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Abstract

In this paper we survey various set-theoretic approaches that have
been proposed over the last thirty years as foundational frameworks for
the use of nonstandard methods in mathematics.

Introduction.
Since the early developments of calculus, infinitely small and infinitely large
numbers have been the object of constant interest and great controversy in the
history of mathematics. In fact, while on the one hand fundamental results in
the differential and integral calculus were first obtained by reasoning informally
with infinitesimal quantities, it was easily seen that their use without restrictions
led to contradictions. For instance, Leibnitz constantly used infinitesimals in
his studies (the differential notation dx is due to him), and also formulated the
so-called transfer principle, stating that those laws that hold about the real
numbers also hold about the extended number system including infinitesimals.
Unfortunately, neither he nor his followers were able to give a formal justification
of the transfer principle. Eventually, in order to provide a rigorous logical
framework for the treatment of the real line, infinitesimal numbers were banished
from calculus and replaced by the εδ-method during the second half of the
nineteenth century. 1

A correct treatment of the infinitesimals had to wait for developments of a
new field of mathematics, namely mathematical logic and, in particular, of its
branch called model theory. A basic fact in model theory is that every infinite
mathematical structure has nonstandard models, i.e. non-isomorphic structures
which satisfy the same elementary properties. In other words, there are different
but equivalent structures, in the sense that they cannot be distinguished by
means of the elementary properties they satisfy. In a slogan, one could say that
in mathematics “words are not enough to describe reality”.

1An interesting review of the history of calculus can be found in Robinson’s book [R2],
chapter X.
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Although the existence of nonstandard models was first shown by Thoralf
Skolem in the late twenties, a strong interest in their properties arose only in the
fifties, when an intensive study of nonstandard models of arithmetic began. The
“invention” of nonstandard analysis can be dated back to 1960, when Abraham
Robinson had the idea of systematically applying that model-theoretic machin-
ery to analysis [R1]. By considering nonstandard extensions of the real number
system, he was able to provide the use of infinitesimal numbers with rigorous
foundations, thus giving a solution to a century-old problem. According to
some authors, Robinson’s achievement may be one of the major mathematical
advances of the century.

The existence of nonstandard extensions ∗R of the real number system, called
hyperreal numbers, may appear contradictory, in that they seem to be in conflict
with the well-known characterization theorem for R. For instance, if we want
the hyperreal systems to be ordered fields, then, as proper extensions of R, they
necessarily are neither archimedean nor Dedekind-complete. Thus, what sense
the equivalence of ∗R and R is to be intended? A correct answer to this question
is the core of nonstandard analysis. In the context of mathematical logic, the
notion of elementary property can be given a precise definition. Namely, a
property is elementary if it can be formulated as a first order formula in a
specified language. Roughly speaking, a first order formula is a finite expression
where quantifications are permitted only over variables ranging over elements
but not over subsets. Thus, in the usual language that consists of symbols for
addiction, multiplication, neutral elements and order relation, the properties of
ordered field are first order, while Dedekind-completeness and the archimedean
property are not. Notice in fact that completeness talks about subsets, and
the archimedean property requires an infinitely long formula to be expressed:
“∀x > 0 (x > 1∨ x + x > 1∨ x + x + x > 1 . . .)”. 2 Once the language has been
specified, Leibnitz’ transfer principle can be given a rigorous formulation.

Every property one can write down as a first order formula is true of
the real numbers R if and only if it is true of any hyperreal number
system ∗R.

The typical strategy in nonstandard analysis is as follows. Assume we want
to prove (or disprove) some conjecture P about the real numbers, or more gen-
erally, about some mathematical structure M . Formalize P as a first order
formula ϕ. It can happen that it is easier to decide P in some nonstandard
model ∗M where additional tools may be available (for instance, infinitesimals),
rather than in the standard model M . Once the property P, as formally ex-
pressed by the formula ϕ, has been proved (or disproved) in ∗M , by transfer it
is true (or false) in the standard structure M as well.

2The formalization “∀x ∃n ∈ N n · x > 0” is not in the given language. In fact, an extra
symbol N for the naturals is needed.
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The use of nonstandard models to prove “standard” theorems, could be seen
in a similar way as, say, the use of complex numbers C to prove results about
real numbers. If one is only interested in real numbers, then complex numbers
can be seen as nothing but a mere tool to carry out proofs. 3 Of course, the
above comparison should not be taken literally. The technicalities involved in
nonstandard methods are somewhat of a different nature because they require
notions from mathematical logic to be fully justified. But still, the basic idea is
similar. Nonstandard methods do not give rise to nonstandard mathematics to
be contrasted with standard mathematics. On the contrary, they provide a new
powerful tool which is applicable across the whole mathematical spectrum, and
whose strength and potentiality are probably still far from being fully exploited.
Unfortunately, there is still some diffidence in the mathematical community
about the use of nonstandard methods. An historical reason for this is the fact
that infinitesimals were used incorrectly in the early developments of calculus.
Nowadays, an obstacle to a wider diffusion of nonstandard methods is probably
the fact that mathematicians are often not comfortable with mathematical logic.
This is why many attempts have been made to find an elementary presentation
to nonstandard analysis (i.e. a presentation not involving technical notions from
mathematical logic). In this regard, see the approach given by H.J. Keisler [K2]
aimed at the average beginning calculus student, and the one recently given by
C.W. Henson [He].

In this paper we give a (partial) report about the research on the founda-
tions on nonstandard methods developed over the last thirty years. We mainly
concentrate on nonstandard set theories, that is on those axiomatic approaches
that are given in the full generality of set theory. This is a survey paper, thus
only a few sketched proofs are included, but plenty of references are given for
further studies. The reader is assumed to have some basic knowledge of set
theory and nonstandard analysis, but every mathematician can easily read the
paper by skipping the more technical parts. 4

We like to conclude this introduction with some optimistic consideration by
H.J. Keisler. “At the present time, the hyperreal number system is regarded as
somewhat of a novelty. But because of its broad potential, it may eventually be-
come a part of the basic toolkit of mathematicians ... The current high degree of
specialization in mathematics serves to inhibit the process, since few established
mathematicians are willing to take the time to learn both mathematical logic and
an area of application. However, in the long term, applications of mathematical
logic ... should result in future generations of mathematicians who are better
trained in logic, and therefore more able to take advantage of the hyperreal line

3On the other hand, C is a beautiful object of study in its own right. Similarly, in our opin-
ion, nonstandard models themselves are interesting mathematical objects to be investigated.

4The default reference for set theoretic notions is [Ku]. There, basic definitions such as
those of ordinal and cardinal numbers are given without assuming regularity.
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when the opportunity arises.”. 5

§1. The Superstructure Approach.
Abraham Robinson’s original presentation is developed within a type-theoretical
version of higher-order logic (see [R1], [R2]). As the logical formalism needed
appeared unnecessarily complicated to most mathematicians, another approach
became more popular in practice, namely the more “concrete” one based on the
construction of ultrapowers of R. The use of ultrapowers in nonstandard anal-
ysis was popularized by Wilhelmus Luxemburg. His lecture notes [L1] widely
circulated during the sixties, and they were used as a reference in the field by
an entire generation of mathematicians. Up to now, the most popular presen-
tation of nonstandard analysis is the so-called superstructure approach. It was
elaborated by Abraham Robinson himself jointly with Elias Zakon, and it first
appeared in the Proceedings of the International Symposium on the Applica-
tions of Model Theory to Algebra, Analysis and Probability, held in 1967 [RZ].
The original presentation was then improved by Zakon [Za]. Historically, the
superstructure approach is the first one to be purely set-theoretic in nature.

There is no need to go very far in analysis to realize that only considering the
real number system is not enough. One needs to talk about intervals, functions,
function spaces, norms, topologies, and so on. In the usual framework of set
theory, functions are subsets of cartesian products, cartesian products are sets
of ordered pairs and ordered pairs 〈a, b〉 = {{a}, {a, b}} are Kuratowski pairs.
Thus, for instance, a space F of real functions is identified with a subset of sub-
sets of subsets of subsets of real numbers, and a topology on F (as the collection
of its open sets) is a subset of subsets of F etc. As a consequence of this kind
of considerations, Robinson and Zakon had the idea of taking superstructures
as universes for the practice of mathematics.

A superstructure V (X) over an infinite set of individuals X is defined induc-
tively as follows. 6

V (X) =
⋃

n∈N Vn(X) where V0(X) = X; Vn+1(X) = Vn(X) ∪ P(Vn(X)).

For instance, by taking X = R the set of real numbers, the resulting super-
structure 〈V (R),∈〉 is a suitable universe where all objects of real analysis are
available. For convenience, individuals are usually supposed to be atoms, i.e.
objects with no elements and different from the emptyset ∅. In practice, this is
a natural assumption. For instance, in analysis a real number is always handled
as a primitive entity rather than as a set. 7 A nonstandard embedding is a map-

5[K3] p.235.
6For any set A, P(A) = {a : a ⊆ A} is the power-set of A.
7We remark that some caution is needed in order to formalize the above within the usual

set theoretic framework. Although atoms are not allowed in ZFC, nevertheless, suitable sets
X can be considered which behave as atoms relative to its superstructures. Precisely, sets X
can be taken with the property x ∩ A = ∅ for all x ∈ X and for all A ∈ V (X). See [CK] §4.4
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ping ∗ : V (X) → V (Y ) from a superstructure V (X), called the standard model,
into another superstructure V (Y ), called nonstandard model, that satisfies the
following properties: 8

• ∗X = Y

• Transfer Principle
For every bounded formula σ(x1, . . . , xn) and elements a1, . . . , an ∈ V (X),

〈V (X),∈〉 |= σ(a1, . . . , an) ⇔ 〈V (Y ),∈〉 |= σ(∗a1, . . . ,
∗an)

i.e. the property expressed by σ is true of the elements a1, . . . , an in the
standard model if and only if it is true of the elements ∗a1, . . . ,

∗an in the
nonstandard model.

• Non-triviality
For every infinite set A ∈ V (X), {∗a : a ∈ A} is a proper subset of ∗A.

Several excellent expositions of the superstructure approach to nonstandard
analysis can be found in the literature. 9 This paper is not intended as an
introduction to nonstandard methods, thus we refer to those expositions for
unexplained notions and basic results. Here, we shall concentrate instead on
some foundational aspects.

Notice that in the transfer principle only bounded formulas are considered,
i.e. formulas where all quantifiers occur in the bounded form ∀x(x ∈ y → . . .)
or ∃x(x ∈ y ∧ . . .). This limitation is a consequence of the following fact.

Proposition 1.1. There are no nonstandard embeddings ∗ : V (X) → V (Y )
where the transfer principle holds for all formulas.
Proof. Since X is infinite, we can assume that there is an isomorphic copy of
the natural numbers N ⊆ X. The following holds:

〈V (X),∈〉 |= ∀n ∈ N ∃An ∃f : {0, 1, . . . , n} → An such that
∀x, y ∈ {0, 1, . . . , n} (x < y ↔ f(x) ∈ f(y))

In fact, one can take the Von Neumann natural number n + 1 as An. 10 If by
contradiction ∗ satisfies the transfer principle for all formulas, in particular the
above (unbounded) formula is satisfied in the nonstandard model 〈V (Y ),∈〉 for
all ξ ∈ ∗N . It is a basic fact in nonstandard analysis that every unbounded

where such sets are called base sets.
8In the original formulation [RZ], a list of preservation properties for ∗ (e.g. ∗{x} = {∗x};

∗(X \ Y ) = (∗X \ ∗Y ) etc.) was postulated in place of the transfer principle. The latter then
followed as a theorem. Our definition follows the presentation given in [Za].

9See for instance [HL] or [Li]. See also [CK] §4.4, where emphasis is given on model-
theoretic aspects.

10Recall that in ZFC natural numbers are coded as Von Neumann numbers. Precisely 0 = ∅
and, inductively, n + 1 = n ∪ {n}.
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hypernatural ξ originates an infinite descending chain ξ > ξ − 1 > ξ − 2 > . . .
Thus, if Fξ is the function obtained by transfer, one gets an ∈-descending chain
Fξ(ξ) 3 Fξ(ξ − 1) 3 Fξ(ξ − 2) 3 · · · in V (Y ), a contradiction. a

Recall that a standard set is any element of the standard model; an internal
set is any x with x ∈ ∗A for some standard A. Sometimes, also elements of
the form ∗A are called standard. To avoid confusion, here we shall call them
internal-standard. An external set is an element of the nonstandard model that
is not internal. It is easily seen that internal-standard elements are internal,
and that the collection I of all internal elements is transitive, that is elements
of internal sets are internal. As a consequence of this fact, one can give the
transfer principle the following modified formulation, where an explicit mention
of superstructures is avoided. “Let P be an elementary property, i.e. a property
formalized by a bounded formula. Then P is true of the standard sets a1, . . . , an

if and only if P is true of ∗a1, . . . ,
∗an relative to internal sets”. For instance,

“all subsets of N have a least element” is transferred to “all internal subsets of
∗N have a least element”.

• Transfer Principle (for the internal universe).
For every bounded formula σ(x1, . . . , xn) and for all standard elements
a1, . . . , an, σ(a1, . . . , an) ⇔ σI(∗a1, . . . ,

∗an). 11

In fact, notice that V (X), V (Y ) and I are all transitive sets. Then recall
that bounded formulas are preserved between transitive sets and apply transfer.
a

Besides transfer, the other fundamental principle of nonstandard analysis is
the saturation property. Saturation is a typical model-theoretic notion usually
defined in terms of realizability of sets of formulas. However, in a set-theoretic
context, saturation can be given an elementary formulation as an intersection
property. Precisely, the following formulation is now usually considered in non-
standard analysis (κ a given uncountable cardinal).

• κ-Saturation Property
Let F be a family of internal sets with the finite intersection property
(FIP), i.e. such that all its finite subfamilies have nonempty intersection.
If F has cardinality less than κ, then F has nonempty intersection.

The above property where only countable families F are considered (i.e.
where κ = ℵ1) is usually called countable saturation.

Historically, a weaker form of saturation was already considered in Robin-
son’s original presentation of nonstandard analysis, where he used the notion

11σI is the restriction of σ to I , i.e. σI is the formula obtained from σ by replacing
each quantifier ∀x and ∃x with its I-restricted form ∀x (x ∈ I → · · ·) and ∃x (x ∈ I ∧ · · ·),
respectively.
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of concurrent relation. The first one to investigate saturation within a purely
set-theoretic framework was H.J. Keisler early in the sixties. The formulation of
countable saturation in terms of intersections of sets is somewhat implicit in his
paper [K1]. However, it was W.A.J. Luxemburg who isolated the κ-saturation
property as a fundamental tool in nonstandard analysis [L3]. He gave evidence
for the fact that κ-saturated nonstandard models, for suitable κ, are the right
setting for a nonstandard study of topological spaces. For instance, one can
characterize compact sets K of a given topological space X as those sets that
satisfy: “∀ξ ∈ ∗X ∃x ∈ X such that ξ ∈ ∗U for all neighborhoods U of x”. We
remark that this characterization holds only if κ-saturation is assumed for some
κ larger than the cardinality of a topological basis for X. 12

§2. Foundational Limitations of the Superstructure Approach.
The superstructure approach is entirely developed within set theory, thus it
presents no foundational problems. However, it reveals serious limitations if
proposed as a framework for the use of nonstandard methods in mathematics
in their full generality. Here is a tentative list of such limitations.

• Superstructures model only a fragment of ZFC.

Since superstructures only consist of sets of finite rank in the cumulative
hierarchy, they do not satisfy the Infinity axiom. Besides, the Replacement
axiom is not satisfied either, because sets of individuals are assumed to be
infinite. 13 As a consequence, superstructures do not allow the full scope of
mathematical techniques. The restriction to sets of finite rank is a reaction to
the following fact.

Proposition 2.1. Let A and B be two transitive sets. If 〈A,∈〉 |= Infinity then
there are no nontrivial embeddings ∗ : A → B that satisfy the transfer principle.
Proof. By the infinity axiom, the set of Von Neumann naturals ω ∈ A. Recall
that ω is the set of naturals as coded in ZFC, its ordering being given by the
membership relation ∈. Now, assume by contradiction that ∗ is nontrivial and
satisfies transfer. By well-known nonstandard arguments, ∗ω is linearly ordered
by ∈ and contains descending chains ξ 3 ξ − 1 3 ξ − 2 · · · for each (unbounded)
ξ ∈ ∗ω \ {∗n : n ∈ ω}, against the axiom of regularity. a

• Different superstructures are needed for different problems.

Suppose we want to study a mathematical structure M by using nonstandard
methods. First, we have to take a superstructure V (X) right for the purpose.

12A survey of topology done by nonstandard methods is given in [Lo].
13For instance, take N ⊆ X a copy of the natural numbers and consider the function

F with domain N such that n 7→ {· · · {∅} · · ·} (n brackets). F is definable in V (X) but
range(F ) /∈ V (X).
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For instance, we may want the set of individuals X to include both a copy
of M and a copy of the real number system R. Then we have to consider
a nonstandard embedding ∗ : V (X) → V (Y ) that satisfies κ-saturation for a
suitable cardinal κ, large enough so that all desired nonstandard arguments can
be carried out. It is clear that different nonstandard embeddings must be chosen
to deal with different problems.

• In principle, nonstandard methods are not concerned with superstructures.

In fact, the formulation and use of nonstandard methods have no connections
with the technical set-theoretic notion of cumulative hierarchy of sets.

• It seems esthetically desirable to include all nonstandard techniques within
a unified axiomatic system.

The aim of giving a general foundational framework in which virtually all
of mathematics including nonstandard arguments can be embedded, led to the
formulations of various nonstandard set theories.

§3. Looking for a Nonstandard Set Theory.
To the author’s knowledge, historically the first person who explicitly consid-
erated the possibility of axiomatic systems for nonstandard analysis was G.
Kreisel in his 1969 paper [Kr]. 14 He asked: “Is there a simple formal system
... in which existing practice of nonstandard analysis can be codified? And if
the answer is positive: is this formal system a conservative extension of the
current systems of analysis ... ?”. In that paper, he proposed himself a formal
system NS for nonstandard analysis, where axioms were formulated making use
of the ∗ symbol borrowed from the superstructure approach notation. Unfor-
tunately, NS is presented in the language of type theory, by now unfamiliar to
most mathematicians, and some of the notions considered in those early years
of nonstandard analysis are now superseeded. Moreover, NS is a system for
nonstandard analysis and it has not the generality of a nonstandard set theory.
For these reasons we will not include a presentation of NS here, but we like to
mention this theory as a forerunner of nonstandard set theories.

As emerged from the various axiomatic systems that have been proposed
since the seventies, an ideal nonstandard set theory T should have as many as
possible of the following features. 15

1. T is an extension of “standard” mathematics as formalized by the classic
Zermelo-Fraenkel set theory ZFC.

14By the way, published in the same volume of proceedings where the superstructure ap-
proach by Robinson and Zakon appeared.

15We remark that idealization and standardization are formulated here only in a naive
language. These principles have different formalizations depending on the underlying non-
standard set theory.
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2. T postulates a transfer principle between the standard and the internal
universe for formulas of the language of ordinary mathematics.

3. T includes a strong saturation principle, sometimes called idealization.

4. T allows standardization. That is, for any given set, one can take the set
of all its standard elements, and the result is again a standard set.

5. T is conservative over ZFC. That is, a standard fact is proved by T if and
only if it is proved by ZFC.

Some comments on the above desiderata. Item # 1 says that working in T
is the same as working in ZFC when dealing with ordinary mathematics. Items
# 2 and # 3 states that T allows performing nonstandard constructions in its
full generality. As for standardization, it allows considering the (nonstandard)
notion of standard set when defining sets. This seems to be a very natural
property to be assumed. In fact, suppose one wants to take all standard elements
of a given (possibly external) set so as to form a standard set, and then apply the
usual standard arguments on it. Without standardization this is not possible.
We remark that standardization trivially holds in the superstructure approach,
while it is usually set as an axiom in nonstandard set theories. Finally, item #
5 gives a strong foundational justification to T , which can be seen (at least) as
a short-cut to standard theorems. 16

Unfortunately, a theory T satisfying all the above properties cannot exist.
First of all, the axiom of regularity cannot be demanded by # 1 in the external
universe. Proposition 2.1 already showed that regularity for the nonstandard
universe is incompatible with the infinity axiom for the standard universe. If
we want the universal class to contain external sets, and to be large enough
to go beyond the finite levels in the hierarchy, we necessarily have to give up
regularity.

There are different positions about the role of the regularity axiom in math-
ematics, and this is not the right place for a discussion. 17 Here I will only
give some brief personal consideration, not necessarily shared by others. Prob-
ably, the main effect of regularity is to give a nice picture of the universe V. In
fact, in presence of other axioms of ZFC, it can be equivalently formulated as
the equality V =

⋃{Vα : α ∈ ON}, stating that every set is obtained at some
level of the cumulative hierarchy over the emptyset. However, this nice picture
can also be seen as a limitation, in that it restricts the universe of sets. My
position is the following. The axiom of regularity is an unnatural restriction

16We remark that conservativity is not the only notion available to test the strength of a
nonstandard set theory T with respect to ZFC. For instance, on the semantic side, extensions
properties for models are usually considered.

17The reader interested in nonwellfounded sets and their use can consult for instance [Ac],
[Hi] and [BM].
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to the existence of sets and should be replaced by a suitable anti-foundation
principle yielding plenty of nonwellfounded sets. This can be done in such a
way that the new system proves the same theorems about wellfounded sets that
are proved by ZFC. In this framework, if one believes that only wellfounded
sets exist or that only wellfounded sets are worth considering in mathematics,
fine. He/she will never go beyond the wellfounded part of the universe. In
those cases where assuming regularity is essential in order to formulate or prove
results, then one can simply reformulate them as results about the wellfounded
part of the universe. The universe of classic “wellfounded” mathematics is not
changed. Simply, it is expanded by additional sets one can consider whenever it
is useful. From now on, we denote by ZFC− the theory ZFC without regularity.

If giving up regularity can be seen as a minor problem (or as a non-problem),
essential restrictions that deeply undermine the dream of formulating the “per-
fect” nonstandard set theory were first pointed out by Karel Hrbác̆ek [H1]. In
a naive formulation, its result can be stated as follows: 18

Hrbác̆ek’s paradoxes. Let T be any nonstandard set theory where
items # 2, 3 and 4 as above are satisfied. Assume all axioms of
ZFC− are included in T for the standard universe, and all axioms
of ZFC− except power-set PS and choice AC are considered for the
whole universe. Then: (i) T + PS is inconsistent; (ii) T + AC is
inconsistent.

Thus any proposed nonstandard set theory has to either give up some of the
axioms of ZFC− in the external universe, or assume some of the principles of
nonstandard analysis only in a weakened form.

§4. Nelson’s Internal Set Theory.
The Internal Set Theory IST was presented by Edward Nelson in his 1977 paper
[N1]. So far, it is the only nonstandard axiomatic framework to have been
actually adopted by working mathematicians. 19 Internal Set Theory is an
elegant theory formulated as a result of a precise philosophical position. With
respect to usual set theory, an additional predicate st, called “standard”, is
part of the formal language. This way the notion of standard set is of the
same nature as the membership relation, i.e. it is a primitive concept not to be
defined. “The reason for not defining “standard” is that it plays a syntactical,
rather than semantic, role in the theory. It is similar to the use of “fixed” in
informal mathematical discourse. One does not define this notion ... But the
predicate “standard” – unlike “fixed” – will be part of the formal language of our
theory ...”. 20 The main philosophical position of the internal approach is that

18A precise formulation will be given in §5.
19See for instance [DR] for an introduction to the practice of nonstandard analysis within

IST.
20[N3] p. 3.
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“... we do not enlarge the world of mathematical objects in any way, we merely
construct a richer language to discuss the same objects as before.”. 21 Thus,
in contrast to the superstructure approach, there is no distinction between a
“standard” set, say the real numbers R, and its “nonstandard” version, namely
∗R. One only has a single set of real numbers, the usual one. The point is
that IST is provided with the new predicate st for “standard”, so that one
can more deeply investigate properties of the real line and realize, for instance,
that it contains infinitesimals. In this sense standard objects, that is objects
x such that st(x) holds, are those sets one can already consider by using the
ordinary language of mathematics. The novelty is that standard sets may have
non-standard elements, i.e. elements that need the richer language of IST to be
detected and investigated. “...very, very large natural numbers, and very, very
small real numbers were there all along, and now we have a suitable language
for discussing them.” 22

A description of the common ground shared by the two main view-points to
nonstandard analysis, namely the external ∗-approach by means of superstruc-
tures and the internal approach by means of a standardness predicate, can be
found in [DS]. In that paper, F. Diener and K. Stroyan also give an interpreta-
tion of IST in a superstructure, thus supplying a bridge to followers of the two
schools.

Let us fix some notation. The quantifier ∀stx means “for all standard x” and
similarly ∃stx means “there exists a standard x”. That is, for every formula ϕ,
we write ∀stxϕ as a short-hand for ∀x (st(x) → ϕ) and ∃stxϕ as a short-hand
for ∃x (st(x) ∧ ϕ).

• ZFC.
All axioms of Zermelo-Fraenkel set theory with choice (including regular-
ity) are assumed. 23

• Transfer Principle (T)
For every ∈-formula ϕ whose free variables are x1, . . . , xn, y, the following
is an axiom:

∀stx1 · · · ∀stxn (∀sty ϕ ↔ ∀y ϕ )

By ∈-formula, we mean a formula in the usual language of set theory, i.e.
not involving the standardness predicate st. The transfer principle states that
any formula of set theory with standard parameters x1, . . . , xn that holds for
every standard set also holds for all sets. “The intuition behind (T) is that if
something is true for a fixed, but arbitrary, x then it is true for all x.” 24

21Ibid. p 3.
22Ibid p. 11.
23We remark that regularity can be consistently assumed because IST does not admit

external sets.
24Ibid. p. 5.
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Before formulating the remaining principles of IST, we need some more no-
tation. The quantifier ∀stfinx means “for all standard finite x” and similarly
∃stfinx means “there exists a standard finite x”. The distinction between stan-
dard finite sets and finite sets is crucial in IST. 25 For instance, each initial
segment [0, x] of the natural numbers is finite, but it is also standard finite if
and only if x is standard.

• Idealization Principle (I)
For every ∈-formula ϕ, the following is an axiom:

∀stfinx′ ∃y ∀x ∈ x′ ϕ ↔ ∃y ∀stxϕ

“The intuition behind (I) is that we can only fix a finite number of objects at
a time. To say that there is a y such that for all fixed x we have ϕ is the same
as saying that for any fixed finite set of x’s there is a y such that ϕ holds for all
of them.” 26 We remark that (I) gives an extremely strong form of saturation.
For instance, it implies the existence of finite sets containing the entire standard
universe. 27

• Standardization Property (S)
For every formula ϕ the following is an axiom:

∀stx∃sty ∀stz [z ∈ y ↔ (z ∈ x ∧ ϕ)]

“The intuition behind (S) is that if we have a fixed set, then we specify a
fixed subset of it by giving a criterion for judging whether each fixed element is a
member of it or not.” 28 As we already pointed out in §3, standardization seems
to be a natural property to be assumed, and very useful in making definitions.
For instance, standardization is essential to prove the following external version
of induction.

• Let ϕ be any formula, and suppose ϕ(0) and ∀stn ∈ N ϕ(n) → ϕ(n + 1).
Then ∀stn ∈ N ϕ(n).

IST is the theory ZFC+(I)+(S)+(T). A crucial fact when working within
IST is that one has to be careful about illegal set formation. As only ∈-formulas
are allowed in the definition of subsets, many basic collections considered in the
practice of nonstandard analysis are not sets of IST. For instance the collection of

25In the language of the superstructure approach, they correspond to finite and ∗finite sets,
respectively.

26Ibid. p. 7.
27The usual intuitive justification for ZFC views its universe as never finished, but better

and better approximated by the levels Vα of the cumulative hierarchy. This intuitive picture
seems to contrast with existence of sets containing the entire standard universe.

28Ibid. p. 12.
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all infinitesimal numbers is illegal, in that the notion of infinitesimal is defined by
a formula involving st (“x is infinitesimal iff |x| < ε for all standard ε > 0”). In
general, none of the external collections available in the superstructure approach
is an actual object of IST. Thus item # 1 of desired nonstandard set theories
is implemented at the price of dramatically restricting the universe to internal
sets. As pointed out by H.J. Keisler: “...because external sets are missing,
developments such as the Loeb measure construction and hyperfinite descriptive
set theory cannot be carried out in their full generality in IST.” 29 However, we
will see in the sequel that various improvements on the internal approach have
been proposed which allow the direct use of external collections.

Concerning the foundational strength of the IST, the following holds. 30

Theorem 4.1.
IST is a conservative extension of ZFC. That is, for every ∈-formula σ:

ZFC ` σ ⇔ IST ` σ

Nelson also proved interesting syntactical properties of IST. Notably, he
gave a reduction algorithm which takes external formulas and rewrites them as
equivalent Σst

2 -formulas (see [N1] §2).

Theorem 4.2.
Let ϕ be any formula of IST whose quantifiers are all bounded by standard sets.
Then there is an ∈-formula ϑ(x, y) with

IST ` ϕ ↔ ∃stx∀sty ϑ(x, y)

On the same matter, in his 1988 paper [N2] Nelson showed that a reduc-
tion algorithm can also be given to re-write every nonstandard proof in IST
as a standard proof in ZFC[V], a simple conservative extension of ZFC which
directly encloses a form of the reflection principle. This gives an answer to
the old problem raised by A. Robinson himself: “to devise a purely syntactical
transformation which correlates standard and nonstandard proofs...”.

§5. Hrbác̆ek’s Nonstandard Set Theories.
Independently of Nelson, Karel Hrbác̆ek developed his nonstandard set theories
NS1,NS2 and NS3 already in the first half of the seventies [H1]. 31 In his
systems he explicitly considered external sets in the universe. To this end, he
added two symbols to the usual language of set theory, namely a predicate st(x)

29[K3] p. 232.
30This theorem, due to William C. Powell, is proved in the appendix of Nelson’s original

paper [N1]. See also [CK] §4.4, where the proof is presented in a simpler form.
31Historically, he was the first one to actually develop comprehensive nonstandard set theo-

ries. In fact, his paper [H1] (published 1978) was accepted in May 1975, while Nelson presented
his IST in the summer of 1976.
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for ”x is standard” and a predicate int(x) for ”x is internal”. We will use a
similar notation for internal-bounded quantifiers ∀int and ∃int as we already did
for standard-bounded quantifiers ∀st and ∃st in IST. 32

The common part NS0 of the three Hrbác̆ek’s theories is the system given
by the following seven groups of axioms.

• (H1) ZFC for the standard universe.
For every axiom ϕ of ZFC, its standard relativization ϕst is assumed. 33

• (H2) A fragment of ZFC for the external universe.
The axioms of extensionality, emptyset, pairing, union, infinity and sepa-
ration are assumed for the universal class (i.e. without restricting quan-
tifiers). The separation schema is also considered for formulas containing
predicates st and int.

• (H3) All standard sets are internal.

∀stx int(x)

• (H4) The universe of internal sets is transitive.

∀x∀inty (x ∈ y → int(x))

• (H5) Transfer Principle.
For every ∈-formula ϕ whose free variables are x1, . . . , xn, the following is
an axiom:

∀stx1 · · · ∀stxn (ϕst(x1, . . . , xn) ↔ ϕint(x1, . . . , xn) )

• (H6) Standardization Property.

∀a ∃stb∀stx (x ∈ a ↔ x ∈ b)

Notice that this version of standardization is stronger than Nelson’s, because
in the above a can be any (not necessarily standard) set. The unique standard
set having the same standard elements as A is usually denoted by oA. Notice
that, by separation, one can also consider the set σA = {x ∈ A : st(x)}.

• (H7) Idealization Principle.
For every ∈-formula ϕ whose free variables are x1, . . . , xn, t, a, b, the fol-
lowing is an axiom: 34

32That is, we will write ∀intx ϕ as a short-hand for ∀x (int(x) → ϕ) and ∃intx ϕ as a
short-hand for ∃x (int(x) ∧ ϕ).

33ϕst is the formula obtained from ϕ by setting each quantifier ∀x and ∃x in its standard-
bounded form ∀st and ∃st. We will also use a similar notation for internal relativization
ϕint.

34∀stfinx means ∀stx (x finite → · · ·).
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∀intx1 · · · ∀intxn ∀a of standard-size
[ ∀stfina′ ⊆ a ∃intb∀intt ∈ a′ ϕint(t, a, b, x1, . . . , xn) ] →

[∃intb ∀intt ∈ aϕint(t, a, b, x1, . . . , xn) ]

A set A has standard-size if there is a standard X and a function f such that
A = {f(x) : x ∈ X &st(x)}. The above principle gives an unlimited amount of
saturation with respect to the standard universe.

Roughly speaking, the universe of standard sets in NS0 can be seen as
the ”usual” mathematical universe satisfying ZFC, and the universe of inter-
nal sets as an ”ON-saturated” elementary extension of it. Then, the internal
universe is further extended by considering collections of internal sets that are
not themselves internal. The resulting universal class (external universe) mod-
els a fragment of ZFC, so that some of the mathematical constructions allowed
for standard and internal sets, are also allowed for all sets without restric-
tions. Standardization permits unlimited use of external sets in constructions
of standard sets. Since in Hrbác̆ek’s systems an external notion of cardinality
is available, the size of internal sets can be compared with the size of external
sets. As a consequence of saturation, the (external) size of internal sets is huge,
and the restriction to sets of standard-size in the idealization principle is needed
in order to avoid straight contradictions.

As already mentioned in §3, Hrbác̆ek was the first one to point out that
the ”perfect” nonstandard set theory cannot exist. Notice that in order to
make NS0 ”perfect”, also the remaining axioms of replacement, power-set and
choice should be postulated for the external universe. Unfortunately this is not
possible. Precisely, the following holds.

Theorem 5.1. Hrbác̆ek’s Paradoxes. 35

(i) NS0 + Replacement + Power-set is inconsistent.
(ii) NS0 + Replacement + Choice is inconsistent.

The proofs formalize the following idea. As a consequence of idealization, the
infinite standard set N of natural numbers has a larger size than σA, for every
standard A. If enough axioms of ZFC are available for the external universe,
then one can obtain a set containing arbitrarily large standard ordinals. Finally,
by applying standardization, one gets that the collection ON of all ordinals is
a set. A contradiction.

Three different axiomatic systems NS1, NS2 and NS3 were proposed by
Hrbác̆ek as the best possible compromises to avoid the above inconsistency
results. Namely,

• NS1 is the theory NS0 + Replacement.
35[H1] Theorem 3. In the replacement schema, also formulas containing the symbols st and

int are considered.
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• NS2 is the theory NS0 + Power-set + Choice.

• NS3 is the theory NS0 + Standard-sized Replacement + Power-set +
Choice.

The standard-sized replacement is the schema obtained by restricting all
instances of replacement to external sets of standard-size. 36

Theorem 5.2. 37

(i) NS1 is a conservative extension of ZFC. That is, for any ∈-sentence σ:

ZFC ` σ ⇔ NS1 ` σst

(ii) NS2 is a conservative extension of ZFC.
(iii) NS3 is consistent relative to ZFC + ”there exists an inaccessible cardinal”,
but it is not conservative.

Thus, by assuming the ground theory NS0, the picture is clear. For the
external universe, one can either postulate replacement or power-set and choice
(possibly with a weakened form of replacement) but further strengthening are
inconsistent. In author’s opinion, Hrbác̆ek’s contribution [H1] was a corner-
stone in the field under review. His paradoxes made it clear that the ”perfect”
nonstandard set theory cannot exist, and they were the starting point of the
following research in the field.

§6. Kawai’s axiomatic system NST.
Important contributions to the foundations of nonstandard methods were given
by Toru Kawai in a series of papers culminating in [Kw]. He was the first one
to present axiomatic systems where all axioms of ZFC− are assumed for the
external universe. Hrbác̆ek’s inconsistency results are avoided by weakening
standardization and by considering both the standard universe and the internal
universe as true sets. To this end, the language of Kawai’s theory is different in
nature from the previous ones. In place of the predicate symbols st and int,
two new constant symbols S and I for the standard and internal universe are
considered instead.

The axioms of Kawai’s Nonstandard Set Theory NST are the following.

• (K1) ZFC for the standard universe.
For every axiom ϕ of ZFC, its standard-relativization ϕS is assumed. 38

36Precisely, in the formulation of replacement as

∀A∃B ∀a ∈ A [∃x ϕ(x, a, A) → ∃x ∈ B ϕ(x, a, A)]

the set A has to be of standard-size.
37Theorems 1, 2 and 4 of [H1].
38ϕS is the formula obtained from ϕ by replacing all quantifiers ∀x and ∃x with its restricted

form ∀S and ∃S , that is ∀x (x ∈ S → · · ·) and ∃x (x ∈ S∧· · ·)), respectively. A similar notation
will be also adopted for restricted quantifiers ∀I and ∃I and internal-restrictions ϕI .
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• (K2) ZFC− for the external universe + Weak Regularity.
All axioms of ZFC are assumed for the universal class with the exception
of regularity, which is only assumed in the following weak form.

∀x 6= ∅ [x ∩ I = ∅ → (∃y ∈ x y ∩ x = ∅) ]

• (K3) All standard sets are internal.

∀Sx x ∈ I

• (K4) I is transitive.

∀x∀Iy (x ∈ y → x ∈ I)

• (K5) Tranfer Principle.
For every ∈-formula ϕ whose free variables are x1, . . . , xn, the following is
an axiom:

∀Sx1 · · · ∀Sxn (ϕS(x1, . . . , xn) ↔ ϕI(x1, . . . , xn) )

• (K6) Standardization Property. 39

∀a [(∃St σA ⊆ t) → ∃Sb∀Sx (x ∈ a ↔ x ∈ b)]

• (K7) Idealization Principle.
For every ∈-formula ϕ all of whose free variables are among x1, . . . , xn, t, b,
the following is an axiom: 40

∀Ix1 · · · ∀Ixn ∀a S-sized
[ ∀Ifina′ ⊆ a∃Ib∀It ∈ a′ ϕI(t, b, x1, . . . , xn) ] →

[ ∃Ib∀It ∈ aϕI(t, b, x1, . . . , xn) ]

A set a is S-sized if there is a function f : S → a onto. Kawai’s weak reg-
ularity axiom was subsequently considerated in other nonstandard set theories.
Similarly as regularity in ZFC, weak regularity gives a picture of the exter-
nal universe, as a cumulative hierarchy over the internal sets. With respect to
usual set theory, NST is a bit confusing when considering the notion of size.
For instance, the huge collections S and I of standard and internal elements,
are themselves external sets of the universe. Since in Kawai’s system external
sets can be of unlimited size, full standardization cannot hold. Notice in fact
that Kawai’s (K6) is weaker than Hrbác̆ek’s (H6), in that only those sets whose

39σA = {x ∈ A : x ∈ S} denotes the (external) collection of all standard elements of A.
40∀Ifinx means ∀Ix (x finite → · · ·).
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standard elements are already contained in a standard set can be standard-
ized. In the practice, this makes it often uncertain whether a given set can be
standardized or not. NST is justified by the following theorem.

Theorem 6.1. 41

NST is a conservative extension of ZFC. That is, for any ∈-sentence σ:

ZFC ` σ ⇔ NST ` σS

In [Kw], an equivalent reformulation of NST, namely UNST, is also given.
It is called a nonstandard “axiom system from the usual viewpoint”, because it
is presented by axiomatizing a nonstandard embedding ∗.

§7. Fletcher’s Stratified Nonstandard Set Theory SNST.
Fletcher’s work [Fl] explored the possibility of avoiding Hrbác̆ek’s paradoxes,
by dynamically changing the ”picture” of the universe. Instead of a static
fixed universe, his system provides a whole hierarchy of internal and external
universes. His point in formulating the Stratified Nonstandard Set Theory SNST
can be summarized as follows. Although a single formal system is desiderable,
it does not have to describe a single universe. SNST postulates an increasing
sequence of internal and external universes indexed over the cardinals, where
varying levels of saturation are satisfied. Full idealization does not hold, but
any given amount of saturation is made available by working in a suitable level
of the hierarchy.

The language of SNST is different from the usual language of set theory, in
that all quantifiers have α or ext, α superscripts. The informal meaning is the
following. For each cardinal α there is an internal universe Iα together with
its external universe Eα. Quantifiers ∀αx, ∃αx are intended as restricted to Iα,
and ∀ext,αx, ∃ext,αx as restricted to Eα. The standard universe S is identified
with I0. Thus ∀S and ∃S stand for ∀0 and ∃0 respectively. We will write ∀α
as a short-hand for ”∀0α (α is a cardinal → · · ·)”. The axioms of SNST are the
following.

• (F1) ZFC for the standard universe.
For every axiom ϕ of ZFC, its standard-relativization ϕS is assumed.

• (F2) ZFC− + weak regularity for the external universe.
For every axiom ϕ of ZFC−, its relativization ϕext,α to the external uni-
verse Eα is assumed for all α. Besides, this form of weak regularity holds:

∀α ∀ext,αx 6= ∅ [∀αy y /∈ x → (∃ext,αz ∈ x z ∩ x = ∅) ]

• (F3) Iα ⊆ Eα, Iα ⊆ Iβ and Eα ⊆ Eβ for all α ≤ β.

41Conservation theorem for NST in [Kw].
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∀α ∀β [α ≤ β → (∀αx∃ext,αy y = x)∧
(∀αx∃βy y = x) ∧ (∀ext,αx∃ext,βy y = x)

• (F4) Each strictly external part Eα \ Iα is transitive. The whole internal
universe I =

⋃
α Iα is transitive. 42

∀α ∀ext,αx (∃αt x = t ∨ ∀β ∀ext,βy ∈ x∃ext,αz y = z)

∀α ∀β ∀αx∀ext,βy ∈ x ∃βz y = z

• (F5) Transfer Principle.
For every ∈-formula ϕ whose free variables are x1, . . . , xn, the following is
an axiom:

∀α ∀β [ α ≤ β → ∀αx1 · · · ∀αxn (ϕα(x1 . . . , xn) ↔ ϕβ(x1, . . . , xn) ) ]

• (F6) Standardization Property.

∀α ∀ext,αa ∃Sb∀Sx (x ∈ a ↔ x ∈ b)

• (F7) Idealization Principle.

∀α ∀αr [ r is a binary relation ∧∃Sf f(σα) = σr ] →
[ (∀Sfina ⊆ dom(r) ∃αb ∀Sa′ ∈ a r(a′, b)) → (∃αb ∀Sa ∈ dom(r) r(a, b) ]

“The way to visualize SNST is to regard any infinite internal set A as an
inexhaustible source of elements. How many elements you find in A depends
on how hard you look; ∀αx ∈ A means ”for all elements x of A discoverable by
looking with degree of throughness α”.” 43 As presented, SNST is not formalized
in the usual first-order predicate calculus. And here stands the main criticism
to Fletcher’s system. The use of ranked quantifiers Qα and Qext,α resembles
the old formalism of type theory, by now unfamiliar to most mathematicians.
Probably, an equivalent reformulation of SNST in a first-order language could
be of help to make it better accepted as a satisfactory foundational system for
the practice of nonstandard methods. 44

Models of SNST are constructed by an ultralimit process. Roughly speaking,
one starts with the standard universe I0 = S and, by transfinite induction,

42We remark that internal universes Iα are not transitive.
43[Fl] p. 1007.
44Such a first-order presentation of SNST is possible by considering extra symbols. For

instance, one could take the language L that consists of the membership symbol ∈, of a
predicate st(x) for ”x is standard” and of two binary relation symbols I(x, y) and E(x, y)
whose informal meaning is the following. For each (standard) cardinal α, Iα = {y : I(α, y)}
and Eα = {y : E(α, y)}. Then, (with some caution) SNST can be given an equivalent
axiomatization by sentences of L.
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defines Iα as an α-saturated extension of the direct limit of {Iβ : β < α}. Then,
external sets are built up on each Iα, by a transfinite iteration of a ”simulated”
power-set operator for extensional structures. SNST is justified by the following

Theorem 7.1. 45

(i) Every model of ZFC is embedded as the standard universe in some model
of SNST. In particular, SNST is a conservative extension of ZFC. That is, for
every ∈-formula σ:

ZFC ` σ ⇔ SNST ` σS

§8. Ballard’s Enlargement Set Theory EST.
Fletcher’s approach of considering many universes in the same formal system,
was further developed by David Ballard [Ba]. By presenting his Enlargement
Set Theory EST in the framework of a class theory, Ballard was able to avoid
the notational problems of a ranked language. Starting from a suitable notion
of universe, the following is postulated. For every universe U and every U -
cardinal κ, there exists a nonstandard κ-saturated enlargement U ′ ⊇ U (such
an U ′ is also a universe). This way any given level of saturation is available.
In Ballard’s words, the “intended interpretation of EST is of a cosmos of sets
undergoing perpetual expansions. The expansion will be twofold: First, there
will be external expansion wherein standard set theoretic operations ... are used
to form new sets from old. Secondly, there will be an internal expansion wherein
any set x, unless finite, will continually pick up new elements through the ”non”
standard process of saturation.” 46

EST is formulated in the language of the Gödel-Bernays class theory GB. 47

As usual, capital letters A,B, C, . . . will denote class variables and small letters
x, y, z, . . . will denote set variables. Recall that sets are those classes that are
elements of classes, and a proper class is a class that is not a set. If ϕ is a formula
of class theory, and U is a class, we will write ”U |= ϕ(x1, . . . , xn, A1, . . . , Am)”
to mean

x1, . . . , xn ∈ U ∧ A1, . . . Am ⊆ U ∧ ϕU (x1, . . . , xn, A1, . . . , Am)

where ϕU is the U -relativization of ϕ, that is the formula obtained from ϕ by
rewriting set quantifiers ∀x,∃x as ∀x ∈ U , ∃x ∈ U , and class quantifiers ∀A,
∃A as ∀A ⊆ U , ∃A ⊆ U , respectively. To better understand the sequel, the
reader is warned in advance that EST is not to be intended as an extension of
(a slight modification of) GB. For instance, in EST the existence of a universal
class containing all sets will not be assumed. EST should rather be thought as a
vessel containing suitable actual classes satisfying special properties. Similarly

45[Fl], Theorem p. 1006.
46[Ba] p. 102.
47A concise presentation of GB can be found in [Je] p. 76.
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as the ZFC universe contains superstructures, EST contains universes, on which
attention will be focused.

We say that a class is static if it is a subclass of some proper class. A static
class which is a subclass of a set is called local. 48 The central notion in EST
is that of universe. Roughly speaking, a universe is a class which essentially
models set theory and reflects all bounded formulas, so that a transfer principle
will be available. By definition, a universe is a class U such that:

• U is static.

• U is not local.

• A modified version of Gödel-Bernays axioms holds for U .
Namely, U must satisfy the following form of extensionality:

∀x, y ∈ U ∀A,B ⊆ U ∀t [(t ∈ x ↔ t ∈ y) → x = y ]∧
[(t ∈ A ↔ t ∈ B) → A = B ]

Comprehension axioms are assumed in the form that asserts the existence
of static subclasses of U . Regularity is not postulated and choice is as-
sumed in the stronger form of a well-ordering of the universe. See [Ba]
for details. 49

• U satisfies full separation with respect to arbitrary classes:

∀A∃B ∀x [ x ∈ B ↔ (x ∈ A ∧ x ∈ U) ]

• U is able to detect when a static subclass is local or when it is a set.

∀A ⊆ U (A local → ”U |= A local” ) ∧ ∀x (x ⊆ U → x ∈ U)

• For each Gödel operation G:

∀x1 ∈ U · · · ∀xn ∈ U ( ϑG(x1, . . . , xn) ↔ ”U |= ϑG(x1, . . . , xn)” )

with ϑG(x1, . . . , xn) a (bounded) formula defining G. 50

48Note that at this point nothing, including GB, is assumed. Indeed, were a universal
class V to exist, all classes would be static. Proper subclasses of sets are called semisets in
Vopĕnka-Hájek’s Alternative Set Theory AST, where they play a central role. (see [VH]).

49We remark that some caution is needed when relativizing axioms of GB to U , because
the latter is not assumed to be transitive. For instance, call U-classes those classes such that
A ⊆ U , and U -sets those sets such that x ∈ U . Then it may be that a U -set is not a U-class.
Also, notice that from U ’s point of view, there may be a class A and a set x having the same
elements, but A 6= x.

50We remark that there is a finite number of Gödel’s operations. A complete list is given
in §13 of this paper, when formulating axiom 3 of ∗ZFC.
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Notice that, as a consequence of the latter property, a universe U reflects
all bounded formulas. 51 Now, let U ′ ⊇ U be universes. We say that U ′ in an
enlargement of U , if

U ′ |= ∀x ∈ U (”U |= x is finite ” → x ⊆ U)

Thus enlargements U ′ ⊇ U have the property that a set of the first universe is
seen as finite by either universe only if it is seen as finite by both. We are now
ready to give the two axioms of EST.

• (B1) There exists a universe U .

• (B2) For any universe U and for every U -cardinal κ, there exists a κ-
saturated enlargement U ′ ⊇ U .

Recall that GB admits a finite axiomatization. As a consequence, (B1) is
actually expressed by a formula in the class language of EST. Since the notion
of cardinal is not absolute between U and U ′, caution is needed to correctly
formalize the second axiom. First, it is seen that to each U -cardinal κ (i.e.
κ ∈ U and U |= ”κ is a cardinal”) canonically corresponds a unique U ′-cardinal
κ′. Then the transitive closure U of U (as seen by U ′) is considered; and finally
(B2) is expressed in U ′ as the usual intersection property for subsets of U of
cardinality less than κ′. 52

Though presented by only two axioms, the system EST may not be easy to
grasp for the average working mathematician, not familiar with class theories.
The notion of universe is quite different from the usual ones adopted in set
theory. 53 Some of the required properties look a bit too technical and beyond
the common practice of nonstandard methods. Also, it may be a bit confusing
not to have an external absolute notion of cardinality.

However, the fundamental feature of EST is that it allows one to layer non-
standard arguments, that is external sets in one universe can be the standard
ones in another. This fact successfully matches Ballard’s philosophical position:
“In designing the vehicle EST, I have deliberately ignored the needs of practi-
tioners and sought instead to decisively illustrate the full implications of this
relativistic mathematical ontology. The EST cosmos is in continual explosion.
Its universes A are merely frozen frames of reference. Within these frames, fa-
miliar mathematics can be observed, but with the slightest slip along the chute of
time — i.e., a passage to any further enlargement A ⊆ A′ — the usual develops

51In fact, recall that (with suitable hypotheses) preservation of bounded formulas is equiv-
alent to closure under Gödel operations ([Je] Theorem 30). Here, all variables occurring in
bounded formulas are assumed to be set variables.

52See [Ba] for details.
53In the literature, several definitions of universe can be found. However, by universe is

usually meant a transitive class closed under some elementary operations. Typically, only
basic notions such as pair, union, subset, power-set are considered in the definition.
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unusualness. The universe A will have its clear version ωA of the natural num-
bers, but when viewed in a later universe A′, this ωA will be seen to have picked
new, unusual elements which are infinite. Of course A′ has its version ωA′ of
the natural numbers, but this only means that the cycle of slipping ”reality” is
poised to repeat itself again.”. 54

The foundational justification of EST is given by the next theorem.

Theorem 8.1.
For every ∈-sentence σ, the following are equivalent:
(i) ZFC ` σ;
(ii) EST ` ”there exists a universe U that satisfies the regularity axiom and
U |= σ”;
(iii) EST ` ”for each U that satisfies the regularity axiom, U |= σ”.

§9. The ”Near-standard” Zermelo-Fraenkel-Boffa Set Theory ZFBC.
In their paper [BH], David Ballard and Karel Hrbác̆ek showed that a modifi-
cation of the classic axiomatic system of set theory can be adopted as a setting
for the practice of nonstandard methods in its full generality. Namely, they
proposed the more or less standard (”near-standard”) Zermelo-Fraenkel-Boffa
set theory ZFBC, where an additional binary relation symbol C is included in
the language to give a well-ordering of the universe, and regularity is replaced
by a strong anti-foundation principle. Precisely, the axioms of ZFBC are the
following.

• ZFC−.
All axioms of ZFC except regularity are assumed. The separation and
replacement schemata are also considered for formulas where the symbol
C occurs.

• C(x, y) is a functional relation yielding a bijection C : ON → V between
the class of ordinals and the universe. More formally,

∀x∀x′ ∀y ∀y′ [C(x, y) ∧ C(x′, y′)] →
[(x = x′ ↔ y = y′) ∧ “x is an ordinal”] ∧ (∀y ∃x C(x, y))

• Boffa’s Superuniversality axiom. 55

Assume f : 〈A,E〉 → 〈A′, E′〉 is an end extension of extensional structures.
Then for each transitive collapse π : 〈A,E〉 → 〈T,∈〉 there is a transitive
collapse π′ : 〈A′, E′〉 → 〈T ′,∈〉 such that the following commutes: 56

54[Ba] p. 128.
55Maurice Boffa’s pioneering work on anti-foundation axioms dates back to the late sixties.

A construction of models for the superuniversality axiom was first given in [Bo].
56ı is the inclusion map.
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〈A′, E′〉 〈T ′,∈〉

〈A,E〉 〈T,∈〉
f ı

π′

π

-

-

? ?

Recall that an extensional structure is a model of the language of set theory
that satisfies the extensionality axiom. For instance, 〈T,∈〉 is an extensional
structure for every transitive set T . An end extension f : 〈A,E〉 → 〈A′, E′〉 is an
embedding where images pick no new elements, that is (i) xEy ↔ f(x)E′f(y);
(ii) ξE′f(y) → ξ = f(x) for some xEy.

Notice that, by taking 〈A,E〉 = 〈∅, ∅〉 the empty structure, superuniversality
yields the existence of transitive collapses for all extensional structures 〈A′, E′〉,
wellfounded or not. Thus Boffa’s axiom is a generalized form of the classic
Mostowski transitive collapse theorem. The next result gives a foundational
justification of ZFBC.

Theorem 9.1.
Every countable model M |= ZFC is embedded as the collection of wellfounded
sets into a model N |= ZFBC. In particular, formulas of ZFC have a faithful
interpretation in ZFBC by relativizing to the class WF of well-founded sets.
That is, for every ∈-sentence σ

ZFC ` σ ⇔ ZFBC ` σWF

Proof. Put together a classic result by U. Felgner on models of a global
version of the axiom of choice [Fe], with Boffa’s construction of models of Su-
peruniversality [Bo]. As for the conservativity, assume by contradiction that
ZFBC 6` σWF . Let N |= ZFBC with N |= ¬σWF , and consider M = (WF )N

the wellfounded part of N . Then M |= ZFC and M |= ¬σ, thus ZFC 6` σ.
Vice versa, assume ZFC 6` σ. By applying the downward Lowenheim-Skolem
theorem, there is a countable model M |= ZFC with M |= ¬σ. If N |= ZFBC is
an extension of its with M = (WF )N , then N |= ¬σWF , hence ZFBC 6` σWF .
a

Although only sets are considered in Zermelo-Fraenkel system, to simplify
notation we informally use classes as extensions of formulas. That is, a class
C is a collection of the form C = {x : σ(x)} where σ is a formula. We will
use boldface letters to denote them. ϕC denotes the formula obtained from
ϕ by restricting all quantifiers to the class C. That is, all quantifiers ∀x, ∃x
are replaced by ∀x (σ(x) → · · ·) and ∃x (σ(x) ∧ · · ·), respectively. We say that
a formula ϕ holds in C, and write C |= ϕ, when ϕC holds. Recall that a
class U is almost universal if for every set x with x ⊆ U, it is x ⊆ y ∈ U
for some set y. A universe is a transitive almost universal class that is closed
under the Gödel operations. As a consequence, it is proved that all axioms
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of ZFC without regularity hold in U. 57 Let κ be a given cardinal. Like in
the superstructure approach, we say that a universe U is κ-saturated if every
family F ⊆ U of cardinality less than κ with the finite intersection property,
has nonempty intersection.

From the point of view of nonstandard analysis, the fundamental theorem
of ZFBC is the following. 58

Theorem 9.2 Extension Principle.
Let U be a universe and κ an infinite cardinal. Then there exists a κ-saturated
universe W and an embedding ∗ : U → W that satisfies the transfer principle.
That is, for every ∈-formula ϕ and a1, . . . , an ∈ U

U |= ϕ(a1, . . . , an) ⇔ W |= ϕ(∗a1, . . . ,
∗an)

The practice of nonstandard methods in ZFBC is very close to the super-
structure approach but way far more general. “... fix a full universe S, hence-
forth referred to as the standard universe ... the standard universe contains all
the usual mathematical objects. The extension principle provides a universe ∗S,
henceforth called internal universe, and an elementary embedding ∗ : S → ∗S
... The main point is that all three universes (S, ∗S and [the universal class
of all sets] V) satisfy the familiar axioms of set theory and hence mathematics
can be conducted without any restrictions in each of them. ... One can now
proceed to conduct nonstandard analysis in the style of Robinson and Zakon ...
but without the restrictions on the levels of the cumulative hierarchy imposed
by superstructures. 59 Thus ZFBC provides the framework for constructing
κ-saturated nonstandard embeddings for any given universe in the same way as
ZFC provides the framework for constructing embeddings of superstructures.
The concepts used in nonstandard analysis are defined, not presented by means
of additional symbols in the language of the theory. This is the reason why this
foundational approach to nonstandard methods can be described as a ”near-
standard” one.

§10. Improving on the Internal Approach: Theories BST and HST.
Recently, Vladimir Kanovei and Michael Reeken have published a series of pa-
pers as a result of a deep study of Nelson’s IST and related set-theoretic foun-
dational topics of nonstandard mathematics ([KR1], [KR2]). Their work led to
substantial improvements of the internal approach. A fundamental achievement
of theirs can be summarized as follows. By considering a minor modification
of IST, namely the Bounded Set Theory BST, one can code external sets into
the internal universe. This way a nonstandard set theory HST (Hrbác̆ek Set

57See [Je] §11. A list containing all Gödel operations is given in §13 of this paper, when
formulating axiom 3 of ∗ZFC.

58It is the Extension Principle proved in [BH].
59[BH] p. 744-745.
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Theory) is obtained which overcomes the main inconveniences of IST. 60

The starting point of Kanovei and Reeken’s joint work, is the problem of
improving Nelson’s internal approach, in such a way that its defects can be
overcome. The most striking one is the absence of external sets: “IST fails
to handle a very important type of nonstandard mathematical objects, therefore
fails to serve as a system of foundations for nonstandard mathematics in all
its totality.”. 61 In the first part of [KR1], they proposed to modify IST by
postulating that every set belongs to a standard set.

• Boundedness (B).
∀x∃sty x ∈ y

Since (B) directly contradicts idealization (I), the latter has to be assumed
in a weakened form. 62

• Bounded Idealization Principle (BI).
For every ∈-formula ϕ, the following is an axiom:

∀sty [∀stfinx′ ∃y′ ∈ y (∀x ∈ x′ ϕ ↔ ∃y′ ∈ y, ∀stxϕ)]

The resulting Bounded Internal Theory BST is closely related both to Nel-
son’s and Hrbác̆ek’s theories.

Theorem 10.1. 63

(i) Each of Hrbác̆ek’s systems NS proves all axioms of BST for the internal
universe.
(ii) BST has an inner model in IST given by the class B = {x : ∃sty x ∈ y} of
all bounded sets. In particular, BST is a conservative extension of ZFC. That
is, for every ∈-sentence σ:

ZFC ` σ ⇔ BST ` σst

BST retains all those features of IST used in applications and, in some sense,
it can be considered as equivalent to the latter as far as the known practice of
nonstandard analysis is concerned. Moreover, BST improves on IST in several
aspects, as shown by the following

Theorem 10.2. 64

(i) Reduction to Σst
2 -form. For any formula ϕ(x1, . . . , xn), there is an ∈-formula

ψ(a, b, x1, . . . , xn) such that
60The reference to Hrbác̆ek is due to the fact that HST is an extension of the system NS1.
61[KR1] part 1, p. 231.
62Recall that (I) implies the existence of a set S containing all standard sets. If S ∈ x for

some standard x, then x ∈ S ∈ x, against regularity.
63[KR1] part 1, §2.1.
64[KR1] part 1, Theorem 1.5 and Theorem 2.4.
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BST ` ∀x1 · · · ∀xn (ϕ(x1, . . . , xn) ↔ ∃sta∀stb ψ(a, b, x1, . . . , xn))

In particular, in BST every sentence is equivalent to ψst for some ∈-sentence
ψ. 65

(ii) Every countable model of ZFC is embedded as the standard universe into a
model of BST.

The above results are to be contrasted with the following, due to Kanovei
[Kv].

Theorem 10.3
(i) There is a sentence which is not equivalent in IST to ψst for any ∈-sentence
ψ.
(ii) There are countable transitive models of ZFC that cannot be embedded as
the class of standard sets in any model of IST.

Kanovei and Reeken realized that BST allows coding external sets in the
internal universe. Making use of the reduction property (not holding in IST),
they first showed that it is possible in BST to define all ∈-st-definable subclasses
by a single formula with parameters. As a consequence, those external sets
whose elements are all internal can be incorporated in a consistent way. Then,
by applying a general construction of external sets grounded on the idea of a
cumulative hierarchy along wellfounded trees, they showed that a full external
universe can be obtained, which yields a model for a comprehensive external set
theory. As a result, Kanovei and Reeken proposed an axiomatic nonstandard
system, namely Hrbác̆ek’s Set Theory HST, formulated in the ∈-st-language.

In the following, by internal universe we mean the definable class I = {x :
∃sty x ∈ y}; x ∈ I will be a short-hand for ∃sty x ∈ y and we will write ∀intx
to mean ∀x(x ∈ I → · · ·) and similarly for ∃int.

• (KR1) ZFC for the standard universe.
For every axiom ϕ of ZFC, its standard-relativization ϕst is assumed.

• (KR2) Axioms for the external universe.
The axioms of extensionality, pairing, union, infinity, separation and re-
placement are assumed for the universal class (i.e. without restricting
quantifiers). The separation and replacement schemata are also consid-
ered for formulas containing the predicate st. Moreover, the following
weak regularity axiom is assumed:

∀X 6= ∅ ∃x ∈ X x ∩X ⊆ I

and the following standard-size choice axiom is also assumed:
65We remark that the Σst

2 -form reduction property holds in IST only for formulas where
the standardness predicate occurs only in the form ∀stx ∈ y, ∃stx ∈ y, with y standard (see
theorem 4.2).

27



∀x of standard-size ∀f function with dom(f) = x
(∀t ∈ x f(t) 6= ∅) → (∃g function with ∀t ∈ x g(t) ∈ f(t)

• (KR3) All standard sets are internal.

∀stxx ∈ I

• (KR4) The universe I of internal sets is transitive.

∀intx∀y ∈ x y ∈ I

• (KR5) Transfer Principle.
For every ∈-formula ϕ whose free variables are x1, . . . , xn, the following is
an axiom:

∀stx1 · · · ∀stxn (ϕst(x1, . . . , xn) ↔ ϕint(x1, . . . , xn) )

• (KR6) Standardization Property.

∀a ∃stb∀stx (x ∈ a ↔ x ∈ b)

• (KR7) Saturation Principle.
If a family of internal sets has standard-size and has the finite intersection
property, then it has nonempty intersection.

HST turns out to be a strengthening of one of Hrbác̆ek’s systems; precisely it
is equivalent to NS1 + weak regularity + standard-size choice. 66 It is a power-
ful theory, and several set-theoretic topics, such as constructibility and forcing,
can be developed in it, thus suggesting HST as an interesting subject of foun-
dational studies (see [KR2]). For instance, Kanovei and Reeken have recently
proved in [KR3] that the isomorphism property (a useful tool in nonstandard
analysis) can be consistently added to HST. “... HST codifies the techniques
used by present-day nonstandard analysis and, as a natural extension of a slight
modification of IST, should be easily accessible to the practitioners familiar with
the latter.” 67 A limitation of HST as a nonstandard set theory is that its
universe is so large that it does support neither the power-set axiom nor the
full axiom of choice, two fundamental set-theoretic tools. In the third part of

66In fact, notice that (with minor differences in the formalism) axioms (KR1), (KR3),
(KR4), (KR5), (KR6) and (KR7) of HST correspond to axioms (H1), (H3), (H4), (H5), (H6)
and (H7) of NS0, respectively. Besides, the axiom group (KR2) is enclosed in NS1, with the
only exception of weak regularity and standard-size choice. Although the additional axioms
also holds in the model of NS1 given in [H1], the contruction [KR1] by Kanovei and Reeken
is much simpler.

67[H3]
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[KR1], a practical solution to this problem is proposed. By considering suit-
able subuniverses Hκ of HST, the power-set axiom can be saved at the price of
reducing standard-sized properties to κ-standard-sized properties, with κ any
given (standard) cardinal. Moreover, other subuniverses H ′

κ can be considerd
where choice for external sets is available, and in fact all sets are of standard
size. Thus, in order to carry out a nonstandard argument where power-set is
needed, one can fix a cardinal κ large enough for the purpose, and argue in one
of those Hκ.

HST is justified by the following

Theorem 10.4.68

Every countable model of ZFC is embedded as the standard universe into a model
of HST. In particular, HST is a conservative extension of ZFC. That is, for
every ∈-formula σ:

ZFC ` σ ⇔ HST ` σst

§11. Péraire’s Relative Set Theory.
The Relative Set Theory RST was introduced by Yves Pèraire in [P1], and
further developed in [P2]. RST gives a relative version of the internal approach
by means of a binary relation of standardness. Roughly speaking, instead of only
considering standard and nonstandard (ideal) sets, in the universe of RST there
is a whole hierarchy of sets which are arranged according to linearly ordered
levels of standardness. This makes it possible to say that a given set is more
standard (or less ideal) than another one, thus formalizing an intuitive notion
sometimes used in informal mathematical language.

Besides the membership relation symbol ∈, a binary relation symbol st is in
the language of RST. The formula xsty is to be read ”x is standard relatively
to y” or ”x is y-standard”. 69 The axioms of RST are the following.

• (P1) ZFC.
All axioms of Zermelo-Fraenkel set theory with choice are assumed.

• (P2) The binary relation st is a total pre-order.

For any formula ϕ, we will write ∀[a]xϕ to mean ∀x (xsta → ϕ) and ∃[a]xϕ
to mean ∃x (xsta ∧ ϕ).

• (P3) Transfer Principle.
For every ∈-formula ϕ whose free variables are x1, . . . , xn, y, and for every
a, the following is an axiom:

68It follows from constructions in [KR1]. See also [KR2] part 2, §10.
69A similar concept was also considered by E. Gordon in [G1], where a notion of relative

standardness was defined and studied within the framework of Nelson’s IST.
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∀[a]x1 · · · ∀[a]xn (∀[a]y ϕ ↔ ∀y ϕ)

• (P4) Bounded Idealization.
For every ∈-formula ϕ, and for every a1, . . . , an, b such that each ai is not
b-standard, the following is an axiom: 70

∀[a1]finx′1 · · · ∀[an]finx′n ∃[b]y ∀x1 ∈ x′1 · · · ∀xn ∈ x′n ϕ ↔
∃[b]y ∀[a1]x1 · · · ∀[an]xn ϕ

• (P5) Unbounded Idealization.
For every ∈-formula ϕ, and for every a1, . . . , an the following is an axiom:

∀[a1]finx′1 · · · ∀[an]finx′n ∃y ∀x1 ∈ x′1 · · · ∀xn ∈ x′n ϕ ↔
∃y ∀[a1]x1 · · · ∀[an]xn ϕ

Let a be given. A formula ϕ is called a-external if it is built by means of
the membership predicate ∈, logic connectives, quantifiers ∀, ∃ and external
quantifiers of the form ∀[b],∃[b] where a is b-standard.

• (P6) Standardization Property.
For every a and for every a-external formula ϕ, the following is an axiom:

∀[a]x∃[a]y ∀[a]z [ z ∈ y ↔ (z ∈ x ∧ ϕ) ]

The foundational strength of RST is given by the following result. 71

Theorem 11.1.
RST is a conservative extension of ZFC. That is, for every ∈-sentence σ:

ZFC ` σ ⇔ RST ` σ

§12. Gordon-Andreyev’s Nonstandard Class Theory NCT.
Another axiomatic system aimed to improve on the internal approach, has been
recently proposed by E.I Gordon [G2] and further developed jointly with P.V.
Andreyev [AG]. Roughly speaking, their Nonstandard Class Theory NCT ex-
tends Gödel-Bernays class theory GB is a similar way as the Internal Set Theory
(in its bounded form BST) extends ZFC. The availability of classes allows for
formalization, within the framework of NCT, of various constructions employing
external sets which can be carried out in IST with difficulties. With respect to
IST, axioms of NCT are given simpler formalizations. In fact, transfer, ideal-
ization and standardization are formulated as single axioms rather than axiom
schemata. The language of NCT is obtained by adding the symbol st for stan-
dard classes to the usual language of class theory. Its axioms are the following.

70We write “∀[a]finx” to mean “for all finite a-standard x”.
71Metatheorem in §5 of [P1].
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• (GA1) All axioms of Gödel-Bernays class theory GB are assumed, where
choice is postulated for sets, and replacement takes the form of the collec-
tion axiom:

∀V ∀x∃y ∀u ∈ x (∃v 〈u, v〉 ∈ V ) → (∃v ∈ y 〈u, v〉 ∈ V )

To each axiom of existence of classes, its modification with quantifiers over
class variables bounded by st predicate (∀st, ∃st) is added.

• (GA2) There exists the class of all standard sets.

∃S ∀x (st(x) ↔ x ∈ S)

• (GA3) Boundedness.

∀x ∃sty x ∈ y

• (GA4) Transfer Principle.

∀stX (X 6= ∅ → ∃stx (x ∈ X))

• (GA5) Standardization Property.

∀X ∃stY ∀sty (y ∈ Y ↔ y ∈ X)

By definition, a class X is internal if

∃stY ∃p∀x (x ∈ X ↔ 〈x, p〉 ∈ Y )

In this case, we denote X by Y ′′p and we say that X is p-standard.

• (GA6) Separation for Internal Classes.

∀intX ∀x∃y (y = x ∩X)

• (GA7) Idealization Principle.

∀intX ∀stao [∀stfinc ⊆ ao ∃x∀a ∈ c (〈x, a〉 ∈ X) ↔
∃x∀sta ∈ ao (〈x, a〉 ∈ X) ]

For any set x, let µp(x) denote its p-monad, defined as the intersection
of all p-standard sets containing x. We say that a class X is p-saturated if
∀x ∈ X (µp(x) ⊆ X).

• (GA8) Saturation Property.
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Any class X is p-saturated for some set p.

From a foundational point of view, NCT is justified by the following.

Theorem 12.1
(i) Every model of ZFC is embedded as the class of standard sets into a model
of NCT.
(ii) Every model of BST is embedded as the class of all sets into a model of NCT,
in such a way that the standardness of sets is preserved. (iii) Every model of BG
(with the axiom of choice for sets) is embedded as the collection of all standard
classes into a model of NCT.

§13. The ∗Approach of ∗ZFC.
Recently, the author presented the system ∗ZFC which axiomatizes the nonstan-
dard embedding ∗ (see [D2],[D3]). It is an external approach, in the style of
ZFBC, where the fundamental notions of standard, internal and external set are
defined and their requisite properties proved, rather than postulated. Partic-
ular attention is paid to the practitioner of the widely popular superstructure
approach. In particular, the average working mathematician in nonstandard
analysis willing to adopt ∗ZFC as an axiomatic framework, needs to change
nothing with respect to his familiar notions and notations. Roughly speaking,
∗ZFC expands the world of ordinary mathematics – as formalized by ZFC –
by introducing a nonstandard version ∗A for each standard object A, and al-
lowing the techniques of nonstandard analysis in its full generality. Besides the
membership symbol ∈, a new symbol ∗ for the nonstandard embedding map is
considered in the language. The four groups of axioms of ∗ZFC are the following.

• (D1) ZFC− where the separation and replacement schemata are also
assumed for formulas containing the ∗ symbol. Weak regularity is also
assumed:

∀x 6= ∅ ∃y ∈ x x ∩ y ⊆ I

Thus all usual arguments of mathematics can be formalized within ∗ZFC
with no restrictions. The proper class S of standard sets is defined as the class
WF =

⋃{Vα : α ∈ ON} of wellfounded sets. In particular, elements of standard
sets are standard and the class of standard sets is a model of ZFC. In the
“standard” set theory every set is wellfounded because regularity is assumed.
Thus it seems appropriate to consider S = WF as the universe of “standard”
mathematics.

• (D2) ∗ is a mapping with domain S. 72

72Formally, ∗ is a binary relation symbol, but in the following we will abuse notation and
consider ∗ as a function symbol. Thus, for example, we shall write “y = ∗x” instead of
“∀z ∗ (x, z) → z = y” and “y ∈ ∗x” instead of “∀z ∗ (x, z) → y ∈ z”. When writing ∗x, it is
implicitly assumed that x ∈ S.
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{∀x∀y∀z [∗(x, y) ∧ ∗(x, z) → (y = z ∧ x ∈ S)]} ∧ (∀x ∈ S ∃y ∗ (x, y))

Thus one can put *’s on every object of ordinary mathematics.

• (D3) The nonstandard embedding ∗ preserves all Gödel operations.
That is, for any A and B standard sets, the following equalities hold: 73

G1. ∗(A ∪B) = ∗A ∪ ∗B
G2. ∗(A ∩B) = ∗A ∩ ∗B
G3. ∗(A \B) = ∗A \ ∗B
G4. ∗{A,B} = {∗A, ∗B}
G5. ∗(A×B) = ∗A× ∗B
G6. ∗(

⋃
A) =

⋃ ∗A
G7. ∗{〈x, x〉 : x ∈ A} = {〈ξ, ξ〉 : ξ ∈ ∗A}
G8. ∗{〈x, y〉 : x ∈ y ∈ A} = {〈ξ, η〉 : ξ ∈ η ∈ ∗A}
G9. ∗{x : ∃y 〈x, y〉 ∈ A} = {ξ : ∃η 〈ξ, η〉 ∈ ∗A}, i.e. ∗dom(A) = dom(∗A)
G10. ∗{y : ∃x 〈x, y〉 ∈ A} = {η : ∃ξ 〈ξ, η〉 ∈ ∗A}, i.e. ∗range(A) = range(∗A)
G11. ∗{〈x, y〉 : 〈y, x〉 ∈ A} = {〈ξ, η〉 : 〈η, ξ〉 ∈ ∗A}
G12. ∗{〈x, y, z〉 : 〈x, z, y〉 ∈ A} = {〈ξ, η, ζ〉 : 〈ξ, ζ, η〉 ∈ ∗A}

As a straightforward consequence, the nonstandard embedding ∗ is one-to-
one. Exactly as in the superstructure approach, the class I of internal sets is
defined as the collection I = {a : a ∈ ∗b for some b ∈ S}. By applying axiom
(D3), it is easily proved that I is a transitive class, i.e. elements of internal sets
are internal.

• (D4) Saturation Schema.
If a cardinal κ is defined by an ∈-formula, then the κ-saturation property
holds. More formally, for every ∈-formula ϕ(x) having exactly one free
variable, the following is an axiom.

[∀x, y ∈ S ϕS(x) ∧ ϕS(y) → (x = y ∧ “x is a cardinal”)]
⇓

∀κ ϕS(κ) → “κ-saturation property”

The fundamental principles of nonstandard analysis are theorems of ∗ZFC.

Theorem 13.1. 74

(i) Transfer Principle. For every ∈-formula ϕ(x1, . . . , xn) and standard ele-
ments a1, . . . , an:

73Recall that this axiom can be formalized by a single formula, because the above operations
are expressed by (bounded) ∈-formulas. We remark that the given list of Gödel operations is
redundant. For instance, A ∩ B = (A ∪ B) \ [(A \ B) ∪ (B \ A)], thus G2 is a composition of
G1 and G3, etc. However, all the above 12 operations are mentioned in order to give a more
clear picture of the basic properties of ∗.

74[D3] §2.
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ϕS(a1, . . . , an) ⇔ ϕI(∗a1, . . . ,
∗an)

(ii) Standardization Property. For every set A, the following collections are sets:
oA

.= {b ∈ S : ∗b ∈ A} ∈ S and σA
.= {a ∈ A : a = ∗b for some b ∈ S}.

Roughly speaking, axiom (D4) states that any level of saturation is available,
provided one can first name it. The next result proved in ∗ZFC shows that, in
typical situations occurring in practice, the saturation schema allows the full
strength of saturation, without restrictions on cardinalities. Let ϕ(x) be any
∈-formula having exactly one free variable.

Theorem 13.2. 75

Assume the following. For every cardinal κ, κ-saturation ⇒ ϕS(x) for all stan-
dard x of cardinality less that κ. Then ϕS(x) holds for all standard x.

Let us consider a typical example to show how the above theorem can be
used in practice. Recall the following characterization in nonstandard analysis.

Assume κ-saturation. If X is a standard topological Hausdorff space
with |X| < κ, then X is compact if and only if for every ξ ∈ ∗X,
there is some x ∈ X with ξ ∼ ∗x. 76

Making use of the above characterization, a nice and short nonstandard
proof of the Tychonoff theorem is obtained. 77 Thus, the following is proved

For all families {Xi : i ∈ I} of compact topological Hausdorff spaces
with |Xi| < κ for all i ∈ I and |I| < κ, the topological product space∏

i Xi is compact.

As a consequence of the previous theorem, the above result actually proves
the Tychonoff theorem for all standard topological spaces, without any restric-
tions on cardinalities. Notice that, since the full axiom of choice is assumed,
every set is in bijection with some standard set. Thus one can apply the map
∗ to any (possibly external) mathematical structure, simply by considering an
isomorphic standard copy of it. This allows layering nonstandard methods, be-
cause (up to isomorphisms) one can put ∗’s on everything, even on external
sets. 78 Though nonwellfounded, from several points of view the structure of
the universe of ∗ZFC is similar to the one of ZFC (see [D3] §2). For instance,
the universal class is given by the cumulative hierarchy V =

⋃
α∈ON Vα(∗Vα)

and there is a linearly-ordered valued function (pseudorank) R : V → λ such
that R(x) = sup{R(x′) + 1 : x′ ∈ x}, etc.

75[D3] §2.
76ξ ∼ ∗x means that ξ ∈ ∗A for each standard neighborhood A of x.
77For instance, see [Li] §3.
78Actually, with some limitation in the use of saturation. In fact, for every infinite standard

set A, the cardinality of its nonstandard extension ∗A is larger than any ∈-definable cardinal.
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The justification of ∗ZFC from a foundational point of view is given by the
following result.

Theorem 13.3 79

Every model of ZFC is elementarily embedded into the standard universe of a
model of ∗ZFC. In particular, ∗ZFC is a conservative extension of ZFC. That
is, for every ∈-sentence σ

ZFC ` σ ⇔ ∗ZFC ` σS

§14. Nonstandard Regular Finite Set Theory.
The Nonstandard Regular Finite Set Theory NRFST, introduced by S. Baratella
and R. Ferro in [BF2], gives a different foundational approach to nonstandard
mathematics. The axiom of Infinity is replaced by its negation and a new notion
of infinity is introduced by means of nonstandard methods. Roughly speaking,
the underlying philosophical assumption is that there are natural numbers whose
entire process of construction cannot be “recalled” (these will be the internal
non-standard natural numbers).

Two unary predicates, st for “standard” and int for “internal”, are added
to the language of set theory. The intended interpretation of st is the collection
of finite sets. The axioms of NRFST are: 80

• (BF1) A finite set theory for the standard universe.
Relativizations to the standard universe of the axioms of extensionality,
pair, union, replacement schema, empty set, power set, regularity, and the
negation of the axiom of infinity, are assumed. 81

• (BF2) The universe of internal sets is transitive.

∀x∀inty (x ∈ y → int(x))

• (BF3) Transfer Principle.
For every ∈-formula ϕ whose free variables are x1, . . . , xn, the following is
an axiom:

∀stx1 · · · ∀stxn (ϕst(x1, . . . , xn) ↔ ϕint(x1, . . . , xn) )

• (BF4) Standardization Property.

∀x∀sty ∃stz (z = x ∩ y)
79[D3] §3. Models of ∗ZFC are constructed by using pseudo-superstructures [D1].
80We will use the same notation for standard-bounded and internal-bounded quantifiers

∀st,∃st, ∀int, ∃int as we already did in previous sections.
81Precisely, all relativizations ϕst of axioms ϕ of the Regular Finite Set Theory RFST as

presented in [BF1], are considered. In particular, the regularity axiom is assumed in the form
that every set has a rank. We refer the reader to [BF1] for precise formulations.
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• (BF5) Idealization Principle.

∀sty1, · · · , ∀styn [∀stz ∃sty ∀x ∈ z ϕst(x, y, y1, . . . , yn)] →
∃inty ∀stxϕint(x, y, y1, . . . , yn)

The above axiom implies that there is a proper inclusion among the standard,
internal and external universes.

• (BF6) A fragment of ZFC for the external universe.
The axioms of extensionality, pair, union, separation schema, and the
axiom of choice are assumed.

NRFST is strong enough to prove the axiom of infinity for external sets, and
some other basic properties. 82 As a consequence, this nonstandard finite theory
should be able to support ordinary mathematics. An interesting discussion
about the underlying philosophy of NRFST can be found in the last section of
[BF2].

By suitably interpreting the predicates st and int in a model constructed
by Kawai [Kw], it is proved the following consistency result.

Theorem 14.1.
NRFST is a conservative extension of ZFC. That is, for every ∈-sentence σ:

ZFC ` σ ⇔ NRFST ` σ

Historically, we remark that a similar task of developing a theory without
formally infinite sets, was carried out by Vopenka’s Alternative Set Theory AST.
A large amount of mathematics has been developed on the basis of AST, mainly
by a group of chech and slovak mathematicians. Even if it can be considered
as a formalization of nonstandard phenomena, strictly speaking AST is not
a nonstandard set theory in that it is not concerned in transfering results to
conventional mathematics. A treatment of AST is outside the scope of this
survey, thus we refer the reader to [Vo] for the underlying philosophy of AST,
and to [VH] (and subsequent papers) for mathematics developed within AST.
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82See [BF2] Theorem 1.7. A stronger theory NRFST∗ is also presented in that paper, which
includes a stronger idealization principle and the replacement schema for external sets.
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