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ULTRAFILTERS AND INDEPENDENT SETS(1)
BY

KENNETH KUNEN(?)

ABSTRACT. Independent families of sets and of functions are used to
prove some theorems about ultrafilters. All of our results are well known to be
provable from some form of the generalized continuum hypothesis, but had
remained open without such an assumption. Independent sets are used to show
that the Rudin-Keisler ordering on ultrafilters is nonlinear. Independent
functions are used to prove the existence of good ultrafilters.

1. General notation. If A and B are sets, B4 is the set of functions from
A into B, P(A) is the set of subsets of A, and S {A) is the set of finite
subsets of A.

We identify cardinals with initial von Neumann ordinals. We use & and 7
to range over ordinals, and « to range over infinite cardinals. |A| is the
cardinality of A. If |A| =k, 25 =|P(A)|. k" is the first cardinal bigger than .
& + 1 is the first ordinal bigger than & o = NO is the first infinite ordinal and
the first infinite cardinal and the set of nonnegative integers.

A filter over an infinite set I is a nonempty subset ¥, of P(I), such that
¥ is closed under finite intersections and supersets. P() is the improper filter
over I; other filters are called proper filters. An ultrafilter is a maximal proper
filter. An ultrafilter, (U, over I, is uniform iff |A| = |I| for all A € U.

i @ c?0), ((@))I is the filter generated by a, i.e.

((@)), =N{F: (4 C ¥ C P & F is a filter}.

The generalized Frécbhet filter, c}ﬁp is {X C I: |l ~X| < ||}, Thus, an ultra-
filter U over I is uniform iff ?RI ¢ U. The subscripts I will be dropped from
the notations ((&))I and ?ﬂ, when I is understood.

2. Nonlinearity of the Rudin-Keisler ordering. If I is any infinite set, I

denotes the set of ultrafilters over . If f: I — ], f, or Bf is the function
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from BI into B] defined by
£, = BHA =ty C J: /1Y) € W

Thus, if we identify U with a 2-valued measure on I, f*(cll) is the induced
measure on | in the usual measure-theoretic sense. Note that if f: | — ] and

g: ] — K, then
Blg o) =(Bg) o (Bf): BI — BK.

We remark on some relationships between ultrafilters and topology, although
these remarks are not needed for this paper. We can consider I to be a
topological space by identifying it with the Stone space of the Boolean algebra

P, or, equivalently, with the Cech compactification of the space I with the
discrete topology. 8 is then a covariant function from the category of sets and

maps to the category of compact topological spaces and continuous maps.

The ordering < on ultrafilters was defined independently by M. E. Rudin
and H. J. Keisler as follows: If U e Bl and 0e¢ B, U< O iff there is a
function f: ] — I such that U =f,0. It is easy to check that < is transitive.
So, if we define U™ 0 iff both U < O and O < U, then ¥ is an equivalence

relation. That ® is a reasonable notion of equivalence is indicated by

2.1. Theorem. Let U € g1, O € B].

(@) URD iff there are X €U, Y €0, and f: 1 — ] such that O = [, U and
[ restricted to X is 1-1 onto Y.

®) If U0 and || = |J|, there is an f: 1 — ] such that { is 1-1 and
onto, O = /*1], and U = (f-1),C.

This theorem is proved by an easy modification of methods in M. E. Rudin
[7], to which we refer the reader for more details on < and other orderings of
ultrafilters.

It is reasonable to confine one’s study to uniform ultrafilters. Indeed, if
U € BI is not uniform let ] C I be an element of U of least cardinality. Then
U is equivalent under ™ to the uniform ultrafilter U N P(J) € BJ.

Let B,1 be the set of uniform ultrafilters over I. B I is a closed subspace
of BI and may be identified with the Stone space of the Boolean algebra $(1)/FR.

The main result of this section is that X restricted to B,/ is not linear, i.e.

2.2. Theorem. If I is infinite, there are U, U € B, such that UKD and
O£

Before proving this theorem, we interject some technical remarks. If |I| =
and 2X = k", Theorem 2.2 is established by a trivial transfinite induction (see

below). In fact, it is well known that in this case there is a family of 22
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noncomparable minimal elements in ,Bu(l). However, the assumption here that
2K = k* cannot be omitted, since, for example, one cannot prove, without the
continuum hypothesis, that any minimal elements exist for countable I (there are
none in the model obtained by adjoining X, random reals to a model of set
theory plus the continuum hypothesis).

When I is countable, Bul is the same as BI - I (the space of nonprincipal
ultrafilters over I). For any I, ultrafilters minimal in B8I — I are known as
selective, or Ramsey ultrafilters. Such ultrafilters are very rare. Not only need
they not exist for countable I, but, if |I| =«> K, they exist iff k is a measurable
cardinal; in this case, the selective ultrafilters are exactly those equivalent to
normal ultrafilters on «, and the statement that there are nonequivalent selective
ultrafilters is both consistent with (see [6, §2]) and independent from (see [5,
§6]) the axioms of set theory.

Now, to prove Theorem 2.2, we must construct U, O in ,Bul such that, for

every function f: I =1, 04 /*‘U and U £ /*6, so we must have, for every such f,
*) X e U~ f71(x) € O & 3y € OMU ~ 7~ 1Y) € U.

Say |I| = k. The construction will be carried out by transfinite induction over the
ordinals 7 < 2X. Thus, we shall construct an increasing sequence of filters
.;“ Q (n < 2%) and take U, O to be ultrafilters extending U {F 1< 2K,
U {Qn n < 2%}, respectively. Fix an enumeration /77 (n < 2%) of all the functions
from I into I. At the nth stage in the construction, we shall insure that (*)
holds for the function /"l . More precisely, we do our construction so that the
following hold:
(i) For each 5 < 2, % and @ are filters over L

(ii) For & <p< 2K, 3: C? and chg

(iii) ? Q = $q.

(iv) If 7 is a limit ordinal, 3:7] U{S: : £ <n} and Q Q & <qh

(v) Ix e.‘f [(1~/-1(x))69 & EIYeQ (IN/’I(Y))e‘JT o)

Conditions (i)—(w) present no ptoblem, but (v) may become 1mpossxble at
some stage 7. For example, if 1 is a limit ordinal, the construction before
stage 7 determines what .;" and @ must be, and it might happen that they are
already ultrafilters and that ? = / (Q ). In the special case that 2€ = k¥,
we could always arrange for .;" and Qn to be generated by no more than « sets,
and a simple diagonal argument would show that the construction could be carried
out at each stage. In the general case, we enlist the aid of the concept of
independent sets.

2.3. Definition. A family & C P(I) is independent iff, for each n and m,

whenever Xl’ ey, Xn, Yl’ <ee, Y are distinct elements of 5,
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X, Neeen Xnﬁ(I'\JYl)n...m(I’\'Ym);éO.

The following theorem was proved f,irst by Fichtenholz and Kantorovitch
[3, esp. p. 80] for |I| equal No or 2% and then, for all I and by a much
easier proof, by Hausdorff [4]. In the next section we shall prove a more general

result, due to Engelking and Karfowicz [2].

2.4, Theorem (Fichtenholz-Kantorovitch, Hausdorff). For any infinite 1, if
|1| = k, then there is an independent family S C P(I) such that IS] = 2K,

As a generalization of the notion of independence,

2.5. Definition. If 8 C P(I) and F is a filter over I, S is independent
(mod 3:) iff, whenever Xl’ ceey Xn, Yl’ <ee, Y, are distinct elements of 5,

(I~ X)U-—-VU~X)UY U0y, £F

Thus, & is independent iff § is independent (mod {I}). Note that if & is
independent (mod ¥) and 8 £0, then F is a proper filter and not an ultrafilter.
Also, if ® is independent (mod ¥) and @ C S, then &~ Q is independent
(mod ((?U @)). Furthermore, the S of Theorem 2 .4 can be taken to be indepen-
dent (mod FR). To see this, let g: I — I be such that |g~ 1({i})| = k for each
i €. Then if & satisfies Theorem 2.4, let &' ={g"1(X): X €8}. &' has
cardinality 2K and is independent (mod ?fR)

In order to prove Theorem 2.2, we keep a large family of sets, 5"1’ indepen-
dent (mod ?"7) and (mod Q"I)' Thus, in addition to (i)—(v), we arrange for the
following:

(vi) For each < 2K, S
(mod Qn).

(vii) For £< 7 < 2K, 85 2 817'

(viii) '577' = 2% for each n < 2X.
(ix) If 7 is a limit ordinal, §_ = n (8, - €<k
(x) Each S"? ~ S is finite.

M +1
Note that (viii) will be assured by (ix) and (x), provided that we have

n is independent (mod 3‘-17) and independent

|50| = 2%, but this is possible by Theorem 2.4. The inductive definition is

carried out at successor stages by applying Lemma 2.6 twice.

2.6. Lemma. Let K, K e filters over I. Let g be infinite and independent
(mod H) and (mod X). Let f:1— I Then there are filters H' D H, X' 2 K,
and a family g' C 9 such that J' is independent (mod H') and (mod K’ ),
F~9" is finite, and, for some B e}’ , I~ /-I(B)) eX'.

Proof. Fix A €J.
Case 1. J ~ {A} is independent (mod (Ku {1~ /=1(A))). Take J'
J~{a), K = (Ko it~ =1an), K = ((H u {A}), and B = A.
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Case II. Not Case I. Then there are distinct Xl’ ceey, Xn, YI, ey Ym in
J ~1{A} and K € X such that

(I~X)U.. Ua~X)UY, Uy, DK~ ~HA.

Hence,
~ ~ -1
XpneeonX 0~y)n.on~y )n KC7m(A),
so if we take K' = (KUdX,, - -, X, I~ Y, ooy 1Y, D), then I~ /711~ A) =
f~HA) € X'. Thus, we can take Ho=(Hu tr~ A, I =‘3""{A,X1,-'-,Xn,
Iwyl,.--,lwym},andB=I~A.

Lemma 2.6 concludes the proof of Theorem 2.2. By a similar argument, one

can show

2.7. Theorem. If |I| =k > R, there is a family of 2% elements of B 1

which are pairwise incomparable under <.
As another application of independent sets, we now prove

2.8. Theorem.(3) If |I| = x > NO, there is a U € B, such that U is not
generated by any subset of itself of cardinality less than 2.

Proof. Let & have cardinality 2X and be independent (mod FR). Let & be
the set of sets of the form I~ N {An : n € o}, where the A" are distinct
elements of &. Let U be any ultrafilter such that R U &ud c .

Remarks. No U ¢ B,! can be generated by less than k" elements of U. In
the case |I| = RO’
and that there is a U € B,! generated by Rl elements of U. Thus U can in

- . . . X
it is consistent with the axioms of set theory that 2 0> Rl

fact be selective (such a U exists, for example, in the model obtained by adding
X, mutually Sacks-generic reals to a model of set theory plus the continuum
hypothesis). It is also easy to check that in the standard Cohen model violating

GCH at a regular «, no U € B,k can be generated by less than 2% elements

of U.

3. The existence of good ultrafilters. If p: S (1) — P, p is multiplicative
iff whenever s, t € Sw(l), plsu t) = p(s) n p(t); p is monotone iff whenever
sCtes (N, p(s)D p(e). If p, q: S () = PU), p<q iff, forall s € s D,

p(s) C gls).
3.1. Definition (Keisler). U in BI is good iff whenever p: S(D—-Uis

(3) Added in proof. It has come to our attention that Theorem 2.8 was first proved by
B. Pospisil (Publ. Fac. Sci. Univ. Masaryk, 1939, no. 270) by a topological argument. For
more on this type of topological question, see the paper of I. Juhdsz in Comment. Math.
Univ. Carolinae 8 (1967), 231-247 (MR 35 #7300). Also, the same combinatorial proof
presented here was discovered earlier by Juhdsz and Hajnal (unpublished).
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monotone, there is a multiplicative g: Sw(l) — U such that ¢ < p.
Also, Keisler proved the following theorem under the assumption that
2% = k¥ (see [1] for details).

3.2. Theorem. If |I| = k> R, there is a good, countably incomplete

ultrafilter over I.

We now present a proof which does not assume 2% = «*. Our proof uses the
notion of an independent family of functions.
3.3. Definition. If S_C_ 1" and F is a filter over I, & is independent (mod F)

iff, whenever f, ---, f, are distinct members of & and s ores i, €1
I~ (=i, & & f (=1} g5

S is independent iff S is independent (mod {I}).
Note that if & is independent and 0 C J C I, then {-1()):f e S} is an

independent family of sets. Also, if S is independent and infinite, S is indepen-

dent (mod 3’?)

3.4. Theorem (Engelking-Karfowicz [2]). If |I| = x> R, there is an
independent & C I' such that || = 2X.

Proof. Let «Si' rl.): i € 1) enumerate {(s, r): s € Sw(l) &rel?SN. Let
S:{fA: A C I}, where /A(i)—r(A Ns )

Let ATI (n < 2%) enumerate P(1). Let b, (p < 2% enumerate all monotone
functions from § (I) into P(I) so that each monotone p: S (I) P(D) is listed
2% times. To prove Theorem 3.2, we construct 3:71 (n< ZK) and 577 (n < 25
to satisfy the following:

(i) For each 7 < 2K, 3: is a filter over I, 877 C I' and S,q is independent
(mod ¥ )

(11) For f<77<2 3: C J‘ and 55_3_577.

(iii) Each |8, | =2%.

(iv) If 7 is a limit ordinal, ? =U {3"5: £ <n} and S'fl = n{85: & <ql.

(v) Each S ~ S‘f) 1 is f1mte
(vi) ? is generated by sets B (n < @) such that n tn<w}=0.
(vii) For 7 < 2K, either A or I'U ATI is in 'j-77+1
(viii) For n< 2%, if b, Y (I) -3 n then there is a multiplicative
q:S (I)—'ff,q , such that 7L b,

By (vii), 1[ U {9: i< 2%} will be an ultrafilter. If p: Sw(l) — U is
monotone then, since cf(ZK) >k, p: S () — ?5 for some £. Applying (viii) to
some 7> & such that b, =0p shows that there is multiplicative g: Sw(l) —
¥ C U such that q < < p. Thus, U will be good. Condition (vi) insures that

MmN+l =
U will be countably incomplete. To make (vi) hold, take S U {f} to be
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independent and of power 2%. Take B,= {iel:n<f()<w} and 3:0 =
(B, : n < o}).
Conditions (i)—(iv) will take care of themselves. To get (v), (vii) and (viii),

we apply, at each stage 7, Lemmas 3.5 and 3.6 successively.

3.5. Lemma. If 8 is independent (mod F) and A C 1, there are &' C O
and F' o) ¥ such that &' is independent (mod ), S~ & is [inite and either
AorI~AisinF'.

Proof.
Case L. § is independent (mod ((F U {4}))). Take &' =8, ' = ((F v {A}).
Case II. Not Case I. Let [1, cee, ,’n be distinct members of & and

1,---,in€I such that

I~ 27 /1(7)= il &0 & /n(7)= in} 5((5. A».
Let SI =5"-’{fl, -..,/n}’
Fo(F Ol f,() =iy & e & 1) =i W),

Note that I~ A € F'.

3.6. Lemma.If 8 is independent (mod ) and p: S (I)—-' ¥ is monotone,
then there are &' C 8, F' D F, and multiplicative q: S (I) —F' such that &

is independent (mod F'), S~ &' is finite, and q < p.
Proof. Fix g €9, Let &' =8~ {g]. For each ¢ €5 ,(I), let

0 if s i,
q,(s) =
p() if sCt

Let L (i € I) enumerate S JLD. Let g(s) = U{q (s)n g X): i e} and
= ((J‘ U range 7).

This concludes the proof of Theorem 3.2. The interest of good ultrafilters
in model theory is that they make ultrapowers saturated. If A and B are two
infinite structures of power < « and U is a good, countably incomplete ultra-
filter over «, then, as Keisler showed (see [1]), the ultrapowers A%/U and
B%/U have power 2% and are «*-saturated. Thus, if 2= «" and A and B are
elementarily equivalent, then AX/U and BX/U are isomorphic.

Shelah [8] has shown, without any assumption about 2%, that there is an

ultrafilter over 2% which makes ultrapowers of elementarily equivalent models

of power k isomorphic. It is unknown, however, whether any ultrafilter over «
has this property.
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