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ULTRAFILTERS AND INDEPENDENT S E T S ( l )  

KENNETH K U N E N ( ~ )  

ABSTRACT. Independent families of s e t s  and of functions are used to 
prove some theorems about ultrafilters. All of our results are well known to be 
provable from some form of the generalized continuum hypothesis, but had 
remained open without such an assumption. Independent s e t s  are used to show 
that the Rudin-Keisler ordering on ultrafilters i s  nonlinear. Independent 
functions are used to prove the existence of good ultrafilters. 

1. General notation. If A and B a r e  s e t s ,  B* i s  the s e t  of funct ions from 

A into B, !?(A) i s  the s e t  of s u b s e t s  of A ,  and Sw(A) is the s e t  of f ini te  

s u b s e t s  of A. 

We identify cardinals  with ini t ia l  von Neumann ordinals.  We u s e  f and 17 

to  range over ordinals ,  and K to  range over infinite cardinals .  \A \  i s  the  

cardinal i ty  of A. If / A \  = K, 2K = \ !?(A) / .  K 
t i s  the f i rs t  cardinal  bigger than K. 

t+ 1 i s  the f i rs t  ordinal bigger than t. m = No i s  the  first infinite ordinal and 

the f i rs t  infinite cardinal  and the  s e t  of nonnegative integers. 

A filter over a n  infinite s e t  I is a nonempty subse t  ?, of ! ? ( I ) ,  s u c h  that  

5 is c losed  under f ini te  intersect ions and superse t s .  !? ( I )i s  the improper filter 

over I ;  other f i l ters  a re  cal led proper filters. An ultrafilter i s  a maximal proper 

filter. An ultrafilter,  %, overL I ,  i s  uniform iff \ A / = 111 for a l l  A E %. 
If @ c !? ( I ) ,((a))! is the filter generated by 6,i.e. 

((@)),= ni?:6'< Y ! ? ( I )  & 3 i s  a filter].  

The  general ized Frkchet filter, Y R I ,  i s  { X  I :  11 - XI < / I \ ] .  Thus ,  a n  ultra- 

filter % over I is uniform iff 3 R I  %. The subscr ip t s  I will be dropped from 

the notat ions ( ( @ ) ) I  and ?RI when I is understood. 

2. Nonlinearity of  the  Rudin-Keisler ordering. If I is any infinite s e t ,  PI 
denotes  the  s e t  of ultrafilters over I. If f :  I --+ 1, f ,  or Pf is the function 
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from Dl into defined by 

Thus ,  if we identify '11 with a 2-valued measure on I ,  f ,(%) is the induced 

measure on ] in the usual  measure-theoretic s e n s e .  Note that  if f :  I -+ ] and 

g:  ] + K ,  then 

We remark on some re la t ionsh ips  between ultrafilters and topology, although 

t h e s e  remarks a re  not needed for th i s  paper. We c a n  consider  p l  t o  be a 

topological s p a c e  by identifying it  with the Stone s p a c e  of the Boolean algebra 

y ( l ) ,  or, equivalent ly,  with the t e c h  compactification of the s p a c e  1 with the  
d i sc re te  t o p o l ~ g y .  P is then a covariant  function from the category of s e t s  and  

maps t o  the  category of compact topological  s p a c e s  and continuous maps. 

The  ordering F, on ul t raf i l ters  was  defined independently by M. E. Rudin 

and H. J .  Keisler  a s  follows: If 21 E PI and 0 E P J ,  % 5 0 i f f  there is a 

function f :  ] -+ 1 such  that  % = f,o. It  is e a s y  t o  check that  5 i s  t ransi t ive.  

So, if we define '11 * 73 i f f  both % 5 0 then * i s  a n  equivalence and 73 1'11, 
relation. Tha t  * is a reasonable  notion of equivalence i s  indicated by 

2 .I. T h e o r e m .  Let  '11 E P l ,  73 E P ] .  

(a )  11 0 iff there are X E 3, Y E 0,and f :  1 -+ J such  that 0= f*% and 

f restricted t o  X i s  1-1 onto Y .  

(b) I f  3 * 0 and 111 = l J l ,  there i s  an f :  1 -+ ] such  that f i s  1-1 and 

onto, 73 = f,x, and % = ( f  -')*T?. 

T h i s  theorem i s  proved by a n  e a s y  modification of methods in M. E. Rudin 

1'71, t o  which we refer the reader for more de ta i l s  on 5 and other orderings of 

ultrafilters.  

It is reasonable to  confine o n e ' s  s tudy to uniform ultrafilters.  Indeed,  if 

% E pl is not uniform le t  J C I be a n  element of 21 of l e a s t  cardinality. Then 

'11 i s  equivalent  under * t o  the uniform ultrafilter % n Y ( J )E P J .  
L e t  PUI be the s e t  of uniform ultrafilters over I .  P,l is a c losed  subspace  

of PI and may be identified with the Stone s p a c e  of the Boolean algebra Y ( I ) / ~ % .  
The  main resul t  of th i s  sec t ion  is that  ( restr ic ted to  @,I is not l inear ,  i.e. 

2.2. T h e o r e m .  I f  1 i s  infinite, there are 21, 0 E @,I such  that '11 $ 0 and 

7375 '11. 

Before proving t h i s  theorem, we  interject some technical  remarks. If 1 1 )  = K 

and 2K = K 
t , Theorem 2.2 i s  es tab l i shed  by a t r ivial  t ransf ini te  induction ( s e e  

below). In fac t ,  i t  i s  wel l  known that  in th i s  c a s e  t h e r e  i s  a family of 2 2 K  
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noncomparable minimal e lements  in  P,(1). However, the assumption here that  

2K = K 
t cannot be omitted, s i n c e ,  for example, one cannot prove, without the 

continuum hypothesis ,  that  any minimal e lements  e x i s t  for countable  1 (there a re  

none in the model obtained by adjoining N 2  random rea l s  t o  a model of s e t  

theory plus  the continuum hypothesis).  

When I is countable ,  P,I i s  the same a s  P I  - I ( t h e  s p a c e  of nonprincipal 

ul t raf i l ters  over I). F o r  any I, ultrafilters minimal in P I  - I a re  known a s  

s e l e c t i v e ,  or Ramsey ul t raf i l ters .  Such ultrafilters a re  very rare. Not only need 

they not e x i s t  for countable  I, but, if 111 = K >  N o ,  they e x i s t  i f f  K i s  a measurable 

cardinal ;  in th i s  c a s e ,  the s e l e c t i v e  ultrafilters are  exact ly those  equivalent  t o  

normal ultrafilters on K ,  and the s tatement  that  there a re  nonequivalent se lec t ive  

ultrafilters i s  both cons i s ten t  with ( s e e  [6, $21) and independent from ( s e e  [ 5 ,  
$61) the axioms of s e t  theory. 

Now, t o  prove Theorem 2.2, we must construct  71, 0 in P,I such  tha t ,  for 

every function f :  I --+ 1, 0 f f,Q and 3 f /,0, s o  we must have,  for every s u c h  f ,  

Say 111 = K.  The  construction wil l  be carried out by t ransf ini te  induction over the 

ordinals  q < 2K. T h u s ,  we s h a l l  construct  a n  increasing sequence  of f i l ters  

F,, ST (q < 2K) and take 3 ,  0 t o  be ultrafilters extending UIF?: q < ~ ~ 1 ,  

U {ST:q < 2K1, respect ively.  F i x  an enumeration / < 2K) of a l l  the functions 
7 )

from I into I. At the 7th s t a g e  in  the construct ion,  we s h a l l  insure that  (7 
holds for the function f More precisely,  we d o  our construction s o  that  the 

7 ) '  
following hold: 

( i )  For  e a c h  q < 2K, ST and W T  are f i l ters  over I. 

( i i )  For  6< q < 2K, Y E  C FT and SEC9,. 
(iii)  Fo= S o  =?$I. 

(iv) If 7 i s  a limit ordinal,  Y T  = U{F5:5 < q \  and ST= UIS5:6< 'Ib 
(v)  3 X  E FT / - l ( x ) )T E STt l l  C=Q 3~ E ST+ l I ( l - f - l ( ~ ) )  

E Y1T 

Condit ions (i)--(iv) present  no problem, but (v) may become impossible  a t  

some s t a g e  q. F o r  example, if q is a limit ordinal,  the construct ion before 

s t a g e  q determines what 5 and ST must be ,  and it  might happen that  they are  

already ultrafilters and that  '7,5 = fT , (ST) .  In the s p e c i a l  c a s e  that  2K = K 
t , 

rTwe could a lways  arrange for 5 and ST t o  be generated by n o  more than K s e t s ,
77 

and a simple diagonal  argument would show that  the construction could be carried 

out a t  e a c h  s tage .  In the genera l  c a s e ,  we en l i s t  the a id  of the concept  of 

independent s e t s .  

2.3. Definition. A family SC $'(I) i s  independent iff, for e a c h  n and m, 

whenever X1, . . . , X n ,  Y . . . , Ym are  dis t inct  e lements  of 5, 
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The  following theorem was  proved f i rs t  by Fichtenholz and Kantorovitch 

[3, e s p .  p .  801 for 111 equa l  N o  or 2'0, and then,  for a l l  I and by a much 

e a s i e r  proof, by Hausdorff [ 4 ] .  In the next  sec t ion  we s h a l l  prove a more genera l  

resu l t ,  due to  Engelking and ~ a r y o w i c z  [21.  

2 .4 .  Theorem (Fichtenholz-Kantorovitch,Hausdorff). For any infinite I, if 

Ill = K ,  then there i s  an independent family S C ?(I) such  that IS\ = 2 K .  

A s  a general izat ion of the notion of independence,  

2 . 5 .  Definition. If S C !?(I) and 3 is a filter over I ,  S is independent 

(mod 5)  i f f ,  whenever X I ,  . . . ,Xn, Y . . , Y m  are  d i s t inc t  e lements  of S ,  

( I - X ~ ) U . . . U ( I - X ~ ) U  y l u  . . u  ~ ~ 1 5 .  
T h u s ,  S is independent iff S i s  independent (mod (I \ ) .  Note that  if S is 

independent (mod 9 )  and S f 0, then 9 i s  a proper filter and not a n  ultrafilter.  

Also,  if $ is independent (mod 9 )  and @ C S,  then S % @ i s  independent 

(mod ( ( 3 ~  6))). Furthermore, the S of Theorem 2 .4 can  be taken to be indepen- 

dent  (mod 3%).  T o  s e e  t h i s ,  l e t  g: I  -+ I be such  that  Ig- l ( ( i ] ) l  = K for e a c h  

i E I. Then  if S s a t i s f i e s  Theorem 2 . 4 ,  le t  S' = ig- l (X) : X E $1. S' h a s  

cardinality 2 K  and is independent (mod 9 % ) .  

In order to  prove Theorem 2 . 2 ,  we keep  a large family of s e t s ,  S indepen-
7 ) '  

(mod S T ) .  

dent  (mod 9 
7 )  

) and (mod ).77 Thus ,  in addition t o  (i)-(v), we arrange for the 

following: 

(vi)  For  e a c h  q < 2 * ,  ST is independent (mod 9 ) and independent 
77 

( v )  For  5 < q < 2'. S5 2 ST.  
(vi i i )  IS I = 2 K  for e a c h  q < 2 K .

77 
( ix)  If q i s  a limit ordinal,  ST = n (St : 6< q]. 

(x)  E a c h  ST - Sn is f ini te .  

Note that  (viii) wil l  be  assured  by ( ix)  and (x), provided that  we have 

\Sol= 2 K ;  but th i s  is poss ib le  by Theorem 2 .4 .  T h e  inductive definition i s  

carr ied out a t  s u c c e s s o r  s t a g e s  by applying Lemma 2 .6  twice.  

2 . 6 .  Lemma. Let  J(, 3( be filters over I. Let  3 be infinite and independent 

(mod 31) and (mod K). Let  f : I -+ I. Then  there are filters J(' 2 J(, 3(' 2 3(, 

and a family y' 5y such  that 3' i s  independent (mod J(' ) and (mod K t ) ,  

3- 3' i s  finite, and, for some B E J(' , (I - f - '(B)) E 3(' . 
Proof. F i x  A E 3. 
Case  I. 3- ( A ]  is independent (mod ( ( K u  ( 1  % /-'(A)])!). T a k e  3' = 

3- { A ] ,  3(' = ((J(u { I -  / - ' (A) \ ) ) ,  H' = ((J( u (A])),  and B = A. 
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Case  11. Not C a s e  I. Then  there a re  d i s t inc t  X 1 ,  . . . , X n ,  Y 1 , . . . , Y m  in  

7-! A \  and K E K such  that  

( I - x , ) u . . .u ( r - x n )  u v ,  u .U Y ~ ~ ( I - / - ' ( A ) ) .~ K 

Hence,  

X ,  n . . .  n xn n ( I - 'i',)q . . .  n ( I - y m ) n K s ~ - ' ( A ) ,  

s o i f  we take K' = ( ( K u . { x , ,  . . . ,  X n ,  1 - Y , , . . . , I - Y ~ ] ) ) ,  then I - / - ~ ( ~ ~ A ) =  

/ - ' ( A )  E K ' .  T h u s ,  we c a n  take H' = ((H u 11 - A ] ) ) ,  5' ='3-{ A ,X 1 ,  . . . , Xn ,  

1 - Y 1 ,  . . . ,  1 - Y , ] ,  and B = I W A .  

Lemma 2.6 concludes the proof of Theorem 2.2. By a similar argument, one 

c a n  show 

2.7. Theorem. I f  111 = K 2 N o ,  there i s  a family of 2K elements  of PUI 
which are pairwise incomparable under (. 

As another appl icat ion of independent s e t s ,  we now prove 

2.8. Theorem.(3)  I f  111 = K 2 N o ,  there i s  a '11 E @,I such  that '11 i s  not 

generated by any subse t  of itself of cardinality l e s s  than 2K. 

Proof. L e t  S have cardinal i ty  zK and be independent (mod 3%).L e t  6 be  

the s e t  of s e t s  of the  form I n { A n  : n t a!,where the An are d i s t inc t  

e lements  of S. L e t  '11 be  any ultrafilter s u c h  tha t  9%u G U SC '11. 
Remarks. No '11 E PuI can  be generated by l e s s  than K' elements  of '11. In 

the c a s e  111 = N o ,  i t  i s  cons i s ten t  with the axioms of s e t  theory that  2 N o  
> N 1  

and that there is a '11 E PuI generated by N 1  elements  of '11. T h u s  '11 c a n  in 

fac t  be s e l e c t i v e  ( such  a '11 e x i s t s ,  for example,  in the model obtained by adding 

N mutually Sacks-generic  rea l s  t o  a model of s e t  theory p lus  the continuum 

hypothesis) .  It i s  a l s o  e a s y  t o  check  that  in the s tandard Cohen model violating 

GCH a t  a regular K, can  be  generated by l e s s  than 2Kno '11 E P U ~  e lements  

of '11. 

3. T h e  ex i s tence  o f  good ul traf i l ters .  If p :  ~ w ( 1 )- ? ( I ) ,  p i s  multiplicative 

iff whenever s ,  t E ~ w ( l ) ,P(S  u t )  = p(s )  n p(t);  p i s  monotone iff whenever 

s c t E Su(I),  p(s)2 p(t).  If p, q :  Sw(I) + ? ( I ) ,  p 5 q i f f ,  for a l l  s E Su(I),  

P ( S )  5 q i s ) .  

3.1. Definition (Keis ler ) .  '11 in PI i s  good i f f  whenever p :  ~ ~ ( 1 )11 is+ 

( 3 )  Added in  proof. It h a s  come t o  our at tention tha t  Theorem 2.8 w a s  f i r s t  proved by 
B. P O S ~ : ~ ~(Publ .  F a c .  S c i .  Univ. Masaryk, 1939, no. 270) by a topological  argument. For  
more on t h i s  type of topologica l  ques t ion ,  s e e  the  paper of I. ~ u h a ' s zi n  Comment. Math. 
Univ. Carolinae 8 (1967), 231-247 (MR 35 #7300). Also ,  the  same combinatorial  proof 
presen ted  here  w a s  d i scovered  ear l ie r  by juha'sz and Haina l  (unpublished).  
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monotone, there i s  a multiplicative q: ~ ~ ( 1 )  +3 such  that q 5 p. 

Also,  Keisler  proved the  following theorem under the assumption that 

2K= K' ( s e e  [I] for de ta i l s ) .  

3.2. Theorem. If 111 = K 2 N o ,  there i s  a good, countably incomplete 

ultrafilter over I. 

We now present  a proof which d o e s  not assume 2K = K 
t . Our proof u s e s  the 

notion of an independent family of functions. 

3.3. Definition. If S C I' and 3 is a filter over I, S i s  independent (mod 3 )  

iff, whenever f l ,  . . . , f n  are  d i s t inc t  members of and i l ,  . .  . , in E I, 

S is independent i f f  S i s  independent (mod (I]).  

Note that  if S is independent and 0 C ] C I, then (/-I(]):  f E S) is a n  

independent family of s e t s .  Also,  if S is independent and inf ini te ,  S i s  indepen- 

dent  (mod 3%) .  

3.4. Theorem (Engelking-Karyowicz [2]). If 111 = K 2 N o ,  there i s  a n  

independent S 5 I' s u c h  that /S/= 2K. 

Proof. L e t  ((si,  r i ) :  i E I )  enumerate ( ( s ,  r ) :  s E ~ ~ ( 1 )  L e t& r E I ~ ( ~ ) ] .  

S = i fA:  A C I], where fA(i)  = ri(A n s i ) .  

L e t  A, (7 < 2K) enumerate ?(I). L e t  p, (7  < 2K3 enumerate a l l  monotone 

funct ions from Sw(l) into ?(I) s o  that  e a c h  monotone p: S,(I) + !?(I) i s  l i s t ed  

2K t imes.  T o  prove Theorem 3.2, we construct  y7  ( r )  < 2K) and S, ( 7  < 2K) 

t o  s a t i s f y  the  following: 

( i )  F o r  e a c h  7 < z K ,  9, is a filter over I, S C II and ST i s  independent 
7 -

(mod 3,) .  

( i i )  	F o r  5 < 7 < 2", F5 C9, and Sg 3 ST. 
( i i i )  Each  IS7 1 = 2". 


v If 7 i s  a limit ordinal,  = U ( Y E :  5 < 71 and S, = mg:5 < 71. 


(v) 	Each  S, 5, +,is finite. 

(vi)  	I fo i s  generated by s e t s  Bn (n < a) s u c h  that  n ( B n :  n < o,]= 0. 

(vi i )  For  7 < 2K, ei ther  A or I A, i s  in 9,
?) 

(vi i i )  For  7 < 2K, if p,: Sw(l) -+ ?,, then there is a multiplicative 

q : s w ( l ) + T  	7 t l  s u c h t h a t q < p , .  

By (vii),  u = U (3,: 7 < 2K) wil l  be an ultrafilter.  If p: ~ ~ ( 1 )  11 is+ 

monotone then,  s i n c e  cf (2K) > K ,  p: S,(l) + for some 5. Applying (vi i i )  t o  

some 7 > 5 such  that  p7 = p shows  that  there is multiplicative q :  S,(l) * 
C 11 such  that  q ( p. T h u s ,  11 will  be  good. Condition (vi) insures  tha t  , + I  -

11 will  be  countably incomplete. T o  make (vi)  hold, take So U i f )  t o  be  

9 
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independent and of power 2 K .  T a k e  B n  = { i  E I :  n < f ( i )  < w ]  and Y o  = 

((is,: n < a!)).  
Conditions (i)-(iv) wil l  take care of themselves.  T o  get  (v), (vi i )  and (viii),  

we apply, a t  each  s t a g e  11, Lemmas 3.5 and 3.6 success ive ly .  

3 . 5 .  Lemma. I f  S i s  independent (mod 5 )  and A I, there are S' S_ S 
and 3' )5 such that S' i s  independent (mod 3 ' ) ,  S w  S' i s  finite and either 

A or 1". A i s  in 5'. 

Proof. 

Case  I. S i s  independent (mod ( ( 3  u { A ] ) ) ) .  T a k e  Si = S, 3)= ( ( 5  U 1)). 
Case  11. Not C a s e  I. L e t  f l ,  . . , f n  be  d i s t inc t  members of S and 

i l ,  . . - , i € 1  such  that  

L e t  S' = 5 % i f , ,  . . .  , / , I ,  

Note that  I A E 3' . 
3.6. Lemma. I f  S i s  independent (mod 3 )  and p:  S & I )  -+ 3 i s  monotone, 

then there are S' C s,?' 2 3 ,  and multiplicative q: ~ ~ ( 1 )  3' such  that S'-+ 

i s  independent (mod 5' ), S * S' i s  finite, and q 5 p,  

Proof. F i x  g E S. L e t  S' = S % i g ] .  F o r  each  l e tt E ~ ~ ( l ) ,  

L e t  ti ( i  e I )  enumerate Sw(l). L e t  q ( s ) = U lq t i ( s )n g - ' ( { i l ) :  i E I ]  and 

3' = ( ( 3 u range 9) ) .  

T h i s  concludes the  proof of Theorem 3 .2 .  The  interest  of good ultrafilters 

in  model theory i s  that  they make ultrapowers saturated.  If A and R a r e  two 

infinite s t ructures  of power 5 K and % is a good, countably incomplete ul t ra-  

filter over K ,  then,  a s  Keisler  showed ( s e e  [ I ] ) ,  the ultrapowers nK/%and 

R K / %  have power 2 K  and a r e  K 
t-saturated. Thus ,  if 2" = K' and A and 3 a r e  

elementarily equivalent ,  then A ~ / ' I I  and B ~ / %are  isomorphic. 

Shelah [81 h a s  shown, without any assumption about 2 K ,  that  there is a n  

ultrafilter over 2 K  which makes ultrapowers of elementarily equivalent  models 

of power K isomorphic. It  i s  unknown, however, whether any ultrafilter over K 

h a s  th i s  property. 
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