊆ A ∈ U ⇒ a ∈ U)
and closed under the basic mathematical operations. Precisely, whenever
A,B ∈ U, we require that also the union A∪B, the intersection A∩B, the
set-difference A\B, the ordered pair (A,B), the Cartesian product A×B,
the powerset P(A) = {a | a ⊆ A}, the function-set BA = {f | f : A → B},
all belong to U.1 A universe U is also assumed to contain (copies of) all
sets of numbers N,Z,Q,R,C ∈ U, and to be transitive, i.e. members of
members of U belong to U (in formulæ: a ∈ A ∈ U⇒ a ∈ U).

1 Clearly, here we implicitly assume that A and B are sets, otherwise these operation
don’t make sense. The only exception is the ordered pair, that makes sense for all
mathematical objects A and B.
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The notion of “mathematical object” includes all objects used in the ordi-
nary practice of mathematics, namely: numbers, sets, functions, relations,
ordered tuples, Cartesian products, etc. It is well-known that all these no-
tions can be defined as sets and formalized in the foundational framework
of Zermelo-Fraenkel axiomatic set theory ZFC.2 For sake of simplicity, here
we consider them as primitive concepts not necessarily reduced to sets.

Hyper-Tool # 1: STAR-MAP.
The star-map is a function ∗ : U → V between two universes
that associates to each object A ∈ U its hyper-extension (or non-
standard extension) ∗A ∈ V. It is also assumed that ∗n = n for
all natural numbers n ∈ N, and that the properness condition
∗N 6= N holds.

It is customary to call standard any object A ∈ U in the domain of
the star-map, and nonstandard any object B ∈ V in the codomain. The
adjective standard is also often used in the literature for hyper-extensions
∗A ∈ V.

We remark rightaway that one could directly consider a single universe
U = V. Doing so, the traditional distinction between standard and nonstan-
dard objects is overcome.3 We point out that in all approaches appeared
in the literature, the standard universe is taken to be large enough so as to
include all mathematical objects under consideration.

We are now ready to introduce the second powerful tool of nonstandard
methods. It states that the star-map preserves a large class of properties.

Hyper-Tool # 2: TRANSFER PRINCIPLE.
Let P (a1, . . . , an) be a property of the standard objects a1, . . . , an

expressed as an “elementary sentence”. Then P (a1, . . . , an) is
true if and only if the same sentence is true about the corre-
sponding hyper-extensions ∗a1, . . . , ∗an. That is:

2 E.g. in ZFC, an ordered pair (a, b) is defined as the Kuratowski pair {{a}, {a, b}};
an n-tuple is inductively defined by (a1, . . . , an, an+1) = ((a1, . . . , an), an+1); an n-
place relation R on A is identified with the set R ⊆ An of n-tuples that satisfy it; a
function f : A → B is identified with its graph {(a, b) ∈ A×B | b = f(a)}; and so forth.
As for numbers, complex numbers C = R× R/ ≈ are defined as equivalence classes of
ordered pairs of real numbers, and the real numbers R are defined as equivalence classes
of suitable sets of rational numbers (namely, Dedekind cuts or Cauchy sequences). The
rational numbers Q are a suitable quotient Z× Z/ ≈, and the integers Z are in turn
a suitable quotient N× N/ ≈. The natural numbers of ZFC are defined as the set ω
of von Neumann naturals: 0 = ∅ and n + 1 = n ∪ {n} (so that each natural number
n = {0, 1, . . . , n − 1} is identified with the set of its predecessors.) We remark that
these definitions are almost compulsory in order to obtain a set theoretic reductionist
foundation, but certainly they are not needed in the ordinary development of analysis.

3 This matter will be discussed in Section 3 (see Definition 3.3) and Section 5.
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P (a1, . . . , an) ⇐⇒ P (∗a1, . . . , ∗an)

The transfer principle (also known as Leibniz principle) is given a rig-
orous formulation by using the formalism of mathematical logic and, in
particular, by appealing to the notion of bounded quantifier formula in the
first-order language of set theory. Here we only give a semi-formal defini-
tion, and refer the reader to §4.4 of [13] for a fully rigorous treatment.

Definition 1.2. We say that a property P (x1, . . . , xn) of the objects
x1, . . . , xn is expressed as an elementary sentence if the following two con-
ditions are fulfilled:
(1) Besides the usual logic connectives (“not”, “and”, “or”, “if . . . then”,

“if and only if”) and quantifiers (“there exists”, “for all”), only the
basic notions of function, value of a function at a given point, relation,
domain, codomain, ordered n-tuple, i-th component of an ordered
tuple, and membership ∈, are involved.

(2) The scopes of all universal quantifiers ∀ (“for all”) and existential
quantifiers ∃ (“there exists”) are “bounded” by some set.

A quantifier is bounded when it occurs in the form “for every x ∈ X”
or “there exists y ∈ Y ”, for some specified sets X, Y . Thus, in order to
correctly apply the transfer principle, one has to stick to the following rule.

Rule of the thumb. Whenever considering quantifiers: “∀x . . . ” or
“∃y . . . ”, we must always specify the range of the variables, i.e.
we must specify sets X and Y and reformulate: “∀x ∈ X . . . ”
and “∃ y ∈ Y . . . ”. In particular, all quantifications on subsets:
“∀x ⊆ X . . . ” or “∃x ⊆ X . . . ”, must be reformulated in the
form “∀x ∈ P(X) . . . ” and “∃x ∈ P(X) . . . ” respectively, where
P(X) is the powerset of X. Similarly, all quantifications on
functions f : A → B, must be bounded by BA, the set of all
functions from A to B.

We are now ready to give the

FUNDAMENTAL DEFINITION:
A model of hyper-methods (or a model of nonstandard analysis)
is a triple 〈 ∗ ;U ;V 〉 where ∗ : U → V is a star-map satisfying
the transfer principle.

1.2. Some applications of transfer. We now show a few simple ap-
plications of the transfer principle, aimed to clarify the crucial notion of
elementary sentence.

Example 1.3. By condition (1) of Definition 1.2, the following are all
elementary sentences: “f is a function with domain A and codomain B”;
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“b is the value taken by f at the point a”; “R in an n-place relation on A”;
“C is the Cartesian product of A and B”. Thus by transfer, we get that
“∗f : ∗A → ∗B is a function with domain ∗A and codomain ∗B”; “∗b = ∗f(∗a)
is the value taken by ∗f at the point ∗a”, i.e. ∗(f(a)) = ∗f(∗a); “∗R is an
n-place relation on ∗A”; and “∗C = ∗A× ∗B is the Cartesian product of ∗A
and ∗B”.

Example 1.4. The inclusion and all basic operations on sets are pre-
served under the star-map, with the only relevant exceptions of the pow-
erset and the function-set (see Example 1.9 below). In fact the proper-
ties: “A ⊆ B”; “C = A ∪ B”; “C = A ∩ B”; and “C = A \ B” can all
be formulated as elementary sentences. For instance, “A ⊆ B” means
that “∀x ∈ A. x ∈ B”, etc. By transfer we obtain that “∗A ⊆ ∗B”;
“∗C = ∗A ∪ ∗B”; “∗C = ∗A ∩ ∗B”; and “∗C = ∗A \ ∗B”.

Example 1.5. Let f : A → B be any given standard function. Then
the images f(A′) = {f(a) | a ∈ A′} of subsets A′ ⊆ A, and the preimages
f−1(B′) = {a ∈ A | f(a) ∈ B′} of subsets B′ ⊆ B, are both preserved
under the star-map, i.e. ∗(f(A′)) = ∗f(∗A′) and ∗(f−1(B′)) = ∗f−1(∗B′). In
particular, ∗Range(f) = Range(∗f), and so f is onto if and only if ∗f is. It
is also easily shown that f is 1-1 if and only if ∗f is.

Two more relevant properties are the following: ∗{a ∈ A | f(a) = g(a)} =
{α ∈ ∗A | ∗f(α) = ∗g(α)}, and ∗Graph(f) = Graph(∗f). All these properties
are proved by direct applications of the transfer principle. E.g. the last
equality is proved by transferring the elementary sentence:

“x ∈ Graph(f) if and only if there exist a ∈ A and b ∈ B
such that b = f(a) and x = (a, b)”.

Example 1.6. Let A be a nonempty standard set, and consider the prop-
erty: “< is a linear ordering on A”. Notice first that < is a binary relation,
hence ∗< is a binary relation on ∗A. By definition, < is a linera ordering if
and only if it satisfies the following three properties, that are expressed by
means of bounded quantifiers.

∀x ∈ A (x 6< x)
∀x, y, z ∈ A (x < y and y < z) ⇒ x < z

∀x, y ∈ A (x < y or y < x or x = y)
Then we can apply the transfer principle and get that “∗< is a linear
ordering on ∗A”.

Example 1.7. It directly follows from condition (1) of Definition 1.2 that
the hyper-extension of an n-tuple of standard objects A = (a1, . . . , an) is
∗A = (∗a1, . . . , ∗an). Similarly, if A = {a1, . . . , an} is a finite set of standard
objects, then its star-extension is ∗A = {∗a1, . . . , ∗an}. This fact is proved
by applying transfer to the following elementary sentence:
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“a1 ∈ A and . . . and an ∈ A and for all x ∈ A, x = a1 or . . . or x = an”

Notice that for every standard set A, {∗a | a ∈ A} ⊆ ∗A (apply transfer to
all sentences “a ∈ A”). In the last example we have seen that the inclusion
is actually an equality when A is finite. But this is never the case when A
is infinite, as a consequence of the properness condition ∗N 6= N.

Proposition 1.8. Let A be an infinite standard set A. Then the inclu-
sion {∗a | a ∈ A} ⊂ ∗A is proper.

Proof. Fix a standard map f : A → N which is onto. Then ∗f : ∗A → ∗N
is onto as well. Now assume by contradiction that all elements in ∗A are of
the form ∗a for some a ∈ A. Then:

∗N = {∗f(∗a) | a ∈ A} = {∗(f(a)) | a ∈ A} = {∗n | n ∈ N} = N,
against the properness condition ∗N 6= N. a

Example 1.9. Let A and B be any standard sets. By transferring the
sentences: “∀x ∈ P(A), ∀y ∈ x, y ∈ A” and “∀f ∈ BA, f is a function
with domain A and codomain B”, it is proved that ∗P(A) ⊆ P(∗A), and
∗(BA) ⊆ ∗B

∗A, respectively. Arguing similarly as in Example 1.7, one easily
shows that these inclusions are equalities whenever both A and B are finite.
In the infinite case, the inclusions are proper (cf. Proposition 1.25).

1.3. The basic sets of hypernumbers. Let us now concentrate on
the hyper-extensions of sets of numbers.

Definition 1.10. The elements of ∗N, ∗Z, ∗Q, ∗R and ∗C are called hyper-
natural, hyperinteger, hyperrational, hyperreal, and hypercomplex numbers,
respectively.

Besides natural numbers, for convenience it is also customary to assume
that ∗z = z for all numbers z. In this case, we have the inclusions N ⊂ ∗N,
Z ⊂ ∗Z, Q ⊂ ∗Q, R ⊂ ∗R, and C ⊂ ∗C (the inclusions are proper by
Proposition 1.8). Whenever confusion is unlikely, some asterisks will be
omitted. For instance, we shall use the same symbols + and · to denote both
the sum and product operations on N,Z,Q,R,C and the corresponding
operations defined on the hyper-extensions ∗N, ∗Z, ∗Q, ∗R, ∗C. Similarly for
the ordering ≤.

In the next proposition we itemize the first properties of hypernumbers,
all obtained as straighforward applications of the transfer principle.

Proposition 1.11.
1. ∗Z is a commutative ring, ∗Q is an ordered field, ∗R is a real-closed

field, and ∗C is an algebraically closed field;4

4 Recall that an ordered field is real-closed if every positive element is a square,
and every polynomial of odd degree has a root. A field is algebraically closed if all
non-constant polynomials have a root.
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2. Every non-zero hypernatural number ν ∈ ∗N has a successor ν +1 and
a predecessor ν − 1;5

3. (N,≤) is an initial segment of (∗N,≤), i.e. if ν ∈ ∗N \ N, then ν > n
for all n ∈ N;

4. For every positive ξ ∈ ∗R there exists a unique ν ∈ ∗N such that
ν ≤ ξ < ν + 1. In particular, ∗N is unbounded in ∗R;

5. The hyperrational numbers ∗Q, as well as the hyperirrational numbers
∗(R \Q) = ∗R \ ∗Q, are dense in ∗R;6

6. Let Z be any of the sets N,Z,Q or R, and consider the open interval
(a, b) = {x ∈ X | a < x < b} determined by numbers a < b in Z.
Then the hyper-extension ∗(a, b) = {ξ ∈ ∗Z | a < ξ < b}. Similar
equalities also hold for intervals of the form [a, b), (a, b], (a, b), (−∞, b]
and [a,+∞).

As a consequence of property (3) above, the elements of ∗N\N are called
infinite. More generally:

Definition 1.12. A hyperreal number ξ ∈ ∗R is infinite if either ξ > ν
or ξ < −ν for some ν ∈ ∗N \ N. Otherwise we say that ξ is finite. We call
infinitesimal those hyperreal numbers ε ∈ ∗R such that −r < ε < r for all
positive reals r ∈ R. In this case we write ε ∼ 0.

The following properties are easily seen:7 ε 6= 0 is infinitesimal if and
only if its reciprocal 1/ε is infinite; if ξ and ζ are finite, then also ξ + ζ and
ξ · ζ are finite; if ε, η ∼ 0, then also ε + η ∼ 0; if ε ∼ 0 and ξ is finite, then
ε · ξ ∼ 0; if ω is infinite and ξ is not infinitesimal, then ω · ξ is infinite; if
ε 6= 0 is infinitesimal but ξ is not infinitesimal, then ξ/ε is infinite; if ω is
infinite and ξ is finite, then ξ/ω ∼ 0; etc.

Infinitesimal and infinite numbers can be seen as formalizations of the
intuitive ideas of “small” number and “large” number, respectively. Also
the idea of “closeness” can be formalized as follows.

Definition 1.13. The hyperreal numbers ξ and ζ are infinitely close if
ξ − ζ is infinitesimal. In this case, we write ξ ∼ ζ.

Clearly, ∼ is an equivalence relation. The completeness of the real num-
bers R yields the following result.

Theorem 1.14 (Standard part). For every finite ξ ∈ ∗R, there exists a
unique real number r ∈ R (called the “standard part” of ξ) such that ξ ∼ r.

5 We say that ξ′ is the successor of ξ (or ξ is the predecessor of ξ′) if ξ < ξ′ and there
exist no elements ζ such that ξ < ζ < ξ′.

6 I.e., for all ξ < ζ in ∗R, there exist x ∈ ∗Q and y ∈ ∗R \ ∗Q such that ξ < x, y < ζ.
7 In fact, they hold in any non-archimedean field (the archimedean property is defined

in Example 1.18).
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Proof. The least upper bound r = sup{a ∈ R | a ≤ ξ} has the desired
property. a

The next interesting result shows that in a way the hyperrationals already
“incorporate” the real numbers (see e.g. [48] Thm. 4.4.4 and [15] Ch.II
Thm. 2).

Theorem 1.15. Let ∗Qb be the ring of finite hyperrationals, and let I be
the maximal ideal of its infinitesimals. Then R and ∗Qb/I are isomorphic
as ordered fields.

1.4. Correctly applying the transfer principle. From the examples
presented so far, one might (wrongly) guess that applying the transfer
principle merely consists in putting asterisks ∗ all over the place. It is not
so, because – as we already pointed out – only elementary sentences can
be transferred. We now give three relevant examples aimed to clarify this
matter.

Example 1.16. Recall the well -ordering property of N:
“Every nonempty subset of N has a least element”.

By applying the transfer principle to this formulation, we would get that
“Every nonempty subset of ∗N has a least element”. But this is clearly false
(e.g. the collection ∗N \ N of infinite hypernaturals has no least element,
because if ν is infinite, then ν − 1 is infinite as well). We reached a wrong
conclusion because we transferred a sentence which is not elementary (the
universal quantifier is not bounded). However, we can easily overcome this
problem by reformulating the well-ordering property as the following ele-
mentary sentence: “Every nonempty element of P(N) has a least element”,
where P(N) is the powerset of N. (Notice that the property “X has a least
element” is elementary, because it means: “there exists x ∈ X such that
for all y ∈ X, x ≤ y”.) We can now correctly apply the transfer and
get: “Every nonempty element of ∗P(N) has a least element”, where it is
intended that the ordering on ∗N is the hyper-extension of the ordering on
N. The crucial point here is that ∗P(N) is properly included in P(∗N) (see
Proposition 1.25 below).

Example 1.17. Recall the completeness property of real numbers:
“Every nonempty subset of R which is bounded above, has a l.u.b.”

As in the previous example, if we directly apply transfer to this formulation,
we reach a false conclusion, namely: “Every nonempty subset of ∗R which
is bounded above, has a l.u.b.” (e.g. the set of infinitesimals is bounded
above but has no least upper bound). Again, the problem is that the
sentence above is not elementary because it contains a quantification over
subsets. To fix the problem, we simply have to consider the powerset P(R)
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and reformulate: “Every nonempty element of P(R) which is bounded above
has a l.u.b.”. Thus, by the transfer principle, we have a least upper bound
for each upper-bounded element of ∗P(R) (which is a proper subset of
P(∗R), see Proposition 1.25 below).

As suggested by the last examples, restricting to elementary sentences is
not a limitation, because virtually all mathematical

properties can be equivalently rephrased in elementary terms.
Another delicate aspect that needs some caution, is the possibility of

misreading a transferred sentence, once all asterisks ∗ have been put in the
right place. A relevant example is given by the archimedean property.

Example 1.18. The archimedean property of real numbers can be ex-
pressed in this elementary form:

“For all positive x ∈ R, there exists n ∈ N such that n · x > 1”.
By transfer, we obtain: “For all positive ξ ∈ ∗R, there exists ν ∈ ∗N such
that ν · ξ > 1”. Notice that this sentence does not express the archimedean
property of ∗R, because the element ν could be an infinite hypernatural.

Clearly, the hyperreal field ∗R is not archimedean (in fact, an ordered field
is non-archimedean if and only if it contains non-zero infinitesimals). In
particular R and ∗R are not isomorphic. We remark that this phenomenon
of non-isomorphic mathematical structures that cannot be distinguished by
any elementary sentence, is indeed the very essence of nonstandard analysis
(and more generally, of model theory, a branch of mathematical logic).

1.5. Internal elements. We now introduce a fundamental class of ob-
jects in nonstandard analysis.

Definition 1.19. An internal object is any element ξ ∈ ∗X belonging to
some hyper-extension ∗X. An element ξ ∈ V of the nonstandard universe
is external if it is not internal.

Notice that all hyper-extensions ∗X are internal, because e.g. ∗X ∈ ∗Y ,
where Y = {X} is the singleton of X. We remark that in most foundational
approaches proposed in the literature, the collection of internal objects is
assumed to be transitive, i.e. if b ∈ B and B is internal, then b is internal
as well.8

The following useful theorem is a straightforward consequence of the
transfer principle and of the definition of internal object (see e.g. [13]
Prop. 4.4.14).

8 The matter of transitivity of the class of internal sets gives rise to interesting con-
siderations in the foundations of nonstandard set theories (cf. Hrbàc̆ek’s remarks in
Subsection 3.3 of [31].)
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Theorem 1.20 (Internal Definition Principle). If P (x, x1, . . . , xn) is an
elementary sentence and B,B1, . . . , Bn are internal objects, then also the
set {x ∈ B | P (x,B1, . . . , Bn)} is internal.

By direct applications of this principle, the following is proved.

Proposition 1.21.
1. The collection I of internal sets is closed under union, intersection,

set-difference, finite sets and tuples, Cartesian products, and under
images and preimages of internal functions;

2. For every standard set A, ∗P(A) = P(∗A)∩I is the set of all internal
subsets of ∗A;

3. For all standard sets A and B, ∗(BA) = (∗B
∗A) ∩ I is the set of all

internal functions from ∗A to ∗B;
4. If C,D ∈ I are internal, then P(C)∩I (the set of all internal subsets

of C) and (DC) ∩ I (the set of all internal functions from C to D)
are internal.

The notion of internal set is useful to correctly apply the transfer princi-
ple. In fact, any quantification on subsets or functions, can be transferred
to a quantification on internal subsets or internal functions, respectively.
For instance, let us go back to Examples 1.16 and 1.17. The well -ordering
of N is transferred to: “Every nonempty internal subset of ∗N has a least
element”. The completeness of R transfers to: “Every nonempty internal
subset of ∗R that is bounded above has a l.u.b.”.

Another example is the following.

Example 1.22. The well-ordering property of N implies that: “There
is no decreasing function f : N → N”. Then, by transfer, “There is no
internal decreasing function g : ∗N→ ∗N”.9

In general, we can state the following

Rule of the thumb. Properties about subsets or about functions of
standard objects, transfer to the corresponding properties about
internal subsets or internal functions, respectively.

We can use the above considerations to prove that certain objects are
external.

Example 1.23. The set ∗N \ N of the infinite hypernatural numbers is
external, because it has no least element. Also N is external, otherwise the
set-difference ∗N \N would be internal.10 The set of infinitesimal hyperreal

9We remark that there are models of hyper-methods where (external) decreasing
functions g : ∗N→ ∗N exist.

10 Here N ⊂ ∗N is seen as an element of the nonstandard universe.
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numbers is another external collection, because it is bounded above but
with no least upper bound.

An easy example of external function is the following.

Example 1.24. Let g : ∗N → ∗N be the function such that g(n) = n if
n ∈ N, and g(ν) = 0 if ν ∈ ∗N \ N. Then g is external, otherwise its range
N would be internal.

As a consequence of Proposition 1.21, the above Examples 1.23 and 1.24
show that ∗P(N) 6= P(∗N) and ∗(NN) 6= ∗N∗N. More generally, we have

Proposition 1.25.
1. Every infinite internal set has at least the size of the continuum, hence

it cannot be countable. In particular, for every infinite standard set
A, the inclusion ∗P(A) ⊂ P(∗A) is proper;

2. If the standard set A is infinite and B contains at least two elements,
then the inclusion ∗(BA) ⊂ ∗B

∗A is proper.

We warn the reader that getting familiar with the distinction between
internal and external objects is probably the hardest step in learning non-
standard analysis.

1.6. The saturation principle. The star-map and the transfer prin-
ciple suffice to develop the basics of nonstandard analysis, but for more
advanced applications a third tool is also necessary, namely:

Countable Saturation Principle. Suppose {Bn}n∈N ⊆ ∗A is
a countable family of internal sets with the “finite intersection
property”. Then the intersection

⋂
n∈NBn 6= ∅ is nonempty.

Recall that a family of sets B has the finite intersection property if⋂n
i=1 Bi 6= ∅ for all choices of finitely many B1, . . . , Bn ∈ B. In several

contexts, stronger saturation principles are considered where also families
of larger size are allowed. Precisely, let κ be a given uncountable cardinal.

Fundamental Tool # 3: κ-SATURATION PROPERTY.
Suppose B ⊆ ∗A is a family of internal subsets of some hyper-
extension ∗A, and suppose |B| < κ. If B has the “finite intersec-
tion property”, then

⋂B 6= ∅.
In this terminology, countable saturation is ℵ1-saturation. The next

example illustrates a relevant use of saturation.

Example 1.26. Let (X, τ) be a Hausdorff topological space with char-
acter κ, hence each point x ∈ X has a base of neighborhoods Nx of size
at most κ. Clearly, the family of internal sets Bx = {∗I | I ∈ Nx} has the
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finite intersection property. If we assume κ+-saturation,11 the intersection
µ(x) =

⋂
I∈Nx

∗I 6= ∅. In the literature, µ(x) is called the monad of x. No-
tice that µ(x)∩µ(y) = ∅ whenever x 6= y, since X is Hausdorff. Monads are
the basic ingredient in applying the hyper-methods to topology, starting
with the following characterizations (see e.g. [37] Ch.III):
• A ⊆ X is open if and only if for every x ∈ A, µ(a) ⊆ ∗A;
• C ⊆ X is closed if and only if for every x /∈ C, µ(x) ∩ ∗C = ∅;
• K ⊆ X is compact if and only if ∗K ⊆ ⋃

x∈K µ(x).

Sometimes in the literature, the following weakened version of saturation
is considered, where only families of hyper-extensions are allowed.

Definition 1.27. κ-enlarging property : Suppose F ⊆ A is a family of
subsets of some standard set A, and suppose that |F| < κ. If F has the
“finite intersection property”, then

⋂
F∈F

∗F 6= ∅.12
Notice that the κ+-enlarging property suffices to prove that the monads

µ(x) of the above Example 1.26 are nonempty.

§2. Ultrapowers and hyper-extensions. In this section we deal with
the connections between ultrapowers and the hyper-extensions of nonstan-
dard analysis. In particular, we will see that, up to isomorphisms, hyper-
extensions are precisely suitable subsets of ultrapowers, namely the proper
limit ultrapowers. This characterization theorem will be used in Part II of
this article to show that the given definitions actually yield models of the
hyper-methods.

2.1. Ultrafilters and ultrapowers. Recall that a filter F on a set I
is a nonempty family of subsets of I that is closed under intersections and
supersets, i.e.
• If A,B ∈ F then A ∩B ∈ F ;
• If A ∈ F and B ⊇ A, then also B ∈ F .
A typical example of filter on a set I is the Frechet filter Fr of cofinite

subsets.
Fr = {A ⊆ I | I \Aisfinite}.

Definition 2.1. An ultrafilter U on I is a filter that satisfies the addi-
tional property: A /∈ U ⇔ I \A ∈ U .

It is easily shown that ultrafilters on I are those non-trivial filters with
are maximal with respect to inclusion.13 As a consequence of the definition,

11 κ+ denotes the successor cardinal of κ. Thus |B| < κ+ is the same as |B| ≤ κ.
12 We remark that the enlarging property is strictly weaker than saturation, in the

sense that there are models of the hyper-methods where the κ-enlarging property holds
but κ-saturation fails.

13 By the trivial filter on I we mean the collection P(I) of all subsets of I.
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if a finite union A1 ∪ · · · ∪ An ∈ U belongs to an ultrafilter, then at least
one of the Ai ∈ U .

First examples are the principal ultrafilters Ui = {A ⊆ I | i ∈ A}, where
i is a fixed element of I. Notice that an ultrafilter is non-principal if and
only if it contains no finite sets (hence, if and only if it includes the Frechet
filter). The existence of non-principal ultrafilters is proved by a straight
application of Zorn’s lemma.

Given an ultrafilter U on the set I, consider the following equivalence
relation ≡U on functions with domain I:

f ≡U g ⇐⇒ {i ∈ I | f(i) = g(i)} ∈ U .

The ultrapower of a set X modulo U is the quotient set:

XI
U = {[f ]U | f : I → X}

where we denoted by [f ]U = {g ∈ XI | f ≡U g} the equivalence class of f .
When the ultrafilter U is clear from the context, we simply write [f ]. X
is canonically embedded into its ultrapower XI

U by means of the diagonal
map d : x 7→ [cx], where cx : I → X is the constant function with value x.

The ultrapower construction is commonly used to obtain models of hyper-
methods. Indeed, models of hyper-methods are fully characterized by
means the generalized notion of limit ultrapower (see Theorem 2.10 be-
low.)

Ultrafilters naturally arise in hyper-extensions.

Definition 2.2. Let X be any standard set, and let α ∈ ∗X. The ultra-
filter generated by α ∈ ∗X, is the following family of subsets of X:

Uα = {A ⊆ X | α ∈ ∗A}.
It is readily verified that Uα is actually an ultrafilter on X. Moreover,

Uα is non-principal if and only if α 6= ∗x for all x ∈ X.

2.2. Complete structures. In order to formulate the next results, we
need the

Definition 2.3. A X-complete structure is a system
A(X) = 〈XA; {FA | F : Xn → X}; {RA | R ⊆ Xn}〉

that consists of a superset XA of X, of an n-place function FA : (XA)n →
XA for each F : Xn → X, and of an n-place relation RA ⊆ (XA)n for each
R ⊆ Xn.

Ultrapowers and hyper-extensions of X provide natural examples of X-
complete structures.

Example 2.4. A crucial feature of ultrapowers of a given set X, is that
all functions F : Xn → X and all relations R ⊆ Xn can be naturally
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extended to functions F̃ : (XI
U )n → XI

U and relations R̃ ⊆ (XI
U )n, respec-

tively. Precisely, we set:
F̃ ([f1], . . . , [fn]) = [g] ⇔ {i ∈ I | F (f1(i), . . . , fn(i)) = g(i)} ∈ U

R̃([f1], . . . , [fn]) ⇔ {i ∈ I | R(f1(i), . . . , fn(i))} ∈ U .

(The above definitions are well-posed as a consequence of the properties of
filter.) If we identify every x ∈ X with its diagonal image d(x) ∈ XI

U , then
the ultrapower XI

U becomes a X-complete structure:

XI
U = 〈XI

U ; {F̃ | F : Xn → X}; {R̃ | R ⊆ Xn} 〉.
Example 2.5. Let 〈 ∗ ;U ;V 〉 be a model of hyper-methods, and take

any X ∈ U. If every x ∈ X is identified with ∗x ∈ ∗X, then
∗X = 〈 ∗X; {∗F | F : Xn → X}; {∗R | R ⊆ Xn} 〉

is a X-complete structure, called the hyper-structure induced by 〈 ∗ ;U ;V 〉.
Another important example is the following

Example 2.6. Let 〈 ∗ ;U ;V 〉 be a model of hyper-methods, take X ∈ U
and α ∈ ∗X. Define the subspace generated by α in ∗X as

Xα = {∗f(α) | f : X → X }.
Notice that, if F : Xn → X is any n-place function, and ∗fi(α) ∈ Xα for i =
1, . . . , n, then also the image ∗F (∗f1(α), . . . , ∗fn(α)) = ∗g(α) ∈ Xα, where
g is the function defined by x 7→ F (f1(x), . . . , fn(x)). Thus, by restricting
the structure ∗X of the example 2.5 above we obtain a X-complete structure

Xα = 〈Xα; {∗F ¹ Xα
n | F : Xn → X}; {∗R ∩Xα

n | R ⊆ Xn} 〉.
The natural notion of isomorphism for X-complete structures is the fol-

lowing:

Definition 2.7. Let A(X) and B(X) be X-complete structures. A bi-
jection Θ : XA → XB is an isomorphism of X-complete structures if for
every F : Xn → X, for every R ⊆ Xn, and for every x1, . . . , xn ∈ XA, the
following hold:

Θ(FA(x1, . . . , xn)) = FB(Θ(x1), . . . , Θ(xn)) and
(x1, . . . , xn) ∈ RA ⇔ (Θ(x1), . . . , Θ(xn)) ∈ RB.

In this case, we say that A(X) and B(X) are completely isomorphic.

A relevant example of isomorphic complete structures is given by the
next proposition, whose proof is straightforward from the examples above.

Proposition 2.8. Let 〈 ∗ ;U ;V 〉 be a model of hyper-methods, let X ∈
U, and pick α ∈ ∗X. Let Xα and Uα be the subspace and the ultrafilter
generated by α. Then the map Θ : Xα → XX

Uα
defined by Θ(∗f(α)) = [f ]Uα

is an isomorphism between the X-complete structures Xα and XX
Uα

.
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2.3. The characterization theorem. Hyper-extensions have an alge-
braic characterization as suitable subsets of ultrapowers. To this end, we
recall the following generalization of ultrapowers.

Definition 2.9. Let I be a set, U an ultrafilter on I and F a filter on
the product I×I. For every set X, the limit ultrapower XI

U |F is the subset
of the ultrapower XI

U that consists of all equivalence classes [f ] of functions
f : I → X that are “piecewise constant” with respect to F , i.e. such that
{(i, i′) ∈ I × I | f(i) = f(i′)} ∈ F .14 We say that the triple (I,U ,F) is
proper when the diagonal embedding d : N→ NI

U |F is not onto.15

Notice that, when F = P(I × I) is the trivial filter, then XI
U |F = XI

U .
Thus limit ultrapowers generalize ultrapowers. Similarly as ultrapowers,
also limit ultrapowers provide complete structures, according to the Exam-
ple 2.4above. The following characterization holds (cf. Theorem 3.4).

Theorem 2.10 (Keisler’s characterization). Let
?X = 〈 ?X; {?F | F : Xn → X}; {?R | R ⊆ Xn} 〉.

be a X-complete structure. Then the following are equivalent:
1. ?X = ∗X is induced by a model of hyper-methods 〈 ∗ ;U ;V 〉;
2. ?X is isomorphic to some limit ultrapower XI

U |F where (I,U ,F) is
proper;

3. A is properly included in ?A for all infinite A ⊆ X, and the transfer
principle holds: If σ is an elementary formula involving functions
F1, . . . , Fm and relations R1, . . . , Rk, then, for all x1, . . . , xn ∈ X,

σ(x1, . . . , xn, F1, . . . , Fm, R1, . . . , Rk) ⇔
σ(x1, . . . , xn, ?F1, . . . , ?Fm, ?R1, . . . , ?Rk).

The above result was proved by H.J. Keisler in the context of super-
structures, as an application of his characterization theorem of complete
extensions as (isomorphic copies of) limit ultrapowers (see [13], Thms.
6.4.10 and 6.4.17). An alternative proof of this result, based on the sub-
spaces Xα and the ultrafilters Uα generated by α, can be reconstructed
from arguments in [20, 26], and will appear in full details in [9].

Part II – The Eightfold Path

§3. The superstructure approach. The approach that is most com-
monly adopted by practitioners of nonstandard methods is the so-called
superstructure approach. It was first elaborated by A. Robinson jointly

14 Limit ultrapowers have been introduced in the early sixties by H.J. Keisler [33].
15 Equivalently, when the diagonal embedding d : A → AI

U |F is not onto for any

infinite A.
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with E. Zakon in [45]. For a detailed exposition of this approach, we refer
to Section 4.4 of [13], where all the proofs omitted here can be found.

By the axioms of Zermelo-Fraenkel set theory ZFC, all existing “objects”
are sets. As already pointed out in the Footnote 2, numbers, ordered tu-
ples, sets, Cartesian products, relations, functions, as well as virtually all
mathematical objects, can in fact be coded as sets. Following the common
practice with superstructures, here we adopt as a foundational framework
the (slightly) modified version of ZFC that allows also the existence of
“atoms”. (By atoms we mean objects that can be elements of sets but are
not sets themselves, and are “empty” with respect to ∈.) This is consis-
tent with everyday practice, where one never considers, say, π or Napier’s
constant e as sets.

3.1. The definitions. The basic notion is the following.

Definition 3.1. Let X be a set of atoms. The superstructure over X is
the increasing union

V (X) =
⋃

n∈N Vn(X)
where V0(X) = X and, by induction, the (n + 1)-th stage Vn+1(X) =
Vn(X) ∪ P(Vn(X)) adds all subsets of the n-th stage. It is assumed that
(a copy of) the natural numbers N ⊆ X.16

Notice that superstructures are suitable to formalize the notion of uni-
verse of Definition 1.1. Suppose we want to investigate some mathematical
object Z. Then, all what is needed in the study of Z belongs to any super-
structure V (X), provided X includes (a copy of) Z. E.g. in real analysis,
the real functions, the usual spaces of functions and functionals, the norms
and so forth, as well as the involved topologies, are all elements of V (R).
The point is that superstructures are closed under all the usual mathemat-
ical constructions. Namely, if A, B ∈ V (X) are sets, then the union A∪B,
the intersection A ∩ B, the set-difference A \ B, the ordered pair (A,B),
the Cartesian product A×B, the set BA of all functions from A to B, any
n-place relation R on A, the powerset P(A) ∈ V (X), etc., all belong to
V (X).

The following definition is the one most commonly adopted by practi-
tioners of nonstandard analysis.

Definition 3.2 ([13] §4.4). A superstructure model of (nonstandard or)
hyper-methods is a triple 〈∗ ; V (X) ; V (Y )〉 where:

1. V (X) and V (Y ) are superstructures;

16 We remark that superstructures V (X) over sets of atoms can be also implemented
in the “pure” set theory ZFC. This can be done by taking X as a set of nonempty sets
x that “behave” as atoms with respect to V (X), i.e. such that x ∩ V (X) = ∅ (see [13]
§4.4, where such X are called base sets).
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2. ∗X = Y ;
3. ∗n = n for all n ∈ N, and N is properly included in ∗N;
4. ∗ : V (X) → V (Y ) satisfies the transfer principle.

We propose here a modified version of the above definition, where a single
superstructure V (X) is considered instead of two.17

Definition 3.3. We say that a triple 〈∗ ; V (X) ; V (X)〉 is a single su-
perstructure model of (nonstandard or) hyper-methods if:

1. V (X) is a superstructure;
2. ∗X = X;
3. ∗n = n for all n ∈ N, and N is properly included in ∗N;
4. ∗ : V (X) → V (X) satisfies the transfer principle.

One advantage of this definition is that the traditional distinction be-
tween standard and nonstandard objects is overcome. Each object under
consideration is in fact standard, and one can consider its hyper-extension.
For instance, in this context, one could take the set of hyper-hypernatural
numbers ∗∗N, the set of hyper-infinitesimals, and so forth. Moreover, all pos-
sible hyper-extensions are obtained in some single superstructure model, as
shown by the following theorem. (The proof is obtained by suitably modi-
fying the construction in [3]. See also [9].)

Theorem 3.4. Let X be a set, and let 〈? ; U ; V〉 be any model of hyper-
methods with X ∈ U. Then there exists a single superstructure model
of hyper-methods 〈∗ ; V (X ′) ; V (X ′)〉 with X ⊆ X ′ and such that the two
X-complete structures ?X and ∗X are isomorphic.

3.2. A characterization theorem. The following result shows that
the transfer principle can be equivalently reformulated as a closure property
of the star-map under basic set operations. It can be used as an alternative
definition that may be more appealing to those mathematicians who are not
familiar with the notion of elementary sentence. A proof can be obtained
by adapting the arguments used to prove Theorem 3.2. of [45].

Theorem 3.5. A map ∗ : V (X) → V (Y ) between superstructures satis-
fies the transfer principle if and only if the following finite list of properties
is satisfied for all A,B ∈ V (X):18

1. ∗{A,B} = {∗A, ∗B};
2. ∗(A ∪B) = ∗A ∪ ∗B;

17 This idea was first persued by V. Benci in [3].
18 This list could easily be reduced (some of the itemized properties can be derived

from the others). However, for the sake of completeness and clarity, we decided to
include all basic operations. Clearly, with the exception of item 1, A and B are assumed
to be sets.



THE EIGHTFOLD PATH TO NONSTANDARD ANALYSIS 21

3. ∗(A ∩B) = ∗A ∩ ∗B;
4. ∗(A \B) = ∗A \ ∗B;
5. ∗(A×B) = ∗A× ∗B;
6. ∗(

⋃
A) =

⋃ ∗A, i.e. ∗{x | ∃y ∈ A. x ∈ y} = {ξ | ∃η ∈ ∗A. ξ ∈ η};
7. ∗{(x, x) | x ∈ A} = {(ξ, ξ) | ξ ∈ ∗A};
8. ∗{(x, y) | x ∈ y ∈ A} = {(ξ, η) | ξ ∈ η ∈ ∗A};
9. ∗{x | ∃y. (x, y) ∈ A} = {ξ | ∃η.(ξ, η) ∈ ∗A};

10. ∗{y | ∃x. (x, y) ∈ A} = {η | ∃ξ. (ξ, η) ∈ ∗A};
11. ∗{(x, y) | (y, x) ∈ A} = {(ξ, η) | (η, ξ) ∈ ∗A};
12. ∗{(x, y, z) | (x, z, y) ∈ A} = {(ξ, η, ζ) | (ξ, ζ, η) ∈ ∗A}.

§4. The algebraic approach. We think there is a very simple “path”
to nonstandard analysis, which is suitable to students who know the basics
of elementary algebra. It is an algebraic approach based on the existence
of a “special” homomorphism of algebras. Precisely:

Definition 4.1. The map J : RN → R is a hyper -homomorphism19 if
the following conditions are satisfied:

1. R is a superfield of the real numbers R.
2. J : RN → R is a surjective homomorphism of R-algebras, where RN

is the ring of sequences ϕ : N→ R, with operations defined pointwise.
3. The kernel of J is non-principal.

4.1. The star-map. We now sketch how to obtain a model of hyper-
methods out of an hyper-homomorphism J : RN →R.

For convenience, without loss of generality we assume that R is a set of
atoms. Let V (R) =

⋃
k∈N Vk(R) be the superstructure overR, and consider

the family of sequences F =
⋃

k∈N(Vk+1(R) \ Vk(R))N. Inductively extend
the map J to a map J̃ : F ∪RN → V (R) as follows.

J̃(ϕ) =
{

J(ϕ) if ϕ : N→R
{J̃(ψ) | ∀n . ψ(n) ∈ ϕ(n)} if ϕ : N→ (Vk+1(R) \ Vk(R))

Let cA ∈ F ∪ RN denote the constant sequence with value A ∈ V (R).
Define the map ∗ : V (R) → V (R) by setting ∗A = J̃(cA) for every A ∈
V (R).

Notice that, for any ξ ∈ R, we have ∗ξ = J̃(cξ) = J(cξ) ∈ R. In
particular, if x ∈ R, then ∗x = J(cx) = J(x · c1) = x · J(c1) = x · 1 = x.
Moreover, for every set A ∈ V (R), we have that ∗A = {J̃(ϕ) | ϕ ∈ AN}.
A suitable modification of arguments in [7] proves that the map ∗ satisfies
the transfer principle, as well as the other properties of Definition 3.3:

19 This notion of hyper-homomorphism is different from that given in [7].
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Theorem 4.2. The triple 〈∗ ;V (R) ; V (R)〉 is a single superstructure
model of hyper-methods that satisfies the countable saturation property.

More details can be found in [9].
4.2. Construction of a hyper-homomorphism. We define by trans-

finite induction an increasing κ-sequence of fields 〈Rβ | β < κ〉 and an
increasing κ-sequence of maps 〈Jβ | β < κ〉 such that, for all β < κ,
Jβ : (Rβ)N → Rβ+1 is a surjective homomorphism of R-algebras. If the
length κ of the chains has uncountable cofinality, e.g. if κ = ω1, then⋃

β<κ

(Rβ)N = (
⋃

β<κ

Rβ)N.

Thus, by taking R =
⋃

β<κRβ and J =
⋃

β<κ Jβ , the conditions of Defini-
tion 4.1 are fulfilled.

The construction is the following. Fix a non-principal maximal ideal m
in RN. Notice that, for every superfield K of R, the ideal generated by
m in KN is a non-principal maximal ideal mK . Moreover if K ⊆ K ′ then
mK = KN ∩mK′ .20 Now put
• R0 = R and, for limit γ, Rγ =

⋃
β<γ Rβ .

• For all β < κ, let mβ be the maximal ideal generated by m in (Rβ)N.
Put Rβ+1 = (Rβ)N/mβ , and for γ < β and ϕ ∈ (Rγ)N identify the
classes of ϕ modulo mγ and modulo mβ , so as to get Rγ+1 ⊆ Rβ+1.

• For every β < κ, let Jβ : (Rβ)N → Rβ+1 be the canonical homomor-
phism onto the quotient.

The κ-chains 〈Rβ | β < κ〉 and 〈Jβ | β < κ〉 satisfy the desired properties.
4.3. A characterization of the hyperreal numbers. A modified no-

tion of hyper-homomorphism is suitable to characterize all hyper-extensions
∗R of the real numbers.

Definition 4.3. A composable ring of real-valued functions is a subring
Ψ ⊆ RI (where I is any set) that is closed under compositions, i.e. if ψ ∈ Ψ
and f : R→ R, then f ◦ ψ ∈ Ψ.21

Similarly to hyper-homomorphisms, starting from any surjective homo-
morphism of R-algebras J : Ψ → K, where K is a field, one can construct
a superstructure model of hyper-methods 〈∗; V (R); V (K)〉, according to
Definition 3.2. In particular, K = ∗R is a set of hyperreal numbers. More-
over, all possible sets of hyperreals are obtained in that way. namely:

Theorem 4.4 ([8], Thm. 3.3). A field K = ∗R is a set of hyperreal num-
bers if and only if it is the homomorphic image of some composable ring of
real-valued functions.

20 In fact mK = {ψ ∈ KN | ∃ϕ ∈ m (ψ(n) = 0 ⇐⇒ ϕ(n) = 0) }.
21 As usual, the ring operations on RI are defined pointwise.
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§5. The nonstandard set theory ∗ZFC. In this section we present
the axiomatic system ∗ZFC that incorporates the hyper-methods in the full
generality of set theory.22 Precisely, ∗ZFC generalizes the superstructure
approach of Section 3, by taking as universe the universal class V of all
sets. This general approach is aimed to include the methods of nonstandard
analysis jointly with the usual principles of mathematics, within a unified
axiomatic system. In the resulting nonstandard set theory, there is no need
to consider different universes to treat different problems (as it is customary
with superstructures). In the universal class V all mathematical entities
coexist, and the distinction between standard and nonstandard objects as
members of different universes is overcome.

5.1. The first three groups of axioms. The theory ∗ZFC presented
here consists of five groups of axioms, formulated in the usual first-order
language of set theory, with an additional function symbol ∗ : V → V for
the star-map. It is a modified version of the theory presented in [18], to
which we refer for details and proofs. The axioms of ∗ZFC are the following.

Axiom 1. ZFC−, i.e. all axioms of Zermelo-Fraenkel set theory with
choice, with the exception of the axiom of regularity. The separation and
collection schemata are assumed also for those formulas where the symbol
∗ occurs.23

Axiom 2. The class I = {x | ∃y. x ∈ ∗y} of internal objects is transitive,
i.e. elements of internal sets are internal.

Axiom 3. The star-map ∗ : V → V preserves all Gödel’s operations as
itemized in Theorem 3.5.

By Axiom 1, we can say that all arguments of ordinary mathematics
can be formalized within ∗ZFC.24 Axiom 2 postulates a convenient (and
natural) property of internal sets (cf. Footnote 8). Axiom 3 is a convenient
formulation of the transfer principle. In fact, by assuming Axioms 1-2,
Axiom 3 holds if and only if the star-map ∗ : V → V satisfies the transfer

22 The theory presented here is just one of several nonstandard set theories that have
been proposed over the last thirty years. For an overview of this interesting subject, we
refer the reader to the survey by K. Hrbàc̆ek in this volume. See also [16].

23 Recall the axiom schema of collection: For every formula σ(x, y),

(∀x ∈ A∃y σ(x, y)) → (∃B ∀x ∈ A ∃y ∈ B σ(x, y)).

In ZF, collection and replacement are equivalent. In a non-wellfounded context, the
latter axiom is weaker than the former. Notice that collection rather than replacement
is needed in several mathematical applications.

24 Actually, the axiom of regularity (also known as foundation) is rarely used (if
ever) in ordinary mathematics beyond set-theory itself. On the other hand, regularity
cannot be assumed in nonstandard set theory, since, e.g., the hyper-extension ∗ω of
von Neumann natural numbers is necessarily non-wellfounded. (All set theoretic results
depending on regularity can be reformulated as properties of wellfounded sets.)
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principle.(See the similar Theorem 3.5 in the framework of superstructures.)
As a consequence, the triple 〈 ∗ ; V ; V 〉matches the Fundamental Definition
of model of hyper-methods given in Section 1.

5.2. Saturation. A core problem every nonstandard set theory has to
face is the so-called Hrbàc̆ek paradox (first presented in [30]), namely the
inconsistency of the hyper-methods in full set theory, in the presence of
unlimited levels of saturation (or even of enlarging property). E.g., |∗N|+-
saturation fails necessarily, because {∗N\{ν} | ν ∈ ∗N} is a family of internal
sets, with the finite intersection property, that has empty intersection. Most
nonstandard set theories avoid this inconsistency by weakening or giving
up with some set theoretic axioms, such as the power-set axiom, or the
replacement schema, or the axiom of choice. The theory ∗ZFC postulates all
usual principles of set theory, and overcomes Hrbàc̆ek paradox by restricting
to “definable saturation”.

Axiom 4. The κ-saturation property holds for all “∈-definable” cardinals
κ. (See [18] for a precise formulation.)

We remark that all cardinals that are used in practice, i.e. those cardinals
that are “explicitly mentioned” (e.g. 17, ω, ℵ13, the first inaccessible car-
dinal, etc.) are “definable” by some elementary formula in the ∈-language
of set theory. Thus, say, the ℵω1 -saturation property holds in ∗ZFC. As a
result, roughly speaking we can say that ∗ZFC retains the flavour of unlim-
ited saturation. More precisely, let P (x) be any property that is expressed
in elementary form without using the symbol ∗. Suppose that, for every
cardinal κ, κ-saturation implies P (a) for every set a of cardinality less than
κ. Then we can conclude rightaway that P (a) is proved for all a. In fact,
by assuming the contrary, the least size κ of a counter-example b would be
an “∈-definable” cardinal. Then κ+-saturation would hold, contradicting
the failure of P (b).

The following is a typical example.

Example 5.1. The characterization of compactness for a topological
space X mentioned in Example 1.26, is proved as an application of the
κ+-enlarging property, with κ the size of a base of neighborhoods of x, for
every x ∈ X. In particular, |X|+-saturation suffices to prove the following.

“Let (X, τ) be a Hausdorff topological space. Then X is compact
if and only if ∗X =

⋃
x∈X µ(x), where µ(x) is the monad of x”.

Making use of this characterization, one can produce a nice and short
“nonstandard” proof of Tychonoff theorem (see e.g. [37] III.2.7). Precisely,
the following is proved:

“For all families {Xi : i ∈ I} of compact topological Hausdorff
spaces with cardinalities |I|, |Xi| < κ, the product space

∏
i Xi

is compact”.
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By the above considerations, we can thereby conclude that Tychonoff the-
orem is proved for all topological Hausdorff spaces (without restrictions on
cardinalities).

5.3. Foundational remarks. The last axiom of ∗ZFC is a weak form
of regularity that can be retained in this context:

Axiom 5. The universal class is the increasing union of an ordinal-
indexed sequence of sets V =

⋃
α Wα, inductively defined by W0 = ∅,

Wα+1 = P(Wα ∪ ∗Wα), and Wα =
⋃

γ<α Wγ for limit α.

So V is arranged in a Von Neumann-like cumulative hierarchy, where ev-
ery set is obtained from the empty set by iterating powersets and hyper-
extensions. This “minimality” axiom has purely set theoretic interest, but
it has no effects on the practice of hyper-methods.25

It is an interesting fact (proved in [18]) that, notwithstanding the appar-
ent strength of ∗ZFC, an ∈-sentence σ is a theorem of ZFC if and only if its
relativization σWF to the class of wellfounded sets is a theorem of ∗ZFC. It
follows that the two theories ZFC and ∗ZFC are equiconsistent.

§6. The Alpha Theory. This approach is grounded on the introduc-
tion of a new mathematical object, called α. We can think of α as an “ideal”
(infinitely large) natural number added to N, in a similar way as the imag-
inary unit i can be seen as a new ideal number added to the real numbers
R. We proceed axiomatically. First, we postulate that all N-sequences can
be extended so as to take an “ideal” ultimate value at α. Such ideal values
are then ruled by four properties, all expressed in elementary terms.

In the following, all “usual” principles of mathematics are implicitly
assumed, in the form of Zermelo-Fraenkel set theory without regularity.26

Moreover, following a common practice, we allow a set of atoms A that
includes all natural numbers. The proofs of all results stated in this section
can be found in [5].

6.1. The axioms. The Alpha-Theory consists of five axioms as given
below.27 By sequence we mean any function whose domain is the set N of
natural numbers.

25 This idea of a “minimality” axiom was first introduced in [19].
26 As we are treating the hyper-methods in the generality of full set theory, the

regularity axiom cannot be assumed (cf. Footnote 24).
27 The axioms α1-α5 are formulated “informally”. A rigorous presentation of the

Alpha-Theory can be given as a nonstandard set theory in the first-order language that
consists of the membership relation symbol ∈, of a unary relation symbol A for atoms,
and of a function symbol J . In fact, by denoting J(ϕ) = ϕ[α] for sequences ϕ, axioms
α1-α5 are easily rephrased in this formal language (cf. §6 of [5]).
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Axiom α1. (Extensions). Every sequence ϕ is uniquely extended to N ∪
{α}. The corresponding value at α is denoted by ϕ[α] and called the value
of ϕ at “infinity”.

Notice that we do not assume ϕ[α] ∈ A when ϕ : N → A. In fact, in
general, this will not be the case. The next axiom gives a natural property
of “coherence”:

Axiom α2. (Compositions). If ϕ and ψ are sequences and f is any func-
tion such that both compositions f ◦ ϕ and f ◦ ψ are defined, then

ϕ[α] = ψ[α] ⇒ (f ◦ ϕ)[α] = (f ◦ ψ)[α].

The remaining three axioms rule the (possible) values at infinity.
Axiom α3. (Atoms).

- If ϕ(n) ∈ A is an atom for all n, then ϕ[α] ∈ A is an atom as well.
- If ck is the constant sequence with value k ∈ N, then ck[α] = k.
- If ıN : N→ N is the identity sequence on N, then ıN[α] = α /∈ N.

Axiom α4. (Sets).
- If c∅ is the constant sequence with value ∅, then c∅[α] = ∅.
- If ϕ is a sequence of nonempty sets, then

ϕ[α] = {ψ[α] | ∀n . ψ(n) ∈ ϕ(n) }.
Axiom α5. (Pairs).

- If ϕ(n) = {ψ(n), ϑ(n)} for all n ∈ N, then ϕ[α] = {ψ[α], ϑ[α]}.
Thus, for natural numbers, the notions of constant sequence and identity

sequence are preserved at infinity. The condition α /∈ N simply says that
the ideal number α is actually a new number. Notice that ıN provides a
first example of a sequence ϕ such that ϕ[α] /∈ Range(ϕ).

The Axiom α4 postulates that the membership relation is preserved at
infinity. Besides, all elements of ϕ[α] are obtained as values at infinity
of sequences which are pointwise members of ϕ. In particular, we have
the “transitivity” property that elements of values at infinity are values
at infinity. The last Axiom α5 gives the ”expected” values at infinity
to sequences of pairs. For instance, suppose that χ : N → {0, 1} is a
characteristic function. Then this axiom guarantees that either χ[α] = 0
or χ[α] = 1.

As a straight consequence of the axioms, two sequences that are “even-
tually” equal (i.e. equal for all but finitely many n) take equal values at
infinity. Similarly, if two sequences are “eventually” different, then they
take different values at infinity (see [5], Prop. 1.3). Moreover all basic set-
operations (with the exception of power-set) are preserved at infinity ([5],
Prop. 1.1). E.g., if ϕ(n) = ψ(n) ∪ ϑ(n) for all n, then ϕ[α] = ψ[α] ∪ ϑ[α],
and similarly for unions, set-differences, ordered pairs, Cartesian products,
etc.
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6.2. The star-map. We can now define hyper-extensions of all objects,
namely:

Definition 6.1. The hyper -extension ∗A of an object A is the value at
infinity of the constant sequence cA : n 7→ A, i.e. ∗A = cA[α].

A few remarks about the above definition.

• If A is any nonempty set, ∗A = {ϕ[α] | ϕ ∈ AN }. In particular,
internal objects are precisely the values at infinity of sequences.

• N is properly included in ∗N. In fact, by Axiom α3, ∗n = n for all
n ∈ N, and α ∈ ∗N \ N.

• Recall that in a set-theoretic framework, any function f : A → B is
identified with its graph {(a, f(a)) | a ∈ A} ⊆ A × B. Consistently,
the hyper-extension ∗f defined as above, is actually a function from ∗A
to ∗B. More precisely, for every sequence ϕ ∈ AN, ∗f(ϕ[α]) = (f ◦ϕ)[α]
(see [5], Prop. 2.3).

• The value at infinity ϕ[α] of a sequence ϕ, is actually the value at α of
the hyper-extension ∗ϕ, because ∗ϕ(α) = ∗ϕ(ıN[α]) = (ϕ◦ıN)[α] = ϕ[α].

The main results of the Alpha Theory can be summarized as follows:

Theorem 6.2 ([5], Thms. 6.2, 6.7, and 4.4). Let V be the universal class
of all objects (sets and atoms). Then

1. The map ∗ : V → V satisfies the transfer principle, hence the triple
〈 ∗ ; V ; V 〉 matches the Fundamental Definition of model of hyperme-
thods, as given in Section 1;

2. For every X, the X-complete structure 〈 ∗X; {∗F | F : Xn → X}; {∗R |
R ⊆ Xn}〉 is isomorphic to the ultrapower XN

Uα
modulo the ultrafilter

Uα = {A ⊆ N | α ∈ ∗A} generated by α;
3. The countable saturation property holds.

6.3. Cauchy’s principles. Cauchy’s conception of an infinitesimal as
a “variable converging to zero” has been interpreted as “infinitesimal hy-
perreal number” (see e.g. Lakatos’ article [36]). The Alpha Theory seems
an appropriate framework for accomodating this idea. Let us consider the
following principles:

Cauchy’s Infinitesimal Principle (CIP): Every infinitesimal number
ε ∈ ∗R is the value at infinity of some infinitesimal real sequence ϕ
(i.e. ε = ϕ[α] where limn→∞ ϕ(n) = 0).

Strong Cauchy’s Infinitesimal Principle (SCIP): Every hyperreal
number is the value at infinity of some monotone sequence of reals.

Within the Alpha Theory AT, the former principle CIP holds if and only
if the ultrafilter Uα = {A ⊆ N | α ∈ ∗A} is a P -point, whereas the latter
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principle SCIP holds if and only if Uα is selective.28 As a consequence, the
theory AT+SCIP is consistent (provided ZFC is), but not even CIP can be
proved by AT. See the discussion in Section 6.4 of [5].

§7. The topological approach. A main feature shared by compactifi-
cations and completions in topology and by nonstandard models of analysis
is the existence of a “canonical” extension ?f : ?X → ?X for each function
f : X → X. Given an arbitrary set X, we consider here a topological ex-
tension of X as a sort of “completion” ?X, where the “?” operator provides
a distinguished continuous extension of each function f : X → X. We
shall see that the “?” operator can also be extended to subsets of X as the
closure operator. A detailed exposition of this topic has been given in [20].

7.1. Topological extensions. We introduce our fundamental defini-
tion:

Definition 7.1. Let X be a dense subspace of the T1 topological space29

?X. Assume that a distinguished continuous extension ?f : ?X → ?X is
associated to every function f : X → X. We say that ?X is a topological
extension of X if:
(c) ?g ◦ ?f = ?(g ◦ f) for all f, g : X → X, and
(i) if f(x) = x for all x ∈ A ⊆ X, then ?f(ξ) = ξ for all ξ ∈ A.

The topological extension ?X of X is a topological hyperextension30 if
(a) for all f, g : X → X

f(x) 6= g(x) for all x ∈ X =⇒ ?f(ξ) 6= ?g(ξ) for all ξ ∈ ?X;
(p) for all ξ, η ∈ ?X there exist ζ ∈ ?X and p, q : X → X such that

ξ = ?p(ζ) and η = ?q(ζ).

Notice that, if a topological extension ?X of X is Hausdorff, then ?f is the
unique continuous extension of f , for X is dense. Therefore properties (c)
and (i) are automatically satisfied, and our definition would have required

28 Many equivalent properties can be used in defining P -points and selective (or
Ramsey) ultrafilters over N (see, e.g. [11] or [12]). Here the following are pertinent:
- U is a P -point if and only if every f : N→ N is either equivalent mod U to a constant
or to a finite-to-one function.
- U is selective if and only if every f : N → N is either equivalent mod U to a constant
or to a 1-1 function.

Clearly selective ultrafilters are P -points, but, surprisingly enough, the converse im-
plication is independent of ZFC. E.g., assuming the Continuum Hypothesis, there are
plenty of selective and non-selective P -points. On the other hand, there are models of
ZFC without P -points, models with many P -points but no selective ultrafilters, and even
models with a unique (up to isomorphism) P -point that is selective (see [47]).

29 Recall that a topological space is T1 if its points are closed.
30 Topological hyperextensions are indeed hyper-extensions in the sense of Section 2,

by Theorem 7.3 below.
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only (a) and (p) (see [10], where Hausdorff topological extensions have
been introduced and studied). However considering only Hausdorff spaces
would have turned out too restrictive. In fact, Hausdorff hyperextensions
of X amount to a very restricted class of subspaces of the Stone-Čech
compactification βX of the discrete space X, as characterized in Theorem
7.4 below. Moreover, according to Theorem 7.5, no Hausdorff topological
hyperextension can be (2ℵ0)+-enlarging. Last but not least, the existence
of such extensions, although consistent, cannot be proved in ZFC alone (see
[20] and [2]). These are the reasons why we only require that topological
extensions be T1 spaces.

Topological extensions already satisfy several important cases of the
transfer principle. E.g., if f is constant, or injective, or surjective, then
so is ?f . Moreover the extension of the characteristic function of any sub-
set A ⊆ X is the characteristic function of the closure A of A in ?X, and
so we can put ?A = A ([20], Lemmata 1.2 and 1.3). However other basic
cases of the transfer principle may fail, because topological extensions em-
brace at once all possible nonstandard models together with more general
structures. In order to obtain the full transfer principle, we postulated
the additional properties (a) and (p), called analiticity and coherence in
[20]. The property (a) isolates a fundamental feature that marks the differ-
ence between nonstandard extensions and ordinary continuous extensions
of functions: “disjoint functions have disjoint extensions”.31 The prop-
erty (p) provides a sort of “internal coding of pairs”, useful for extending
multivariate functions “parametrically”: this possibility is essential to get
hyper-extensions in the sense of Section 1.32 Compare with the well known
fact that there are functions of two variables that do not have continuous
extensions to the Stone-Čech compactification.

Since a finite set cannot have nontrivial topological extensions, we are
interested only in infinite sets, and for convenience we stipulate that N ⊆ X.
It is always assumed by nonstandard analysts that all infinite sets are

31 Clearly (a) follows from the principle “standard functions behave like germs”

(e) for all f, g : X → X and all ξ ∈ ?X
?f(ξ) = ?g(ξ) ⇐⇒ ∃A ⊆ X. ξ ∈ A & ∀x ∈ A f(x) = g(x),

which can be rephrased as a sort of “preservation of equalizers”, namely

{ξ ∈ ?X | ?f(ξ) = ?g(ξ)} = ?{x ∈ X | f(x) = g(x)}.
32 Notice that the properties (i), (c), (a), (e) are obviously instances of the transfer

principle. This could seem prima facie not to be the case of the condition (p). On the
contrary, a strong uniform version of that property can be obtained by transfer. Simply
compose any bijection δ : X → X×X with the ordinary projections π1, π2 : X×X → X,
and obtain “projections” p, q : X → X satisfying:

for all ξ, η ∈ ∗X there exists a unique α ∈ ∗X such that ∗p(α) = ξ, ∗q(α) = η.
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indeed extended. Call proper those topological extensions where A = ?A if
and only if A is finite. We can give three topological characterizations of
proper extensions.

Theorem 7.2 ([20], Thm. 6.4). Let ?X be a topological extension of X.
Then ?X is proper if and only if any of the following equivalent properties
is fulfilled:
(i) ?X is Weierstraß;33

(ii) N is not closed in ?X;
(iii) there exists a sequence of clopen subsets of ?X whose intersection is

not open.

As remarked in [20], the property (iii) fails if and only if X carries
a countably complete (σ-additive) ultrafilter. Hence nontrivial improper
extensions require uncountable measurable cardinals.

7.2. Topological hyperextensions are hyper-extensions. The in-
terest in topological hyperextensions lies in the fact that combining the
“analytic” property (a) with the “pair-coding” condition (p), yields the
strongest transfer principle, thus providing hyper-extensions in the sense
of Section 2. In order to apply Theorem 2.10, one has to extend all n-place
functions and relations. The ratio of considering only unary functions lies
in the following facts that hold in every topological hyperextension ?X of
X (see Section 5 of [20]).

1. For all ξ1, . . . , ξn ∈ ?X there exist p1, . . . , pn : X → X and ζ ∈ ?X
such that ?pi(ζ) = ξi for i = 1, . . . , n.

2. Let p1, . . . , pn, q1, . . . , qn : X → X and ξ, η ∈ ?X satisfy ?pi(ξ) =
?qi(η) for i = 1, . . . , n. Then, for all F : Xn → X

?(F ◦ (p1, . . . , pn))(ξ) = ?(F ◦ (q1, . . . , qn))(η).

It follows that there is a unique way of assigning an extension ?F to every
function F : Xn → X in such a way that all compositions are preserved:34

?F (ξ1, . . . , ξn) = ?(F ◦(p1, . . . , pn))(ζ), where ?pi(ζ) = ξi for i = 1, . . . , n.35

By using the characteristic functions in n variables one can assign an
extension ?R also to all n-place relations R on X. Thus one obtains a
X-complete structure ?X = 〈 ?X; {?F | F : Xn → X}; {?R | R ⊆ Xn} 〉.

33 A topological space is Weierstraß if all continuous real-valued functions are
bounded. Hausdorff spaces that are Weierstraß are called pseudocompact (see [25]).

34 I.e. for all m, n ≥ 1, for all F : Xn → X, and for all G1, . . . , Gn : Xm → X,
?F ◦ (?G1, . . . ?Gn) = ?(ϕ ◦ (ψ1, . . . , ψn)).

35 Caveat : For all n > 1 there are functions of n variables whose extensions cannot be
continuous w.r.t. the product topology. This fact marks an important difference between
the topological notion of compactification (where, e.g., βN × βN is quite different from
β(N×N)) and the notion of nonstandard model (where ∗N×∗N is identified with ∗(N×N)).
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Theorem 5.5 of [20] states that the transfer principle holds, hence points
1 and 3 of Theorem 2.10 yield that every topological hyperextension ?X is
a (nonstandard) hyper-extension.

Every topological extension ?X being a T1 space, we know that all sets
of the form E(f, η) = {ξ ∈ ?X | ?f(ξ) = η}, for f : X → X, η ∈ ?X, are
closed in ?X. The (arbitrary) intersections of finite unions of such sets are
the closed sets of a topology, which is the coarsest T1 topology on ?X that
makes all functions ?f continuous. We call it the Star topology of ?X, and
we say that ?X is a star extension if it has the Star topology. Vice versa,
one can topologize any hyper-extension ∗X of X with the corresponding
Star topology: then X is dense in ∗X. Summing up we have:

Theorem 7.3 ([20], Thm. 3.2). Any (nonstandard) hyper-extension ∗X
of X, when equipped with the Star topology, becomes a topological star hy-
perextension of X. Conversely, any topological hyperextension ?X of X is a
(nonstandard) hyper-extension, possibly endowed with a topology finer than
the Star topology.

Whenever the interest focuses on the “nonstandard behaviour” of the
topological extension ?X, one can therefore assume w.l.o.g. to deal with a
star extension.36

7.3. Hausdorff topological extensions. Any topological extension
of X is canonically mappable into the Stone-Čech compactification βX of
the discrete space X.37 Given a topological extension ?X of X, define the
canonical map υ : ?X → βX by υ(ξ) = Uξ = {A ⊆ X | ξ ∈ ?A}, which is
an ultrafilter over X. Then we have ([20], Thm. 2.1):

1. The canonical map υ : ?X → βX is the unique continuous extension
of the embedding e : X → βX, and υ ◦ ?f = f ◦υ for all f : X → X.38

2. The map υ is injective if and only if ?X is Hausdorff.
3. The map υ is surjective if and only if the S-topology of ?X is quasi-

compact (equivalently if every clopen filter has nonempty intersection).

36 In nonstandard analysis one considers the S-topology of hyper-extensions ∗X, i.e.
the topology generated by the (clopen) sets ∗A for A ⊆ X. Unfortunately, the S-topology
is usually coarser than the star topology of ∗X. In fact we have ([20], Thm. 1.4):
1. The S-topology of ∗X is either 0-dimensional or not T0.
2. The star topology of ∗X is Hausdorff if and only if the S-topology is T1.
3. The star topology and the S-topology of ∗X agree if and only if any of them is Haus-
dorff (actually 0-dimensional).

37 For various definitions and properties of the Stone-Čech compactification see [25].
If X is a discrete space, we identify βX with the set of all ultrafilters over X, endowed
with the topology having as basis {OA | A ∈ P(X)}, whereOA is the set of all ultrafilters
containing A. (The embedding e : X → βX is given by the principal ultrafilters.)

38Here f is the unique continuous extension to βX of f : X → X. (In terms of

ultrafilters, f can be defined by putting A ∈ f(U) ⇔ f−1(A) ∈ U .)
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Whenever ?X is Hausdorff, the map υ can always be turned into a home-
omorphism, either by endowing υ(?X) with a suitably finer topology, or by
taking on ?X the (coarser) S-topology. Actually, any Hausdorff extension
makes use of the same “function-extending mechanism” as the Stone-Čech
compactification. In particular we can characterize all Hausdorff topologi-
cal hyperextensions by means of a reformulation in terms of ultrafilters of
the condition (e) of Footnote 31.

Call an ultrafilter U on X Hausdorff if, for all f, g : X → X,

(H) f(U) = g(U) ⇐⇒ {x ∈ X | f(x) = g(x)} ∈ U .39

Call invariant a subspace Y of βX such that f(U) ∈ Y for all U ∈ Y
and all f : X → X. Call Y accessible if property (p) holds in Y , i.e. for
all U ,V ∈ Y there exist W ∈ Y and p, q : X → X such that U = p(W)
and V = q(W). Then any topological extension ?X is mapped by υ onto
an invariant subspace of βX, and we have

Theorem 7.4 ([10], Thm. 1.5). Every invariant subspace Y ⊆ βX is a
Hausdorff topological extension of X with the S-topology. Moreover Y is
a hyperextension if and only if Y is accessible and all ultrafilters in Y are
Hausdorff. Conversely, ?X is a Hausdorff topological extension of X if and
only if the map υ is a continuous bijection of ?X onto an invariant subspace
of βX. Moreover ?X is a hyperextension if and only if υ(?X) is accessible
and contains only Hausdorff ultrafilters.

7.4. Bolzano extensions and saturation. In our topological context,
the enlargement and saturation properties are related to weak compactness
properties of the S- and Star topologies. In order to investigate the satura-
tion properties we should isolate a topological counterpart of the notion of
internal set. However in the following we only need the obvious assumption
that the basic closed sets E(f, η) of the Star topology are “internal”.

Theorem 7.5 ([20], Thm. 6.5). Let ?X be a topological extension of X.
1. If ?X is (2|X|)+-saturated, then the star topology of ?X is Bolzano.40 In
particular every set X has Bolzano hyperextensions.
2. ?X is a (2|X|)+-enlargement if and only if the S-topology of ?X is quasi-
compact.
3. A hyperextension cannot be simultaneously (2ℵ0)+-enlarging and Haus-
dorff. In particular there exist no countably compact hyperextensions.

39 The property (H) has been introduced in [14] under the name (C). Hausdorff
ultrafilters are studied in [21] and [2].

40 Call Bolzano a topological space where every infinite subset has cluster points,
or equivalently every countable open cover has a finite subcover (so countably compact
means Bolzano and Hausdorff).
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Thus sufficiently saturated hyper-extensions are Bolzano. Every Bolzano
extension is necessarily proper, hence Weierstraß, by Theorem 7.2. There-
fore, in our context, Bolzano-Weierstraß together do not yield countable
compactness. It seems to us a very interesting consequence of Theorem
7.5 that three important classes of topological spaces, namely hyper, Haus-
dorff, and Bolzano extensions have pairwise nonempty intersection, but no
common element.

7.5. Simple and homogeneous extensions. We conclude this sec-
tion by focusing on an interesting class of “minimal” topological extensions
of X. We say that ?X is simple if it has no nontrivial invariant subspaces.
We can give various characterizations of simple extensions:

Theorem 7.6 ([20], Thm. 6.7). A topological extension ?X of X is sim-
ple if and only if any of the following equivalent properties is fulfilled:

(i) ?X is Hausdorff and homogeneous;41

(ii) ?X is Hausdorff and all ultrafilters in υ(?X \X) are isomorphic;42

(iii) there exists α ∈ ?X such that ?X = {?f(α) | f : X → X } and the
ultrafilter Uα = υ(α) is selective.43 (In fact any α ∈ ?X \X has this
property.)

In particular all simple extensions are Hausdorff hyperextensions.

The hypernatural and hyperreal numbers obtained via simple topological
extensions share the following remarkable properties, already underlined in
[10], and emphasized in Sections 6 and 10 of this article:

- for any α ∈ ∗N \ N, ∗N = {∗g(α) | g : N→ N strictly increasing};
- ∗N is a set of numerosities in the sense of the Section 10 below;
- ∗R satisfies the “Strong Cauchy Infinitesimal Principle” of Section 6

above.

The existence of simple topological extensions, corresponding to that of
selective ultrafilters, is problematic. Many possibilities are consistent with
ZFC: that any infinite set has 22ℵ0 nonisomorphic proper simple extensions,
or that there are no simple extensions, or even that any infinite set has a
unique proper simple extension (see e.g. [12, 13]). The third possibility
might be intriguing, yielding as it does a unique minimal “prime” hyper-
extension ∗X for any infinite set X.

41 A convenient notion of homogeneous topological extension is obtained by requiring
that any two points of ?X \ X are connected by a homeomorphism of ?X onto itself.
(Any such homeomorphism induces a bijection of X, so no topological extension can be
topologically homogeneous stricto sensu.)

42 Recall that the ultrafilter U over I is isomorphic to the ultrafilter V over J if there
is a bijection τ : I → J such that A ∈ U ⇐⇒ τ(A) ∈ V.

43 See Footnote 28.
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§8. The functional approach. A reflexion on the topological approach
to nonstandard models sketched in Section 7 shoud make it apparent that
only in Hausdorff extensions, where every function f : X → X has a
unique continuous extension ?f : ?X → ?X, the topology is really respon-
sible of the nonstandard structure. In the general case, when uniqueness
of continuous extensions gets lost, it is rather the choice of a distinguished
continuous extension made by the “?” operator that “induces” a topology
on ?X. These considerations suggest that “purely functional” conditions
could characterize the hyper-extensions of an arbitrary set, without any
mention of topologies. We follow here [26], to which we refer for more
details and complete proofs. In that paper, simple supersets ?X of X are
considered, together with an operator ? : XX → ?X

?X , providing a distin-
guished extension of each function f : X → X. Three simple and natural
algebraic conditions on the “?” operator are then isolated, namely:

• preservation of compositions

(comp) ?g ◦ ?f = ?(g ◦ f) for all f, g : X → X;

• preservation of the diagonal44

(diag) if χ : X ×X → {0, 1} is the characteristic function of the diagonal
(i.e. χ(x, y) = 1 ⇐⇒ x = y), then for all f, g : X → X and all ξ ∈ ?X

?(χ ◦ (f, g))(ξ) =
{

1 if ?f(ξ) = ?g(ξ),
0 otherwise;

• accessibility of pairs

(acc) for all ξ, η ∈ ?X there exist α ∈ ?X and p, q : X → X s. t.
?p(α) = ξ, ?q(α) = η.

The main theorem of [26] then states that any map ? : XX → ?X
?X

satisfying the above conditions can be uniquely expanded to all n-ary func-
tions and relations so as to provide a X-complete structure ?X, satisfying
the full transfer principle.

8.1. The functional extensions. The condition (acc) above seems
prima facie not to have the same flavour of a “preservation property”
shared by the preceding ones.45 So we adopt the following definition:

44 We assume that 0, 1 ∈ X, in order to have at disposal the usual characteristic
functions.

45 However, notwithstanding its apparent second-order character, also (acc) shares
this feature. As we already remarked for the corresponding property (p) of topological
extensions, a strong uniform version of accessibility can be obtained as an instance of
transfer, appealing to suitable “projections” (see Footnote 32).
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Definition 8.1. A superset ?X of the set X is a functional extension of
X if to every function f : X → X is associated a distinguished ?-extension
?f : ?X → ?X in such a way that (comp) and (diag) hold. The functional
extension ?X is a hyperextension if also condition (acc) holds.

It turns out that preserving compositions and diagonal suffices to “well-
preserve” characteristic functions, so as to allow for “well-extending” all
subsets of X. Namely, if ?X is a functional extension of X, then ([26],
Thm. 1.2):

1. If χA : X → X is the characteristic function of A ⊆ X, then the
extension ?χA is the characteristic function in ?X of a set ?A ⊇ A.

2. The map ? : A 7→ ?A commutes with binary union, intersection and
complement. Moreover ?A∩X = A, hence ? is a boolean isomorphism
of P(X) onto a subfield of P(?X).

Having so defined ?-extensions of sets, the property (diag) gives immedi-
ately a sort of “preservation of equalizers”, which corresponds to a basic
idea of nonstandard analysis that we have already met before, namely that
“standard functions behave like germs” (see Footnote 31):

3. ([26], Cor. 1.3) For all f, g : X → X

{ξ ∈ ?X | ?f(ξ) = ?g(ξ)} = ?{x ∈ X | f(x) = g(x)}
or equivalently, for all ξ ∈ ?X,

?f(ξ) = ?g(ξ) ⇐⇒ ∃A ⊆ X. (ξ ∈ ?A & ∀x ∈ A .f(x) = g(x) ).

Notice that the identity map may not be preserved by functional exten-
sions. If ı : X → X is the identity of X, in the general case one only
obtains

4. ?f(ξ) = ?f(?ı(ξ)) = ?ı(?f(ξ)) for all f : X → X and all ξ ∈ ?X.
Thus ?ı is the identity exactly on those points of ?X which are reached
by some function ?f , and any function ?f maps the points ξ and ?ı(ξ) to
the same point. When ?ı is not the identity, the extension ?X can be con-
sidered “redundant”, in the sense that the ?-extensions of all functions
are completely determined by their restrictions to ?ı(?X), and the remain-
ing elements of ?X are not attained by any function ?f . Moreover ?ı(?X),
equipped with the restrictions of all ?fs, becomes a functional extension
where the identity is preserved. Call irredundant a functional extension ?X
of X if every point of ?X is in the range of some ?f , i.e.
(acc0) for all ξ ∈ ?X there exist f : X → X and η ∈ ?X such that ?f(η) = ξ.

Important preservation properties are derivable only in irredundant exten-
sions, e.g. ([26], Cor. 1.4), for all f : X → X and all A ⊆ X,

5. ?f(?A) = ?(f(A)) (in particular ?f is surjective if f is surjective).
6. If f : X → X is injective on A, then ?f is injective on ?A.
7. Extensions of finite sets are trivial, i.e. A = ?A whenever A is finite.
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In order to make an effective use of functional extensions, all properties
above are relevant, and all of them hold in any nonstandard model. So we
have in mind essentially only irredundant extensions. We have not singled
out irredundancy in Definition 8.1 because this condition is still too weak
to obtain the full transfer principle. We have chosen instead the slightly
stronger property (acc) that every pair of points is accessible from a single
point. In fact (acc) does the job, as we shall see below.

8.2. The functional hyperextensions. As remarked above, also the
property (acc) can be obtained by transfer, and so it has to hold in every
nonstandard extension. On the other hand, in combination with (diag) and
(comp), it provides unique unambiguous extensions of all n-ary functions
and relations so as to obtain the full transfer principle for all first order
properties. For any function F : Xn → X the ?-extension ?F is obtained
in the same simple, natural, “parametric” way used in Subsection 7.2 for
topological hyperextensions, namely (see [26], Thm. 2.5):

?F (ξ1, . . . , ξn) = ?(F ◦ (f1, . . . , fn))(α),

where fi : X → X and α ∈ ?X are such that ∗fi(α) = ξi for i = 1, . . . , n.
For extending n-ary relations one simply appeals to the corresponding

characteristic functions in n variables. In this way a functional hyperex-
tension ?X of X gives rise to a X-complete structure ?X in the sense of
Section 2. We could then prove the transfer principle for X, inductively
on the complexity of the formula σ, and Theorem 2.10 would yield

Theorem 8.2. A functional extension is a (nonstandard) hyper-extension
if and only if it is a functional hyperextension.

Having at our disposal the topological extensions of Section 7, we prefer
to outline a proof of the above theorem obtained by suitably topologizing
every functional extension.

8.3. The Star-topology of functional extensions. It is apparent
that the properties (c, i, a, p) characterizing topological hyperextensions
hold in any functional hyperextension. In fact it was that definition that
suggested the choice of the defining properties (comp, diag, acc), according
to [26]. So it is easily found a topology that turns any functional hyperex-
tension into a topological hyperextension, namely the corresponding Star
topology, as defined in Subsection 7.2. Again, X is dense in ?X with respect
to the Star topology, and we have

Theorem 8.3. Every functional hyperextension ?X of X, when endowed
with the Star topology, becomes a topological hyperextension of X.

We stated in Theorem 7.3 that all topological hyperextensions are (non-
standard) hyper-extensions. Thus Theorem 8.2 can be viewed as an easy
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corollary of the above theorem. But of course the aim of this “functional
approach” is rather that of showing that a few clear, natural, purely func-
tional conditions are all what is needed for the strongest requirements of
nonstandard models. To this aim either the “algebraic” proof given in [26],
or the inductive proof suggested in the preceding subsection seem to be
more appropriate.

§9. Hyperintegers as ultrafilters. In the early days of nonstandard
analysis, the question was raised as to whether the Stone-Čech compacti-
fication βN of N might be turned into a nonstandard model of the natural
numbers. Unfortunately, the answer was in the negative (see the discussion
in A. Robinson’s paper [44]). More important, no extensions of sum and
product from N to βN can be continuous (see e.g. [29]). However it has
been shown in [22] that extending the entire commutative semiring struc-
ture of N is in fact possible, provided one reduces to convenient subsets of
βN. Here we consider the Stone-Čech compactification βZ of the discrete
space Z of the integers, construed as a space of ultrafilters.

• βZ is the collection of all ultrafilters U on Z, where each integer is
identified with the corresponding principal ultrafilter;

• the family of sets of the form ∗X = {U ∈ βZ | X ∈ U} with X ⊆ Z,
is a basis of (cl)open subsets;

• for every f : Z→ Z, the corresponding (unique) continuous extension
∗f : βZ→ βZ is given by ∗f(U) =

{
X ⊆ Z | f−1(X) ∈ U}

.
• we write f ≡U g to mean that the functions f and g are equal U-almost

everywhere, i.e. {n ∈ Z | f(n) = g(n)} ∈ U ;
• we say that a subset A ⊆ βZ is invariant if ∗f(U) ∈ A for all f : Z→ Z

and all U ∈ A.46

9.1. Ultrafilter rings. We introduce the notion of ultrafilter ring as a
suitable subset of βZ, where the sum and product operations of Z can be
extended in a natural way that preserves the property of being an ordered
ring. The resulting structures are then shown to satisfy the transfer prin-
ciple, and so they are sets of hyperintegers. A corresponding treatment of
ultrafilter semirings in βN is given in [22].

Definition 9.1. An ordered ring (A,⊕,¯, <) is an ultrafilter ring if A
is an invariant subspace of βZ such that, for all f, g : Z→ Z and all U ∈ A,

(∗) ∗f(U)⊕ ∗g(U) = ∗(f + g)(U) and ∗f(U)¯ ∗g(U) = ∗(f · g)(U).

46 Recall the Rudin-Keisler -preordering ≤RK on ultrafilters: U ≤RK V if there exists
f : Z→ Z s.t. U = ∗f(V). Then A ⊆ β(Z) is invariant if and only if it is RK-downward
closed, i.e. U ≤RK V ∈ A =⇒ U ∈ A.
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It is worth noticing that the sum and product operations are completely
determined by the conditions (∗) above. Hence any invariant subset of βZ
admits at most one structure of ultrafilter ring. As we identify integers with
the corresponding principal ultrafilters, every ultrafilter ring is a superring
of (Z, +, ·). It is in fact an end-extension:

Lemma 9.2. Every ultrafilter ring A is discretely ordered. Hence every
U ∈ A has an immediate predecessor U ª 1, and an immediate successor
U ⊕ 1; in particular all nonprincipal ultrafilters in A are infinite elements
of A.

More precisely, we have the following characterization, which is the ring
counterpart of Theorem 1.6 of [22]:

Theorem 9.3. An invariant subset A of βZ admits a (unique) structure
of ultrafilter ring if and only if the following conditions are fulfilled:47

(a) A is accessible, i.e. for all U ,V ∈ A there exist f, g : Z → Z and
W ∈ A such that ∗f(W) = U and ∗g(W) = V;

(b) every ultrafilter U ∈ A satisfies the Hausdorff property
(H) for all f, g : Z→ Z, ∗f(U) = ∗g(U) ⇐⇒ f ≡U g.

For sake of brevity, call AIH a subset of βZ satisfying the conditions of
Theorem 9.3, i.e. an accessible invariant collection of Hausdorff ultrafilters.
The fact that every ultrafilter ring is AIH can be derived directly from
the properties (∗) of Definition 9.1, as done in [22] for the corresponding
Lemmata 1.3 and 1.5. The converse implication follows from the stronger
fact that every AIH subset of βZ comes naturally as a set of hyperinte-
gers, satisfying the full transfer principle, and so in particular it is a ring
satisfying both conditions (∗). Namely

Theorem 9.4. Every ultrafilter ring is a (nonstandard) hyper-extension
of the integers.

In order to obtain Theorem 9.4 we could simply refer to Theorem 7.4. In
fact, the latter theorem states in full generality that if a set X is a discrete
dense subspace of the Hausdorff space ?X and every function f : X → X
has a continuous extension ?f : ?X → ?X, then ?X becomes a (nonstandard)
hyper-extension in the sense of Section 2 if and only if it is homeomorphic
to an AIH subset of βX. Alternatively, we can give a direct “logic” proof
by appealing to Theorem 2.10. In fact any AIH subset A of βZ gives a
Z-complete structure A(Z) = 〈A; {∗F | F : Xn → X}; {∗R | R ⊆ Xn}〉
where:

47 In terms of the Rudin-Keisler preordering, the condition (a) says that A is upward
directed. It is the exact counterpart of properties (p) and (acc) of Sections 7 and 8. The
Hausdorff condition (H) under (b) is exactly the same of Subsection 7.3.
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• k ∈ Z is identified with the corresponding principal ultrafilter in A;
• for all F : Zk → Z, for all U ∈ A and for all f1, . . . , fk : Z→ Z,

∗F (∗f1(U), . . . , ∗fk(U)) = ∗(F ◦ (f1, . . . , fk)) (U);48

• for all relation R ⊆ Zk, for all U ∈ A and for all f1, . . . , fk : Z→ Z
(∗f1(U), . . . , ∗fk(U)) ∈ ∗R ⇐⇒{n ∈ Z | (f1(n), . . . , fk(n)) ∈ R} ∈ U .

The defining properties of AIH sets are all what is needed for the above
definitions of ∗F and ∗R to be well posed (see Lemma 2.1 of [22], or Sub-
section 7.2 above). Now one can prove by induction on the formula σ:

Theorem 9.5 (see [22], Thm. 2.2). Let A be an AIH subset of βZ and
let σ(x1, . . . , xk, F1, . . . , Fm, R1, . . . , Rn) be an elementary formula. Then,
for all U ∈ A and all f1, . . . , fk : Z→ Z,

σ (∗f1(U), . . . , ∗fk(U), ∗F1, . . . , ∗Fm, ∗R1, . . . , ∗Rn) ⇐⇒
{n ∈ Z | σ (f1(n), . . . , fk(n), F1, . . . , Fm, R1, . . . , Rn)} ∈ U .

It follows that the transfer principle for Z holds, and Theorem 2.10 applies.

9.2. The question of existence. By Theorem 9.3, the existence of
nontrivial ultrafilter rings yields the existence of nonprincipal Hausdorff
ultrafilters over Z. The converse implication also holds. Given a nonprinci-
pal Hausdorff ultrafilter U over Z, the subspace ZU = {∗f(U) | f : Z→ Z}
of βZ is AIH, hence an ultrafilter ring. (Actually, it is isomorphic to the
ultrapower ZZU .) The question of the exact set theoretic strength of this
hypothesis has been posed in [20], and it is not yet completely settled.
According to results of [21], assuming Martin’s Axiom, one obtains a lot
of ultrafilter rings isomorphic to iterated ultrapowers, as well as ultrafilter
rings which are not ultrapowers. On the other hand, as a consequence of
[2], the existence of ultrafilter rings is unprovable in ZFC alone.

§10. Hypernatural numbers as numerosities of countable sets.
A general process of counting needs a set of “numbers” N and a “counting
function” ν that associates to any suitable set A the “number” ν(A) ∈ N
of its elements. Let us call counting system a triplet 〈S,N , ν〉 where S is
the family of sets whose “numerosity” is to be counted, 〈N ,≤〉 is a linearly
ordered set of numbers, and ν is a function from S onto N . Of course we
look for extending the finite counting system 〈Fin,N, | · |〉, where Fin is
the class of all finite sets and | · | is any of the usual ways of counting finite
collections.

In principle one would like that a counting system satisfy the following
two basic principles:
C1 if there is a bijection between A and B, then ν(A) = ν(B);

48 F ◦ (f1, . . . , fk) : Z→ Z is the function n 7→ F (f1(n), . . . , fk(n)).
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C2 if A is a proper subset of B then ν(A) < ν(B).

Moreover one should introduce also the operations of addition and mul-
tiplication on N , following the naive intuition that sums and products of
“numbers” directly correspond to the “numerosities” of disjoint unions and
Cartesian products, respectively. So a third principle should be considered,
namely

C3 if ν(A) = ν(A′) and ν(B) = ν(B′), then ν(A]B) = ν(A′]B′) (where
] denotes disjoint union) and ν(A×B) = ν(A′ ×B′).

Unfortunately, if we want S to contain infinite sets, it is well known that
properties C1 and C2 cannot go together.

By weakening C2 to ν(A) ≤ ν(B), Cantor developed his theory of cardi-
nal numbers, namely a counting system 〈V, Card, | · |〉, where V is the class
of all sets, Card is the class of cardinal numbers (now commonly taken
as initial Von Neumann ordinals), and |A| is the cardinality of A (often
identified with the least Von Neumann ordinal equipotent to A). Can-
tor’s beautiful theory of cardinals made it possible to deal with infinitely
large numbers, but, apart its violation of Aristotle’s principle “The whole
is larger than its parts”, it is not suitable to define infinitely small num-
bers and develop infinitesimal analysis.49 This latter negative fact can be
viewed as a consequence of the somehow awkward behaviour of sums and
products of cardinal numbers.

The question naturally arises as to whether there are alternative ways
of counting elements of infinite sets so that property C2 of counting sys-
tems can be retained (together with a suitable weakening of C1). More
important, can the sum and product operations (defined by means of dis-
joint unions and Cartesian products) satisfy the usual algebraic properties
of natural numbers?50 And still more demanding, can this extension of
the natural numbers be taken as a basis for producing hyperrational and
hyperreal numbers suitable for the practice of nonstandard analysis?

All these questions have been given a first possible positive answer in [6]
where a suitably structurated class of (countable) sets is considered. No-
tice that putting a structure on the sets to be counted is a natural way of
overcoming the contrast between the principles C1 and C2. In fact, in this
case, only bijections and subsets “which preserve the structure” are consid-
ered. E.g. Cantor’s theory of ordinals can be viewed as a counting system
〈WO,Ord, · 〉, where WO is the class of well-ordered sets, Ord is the class
of ordinals, and A is the order-type of A. Then both C1 and C2 hold, re-
stricted to order-isomorphisms and to initial segments, respectively. Notice

49 By “infinitesimal” analysis we mean analysis where actual “infinitesimal” numbers
are available.

50 Videlicet correspond to the non-negative part of a discretely ordered ring.
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however that ordinal arithmetic is quite unusual: e.g., commutativity fails
even for addition, and 1 + α = α < α + 1 for all infinite α.

The aim of this section is to shortly present the contents of the paper [6].
An alternative proof of the main results proved there are outlined below
by using the language of the topological extensions of Section 7.

10.1. Counting labelled sets. We start from the observation that
very often, in counting the “numerosity” of a given set, one previously splits
it into parts to be counted separately, and then takes the “ultimate value”
of the sequence of partial sums. (Obviously such a sequence is eventually
constant if the given set is finite.) If we want to apply this procedure to
an infinite set, we have to partition it into a sequence of finite parts.51

Equivalently, we have to give each element a “label” in N, say. We are thus
led to the notion of labelled set of [6]:

Definition 10.1. A labelled set is a pair A = 〈A, `A〉 where A is a set
(the domain of A) and `A : A → N (the labelling function of A) is finite-
to-one.52

Thus the domain A is the union of the non-decreasing sequence of finite
sets An = {a ∈ A | `A(a) ≤ n}, whose finite cardinality |An| is a sort of
nth approximation to the numerosity of A. Following [6], we label disjoint
unions and Cartesian products so as to be consistent with the corresponding
finite approximations:53

Definition 10.2. The disjoint union and the Cartesian product of the
labelled sets A = 〈A, `A〉 and B = 〈B, `B〉 are

A ]B = 〈A ]B, `A ] `B〉, with (`A ] `B)(x) =
{

`A(x) if x ∈ A
`B(x) if x ∈ B

A×B = 〈A×B, `A ∨ `B〉, with (`A ∨ `B)(x, y) = max{`A(x), `B(y)}
We say that A = 〈A, `A〉 is a labelled subset of B = 〈B, `B〉, and write

A v B, if A ⊆ B and `A(a) = `B(a) for all a ∈ A. Similarly for the
strict inclusion A @ B. If A v B, then we denote by B \A the labelled
subset of B whose domain is B \ A. An isomorphism (resp. equivalence)
between the labelled sets A and B is a (almost) label-preserving bijection
ϕ : A → B such that `B ◦ ϕ = `A (resp. `B(ϕ(a)) = `A(a) for all but
finitely many a ∈ A). We write A ∼= B if A and B are isomorphic,
and A ∼ B if they are equivalent. Call equalizer of A and B the set
E(A,B) = {n ∈ N | |An| = |Bn| }. Clearly A ∼= B (resp. A ∼ B) holds if
and only if E(A,B) = N (resp. E(A,B) is cofinite in N).

51 So we can deal only with countable sets.
52 I.e., for any given n, there are only finitely many a ∈ A such that `A(a) = n.
53 I.e. |{x : (`A]B)(x) ≤ n}| = |An|+ |Bn| and |{x : (`A×B)(x) ≤ n}| = |An| · |Bn|

for all n.
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The crucial definition of [6] is obtained by postulating, for labelled sets,
(“slightly” strengthened) formulations of the basic principles C1-C3.54

Definition 10.3. A map ν : L → N from the class L of labelled sets
onto a linearly ordered set 〈N ,≤〉 is a numerosity function if the following
conditions are fulfilled:
(N1) if |An| ≤ |Bn| for all n, then ν(A) ≤ ν(B);
(N2) ν(A) < ν(B) if and only if ν(A) = ν(B′) for some B′ @ B;
(N3) if ν(A) = ν(A′) and ν(B) = ν(B′), then ν(A]B) = ν(A′]B′) and

ν(A×B) = ν(A′ ×B′)

All the defining properties above are suggested by the naive idea that
the numerosity ν(A) of the labelled set A is the “ultimate value” of the
sequence νA of the cardinalities νA(n) = |An| of the finite approximations
of A.55 In particular equivalent labelled sets have equal numerosities and
proper labelled subsets have smaller numerosities. The “only if” part of
property (N2) postulates that the numerosities of the labelled subsets of any
labelled set are an initial segment of N . This supplementary assumption
has surprisingly far reaching consequences, and it is actually responsible
for the positive answer to the last two questions posed above. First of all
we have that the set N of the numerosities inherites a “good” algebraic
structure:

Theorem 10.4 ([6], Props. 1.4 and 2.3). Put ν(A) + ν(B) = ν(A ]B)
and ν(A) · ν(B) = ν(A × B): then N becomes the set of non-negative
elements of a discretely ordered (commutative) ring. In particular N is
(isomorphic to) an initial segment of N .

In fact a much stronger property holds, namely that N is a very special
set of hypernatural numbers, as we shall see below.

10.2. From numerosities to hyper-extensions. In [6] it is proved
that N is a set of numerosities if and only if N ∼= NNU where U is a
nonprincipal selective ultrafilter.56 The key lemma of the proof is the
following:

Lemma 10.5 ([6], Props. 3.3-4). Put U = {E(A,B) | ν(A) = ν(B) }.
Then

(i) ν(A) = ν(B) if and only if E(A,B) ∈ U ;
(ii) U is a (nonprincipal) selective ultrafilter over N.

54 Direct reformulations of C1 and C2 should have equality instead of ≤ in (N1), and
the sole “if” part in (N2).

55 Notice that every non-decreasing sequence σ ∈ NN can be so obtained: put A =
〈N, `σ〉, where `σ(n) = k for σ(k − 1) ≤ n < σ(k).

56See Footnote 28.
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Here, given a numerosity function ν : L → N , we intend to endow N
with a topology that turns N into a simple topological hyperextension of
N, in the sense of Subsection 7.5 above.

Given f : N→ N we can define the extension ∗f : N → N by ∗f(ν(A)) =
ν(B), where B is any labelled set such that νB ≡U f ◦ νA. Such a B exists
by (ii), since any sequence is U-equivalent to a non-decreasing one, and the
definition is well-posed by (i). The extension so obtained satisfies property
(iii) of Theorem 7.6, because every infinite numerosity νA can be obtained
as ∗f(α), where α is the numerosity of N+ with the identity labelling, and
f ∈ NN is any bijective function agreeing with νA on some E ∈ U .57 (By
definition the ultrafilter Uα is U , and so selective.)

In particular, recalling Theorems 7.4 and 7.6, we obtain thatN is isomor-
phic to the invariant subspace generated by U in the Stone-Čech compact-
ification βN of N. This subspace is in turn isomorphic to the ultrapower
NNU . Within this framework, what the proof of Theorem 4.3 of [6] actually
proves is the following characterization:

Theorem 10.6. Every homogeneous subspace Y of βN is a set of nu-
merosities, and for any α ∈ Y \N there is exactly one numerosity function
ν : L → Y such that ν(N+) = α (and α corresponds to the ultrafilter of
equalizers for ν). Conversely, every numerosity function has a set of values
N canonically isomorphic to the homogeneous subspace of βN generated by
its ultrafilter of equalizers.

So in effect any set of numerosities provides a very special set of hy-
pernatural numbers, namely a simple topological hyperextension of N. We
have already remarked, at the end of Section 7, that the existence of simple
topological extensions is independent of Zermelo-Fraenkel set theory. So
we conclude that, although numerosity functions are defined by means of
elementary properties that are naturally satisfied by the intuitive process
of counting, their existence cannot be proved in the usual axiomatic frame-
work of mathematics. Given the well known strong incompleteness of ZFC,
this fact might be used to evaluate possible candidates for new axioms.
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