Among various "elementary" approaches to nonstandard analysis given in [1], the "topological approach" endows every nonstandard model *X with the least T_1 topology which makes all functions *f continuous (the $Star\ topology$). In this topology, the closure in *X of any $A\subseteq X$ is *A , and these sets are precisely the clopen subsets of *X ; they generate a 0-dimensional topology (the S-topology of *X) which agrees with the Star topology when the latter is Hausdorff, and is coarser otherwise.

Conversely, call topological extension of X any T_1 space *X such that X is a dense subspace of *X , and every $f: X \to X$ has a distinguished continuous extension ${}^*f: {}^*X \to {}^*X$ preserving compositions (i.e. ${}^*(f \circ g) = {}^*f \circ {}^*g$). The main result of [2] isolates two simple necessary and sufficient conditions for a topological extension to be a true nonstandard model of X, namely

Theorem ([2], Thms. 3.2 and 5.5) Let *X be a topological extension of X. Then *X is isomorphic to a limit ultrapower $X^I/\mathcal{D}|\mathcal{E}$ (i.e. it is a nonstandard extension) if and only if * preserves equalizers and *X is accessible, i.e.

1. $\{\xi \in {}^*X \mid {}^*f(\xi) = {}^*g(\xi)\} = {}^*\{x \in X \mid f(x) = g(x)\} = \overline{\{x \in X \mid f(x) = g(x)\}};$

2. for all $\xi, \eta \in {}^*X$ there are $f, g: X \to X$ and $\zeta \in {}^*X$ s.t. ${}^*f(\zeta) = \xi, {}^*g(\zeta) = \eta$. Moreover *X is isomorphic to an ultrapower X^X/\mathcal{U} if and only if there exists $\zeta \in {}^*X$ such that any $\xi \in {}^*X$ is equal to ${}^*f(\zeta)$ for suitable $f: X \to X$.

In this topological context, the enlargement and saturation properties are related to weak compactness properties of the S- and Star topologies: 3

Theorem ([2], Thm. 6.5) Let *X be a topological extension of X.

- (i) *X is a $(2^{|X|})^+$ -enlargement if and only if the S-topology is quasi-compact.⁴
- (ii) If *X is $(2^{|X|})^+$ -saturated, then the Star topology is Bolzano.
- (iii) *X cannot be simultaneously nonstandard, $(2^{\aleph_0})^+$ -enlarging and Hausdorff. In particular there exist no countably compact nonstandard extensions.

Sufficiently saturated hyper-extensions are also Weierstraß, by Theorem 6.4 of [2]. Therefore, in our context, Bolzano-Weierstraß together do not yield even *countable compactness*. Point (*iii*) of the above theorem states the perhaps surprising fact that the most important classes of topological extensions, namely *Nonstandard*, *Hausdorff*, and *Bolzano* extensions, which have pairwise nonempty intersection, cannot have any common element.

References

- [1] V. Benci, M. Di Nasso, M. Forti The Eightfold Path to Nonstandard Analysis (2004, submitted).
- [2] M. DI NASSO, M. FORTI Topological and nonstandard extensions, $Monatsh.\ f.$ Math., to appear.

¹Dipart. di Matem. Applicata "U. Dini", Università di Pisa, Italy. forti@dma.unipi.it

² A subbasis of closed sets is given by the family $\{*f^{-1}(\eta) \mid f \in X^X, \eta \in *X\}$.

³ In principle, we should isolate a topological counterpart of the notion of internal set (while the equation standard = clopen should be clear from the above facts). However all what we need in the following is only the trivial assumption that the basic closed sets $f^{-1}(\eta)$ are internal.

⁴ A topological space S is *quasi-compact* [Bolzano] if every [countable] open cover has a finite subcover (so [countably] compact means quasi-compact [Bolzano] and Hausdorff). S is Weierstraß if every real valued continuous function on S is bounded.