I Can't Believe It's Not Random!

Joel Moreira's math blog

Sets of nice recurrence Posted on 04/03/2013 by Joel Moreira

— 1. Introduction —

Let (X, μ) be a probability space and $T : X \to X$ be a (measurable) map such that the set $T^{-1}A := \{x \in X : Tx \in A\}$ has the same measure as the set A for all (measurable) sets $A \subset X$. We call the triple (X, μ, T) a measure preserving system. All sets and maps from now on are measurable. Given a set $A \subset X$ and some $\epsilon > 0$ we define

 $R_{\epsilon}(A) := \{ n \in \mathbb{N} : \mu(T^{-n}A \cap A) > \mu(A)^2 - \epsilon \}$

In a previous post I talked about recurrence theorems, and in particular about how large the set $R_{\epsilon}(A)$ is in general. Note that by the mean ergodic theorem we have $\lim \mu(T^{-n}A \cap A) \ge \mu(A)^2$ and in particular this limit exists, so the set $R_{\epsilon}(A)$ is non-empty.

Definition 1 A set $R \subset \mathbb{N}$ is a set of nice recurrence *if for every measure preserving system* (X, μ, T) , every $A \subset X$ and every $\epsilon > 0$ the intersection $R \cap R_{\epsilon}(A)$ is non-empty.

We already observed that \mathbb{N} itself is a set of nice recurrence, but there are much more rarified sets of nice recurrence. For instance it follows from the result explored in <u>this post</u> that for any polynomial $f \in \mathbb{Z}[x]$ with integer coefficients and f(0) = 0 that the set $f(\mathbb{N}) = \{f(n) : n \in \mathbb{Z}\}$ is a set of nice recurrence.

The property of nice recurrence is a strengthening of the property of <u>recurrence</u>. In this previous <u>post</u> (cf. Theorem 10 in there) I showed that recurrent sets are exactly the <u>intersective sets</u>. In this post I will prove an analog of this result regarding sets of nice recurrence.

- 2. A more general setup -

For the readers convenience, I will give first a proof that a set is recurrent if and only if it is an intersective set. There is a subtlety here regarding the notion of upper density, as for each Følner sequence there is a different notion of upper density. I find that, when playing with different Følner sequences, things become more clear by working with a general countable, abelian group, and so that's what we will do. Actually this generalizes to any amenable group, but for the sake of presentation I will restrict to abelian groups.

The reader uncomfortable with Følner sequences and general abelian groups can use the model case $G = \mathbb{Z}$ and $F_N = \{1, ..., N\}$.

Recall that in a group *G*, a (left) Følner sequence is a sequence (F_N) of finite subsets of *G* such that for each $n \in G$ we have

$$\lim_{N \to \infty} \frac{|F_N \cap (n+F_N)|}{|F_N|} = 1$$

A countable group is amenable if and only if it has a Følner sequence, and it is known that every abelian group is amenable and hence has a Følner sequence. For each Følner sequence $(F_N)_N$ we define the upper density of a set $E \subset G$ by

$$\bar{d}_{(F_N)}(E) := \limsup_{N \to \infty} \frac{|E \cap F_N|}{|F_N|}$$

Moreover we define the Banach upper density $d^*(E)$ of a set $E \subset G$ as the supremum over all Følner sequences of the upper density $\bar{d}_{(F_N)}(E)$. A measure preserving action of a group in a probability space (X, μ) is an action of G on X such that each $n \in G$ induces a measure preserving transformation. We represent that measure preserving transformation by T_n . The action is ergodic if any set $A \subset X$ invariant under G (in other words such that $T_n^{-1}A = A$ for all $n \in G$) has either measure 1 or measure 0.

Definition 2 Let *G* be a countable abelian group, let $R \subset G$ and let $(F_N)_N$ be a Følner sequence on *G*.

- R is a set of recurrence if for every measure preserving action of G on (X, μ) and every A ⊂ X with μ(A) > 0 there is some n ∈ R such that μ(A ∩ T_n⁻¹A) > 0.
- R is (F_N) -intersective if for each $E \subset G$ with $\bar{d}_{(F_N)}(E) > 0$ there is some $n \in R$ such that $\bar{d}_{(F_N)}[E \cap (E-n)] > 0$.
- *R* is Banach intersective if it is (F_N) -intersective for all Følner sequences (F_N) on *G*.
- *R* is a set of nice recurrence if for every measure preserving action of *G* on (X, μ) , every $\epsilon > 0$ and every $A \subset X$ there is some $n \in R$ such that $\mu(A \cap T_n^{-1}A) > \mu(A)^2 - \epsilon$.
- *R* is a set of ergodic nice recurrence if for every ergodic measure preserving action of *G* on (X, μ) , every $\epsilon > 0$ and every $A \subset X$ there is some $n \in R$ such that $\mu(A \cap T_n^{-1}A) > \mu(A)^2 \epsilon$.
- R is (F_N) -nicely intersective if for each $E \subset G$ and each $\epsilon > 0$ there is some $n \in R$ such that $\bar{d}_{(F_N)}[E \cap (E-n)] > \bar{d}_{(F_N)}(E)^2 \epsilon$.
- *R* is Banach nicely intersective if it is (F_N) -nicely intersective for all Følner sequences (F_N) on *G*.

Note that in the definition of sets of recurrence and sets of nice recurrence there is no reference to Følner sequences.

- 3. Sets of recurrence -

For sets of recurrence we have the following characterization:

Theorem 3 Let G be a countable abelian group and let $R \subset G$. Let $(F_N)_{N \in \mathbb{N}}$ be a Følner sequence on G. Then R is a set of recurrence if and only if R is (F_N) -intersective.

Proof: To prove one direction we can use the <u>Furstenberg's correspondence principle</u>. Then assuming that R is recurrent we get that R is (F_N) -intersective.

To prove the other direction, assume that R is (F_N) -intersective and let $\{T_n\}_{n\in G}$ be a measure preserving action of G on a probability space (X, μ) and let $A \subset X$ have positive measure. For each $x \in X$ let $E(x) \subset G$ be the set

 $E(x) = \{n \in G : T_n x \in A\}.$ Let

$$f_N(x) = \frac{|E(x) \cap F_N|}{|F_N|} = \frac{1}{|F_N|} \sum_{n \in F_N} 1_A(T_n x)$$

Note that $\int_X f_N d\mu = \mu(A)$ for all *N*, so by <u>Fatou's lemma</u> we get that

$$\int_X \bar{d}_{(F_N)}[E(x)]d\mu(x) \ge \limsup_{N \to \infty} \int_X f_N d\mu = \mu(A) > 0$$

In particular we get that $d_{(F_N)}[E(x)] > 0$ in a set of positive measure, call it C. For each $x \in C$ there is some $n = n(x) \in R$ such that $E(x) \cap (E(x) - n)$ is non-empty. Let a = a(x) be in that intersection. Since there are only countably many choices for the pair $(n(x), a(x)) \in R \times G$, we conclude that there is a subset $D \subset C$ with positive measure and a pair $(n, a) \in R \times G$ such that for each $x \in D$ we have $a \in E(x) \cap (E(x) - n)$.

Thus if $x \in D$ then both $T_a x \in A$ (because $a \in E(x)$) and $T_{a+n} x \in A$ (because $a + n \in E(x)$). Equivalently we have $T_a(x) \in A \cap T_n^{-1}A$ and so $T_a(D) \subset A \cap T_n^{-1}A$, so $\mu(A \cap T_n^{-1}A) > 0$. \Box

As a corollary we get the following:

Corollary 4 Let G be a countable abelian group and let $R \subset G$. Then R is a set of ergodic recurrence if and only if R is Banach-intersective.

Proof: If R is recurrent, then it is (F_N) -intersective for all Følner sequence $(F_N)_{N \in \mathbb{N}}$ and hence it is Banach intersective.

Reciprocally, if it is Banach intersective, then it is (F_N) -intersective for some (and actually all) Følner sequence and by the previous result we get that it is also recurrent. \Box

Maybe even more surprising, at least a priori, is the following observation:

Corollary 5 Let $(F_N)_{N \in \mathbb{N}}$ and $(F'_N)_{N \in \mathbb{N}}$ be two Følner sequence in *G*. Then a set $R \subset G$ is (F_N) -intersective if and only if it is (F'_N) -intersective.

- 4. Sets of nice recurrence -

We now prove a weak analogue of the Theorem 3 for sets of nice recurrence.

Theorem 6 Let G be a countable abelian group and let $R \subset G$ be a Banach nicely intersective set. Then R is a set of ergodic nice recurrence.

Proof: Let $\{T_n\}_{n\in G}$ be an ergodic measure preserving action of G on the probability space (X, μ) and let $A \subset X$. For each $x \in X$ let $E(x) \subset G$ be the set $E(x) := \{n \in G : T_n x \in A\}$. Now fix an arbitrary Følner sequence $(F_N)_{N\in\mathbb{N}}$ in G, fix $m \in G$ and let

$$f_N(x) = \frac{|E(x) \cap (E(x) - m) \cap F_N|}{|F_N|} = \frac{1}{|F_N|} \sum_{n \in F_N} \mathbf{1}_{E(x) \cap (E(x) - m)}(n)$$

Note that for $n, m \in G$ and $x \in X$ we have

$$n \in E(x) \cap (E(x) - m) \iff T_n x \in A \cap T_m^{-1} A$$

By the mean ergodic theorem and the previous equation we have

$$\mu(A \cap T_m^{-1}A) = \lim_{N \to \infty} \frac{1}{|F_N|} \sum_{n \in F_N} 1_{A \cap T_m^{-1}A}(T_n x) = \lim_{N \to \infty} f_N(x)$$

where the convergence holds in the L^2 norm. Since f_N are bounded functions we conclude that some subsequence of $\{f_N\}$ converges almost everywhere, hence for almost every $x \in X$ we have $\overline{d}[E(x) \cap (E(x) - m)] = \mu(A \cap T_m^{-1}A)$ where the density is with respect to a subsequence of the original Følner sequence. Applying this procedure for each of the countably many elements m of G we have that for some Følner sequence $(F'_N)_{N \in \mathbb{N}}$, for all $m \in G$ and all x in a set of full measure we have

$$\mu(A \cap T_m^{-1}A) = \bar{d}_{\{F'_N\}}[E(x) \cap (E(x) - m)]$$

The result now follows from the definitions. \Box

Remark 1 Note that, from the proof, it follows that we don't need R to be (F_N) -nicely intersective for all Følner sequences $(F_N)_{N \in \mathbb{N}}$ in G, but just for some family of Følner sequences \mathcal{F} such that any Følner sequence in G has a subsequence in \mathcal{F} . If moreover we consider two Følner sequences to be the same if they give the same upper density to every set, is it true that there exists such a countable family \mathcal{F} ? Assuming that this is the case (although this seems rather unlikely), then we can even replace the condition of R to be Banach with the condition that R is (F_N) -nicely intersective for some Følner sequence.

Remark 2 Note that a partial converse of the Theorem <u>6</u> (the fact that a set of ergodic nice recurrence is (F_N) -nicely intersective for some Følner sequence) follows from a strong form of Furstenberg's correspondence principle, where we get an ergodic system. The precise statement we are invoking here is the proposition 3.1 of <u>this paper</u> by Bergelson, Host and Kra.

- 5. A negative result on recurrence -

In a previous post I stated the following theorem of Bergelson:

Theorem 7 Let (X, μ) be a probability space, let a > 0 and let $\{A_n\}_{n \in \mathbb{N}}$ be a countable family of subsets of X, all with $\mu(A_n) > a$. Then there exists a set $E \subset \mathbb{N}$ with $\overline{d}(E) \ge a$ (where the density is with respect to the Følner sequence $F_N = [1, N]$) and such that for each $n, m \in E$ we have $\mu(A_n \cap A_m) > 0$

On a different direction, it is a consequence of (the proof of) the Poincaré recurrence theorem that:

Theorem 8 Let (X, μ) be a probability space, let a > 0 and let $\{A_n\}_{n \ge 0}$ be a countable family of subsets of X, all with $\mu(A_n) > a$ and such that for m > n we have $\mu(A_n \cap A_m) = \mu(A_0 \cap A_{m-n})$. Then for each $\epsilon > 0$ there exists an infinite set $E \subset \mathbb{N}$ such that for each $n, m \in E$ we have