I Can't Believe It's Not Random!

Joel Moreira's math blog

Optimal intersectivity

Posted on 26/04/2018
In ergodic Ramsey theory, one often wants to prove that certain dynamically defined sets in a probability space intersect (or "recur") in non-trivial ways. Typically, this is achieved by studying the long term behavior of the sets as the dynamics flow. However, in certain situations, one can establish the desired intersection (or recurrence) using purely combinatorial arguments, and without using the fact that the sets are dynamically defined. In such cases, one ends up obtaining a "static" (as opposed to dynamical) statement. An instance of this situation is the following intersectivity result of Bergelson, first used in this paper, and which I have mentioned before in this blog.

Lemma 1 Let A_{1}, A_{2}, \ldots be sets in a probability space (X, μ) with $\inf _{n} \mu\left(A_{n}\right)>\delta$. Then there exists an infinite set $I \subset \mathbb{N}$ with density $d(I)>\delta$, such that for every non-empty finite set $F \subset I$ we have

$$
\mu\left(\bigcap_{n \in F} A_{n}\right)>0
$$

A different kind of intersection property is the following static modification of Poincarés recurrence theorem.
Lemma $2 \operatorname{Let}(X, \mu)$ be a probability space and let A_{1}, A_{2}, \ldots be sets with $\inf _{n} \mu\left(A_{n}\right)>\delta$. Then there exists an infinite subset $I \subset \mathbb{N}$ such that for every $n, m \in I$,

$$
\mu\left(A_{n} \cap A_{m}\right)>\delta^{2}
$$

Observe that if the events A_{1}, A_{2}, \ldots are independent, then the lower bound δ^{2} is essentially achieved, and so this lemma is that sense optimal. The purpose of this post is to present a proof of the following common strengthening of Lemmas $\underline{1}$ and $\underline{2}$.

Theorem 3 Let A_{1}, A_{2}, \ldots be sets in a probability space (X, μ) with $\inf _{n} \mu\left(A_{n}\right)>\delta$. Then there exists an infinite set $I \subset \mathbb{N}$ such that for every non-empty finite set $F \subset I$ we have

$$
\mu\left(\bigcap_{n \in F} A_{n}\right)>\delta^{\mid F}
$$

Observe that the bound $\delta_{\delta^{|F|}}$ is optimal, again by considering the case of independent sets.

I learned this strengthening, as well as its proof from Konstantinos Tyros last December, when we were in Lyon, France attending the conference Ultrafilters, Ramsey Theory and Dynamics.

One could ask whether something more can be said about the set I in Theorem 3 other than being infinite . Something one can not hope for is that the set I has positive density, as showed in my previous post, using Forest's theorem that not all sets of recurrence are sets of nice recurrence. On the other hand, one can indeed obtain certain combinatorial structures inside I. For instance, assuming the index set of the sets $\left(A_{n}\right)$ is given the structure of a homogeneous tree, one can choose I to be a strong subtree; this is Theorem 3 in this paper of Dodos, Kanellopoulos and Tyros. Results of this kind are related to density versions of the Hales-Jewett and the CarlsonSimpson theorems due respectively to Furstenberg and Katznelson, and to Dodos, Kanellopoulos and Tyros.

We start with a proof of Lemma $\underline{2}$ which we will need to prove Theorem 3 . In fact, we prove the following strengthening of Lemma $\underline{2}$ which I have mentioned before in this blog (but without a proof) and can be seen as a "truncated" version of Theorem 3 .

Lemma 4 Let (X, μ) be a probability space and let A_{1}, A_{2}, \ldots be sets with $\inf _{n} \mu\left(A_{n}\right)>\delta$. Then for every $k \in \mathbb{N}$ there exists an infinite subset $I \subset \mathbb{N}$ such that for every $F \subset I$ with $|F|=k$ we have

$$
\mu\left(\bigcap_{n \in F} A_{n}\right)>\delta^{k}
$$

Proof: We partition the collection $\binom{\mathbb{N}}{k}$ of all subsets F of \mathbb{N} with size $|F|=k$ into two pieces, according to whether $\mu\left(\bigcap_{n \in F} A_{n}\right)$ is bigger or smaller than δ^{k}. We then use the infinite Ramsey's theorem to find an infinite set $I \subset \mathbb{N}$ such that every $F \subset I$ is in the same cell of the partition. We now need only to show that it is impossible to have $\mu\left(\bigcap_{n \in F} A_{n}\right) \leq \delta^{k}$ for every $F \subset I$ with $|F|=k$.

In order to do this, let $G \subset I$ be the set of the first M elements of I, where M is very large and will be determined later. Also let $f=f_{G}=\sum_{n \in G} 1_{A_{n}}$. Then by Jensen's inequality

$$
\begin{aligned}
\left(\int_{X} f d \mu\right)^{k} & \leq \int_{X} f^{k} d \mu=\sum_{\left(n_{1}, \ldots, n_{k}\right) \in G^{k}} \int_{X} \prod_{i=1}^{k} 1_{A_{n_{i}}} d \mu \\
& =\sum_{\left(n_{1}, \ldots, n_{k}\right) \in G^{k}} \mu\left(\bigcap_{i=1}^{k} A_{n_{i}}\right)
\end{aligned}
$$

It is clear that G^{k} contains $\binom{M}{k}$ tuples of distinct elements, each appearing $k!$ times, and hence G^{k} contains $M^{k}-k!\binom{M}{k}$ tuples of elements with some repetition. Thus we get

$$
\left(\int_{X} f d \mu\right)^{k} \leq M^{k}-k!\binom{M}{k}+k!\sum_{F \subset G,|F|=k} \mu\left(\bigcap_{n \in F} A_{n}\right)
$$

and so, using the fact that $\int_{X} f d \mu>M \delta$, for some $F \subset G$ with $|F|=k$ we have

$$
\begin{aligned}
\mu\left(\bigcap_{n \in F} A_{n}\right) & \geq \frac{1}{k!\left(\begin{array}{l}
M
\end{array}\right)}\left(\left(\int_{X} f d \mu\right)^{k}-M^{k}+k!\binom{M}{k}\right) \\
& >\frac{M_{k}^{k}}{k!\left(\begin{array}{l}
k
\end{array}\right)}\left(\delta^{k}-1\right)+1
\end{aligned}
$$

Since $M^{k} / k!\binom{M}{k} \rightarrow 1$ as $M \rightarrow \infty$, if follows that if M was large enough, then

$$
\mu\left(\bigcap_{n \in F} A_{n}\right)>\delta^{k}
$$

as claimed, and this finishes the proof. \square

Observe that this proof would give the full Theorem 3 if the following extension of Ramsey's theorem were true.

Statement Let \mathcal{F} denote the collection of all finite non-empty subsets of \mathbb{N}. For every finite coloring of \mathcal{F} there exists an infinite set $I \subset \mathbb{N}$ such that for every $k \in \mathbb{N}$, the collection

$$
\{F \subset I:|F|=k\}
$$

is monochromatic.

Unfortunately, this statement is false, as seen by the following example. In this sense it is perhaps surprising that Theorem 3 is true.

Example 1 Let $\chi: \mathcal{F} \rightarrow\{1,0\}$ be the coloring given by

Then given any infinite set $I \subset \mathbb{N}$, let $x \in I$ and find a finite subset $F \subset I$ with $|F|=x+1$ and $x \in F$ (which then satisfies $\chi(F)=1$) and another finite subset $G \subset I$ with $|G|=x+1$ but $x \notin G$ (which thus satisfies $\chi(G)=0)$.

- 2. Proof of Theorem 3 -

Since the proof of Theorem 3 involves some annoying parameters, we first outline the steps in the proof without full details.

By refining the sequence of sets $\left(A_{n}\right)$ we can assume that they all have similar measure $\mu\left(A_{n}\right) \approx \delta$ for all n. Applying Lemma $\underline{2}$ we find a set $I_{1} \subset \mathbb{N}$ with $\mu\left(A_{n} \cap A_{m}\right)>\delta^{2}$ for every $n, m \in I_{1}$. After refining I_{1}, if needed, we can assume that, in fact, for every distinct $n, m \in I_{1}$ we have $\mu\left(A_{n} \cap A_{m}\right) \approx \delta^{2}$. Let $n_{1} \in I_{1}$ be arbitrary.

Now comes the tricky part: we condition the measure on $A_{n 1}$. In other words, we consider the probability measure μ_{1} on X defined by $\mu_{1}(B)=\mu\left(B \cap A_{n_{1}}\right) / \mu\left(A_{n_{1}}\right) \approx \mu\left(A \cap A_{n_{1}}\right) / \delta$. Observe that $\mu_{1}\left(A_{n}\right) \approx \delta$ for every $n \in I_{1} \backslash\left\{n_{1}\right\}$. Now use Lemma $\underline{2}$ to find an infinite set $I_{2} \subset I_{1} \backslash\left\{n_{1}\right\}$ such that $\mu_{1}\left(A_{n} \cap A_{m}\right) \approx \delta^{2}$ for every distinct $n, m \in I_{2}$.

Let $n_{2} \in I_{2}$ be arbitrary. Now we condition the measure on $A_{n,}$, letting $\mu_{2}(B):=\mu\left(A_{n_{2}} \cap B\right) / \mu\left(A_{n_{2}}\right)$ and noting that, since $n_{2} \in I_{1}$, for every $m \in I_{2} \backslash\left\{n_{2}\right\}$ we have $\mu_{2}\left(A_{m}\right) \approx \delta$. Therefore by applying Lemma $\underline{2}$ we can find an infinite $I_{3,1} \subset I_{2} \backslash\left\{n_{2}\right\}$ such that for every distinct $n, m \in I_{3,1}$ we have $\mu_{2}\left(A_{n} \cap A_{m}\right) \approx \delta^{2}$. Before we can choose n_{3}, we need to also consider the situation conditional on $A_{n_{1}} \cap A_{n_{2}}$ (which we recall, has measure $\approx \delta^{2}$ because both n_{1} and n_{2} are in I_{1}). Thus, letting $\mu_{1,2}(B):=\mu\left(A_{n_{1}} \cap A_{n_{2}} \cap B\right) / \delta^{2}$ we obtain that, for every $n \in I_{2}, \mu_{1,2}\left(A_{n}\right) \approx \delta$. Therefore, applying Lemma $\underline{2}$ again, we can further refine $I_{3,1}$ to an infinite subset I_{3} such that for every distinct $n, m \in I_{3}$ also $\mu_{1,2}\left(A_{n} \cap A_{m}\right) \approx \delta^{2}$. We can now chose $n_{3} \in I_{3}$ arbitrarily.

We continuing building the elements $n_{1}, n_{2}, n_{3}, \ldots$ of the eventually infinite set I, at each step making sure we have an infinite set I_{k} such that for every non-empty subset $F \subset\left\{n_{1}, \ldots, n_{k}\right\}$ we have

$$
\mu\left(\bigcap_{i \in F} A_{i}\right) \approx \delta^{|F|}
$$

and that every $n \in I_{k}$ we have

$$
\mu_{F}\left(A_{n}\right):=\frac{\mu\left(A_{n} \cap \bigcap_{i \in F} A_{i}\right)}{\mu\left(\bigcap_{i \in F} A_{i}\right)} \approx \delta .
$$

In each stage we can keep moving by conditioning μ in each new subset of $\left\{n_{1}, \ldots, n_{k}\right\}$ and applying Lemma 2 .
To make everything work out, we need to introduce a refinement step at each stage, to make sure all the sets in I_{k} have similar measure, for all the conditional measures μ_{F}. To this end we make use of the following version of the pigeonhole principle.

Lemma 6 Let (X, μ) be a probability space, let $\delta>0$ and let A_{1}, A_{2}, \ldots be sets with $\mu\left(A_{n}\right)>\delta$ for every $n \in \mathbb{N}$. Then for every $\rho>1$ there exists $\theta \geq \delta$ and an infinite subset $I \subset \mathbb{N}$ such that for every $n \in I$ we have

$$
\mu\left(A_{n}\right) \in[\theta, \theta \rho)
$$

Proof: Let N be large enough that the intervals $\left[\delta \rho^{k-1}, \delta \rho^{k}\right.$), with $k=1,2, \ldots, N$ cover the interval ($\delta, 1$. Since $\mu\left(A_{n}\right) \in(\delta, 1$ for every $n \in \mathbb{N}$, the pigeonhole principle implies that there exists $k \in\{1, \ldots, N\}$ for which the result holds with $\theta=\delta \rho^{k-1} . \square$

Proof of Theorem 3: For each $F \subset \mathbb{N}$, denote by A_{F} the intersection $\bigcap_{n \in F} A_{n}$, with the convention that $A_{\emptyset}=X$, and let μ_{F} denote the measure on X defined by $\mu_{F}(B)=\mu\left(B \cap A_{F}\right) / \mu\left(A_{F}\right)$ whenever $\mu\left(A_{F}\right) \neq 0$. Let $\sigma>1$ be such that $\mu\left(A_{n}\right)>\delta \sigma$ for every $n \in \mathbb{N}$.

We will construct, for each $k=0,1, \ldots$, a set F_{k} with $\left|F_{k}\right|=k$, such that $F_{k-1} \subset F_{k}$ and

$$
\begin{equation*}
\forall \emptyset \neq F \subset F_{k} \quad \exists \theta_{F}>\delta: \quad \mu\left(A_{F}\right) \in\left[\theta_{F}^{|F|}, \theta_{F}^{|F|} \sigma^{1-2^{-k}}\right) \tag{1}
\end{equation*}
$$

and an infinite set $I_{k} \subset \mathbb{N}$ such that for any $n \in I_{k}$ we have

$$
\begin{equation*}
\forall F \subset F_{k} \quad \exists \lambda_{F}>\delta \sigma^{2^{1-k}} \quad \forall n \in I_{k}, \quad \mu_{F}\left(A_{n}\right) \in\left[\lambda_{F}, \lambda_{F} \sigma^{2^{-k-1}}\right) \tag{2}
\end{equation*}
$$

If we can construct such sequences, then taking $I=\bigcup F_{k}$ we obtain the desired conclusion from (1). For $k=0$ we set $F_{0}=\emptyset$. Apply Lemma $\underline{6}$ with $\rho=\sqrt{\sigma}$ to find $\lambda_{\emptyset} \geq \delta \sigma$ such that (2) holds for all n in an infinite set I_{0}.

Suppose now that $k>1$ and that we have found F_{k-1}, I_{k-1} satisfying (1) and (2). Enumerate the subsets of F_{k-1} as $\left\{S_{1}, \ldots, S_{2^{k-1}}\right\}$. Let $J_{0}=I_{k-1}$ and apply successively Lemma $\underline{2}$ for each i in $\left\{1, \ldots, 2^{k-1}\right\}$ to obtain an infinite set $J_{i} \subset J_{i-1}$ such that for every distinct $n, m \in J_{i}$ we have

$$
\begin{equation*}
\mu_{S_{i}}\left(A_{n} \cap A_{m}\right) \geq \lambda_{S_{i}}^{2} \sigma^{-2^{-k}} \tag{3}
\end{equation*}
$$

Let $J=J_{2^{k-1}}$, take $x \in J$ arbitrary and let $F_{k}=F_{k-1} \cup\{x\}$. Observe that for every $i \in\left\{1, \ldots, 2^{k-1}\right\}$ and $n \in J \backslash\{x\}$, combining (2) and (3), we have

$$
\begin{align*}
& \mu_{S_{i} \cup x}\left(A_{n}\right)=\frac{\mu\left(A_{S_{i}} \cap A_{x} \cap A_{n}\right)}{\mu\left(A_{S_{i}} \cap A_{x}\right)}=\frac{\mu_{S_{i}}\left(A_{x} \cap A_{n}\right)}{\mu_{S_{i}}\left(A_{x}\right)} \geq \frac{\lambda_{S_{i}}^{2} \sigma^{-2^{-k}}}{\lambda_{S_{i}} \sigma^{2^{-k}}}=\lambda_{S_{i}} \sigma^{-2^{1-k}}> \\
& \delta \sigma^{2^{1-k}} \tag{4}
\end{align*}
$$

We run another refinement cycle, setting $K_{0}:=J \backslash\{x\}$ and successively using Lemma $\underline{6}$ for each $i \in\left\{1, \ldots, 2^{k-1}\right\}$ to find $\lambda_{F} \geq \delta \sigma^{2^{1-k}}$, where $F=S_{i} \cup\{x\}$, and an infinite set $K_{i} \subset K_{i-1}$ such that for every $n \in K_{i}$,

$$
\begin{equation*}
\mu_{F}\left(A_{n}\right) \in\left[\lambda_{F}, \lambda_{F} \sigma^{2^{-k-1}}\right) \tag{5}
\end{equation*}
$$

Finally, let $I_{k}=K_{2^{k-1}}$. Observe that (2) follows immediately from (5) and induction (for those $F \subset F_{k}$ which do not contain x).

To verify (1), let $\emptyset \neq F \subset F_{k}$. If $x \notin F$, then $F \subset F_{k-1}$ and the result follows by induction. If $x \in F$, let $S:=F \backslash\{x\}$ and notice that $\mu\left(A_{F}\right)=\mu_{S}\left(A_{x}\right) \mu\left(A_{S}\right)$. The fact that $x \in I_{k-1}$ together with (2) for S (which is a subset of F_{k-1}) implies that

$$
\mu\left(A_{F}\right) \in\left[\theta_{S}^{|S|}, \theta_{S}^{|S|} \sigma^{1-2^{1-k}}\right) \cdot\left[\lambda_{S}, \lambda_{S} \sigma^{2^{-k}}\right)=\left[\theta_{S}^{|S|} \lambda_{S}, \theta_{S}^{|S|} \lambda_{S} \sigma^{1-2^{-k}}\right)
$$

and (1) follows by setting $\theta_{F}=\left(\theta_{S}^{|S|} \lambda_{S}\right)^{1 /|F|}$, which will be greater that δ since both θ_{F} and λ_{F} are.

Earn money
 from your WordPress site

```
WordAds
```

report this ad

Share this:
 3 Twitter \boldsymbol{f} Facebook
 Like
 Be the first to like this.

Related

Furstenberg's Correspondence Theorem In "Combinatorics"

Szemerédi's Theorem Part I - Equivalent
formulations
In "Combinatorics"

Single and multiple recurrence along nonpolynomial sequences
In "Ergodic Theory"

This entry was posted in Combinatorics, Probability, Ramsey Theory, Tool and tagged Bergelson, Dodos, Kanallopoulos, Poincare, Tyros. Bookmark the permalink.

I Can't Believe It's Not Random!

