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THE HALES-JEWETT THEOREM VIA
RETRACTIONS

SABINE KOPPELBERG

Abstract. Working in the Stone-Čech compactification of
an arbitrary semigroup, we prove an abstract version of the
Hales-Jewett theorem. We easily obtain the classical Hales-
Jewett theorem, van der Waerden’s theorem and Gallai’s the-
orem as special cases. We observe that our abstract version
of the Hales-Jewett theorem can be derived from the classical
one.

In Section 2 of this paper, we will formulate and prove a, seem-
ingly more general, abstract version (2.2) of the classical Hales-
Jewett theorem 3.5. It has virtually the same proof as the classical
version and allows to deduce, in Section 3, the Hales-Jewett theo-
rem as well as van der Waerden’s theorem 3.2 and Gallai’s theorem
as very easy special cases. In the final section 4, however, follow-
ing a proof by N. Hindman, we explain that our abstract version
follows easily from the Hales-Jewett theorem.

1. Preliminaries

The proof of our abstract version of the Hales-Jewett theorem
requires some minimal knowledge about compact right-topological
semigroups. More precisely, we shall work in the Stone-Čech com-
pactification βV of an arbitrary semigroup V . All definitions and
results in this section can be found in [3].
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For a set V with the discrete topology, βV is the set of all ultra-
filters on V . It is a compact zero-dimensional space with the basis
consisting of the sets Â = {p ∈ βV : A ∈ p} for A ⊆ V . Identifying
each v ∈ V with the principal ultrafilter {A ⊆ V : v ∈ A}, we
identify V with the set of isolated points of βV ; thus V is a dense
subspace of βV . For A ⊆ V , the closure of A in βV is simply Â;
it is canonically homeomorphic to the Stone-Čech compactification
βA of A. Thus we write sometimes βA for Â. If V = A ∪ B is a
partitition of V , then βV = βA ∪ βB is a partition of βV .

For an arbitrary mapping σ : V → W ⊆ βW between discrete
spaces V and W , βσ : βV → βW is the unique continuous extension
of σ to βV . By abuse of notation, we write σ instead of βσ. Under
this notation, σ(p) = {B ⊆ W : σ−1[B] ∈ p}.

Now assume (V, ·) is a semigroup, i.e. · is an associative binary
operation on V . There is a unique extension of · to βV such that
the map x 7→ x · p (from βV into itself) is continuous for every
p ∈ βV and the map x 7→ v ·x is continuous for every v ∈ V ⊆ βV .
Under this operation, (βV, ·) becomes a compact right-topological
semigroup.

It follows by continuity that, if A, B, C ⊆ V and A · B ⊆ C,
then βA · βB ⊆ βC; e.g. if A is a subsemigroup of V , then βA
is a subsemigroup of βV . Moreover if σ : V → W is a semigroup
homomorphism, then so is σ(= βσ) : βV → βW .

We will use the following well-known facts about compact right-
topological semigroups S.

Fact 1. Every left-ideal of S includes a minimal one.
Fact 2. Every minimal left-ideal of S contains an idempotent

element.
Fact 3. If I is a minimal left ideal and K is a two-sided ideal of

S, then I ⊆ K.
Fact 4. If I is a minimal left ideal of S and p ∈ I , then I = S · p.
Fact 5. If p is an idempotent element of S and x ∈ S · p, then

xp = x.

2. The general theorem

Definition 2.1. Assume W is a subsemigroup of V .
We call W a nice subsemigroup of V if R = V \W is a two-sided

ideal in V , i.e. a product x · y of elements x, y of V is in W iff
x ∈ W and y ∈ W .
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A semigroup homomorphism σ : V → W is called a retraction
(from V to W ) if σ � W is the identity on W .

The following proof of Theorem 2.2 is a straightforward general-
ization of that in [1].

Theorem 2.2. (the Hales-Jewett theorem, abstract version)
Assume V is a semigroup and W is a proper nice subsemigroup
of V . Let Σ be a finite set of retractions from V to W and W =
B1 ∪ · · · ∪ Br a partition of W into finitely many pieces. Then
there is some j ∈ {1, . . . , r} and some v ∈ R = V \ W such that
{σ(v) : σ ∈ Σ} ⊆ Bj.

Proof. Note first that βW is a subsemigroup and βR a two-sided
ideal of βV , i.e. βW is a nice subsemigroup of βV . Moreover for
σ ∈ Σ, σ = βσ is a retraction from βV to βW .

Choose a minimal left ideal J in βW and an idempotent element
q ∈ J . Next, choose a minimal left ideal I in βV which is contained
in the left ideal βV · q of βV and an idempotent element i ∈ I and
put p = qi. Thus p ∈ I .

Note that R ∈ p because I (a minimal left ideal of βV ) is con-
tained in βR (a two- sided ideal of βV ), so p ∈ I ⊆ βR = R̂.

Moreover it follows from i ∈ I ⊆ βV · q and Fact 5 that iq = i,
and this implies p = p2 = pq = qp.

Claim. For each σ ∈ Σ, σ(p) = q. - To see this, write σ(p) = u.
Applying the retraction σ : βV → βW to the equation p = p2 =
pq = qp gives u = u2 = uq = qu, in particular, u = uq ∈ J . But
q ∈ J = βW · u, by Fact 4, thus also qu = q, by Fact 5, which
proves the Claim.

To finish the proof of the theorem, let j ∈ {1, . . . , r} be such that
Bj ∈ q (an ultrafilter on W ). For σ ∈ Σ, we have Bj ∈ q = σ(p)
and thus σ−1[Bj ] ∈ p. It follows that the set D = R∩

⋂
σ∈Σ σ−1[Bj ]

is in p, thus non-empty. Every v ∈ D works for the theorem. �

Remark 2.3. Readers somewhat familiar with the interplay of
semigroups and combinatorics will expect a more precise version of
2.2: given V , W and Σ as in 2.2 and a piecewise syndetic subset B
of W , there is some v ∈ R = V \ W such that {σ(v) : σ ∈ Σ} ⊆ B.
This is proved as follows: Theorem 4.43 in [3] says that there is
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some x ∈ W such that the subset A = {s ∈ W : xs ∈ B} is central
in W . I.e. there are an idempotent q ∈ βW and a minimal left
ideal J of βW such that A ∈ q and q ∈ J . Starting from these q
and J , take I and p as in the proof of 2.2. Then A ∈ q = σ(p),
for all σ ∈ Σ, gives an a ∈ R such that {σ(a) : σ ∈ Σ} ⊆ A. Now
v = x · a is in R, and, for σ ∈ Σ, σ(v) = x · σ(a) ∈ B.

3. Special cases

We derive from 2.2 some results of Ramsey theory which are well-
known to follow from the Hales-Jewett theorem 3.5. They deal with
commutative resp. free semigroups.

Corollary 3.1. Assume (S, +) is a commutative semigroup,
S = A1 ∪ · · · ∪ Ar is a partition of S into finitely many pieces
and E is a finite subset of S. Then there are j ∈ {1, . . . , r}, a ∈ S
and a natural number d > 0 such that {a + d · e : e ∈ E} ⊆ Aj.

Proof. Consider V = S × ω with coordinatewise addition (where ω
is the set of natural numbers, including 0) and W = S×{0}; clearly
V and W satisfy the assumptions of Theorem 2.2. Write pr for the
projection map from W to the first coordinate and Bj for pr−1[Aj ];
so W = B1 ∪ · · · ∪ Br. For every s ∈ S, we define a retraction σs

from V to W by letting σs(a, d) = (a + ds, 0). Take by Theorem
2.2 some v = (a, d) ∈ V \ W (thus d 6= 0) and some j ∈ {1, . . . , r}
such that {σe(v) : e ∈ E} ⊆ Bj . I.e. pr(σe(v)) = a + de ∈ Aj for
each e ∈ E. �

In the special case where S is the additive semigroup ω of natural
numbers resp. the product ωk of k copies of ω (where k ∈ ω \ {0}),
it is most natural to take E = {0, · · · , n} for some n ∈ ω resp.
E = {0, · · · , n}k. This gives the following results.

Theorem 3.2. (van der Waerden’s theorem) Assume ω =
A1∪· · ·∪Ar is a partition of ω into finitely many pieces and n ∈ ω.
Then there are j ∈ {1, . . . , r} and natural numbers a and d > 0
such that {a, a + d, a + 2d, . . ., a + nd} ⊆ Aj , i.e. Aj contains an
arithmetic progression of length n + 1.
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Theorem 3.3. (the k-dimensional van der Waerden theorem)
Assume k ≥ 1 is a natural number, ωk = A1 ∪ · · · ∪ Ar is a par-
tition of ωk into finitely many pieces, and n ∈ ω. Then there are
j ∈ {1, . . . , r}, a ∈ ωk and a natural mumber d > 0 such that
a + dx ∈ Aj holds for each vector x ∈ {0, . . . , n}k.

The special case of 3.1 where S is the additive group of a vector
space is Gallai’s theorem (see e.g. [2]).

In the Hales-Jewett theorem, we deal with the following semi-
group.

Definition 3.4. For an arbitrary set M (an alphabet), M∗ is the
set of all finite sequences (words) over M , a semigroup under con-
catenation of words. M∗ is simply the free semigroup over the set
M of free generators (where we identify each letter m ∈ M with
the word (m) of length one).

We will have M = L ∪ X where L and X are disjoint; here we
consider the elements of L as “constant” letters and those of X
as “variable” letters. For v ∈ M∗, x ∈ X and u ∈ L∗, v(x/u)
denotes the result of substituting u for x everywhere in v. More
generally, if f : X → L∗ and v ∈ M∗, v(X/f) denotes the result
of simultaneously substituting f(x) for x everywhere in v, for all
x ∈ X occurring in v.

Theorem 3.5. (the Hales-Jewett theorem, classical version)
Assume L is a finite alphabet and L∗ = A1 ∪ · · · ∪ Ar is a par-
tition of L∗ into finitely many pieces. Let x be a variable letter not
in L. Then there are j ∈ {1, . . . , r} and a word v ∈ (L∪ {x})∗ \L∗

such that {v(x/a) : a ∈ L} ⊆ Aj .

Proof. This is the special case of 2.2 for V = (L ∪ {x})∗, W = L∗

and, for each a ∈ L, the retraction σa from V to W mapping v to
v(x/a). �

Seemingly more general versions of the Hales-Jewett theorem can
be obtained by considering V and W as in the proof of 3.5 and,
for arbitrary u ∈ L∗, the retraction σu from V to W mapping v to
v(x/u), resp. V = (L∪X)∗, W = L∗ and, for arbitrary f : X → L∗,
the retraction σf from V to W mapping v to v(X/f).
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Let us remark that, for V = (L ∪ {x})∗ and W = L∗, the re-
tractions σu as defined above are the most general ones. I.e. every
retraction σ from V to W coincides with σu, for some u ∈ L∗. This
is because V is free over L ∪ {x} and σ(a) = a for a ∈ L; thus σ
is determined by u = σ(x), and it follows that σ = σu. Similarly
in the situation where V = M∗ = (L ∪ X)∗ and W = L∗, every
retraction σ from V to W coincides with σf where f = σ � X .

4. A sobering remark

Our abstract version 2.2 of the Hales-Jewett theorem looks very
general, and it is certainly appropriate to give particularly straight-
forward proofs for the results in Section 3. It turns out, however,
that the seemingly most general result 2.2 follows quite easily from
the classical version 3.5 of the Hales-Jewett theorem. We include
Hindman’s proof of this fact with his kind permission; in a pre-
liminary version of this paper, we had only shown how to derive
2.2 from the more general versions of the Hales-Jewett theorem
mentioned at the end of Section 3.

Remark 4.1. We show how to derive 2.2 from 3.5. Thus assume V ,
W and Σ are given as in in 2.2, plus a partition W = B1 ∪ · · ·∪Br.

Fix a finite alphabet L = {aσ : σ ∈ Σ} in which the letters
aσ, σ ∈ Σ, are pairwise distinct. For every σ ∈ Σ, we have the
substitution homomorphism

sσ : (L∪ {x})∗ → L∗

mapping v to v(x/aσ).
Moreover, fix an arbitrary u ∈ V \W and the homomorphism

f : (L ∪ {x})∗ → V

mapping x to u and, for σ ∈ Σ, aσ to σ(u). Then for each σ ∈ Σ,
we obtain

σ ◦ f = f � L∗ ◦ sσ

since this commutativity condition holds on L ∪ {x}, hence on the
whole of (L ∪ {x})∗. And the preimage of W under f is L∗ (since
f(x) = u /∈ W and W ⊆ V is a nice subsemigroup).

Putting Aj = f−1[Bj ] for 1 ≤ j ≤ r, we obtain a partition
L∗ = A1 ∪ · · · ∪ Ar of L∗; the classical Hales-Jewett theorem 3.5
gives an element w of (L∪ {x})∗ \L∗ and some j ∈ {1, . . . , r} such
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that {w(x/aσ) : σ ∈ Σ} ⊆ Aj , i.e. {f(w(x/aσ)) : σ ∈ Σ} ⊆ Bj .
Thus v = f(w) is an element of V \ W . And for σ ∈ Σ, σ(v) =
σ(f(w)) = f(w(x/aσ)) ∈ Bj , q.e.d.
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