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Topological recurrence versus measure recurrence; a theorem of Kříž
Posted on 27/03/2012

— 1. Introduction —

Previously on this blog I presented a proof of van der Waerden’s theorem which asserts that given a finite
partition of , one of the cells of the partition contains arbitrarily long arithmetic progressions.

It turns out that actually each subset of  with positive upper density contains arbitrarily long arithmetic
progressions, and this is the famous Szemerédi’s theorem. Here, as usual, the upper density of a set  is
defined by

It is easy to prove that given a finite partition partition of , one of the cells must have positive upper density, so
van der Waerden becomes a corollary of Szemerédi’s theorem.

A different situation happens with Schur’s theorem, which states that given a finite partition of , one of the
cells contain three numbers  such that . However, in the set  of odd numbers, which has
density , no such  exist (because of the trivial fact that the sum of two odd numbers is an even
number).

One difference between this two cases lies in the fact that when we translate an arithmetic progression we get
again an arithmetic progression, but when we translate a set  with  by a non-zero integer , the
resulting set  no longer has the property that .

This brings us to the following conjecture (which turned out to be false) posed by Bergelson: If in every finite
partition of  one can find a “configuration” of some sort and if those configurations are invariant under
translation, then every subset of  with positive density contains one such configuration.

The notion of configuration here needs to be made more precise. Let  be a family of finite subsets of  (like the
set of all finite arithmetic progressions, or the set of all  such that ). We say that  is translation
invariant if for each  and each , the finite set  is also in . Thus the family of
arithmetic progressions is translation invariant but the family of sets  such that  is not. By a
“configuration of some sort” we mean one element of a given translation invariant family. We now formulate
Bergelson’s conjecture more rigorously:

I Can't Believe It's Not Random!
Joel Moreira's math blog

https://joelmoreira.wordpress.com/2012/03/27/220/
https://joelmoreira.wordpress.com/2012/03/27/220/
https://joelmoreira.wordpress.com/2011/01/30/a-topological-proof-of-van-der-waerdens-theorem/
http://en.wikipedia.org/wiki/Van_der_Waerden's_theorem
http://en.wikipedia.org/wiki/Arithmetic_progression
http://en.wikipedia.org/wiki/Schur's_theorem#Ramsey_theory
http://www.ams.org/mathscinet-getitem?mr=891243
https://joelmoreira.wordpress.com/


3/27/18, 9*53 AMTopological recurrence versus measure recurrence; a theorem of Kříž | I Can't Believe It's Not Random!

Page 2 of 7https://joelmoreira.wordpress.com/2012/03/27/220/

Conjecture 1 Let  be a translation invariant family of finite subsets of  and assume that for
any finite partition of , one of the cells contains a set  in . Then each set  with positive
upper density also contains an element of .

We remark that an affirmative answer to this conjecture would reduce Szemerédi’s theorem to van der
Waerden’s theorem. However this conjecture turns out to be false, even in a very weak case, and that’s the
content of Kříž theorem.

Besides disproving Bergelson’s conjecture, Kříž theorem tells us that sets of recurrence for topological systems
don’t need to be sets of recurrence for measure preserving systems.

— 2. Measure recurrent and topological recurrent sets —

One example of a translation invariant family is the family of all pairs  with  in some set. For instance
the set of pairs  for which  is a square. More generally, given some set  we can construct a
translation invariant  consisting of all pairs  such that .

To say that “a set  contains some element of ” is the same thing as “there are two elements of  whose
difference is in “, or equivalently “ “. Thus every set  with positive upper density contains an
element of  if and only if  is an intersective set, by definition. I previously dealt with such sets in this blog, for
instance in this post. On that post I prove that intersective sets are also recurrent sets, and actually by
Furstenberg’s correspondence principle, the two notions turn out to be the same.

By the same correspondence principle, to prove Szemerédi’s theorem it suffices to prove a statement about
measure preserving systems, namely:

Theorem 2 (Furstenberg’s Multiple Recurrence Theorem) Let  be a probability
space and  be a measurable map such that for each measurable  we have 

. Then if  and  there exists some  such that 

The deduction of Szemerédi’s theorem from this result was done in my previous post.

Similarly, one way to prove van der Waerden’s theorem, starts by reducing it to a statement about topological
dynamics. This suggests a relation between partitions of  and topological dynamics (parallel to the relation
between density results on  and measure preserving systems). Pursuing this suggested relation, we define:

Definition 3 (Topologically recurrent set) A set  is topologically recurrent if for every
compact space , each continuous map  which is minimal (i.e. there is no non-trivial
compact subset  such that ) and any open set  there is some  such that 

 is non-empty.
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Definition 4 (Chromatically intersective set) Let . A set  is -intersective if in
any partition of  into  cells, there are two elements on the same cell whose difference is in .
Equivalently, if in any partition of  into  cells, one of the cells contains an element of the
translation invariant family .

A set  is chromatically intersective if it is -intersective for each . Equivalently if in any finite
partition of  there are two elements on the same cell whose difference is in , and also
equivalently, if in any partition of , one of the cells contains an element of the translation
invariant family .

It shouldn’t now be too surprising that those two notions coincide:

Proposition 5 A set  is chromatically intersective if and only if it is topologically
recurrent.

Proof: Let  be a chromatically intersective set. Let  be a minimal system and  be open. The set 
 is an open -invariant set, so its complement is a compact -invariant subset of . By minimality we

conclude that . Because  is compact there exists a finite set  such that . Let 
 be arbitrary and for each  choose some  such that . This induces a partition of . Since

 is chromatically intersective, there exist  such that  and  and  are in the same cell of the partition.
In other words . From this we conclude that  and also , so 

 and therefore that intersection is non-empty.

To prove the other direction, assume now that  is topologically recurrent and let  be a finite partition
of  (the cells are the sets  for each ). We can see  as a point in the space . Let 
be the left shift, in other words we have that  Give  the product topology, this turns it into a
compact space by Tychonoff’s theorem. Moreover the shift  is continuous with respect to this topology.

Let  be the compact set generated by , i.e. . We can now extract a minimal
subsystem (this is achieved by the standard trick of applying Zorn’s lemma to the collection of all compact -
invariant subsets of ), call it  and let  be arbitrary. The set  is open, so for some 

 we have . Let  be some point in that intersection, then we have . Let  be the
neighborhood of  defined by . Since , there is some  such that 

 and so  for . In particular , so the two numbers  and  have the
same color and the difference is in . We conclude that  is a chromatically intersective set. 

— 3. Kříž Theorem —

The proof we present is from this paper of McCutcheon (as well as the statement, which is in a slightly different
form than that of Kříž’ original paper). We need a lemma, proved by Lovász
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Lemma 6 Let  and let  be a set with  elements. Let  be the family of -element
subsets of . Then for any partition of  into  cells, there are two disjoint elements of  in the
same cell.

This combinatorial result was conjectured by Krasner in 1955 and first proved by Lovász. A very short proof was
found later by Bárány, but it builds on some other combinatorial results.

This lemma is the only tool we need to prove Kříž’ theorem:

Theorem 7 (Kříž) For every  there exists a chromatically intersective set  and a set 
 with upper density  and such that . In particular  is not

intersective.

As a corollary we get that the translation invariant family  consisting of all pairs of positive integers  such
that  is a counter-example for conjecture 1.

The proof of theorem 7 is constructive and goes in two parts, first we need to prove a finitistic version, it is in
this part that we need lemma 6. In what follows, and as usual, given  we denote .

Proposition 8 For each  and  there are ,  and  such
that  and  are pairwise disjoint, , and , where  is
the normalized counting measure on . Moreover,  is -intersective and .

Proof:Let  be large (to be determined later) and let  be large primes to be also determined later.
Let . Let . In what follows we don’t consider  to be either even or odd. Let

We can explicitly count the cardinalities of  and , and we get

It is not difficult to verify that if we make  large enough,  large enough and  large enough we can make 
. Finally let

If  and  then let  be the set of primes  for which . Then  and so for more than
 of those primes we have  being odd. For each of those (more than ) primes we have  being
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even, and thus . We just proved that  and the same argument proves that  as
well.

Finally we need to verify that  is a -recurrent set. Let  be such that  for exactly  primes
in  and  for all other . Given a partition of , it induces in particular a partition of . But 
has a natural bijection to the -subsets of , so by lemma 6 there exist  in the same cell and such that for
no prime in  we have . For each of the at least  primes in  for which one of the 
we have . Thus  and we conclude that  is -recurrent. This finishes the proof. 

Now we can finish the proof of theorem 7. The key observation to turn this finitistic version into Kříž theorem is
that if  is -intersective then for any , the set  is also -intersective. To see this notice that given a
partition of  into  colors,  we can create a new partition by making  and if 

 have  then  and both .

Proof of theorem 7: 
Fix . Let, for each ,  be a small real number to be determined later. Let  be given
by proposition 8applied to . Also let , and  for . We will take .
Since  is a -intersective set,  is an intersective set. Now note that each  can be written uniquely as

with some  and , the (finite) sequence  are called the digits of . Let  be the set of
those  such that the digit  is either  or belongs to . Thus the upper density .
Moreover the  are periodic, therefore the intersection  has density .

Now let  be the subset of those  for which the number of digits  in  is even and let  be the
subset of those  for which the number of digits  in  is odd. Then one of those subsets have upper density
larger than . Let  be that subset.

Now to conclude that , let , then for some  we have , say  and let , with
digits . Note that both  and  are contained in , so we can add an element of  with an
element of  digitwise.

If  then  and , so  and thus . If  (the same argument applies
if it is in ) then  and it’s not  either. Now if , then  and thus not in . We
conclude that . Since this is the only digit in  different from , we conclude that the parity of the
number of digits in  is changed from  to , and thus . This finishes the proof. 

This gives a nice corollary that disproves another conjecture.

Corollary 9 There exists some set  with positive density and such that for any syndetic set
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 we have ?

The proof follows from the observation that if  is a syndetic set then  must intersect any chromatically
intersective set. Indeed by definition, a finite number of shifts of  cover , so we can create a finite partition of 

 such that each cell is contained in some shift of . This implies that the difference of two elements in the same
cell is in , and therefore by the definition of chromatically intersective set, each such set intersects .

Now given any chromatically intersective set  which is not intersective, there is some  with positive
density such that . By what we proved, for any syndetic set  we have  so if  is
syndetic we have .
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