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In ergodic Ramsey theory, one often wants to prove that certain dynamically defined sets in a probability space
intersect (or “recur”) in non-trivial ways. Typically, this is achieved by studying the long term behavior of the sets
as the dynamics flow. However, in certain situations, one can establish the desired intersection (or recurrence)
using purely combinatorial arguments, and without using the fact that the sets are dynamically defined. In such
cases, one ends up obtaining a “static” (as opposed to dynamical) statement. An instance of this situation is the
following intersectivity result of Bergelson, first used in this paper, and which I have mentioned before in this
blog.

Lemma 1 Let  be sets in a probability space  with . Then there exists an
infinite set  with density , such that for every non-empty finite set  we have

A different kind of intersection property is the following static modification of Poincaré’s recurrence theorem.

Lemma 2 Let  be a probability space and let  be sets with . Then there
exists an infinite subset  such that for every ,

Observe that if the events  are independent, then the lower bound  is essentially achieved, and so this
lemma is that sense optimal. The purpose of this post is to present a proof of the following common strengthening
of Lemmas 1 and 2.

Theorem 3 Let  be sets in a probability space  with . Then there exists an
infinite set  such that for every non-empty finite set  we have

Observe that the bound  is optimal, again by considering the case of independent sets.

I learned this strengthening, as well as its proof from Konstantinos Tyros last December, when we were in Lyon,
France attending the conference Ultrafilters, Ramsey Theory and Dynamics.

One could ask whether something more can be said about the set  in Theorem 3 other than being infinite .
Something one can not hope for is that the set  has positive density, as showed in my previous post, using Forest’s
theorem that not all sets of recurrence are sets of nice recurrence. On the other hand, one can indeed obtain
certain combinatorial structures inside . For instance, assuming the index set of the sets  is given the
structure of a homogeneous tree, one can choose  to be a strong subtree; this is Theorem 3 in this paper of Dodos,
Kanellopoulos and Tyros. Results of this kind are related to density versions of the Hales-Jewett and the Carlson-
Simpson theorems due respectively to Furstenberg and Katznelson, and to Dodos, Kanellopoulos and Tyros.
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We start with a proof of Lemma 2 which we will need to prove Theorem 3. In fact, we prove the following
strengthening of Lemma 2 which I have mentioned before in this blog (but without a proof) and can be seen as a
“truncated” version of Theorem 3.

Lemma 4 Let  be a probability space and let  be sets with . Then for
every  there exists an infinite subset  such that for every  with  we have

Proof: We partition the collection  of all subsets  of  with size  into two pieces, according to whether
 is bigger or smaller than . We then use the infinite Ramsey’s theorem to find an infinite set  such

that every  is in the same cell of the partition. We now need only to show that it is impossible to have
 for every  with .

In order to do this, let  be the set of the first  elements of , where  is very large and will be determined
later. Also let . Then by Jensen’s inequality

It is clear that  contains  tuples of distinct elements, each appearing  times, and hence  contains
 tuples of elements with some repetition. Thus we get

and so, using the fact that , for some  with  we have

Since  as , if follows that if  was large enough, then

as claimed, and this finishes the proof. 

Observe that this proof would give the full Theorem 3 if the following extension of Ramsey’s theorem were true.

Statement Let  denote the collection of all finite non-empty subsets of . For every finite
coloring of  there exists an infinite set  such that for every , the collection

is monochromatic.

Unfortunately, this statement is false, as seen by the following example. In this sense it is perhaps surprising that
Theorem 3 is true.

Example 1 Let  be the coloring given by
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Then given any infinite set , let  and find a finite subset  with  and 
(which then satisfies ) and another finite subset  with  but  (which thus
satisfies ).

— 2. Proof of Theorem 3 —

Since the proof of Theorem 3 involves some annoying parameters, we first outline the steps in the proof without
full details.

By refining the sequence of sets  we can assume that they all have similar measure  for all . Applying
Lemma 2 we find a set  with  for every . After refining , if needed, we can assume
that, in fact, for every distinct  we have . Let  be arbitrary.

Now comes the tricky part: we condition the measure on . In other words, we consider the probability measure
 on  defined by . Observe that  for every . Now use

Lemma 2 to find an infinite set  such that  for every distinct .

Let  be arbitrary. Now we condition the measure on , letting  and noting that,
since , for every  we have . Therefore by applying Lemma 2 we can find an infinite

 such that for every distinct  we have . Before we can choose , we need to
also consider the situation conditional on  (which we recall, has measure  because both  and  are in

). Thus, letting  we obtain that, for every , . Therefore, applying
Lemma 2 again, we can further refine  to an infinite subset  such that for every distinct  also

. We can now chose  arbitrarily.

We continuing building the elements  of the eventually infinite set , at each step making sure we have
an infinite set  such that for every non-empty subset  we have

and that every  we have

In each stage we can keep moving by conditioning  in each new subset of  and applying Lemma 2.

To make everything work out, we need to introduce a refinement step at each stage, to make sure all the sets in 
have similar measure, for all the conditional measures . To this end we make use of the following version of the
pigeonhole principle.

Lemma 6 Let  be a probability space, let  and let  be sets with  for every
. Then for every  there exists  and an infinite subset  such that for every  we

have

Proof: Let  be large enough that the intervals , with  cover the interval . Since
 for every , the pigeonhole principle implies that there exists  for which the result

holds with . 
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Proof of Theorem 3: For each , denote by  the intersection , with the convention that , and
let  denote the measure on  defined by  whenever . Let  be such that

 for every .

We will construct, for each , a set  with , such that  and

and an infinite set  such that for any  we have

If we can construct such sequences, then taking  we obtain the desired conclusion from (1). For  we
set . Apply Lemma 6 with  to find  such that (2) holds for all  in an infinite set .

Suppose now that  and that we have found ,  satisfying (1) and (2). Enumerate the subsets of  as
. Let  and apply successively Lemma 2 for each  in  to obtain an infinite set 

such that for every distinct  we have

Let , take  arbitrary and let . Observe that for every  and ,
combining (2) and (3), we have

We run another refinement cycle, setting  and successively using Lemma 6 for each  to
find , where , and an infinite set  such that for every ,

Finally, let . Observe that (2) follows immediately from (5) and induction (for those  which do not
contain ).

To verify (1), let . If , then  and the result follows by induction. If , let  and
notice that . The fact that  together with (2) for  (which is a subset of ) implies that

and (1) follows by setting , which will be greater that  since both  and  are.
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