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In 1977 Furstenberg gave a new proof of Szemerédi’s theorem using ergodic theory. The first step in that proof was
to turn the combinatorial statement into a statement in ergodic theory. Thus Furstenberg created what is now
known as Furstenberg’s correspondence principle. While this was not (by far) the most difficult part of the proof
of Szemerédi’s theorem, it was this principle that allowed many generalizations of Szemerédi’s theorem to be
proved via ergodic theoretical arguments. Most of those generalizations had to wait a long time before seeing a
combinatorial proof, and for some, no combinatorial proof was ever found (yet).

In this post I will state and prove the correspondence principle and then I will use it to give another proof of
Sárközy’s theorem, discussed in my previous post.

— 1. Motivation and a more general setup —

The original correspondence principle was stated for subsets of , but I will consider more general countable
commutative semigroups.

This is useful when we want to use this technology to deal with combinatorial properties of (say) the multiplicative
semigroup of integers, as well as additive structure on the higher dimension groups .

Definition 1 (Følner sequence)Let  be a countable semigroup. A (left) Følner sequence in  is
a sequence  where each  is a finite subset of  and such that for any  the set

 satisfies

The standard example is the sequence of intervals  in the group  (note that the group operation is the
addition). We note that not every countable semigroup has a Følner sequence. For instance the free group on two
generators has no Følner sequence.

All solvable groups (in particular abelian groups) are amenable. The existence of a Følner sequence in a semigroup
allows us to define the notion of density:

Definition 2 (Upper Density) Let  be a countable semigroup admiting a Følner sequence 
. Then for any subset  we define its upper density (with respect to ) by

Note that the limit doesn’t exist in general. Also, a set  can have different densities with respect to different
Følner sequences. As an example consider the set . With respect to the Følner sequence

 the density of  is , but with respect to the standard Følner sequence  the density is .

The idea of the Correspondence principle is to transfer combinatorial statements into statements about measure
preserving systems. For instance, if , to say that  contains an arithmetic progression of length  is the same
as to say that for some positive integer  the intersection  is non-empty. To
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see this note that  is in that intersection if and only if the arithmetic progression  is
contained in .

Now if we introduce the shift map  defined by , then  contains an arithmetic progression of
length  if and only if . In many situations we prove that the intersection is non-empty by
proving it’s actually big (has positive upper density). Now this formulation suggests an ergodic theoretical
formulation of the Szemerédi’s theorem. First we need to introduce some concepts.

Let  be a probability space and  a probability preserving map, i.e.  is a measurable function such
that for each  we have  (here as usual we define ). The quadruple

 is called a measure preserving system. An ergodic theoretical formulation of Szemerédi’s theorem is

Theorem 3 (Furstenberg’s Multiple Recurrence theorem) Let  be a measure
preserving system and let  have positive measure. Then for all positive integer  there is some
positive integer  such that

More generally one can consider, for any semigroup , an action of  on the probability space  by
probability preserving transformations.

— 2. Furstenberg’s Correspondence principle —

We now state the general correspondence principle that, in the particular case , allows one to derive
Szemerédi’s theorem from Theorem 3.

Theorem 4 (Furstenberg’s Correspondence Principle)Let  be a countable commutative
semigroup (with identity) and admitting a Følner sequence . Let  be a subset with
positive upper density. Then there exists a probability space , a measure preserving 
-action  on  and a set  such that  and for any 

Proof: Consider the compact space  and let  be the characteristic function of  (i.e.  if 
and  otherwise). Consider the  action of  given by  for any  and . Let  be the orbit
closure of , i.e.  where the topology on  is the product topology.

If  then for any  we also have . Let  be the set of all sequences  such that . We have
. Let  be a sequence such that

Now consider in  the induced topology and the Borel -algebra . For each positive integer  we define the
measure  as the average of the point mass measure at the points  for . In other words, for a subset 
we set  where  is the number of elements  of  such that . We have thus that 
. On the other hand, all measures  are probability Borel measures, and thus live in the weak-* unit ball of the
dual of the space of continuous functions on . Thus by compactness of that unit ball we have that (possibly
after passing to a subsequence) the sequence  converges (in the weak-* topology). Let  be the limit measure.
Then  and for any  we have
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I now show how to use this result to convert the multiple recurrence theorem (theorem 3) into Szemerédi’s
theorem. Recall that Szemerédi’s theorem states that a subset  with positive upper Banach density contains
arbitrarily long arithmetic progressions. If  is such a set then it has positive upper density with respect to some
Følner sequence consisting of intervals (cf. definition 2). We can now apply the correspondence theorem to get a
measure preserving system  and a subset  with .

By theorem 3for all  there is some  such that , and from the correspondence
theorem we know that

In particular there is some  and so  is the desired arithmetic
progression (since  was arbitrary  contains arbitrarily long arithmetic progressions). This finishes the proof of
Szemerédi’s theorem (assuming theorem 3).

As another simple example of an application of the correspondence principle, I now give the proof that a recurrent
set is also an intersective set, as mentioned in my previous post. Let  be a recurrent set and  be a set of
positive upper density (with respect to some Følner sequence). We want to prove that the intersection 
is non-empty. Applying the correspondence principle we find a measure preserving system  and 
with . Since  is recurrent, there is some  such that . But then we have

 and if  then , so both  and thus .

— 3. Sárközi’s theorem, revisited —

In my last post, I proved that any divisible polynomial (I define this below) is a recurrent set. I also observed that
that result is a consequence of Sárközi’s theorem (which states that divisible polynomials are intersective),
because intersective sets are recurrent. In the last section I showed that recurrent sets are intersective, so
Sárközi’s theorem can be stated as “divisible polynomials are recurrent”. More precisely

Theorem 5 (Sárközi/Furstenberg/Kamae-Mendès France) Let  be non-zero
polynomial such that for any integer  the image  is also an integer. Assume also that  is a
divisible polynomial, i.e.

Then the set  is recurrent, i.e. for any measure preserving system  and any
set  with  there is  such that .

Sárközi proved that for polynomials  with a zero (i.e. an integer  such that ) the set  is
intersective (he first proved the case ) and independently Furstenberg, using his correspondence principle
proved the same result for squares (so he actually proved that  is a recurrent set, and then from the
correspondence principle concluded that it must also be an intersective set). Later Kamae and Mendès France
proved the general case when  is just divisible (note that if  has a zero then it is automatically divisible).

I will now provide a proof based on Furstenberg’s original argument but using a version of the van der Corput
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trick instead of the spectral theorem which would be a (slightly) softer way.

Proposition 6 (van der Corput trick in Hilbert spaces) Let  be a bounded sequence in a
Hilbert space . If for each positive integer  we have

then  as .

The proof of theorem 5 illustrates the basic idea behind recurrence theorems (which, thanks to the
correspondence theorem can be used to deduce combinatorial results). The first step is to consider the
characteristic function  of  instead of the set itself. Then we want to decompose the space (in this case )
into an orderly component and a pseudo-random component. This is of course a very vague statement, and in
each case, to determine what is the orderly component (and what is the pseudo-random) is the important part.
Elements in the pseudo-random component should have pseudo-random orbits, in the sense that they somehow
average down to , and elements in the orderly component can be controlled.

In this case those component are orthogonal subspaces of . The van der Corput trick will be used to prove that
the pseudo-random component does average down to , then the orderly part is easy to control.

Proof: of theorem 5

Let  and let  be given by . Then  is a unitary operator (this is called the
Koopman operator). Let  be the characteristic function of  (i.e.  if  and  if ). Then

 and we want to prove that this is positive for some . We will do
this by showing that the sum  over some subset of  is non-zero.

By hypothesis, the set  is non-empty for all , and if  then also  (think )

and so  for any integer . It turns out that the average  gets close to the projection of  in a

subspace (which will be the orderly subspace) if  is large enough. The subspace is the rational subspace
.

We can decompose  where  and  is orthogonal to . Now we will prove that 
converges to , using proposition 6. First note that the function  is also a polynomial, we will
actually prove that

 

holds for any non-constant polynomial , using induction on the degree of . If  has degree , say ,
then the mean ergodic theorem applied to  says that the limit in (1) is the projection of  onto the invariant
subspace of . Since  is invariant under ,  is orthogonal to  which contains the invariant subspace of .
This proves (1) when the degree of  is .

Now assume by induction that (1) holds for  (which is a polynomial of degree less than ). Let
. Then by the induction hypothesis we have for each positive integer  that
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Thus by proposition 6 we conclude that (1) holds.

We can now prove that  gets arbitrarily close to : fix  and let  be such that  for some
non-zero integer  and  (this can be done because ). Note that if  is multiple of  then still

 and so  (because  is unitary). Let , taking averages we get

 and so for  large enough, using (1), we also have that .

Since . Putting this together with the last equation we get

and so for some  we have , and so putting  small enough we conclude that
. 

EDIT(17/01/2020): I’ve edited the post, restricting the Furstenberg correspondence principle (Theorem 3) only to
commutative semigroups admitting a Følner sequence. Formerly the post contained the (wrong) claim that if a
countable semigroup is amenable, then it admits a Følner sequence. Moreover, the proof of Theorem 3 as
presented didn’t work for non-commutative semigroups.
The Furstenberg Correspondence principle is valid for arbitrary amenable semigroups, but a different proof is
required.
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isomorphismes says:
14/08/2015 at 7:20 am

Reblogged this on Human Mathematics.

Reply

E says:
16/01/2020 at 3:13 pm

Hi Joel, thanks for your post! It’s very informative. I was just wondering if your definition of “amenable” (that there exists a
Folner sequence/net) is really sufficient for most working definitions of amenability. For example, commutative semigroups
ought to be amenable, and yet the multiplicative semigroup  does not admit a Folner sequence because  is an
absorbing element.

Even if you’re given a Folner sequence (or net), constructing a finitely-additive, invariant probability measure on the power
set of  doesn’t seem to work unless  satisfies some cancellation condition. Absorbing elements seem to screw things up.
Even the action  seems to be more of an “anti” action in the sense that ; for groups you could fix this
by setting  where  denotes left-translation. So amenability of semigroups in terms of Folner sequences doesn’t
seem to be as easy to work with as it is for groups.

Reply

Joel Moreira says:
17/01/2020 at 6:45 am

Dear E, thank you for your comment!
You’re right of course that not every countable amenable semigroup has a Folner sequence (this was a misconception I had
at the time I wrote this post), and indeed general (even amenable) semigroups can be much weirder than those embedable
into groups.
And you’re also right in that the proof presented of the Furstenberg Correspondence Principle only works for commutative
semigroups.
I’ve edited the post to reflect this (perhaps I will later write a new post with a more general and modern proof of the
Correspondence principle).

However, strictly speaking, absorbing elements do not prevent invariant means/Folner sequences from existing. Indeed,
in the semigroup  endowed with multiplication, a “Dirac measure” at  is an invariant mean (and we can take as
Folner sequence a constant sequence where every  consists only of the singleton ). This is of course quite
degenerate…

Reply

E says:
17/01/2020 at 7:31 pm
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I Can't Believe It's Not Random!

Thanks Joel for the quick feedback. I appreciate it! I found recently that if $G$ admits a Folner net, then in fact it
admits a Folner net $(F_\lambda)$ in which each member is “cancellable”, meaning $gx=gy\implies x=y$ for all
$g\in G$ and $x,y\in F_\lambda$. This is a clever theorem of Gray–Kambites. Once you have this sequence, you can
construct a finitely-additive invariant probability measure on the power set of $G$ in the way one would usually do
for groups (using an ultralimit in place of a limsup in the definition of the upper density). Unfortunately, without the
cancellation property, the ultralimit construction may fail to result in an *invariant* measure, as far as I can tell.

E says:
03/05/2020 at 11:54 pm

I just realized that for $\mathbb{N}\sqcup \{0\}$ under multiplication, the constant sequence $F_n=\{0\}$ is actually a
Folner sequence. All commutative semigroups should admit “strong” Folner sequences and are therefore amenable (this is a
theorem of Argabright and Wilde).

Reply

Blog at WordPress.com.

Furstenberg’s Correspondence Theorem | I Can't Believe It's Not... https://joelmoreira.wordpress.com/2011/11/19/furstenbergs-corr...

7 of 7 11/18/20, 11:52 AM


