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Algebra in the Space of Ultrafilters and Ramsey Theory

Neil Hindman and Dona Strauss

Abstract. We survey developments in the algebraic theory of the Stone-Čech
compactification βS of a discrete semigroup S and its applications to Ramsey

Theory that have occurred since the publication of [43].

1. Introduction

If S is a discrete topological space, we view its Stone-Čech compactification,
βS, as the set of all ultrafilters on S, the points of S being identified with the
principal ultrafilters. Given A ⊆ S, A = c`βSA = {p ∈ βS : A ∈ p}. The set
{A : A ⊆ S} is a basis for the open sets of βS as well as a basis for the closed sets
of βS.

If (S, ·) is a discrete semigroup, then the operation extends uniquely to βS
making (βS, ·) a right topological semigroup with S contained in its topological
center. To say that (βS) is right topological is to say that for each p ∈ βS, the
function ρp : βS → βS defined by ρp(q) = q ·p is continuous. The topological center
of βS is {q ∈ βS : λq is continuous}, where λq : βS → βS is defined by λq(p) = q ·p.
The fact that this extension can be done was implicitly established by M. Day [21]
using a multiplication on the second conjugate of a Banach algebra, in this case
l1(S), first introduced by R. Arens [5] for arbitrary Banach algebras. P. Civin and
B. Yood [18, Theorem 3.4] explicitly stated that if S is a discrete group, then the
above operation produced an operation on the Stone-Čech compactification of S,
viewed as a subspace of that second dual. R. Ellis [26] carried out the extension
in βS viewed as a space of ultrafilters, again assuming that S is a group. He also
proved the important fact that any compact Hausdorff right topological semigroup
has an idempotent [26, Corollary 2.10].

The fact that (βN,+) has an idempotent provided the first application of the
algebra of βS to Ramsey Theory, namely a very simple proof due to F. Galvin and
S. Glazer of the Finite Sums Theorem. (Given a set X, Pf (X) is the set of finite
nonempty subsets of X.)
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Theorem 1.1 (Finite Sums Theorem). Let r ∈ N and let N =
⋃r

i=1 Ci. There
exist i ∈ {1, 2, . . . , r} and a sequence 〈xn〉∞n=1 in N such that for each F ∈ Pf (N),∑

n∈F xn ∈ Ci.

This proof, while never published by either of the originators, is widely avail-
able. For their original proof and a newer one see [42, Theorem 5.8]. For a detailed
discussion of the history of the discovery of this proof see [37].

Any compact right topological semigroup T has a smallest two sided ideal,
K(T ), which is the union of all of the minimal left ideals of T and is also the union
of all of the minimal right ideals of T . The intersection of any minimal left ideal and
any minimal right ideal is a group, and any two such groups are isomorphic. If S
is a discrete semigroup, then it may happen that K(βS) has only trivial structure.
For example, if S is a right zero semigroup, (i.e., st = t for all s and t in S), then
so is βS. In this case the minimal left ideals are precisely the singletons. But it
often happens that the structure of K(βS) is very rich. For example, in (βN,+) the
groups in the smallest ideal all contain a copy of the free group on 2c generaters.

We shall be concerned in this paper with results about the algebraic structure
of βS and with continued application of that structure to the branch of combina-
torics known as Ramsey Theory. We will concentrate on results obtained since the
preparation of the last survey [43] which we wrote on this subject.

Section 2 will be concerned with results establishing that there are many objects
(such as minimal left or right ideals in βS) or that certain such objects can be very
large or very small.

Section 3 will deal with more general results about the algebra of βS for either
arbitrary semigroups S, or particular semigroups other than (N,+) or (N, ·) while
Section 4 will deal with results about βN.

Section 5 will deal with central sets as well as other notions of size such as
syndetic or piecewise syndetic that had their origins in topological dynamics.

Section 6 will consist of new applications of the algebra of βS to Ramsey Theory.
Of course we will necessarily not mention most of the results in the papers we

are surveying. We will choose sample results which are reasonably easy to state
without introducing too much notation, and the reader should decide whether she
is interested in consulting the original papers.

2. Number and cardinality of substructures of βS

We remark that the following theorem was known previously for countable
cancellative semigroups [42, Corollary 6.41]. However, this result was completely
new for uncountable groups.

Theorem 2.1 (Zelenyuk). Let G be an infinite discrete abelian group and let
κ = |G|. Then βG contains 22κ

minimal right ideals.

Proof. [74, Theorem 1]. �

Theorem 2.2 (Zelenyuk and Zelenyuk). Let G be an infinite group and let
κ = |G|. If G can be embedded into a direct sum of countable groups, in particular
if G is abelian, then every maximal group in K(βG) contains a free group on 22κ

generators.

Proof. [77, Theorem 1.1 and Corollary 1.2]. �
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The “in particular” part of Theorem 2.2 was obtained independently in [27].

Definition 2.3. A digital representation of a semigroup (S, ·) is a family
〈Ft〉t∈I , where I is a linearly ordered set, each Ft is a finite non-empty subset
of S and every element of S is uniquely representable in the form

∏
t∈H xt where

H is a finite subset of I, each xt ∈ Ft, and products are taken in increasing order
of indices.

A strong digital representation of S is a digital representation with the addi-
tional property that, for each t ∈ I, Ft = {xt, x

2
t , · · · , xmt−1

t } for some xt ∈ S and
some mt > 1 in N, where mt = 2 if xt has infinite order and mt is a prime, with
the order of xt being a power of mt, if xt has finite order.

Theorem 2.4 (Ferri, Hindman and Strauss). Every Abelian group has a strong
digital representation.

Proof. [27, Theorem 3.9]. �

Theorem 2.5 (Ferri, Hindman, and Strauss). Let S be a left cancellative semi-
group with identity of cardinality κ which has a digital representation 〈Ft〉t∈κ such
that whenever s < t < κ, x ∈ Fs, and y ∈ Ft, one has xy = yx. Then every
maximal group in the smallest ideal of βS contains a free group on 22κ

generators.
In particular if S is an abelian group, then every maximal group in K(βS) contains
a free group on 22κ

generators.

Proof. [27, Theorem 3.9 and Corollary 4.16]. �

Recall that a set theoretic (or Boolean algebra) ideal is the dual of a filter.
That is an ideal I on a set X is a nonempty set of subsets of X which does not
include X and is closed under finite unions and subsets. Thus I is an ideal on X
if and only if {X \A : A ∈ I} is a filter on X. Interestingly enough, a special kind
of ideal in a discrete group G has consequences for algebraic ideals in βG.

Definition 2.6. Let G be an infinite group. A Boolean group ideal is an ideal
I on G such that

(a) every finite subset of G is a member of I;
(b) if A ∈ I, then A−1 ∈ I; and
(c) if A,B ∈ I, then AB ∈ I.

Recall that, given a filter F on a set X, F̂ = {p ∈ βX : F ⊆ p}.

Theorem 2.7 (Protasov and Protasova). Let G be an infinite group, let I be
a Boolean group ideal on G, and let F = {G \A : A ∈ I}. Then F̂ is a closed two
sided ideal of the semigroup βG.

Proof. [64, Theorem 1]. �

Corollary 2.8. Let G be an infinite abelian group with |G| = κ. There are
22κ

distinct closed two sided ideals in βG.

Proof. If F and G are distinct filters on G, then F̂ 6= Ĝ. (If say A ∈ F \ G,
then G ∪ {G \A} has the finite intersection property so there is an ultrafilter p on
G such that G ∪ {G \ A} ⊆ p. Then p ∈ Ĝ \ F̂ .) By [63, Theorem 3] any infinite
abelian group of cardinality κ has 22κ

distinct Boolean group ideals. �
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The following theorem drops the commutativity requirement from Corollary
2.8, but applies only when κ = ω.

Theorem 2.9 (Filali, Lutsenko, and Protasov). Let G be a countably infinite
group. There are 22ω

distinct Boolean group ideals on G. Consequently, there are
22ω

distinct closed left ideals of βG.

Proof. Theorem 2.7 and [30, Theorem 1.1]. �

Definition 2.10. Let S be an infinite semigroup with cardinality κ.
(a) A subset A of S is a left solution set of S if and only if there exist w, z ∈ S

such that A = {x ∈ S : w = zx}.
(b) S is very weakly left cancellative if the union of fewer than κ left solution

sets of S must have cardinality less than κ.

Note that if κ is regular, S is very weakly left cancellative if and only if every
left solution set of S has cardinality less than κ. If κ is singular, S is very weakly
left cancellative if and only if there is a cardinal less than κ which is an upper
bound for the cardinalities of all left solution sets of S.

Theorem 2.11 (Carlson, Hindman, McLeod, and Strauss). Let S be an infinite
very weakly left cancellative semigroup with cardinality κ. There is a collection of
22κ

pairwise disjoint left ideals of βS. In particular, βS has 22κ

minimal idempo-
tents.

Proof. [17, Theorem 1.7]. �

The subsemigroup H of (βN,+) contains much of the known algebraic structure
of βN. (See [42, Section 6.1].)

Definition 2.12. H =
⋂∞

n=1 c`βN(N2n).

Definition 2.13. Let κ be an infinite cardinal.
(a) Gκ =

⊕
σ<κ Z2.

(b) For x ∈ Gκ \ {0}, supp(x) = {σ < κ : xσ 6= 0}.
(c) Hκ =

⋂
σ<κ c`Gκ

({x ∈ Gκ \ {0} : min suppx > σ}.

It is an easy fact that if f : Gω → N is defined by f(x) =
∑

n∈ω 2n and
f̃ : βGω → βN is its continuous extension, then the restriction of f̃ to Hω is
both an isomorphism and a homeomorphism onto H. More generally, we have the
following.

Theorem 2.14 (Hindman, Strauss, and Zelenyuk). Let S be an infinite can-
cellative discrete semigroup with |S| = κ. Then S∗ contains a topological and
algebraic copy of Hκ.

Proof. [52, Theorem 2.7]. �

We remark that the following theorem follows immediately from Zelenyuk’s
Theorem and from a previously known theorem due to I. Protasov, in the case in
which κ = ω [62], but that it is completely new if κ > ω.

Theorem 2.15 (Zelenyuk). Let κ be an infinite cardinal. Then Hκ contains
no notrivial finite group.

Proof. [73, Theorem 1.2]. �
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However, we see that Hκ has plenty of large semigroups.

Theorem 2.16 (Hindman, Strauss, and Zelenyuk). Let κ be an infinite car-
dinal. Let L be a left zero semigroup and let R be a right zero semigroup with
|L| = |R| = 22κ

. There is an algebraic copy of L × R contained in Hκ. If κ = ω,
there is an algebraic copy of L × R contained in K(H). In particular, there is an
algebraic copy of L×R contained in K(βN).

Proof. [52, Corollaries 3.10 and 3.11]. �

Definition 2.17. Let G be a group with topology τ , let e be the identity of
G, and let Gd be G with the discrete topology. Then Ultτ (G) = {p ∈ βGd : p
converges to e with respect to τ}.

By a left topological group we mean a group with a topology making it a left
topological semigroup. If (G, τ) is a left topological group, then Ultτ (G) is a com-
pact subsemigroup of G∗ = βGd \G [42, Exercise 9.2.3].

Theorem 2.18 (Zelenyuk). Let (G, +, τ) be a countable abelian nondiscrete
topological group and let B = {x ∈ G : x + x = 0}. If B is not open, then Ultτ (G)
contains 2c minimal right ideals. In particular,

∣∣K(
Ultτ (G)

)∣∣ = 2c.

Proof. [70, The Theorem and Corollary]. �

On the other hand, it is possible for Ultτ (G) to be small. A chain of idempotents
is a set of idempotents linearly ordered by the relation p ≤ q if and only if p = pq =
qp.

Theorem 2.19 (Zelenyuk). Let G be a countable group and let n ∈ N. There
is a topology τ on G such that (G, τ) is a regular Hausdorff left topological group
without isolated points and Ultτ (G) is an n-element chain of idempotents.

Proof. [71, Theorem 6.1]. �

Recall that the Bohr compactification of Z, also known as SAP (Z) = AP (Z), is
the largest compact topological group containing an algebraic copy of Z as a dense
subgroup. Recall also that a P -point in a topological space is a point with the
property that any countable intersection of neighborhoods is again a neighborhood.
While the existence of P -points in N∗ follows from Martin’s axiom, it is consistent
that there are none [67, VI, §].

Theorem 2.20 (Zelenyuk). Assume that there are no P -points in N∗ and let
(G, τ) be a countable nondiscrete topological group. Then Ultτ (G) can be partitioned
into closed right ideals, each of which admits a continuous homomorphism onto the
Bohr compactification of Z.

Proof. [69, The Theorem]. �

Theorem 2.21 (Zelenyuk). Let (G, τ) be a coutable regular Hausdorff left topo-
logical group and assume that G contains a discrete subset with exactly one accu-
mulation point. There exists a continuous surjective homomorphism from Ultτ (G)
onto βN.

Proof. [72, Lemma 1.1 and Corollary 2.3]. �

Definition 2.22. Let S be an infinite semigroup and let p be an idempotent
in βS. Then H(p) is the largest subgroup of βS with p as its identity.
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If S is cancellative and |S| = κ, then by [42, Corollary 7.39] there exists
an idempotent p ∈ βS such that H(p) contains a copy of the free group on 22κ

generators. We see here that it is consistent that maximal groups in such semigroups
are as small as possible.

Theorem 2.23 (Legette). Let S and G be respectively the free semigroup and
the free group on a countably infinite set of generators. For an idempotent p ∈
βS, let HS(p) and HG(p) be the maximal groups associated with p in βS and βG
respectively. Assume Martin’s Axiom. Then there is an idempotent p ∈ βS such
that HS(p) = HG(p) = {p}.

Proof. [54, Theorem 4.3 and Corollary 4.4]. �

The ultrafilters which Legette produces for the proof of Theorem 2.23 are essen-
tially equivalent to ordered union ultrafilters introduced in [12], and the existence
of ordered union ultrafilters is known to be independent of ZFC.

3. General algebra and topology of βS

Recall that for any ultrafilter p, ||p|| = min{|A| : A ∈ p}.

Definition 3.1. Let S be an infinite semigroup and let ω ≤ κ ≤ |S|. Then
Pκ(S) = {p ∈ βS : ||p|| = κ}.

If κ = |S|, then Pκ(S) = Uκ(S), the space of κ-uniform ultrafilters on S. Pκ(S)
need not be a subsemigroup of βS, but if S is weakly left cancellative it is [29,
Proposition 2.3].

Theorem 3.2 (Filali). Let S be an infinite discrete semigroup and let ω ≤ κ ≤
|S|. If either S is right cancellative and weakly left cancellative and κ = |S| or S
is a subset of a group, then {p ∈ Pκ(S) : p is right cancelable in βS} has dense
interior in Pκ(S).

Proof. [29, Theorems 3.2 and 3.3]. �

Theorem 3.3 (Hindman and Strauss). Let S be a discrete semigroup. The
following statements are equivalent:

(a) βS is simple.
(b) S is a simple semigroup with a minimal left ideal containing an idempo-

tent. Furthermore, the structure group of S is finite and S has only a
finite number of minimal left ideals or only a finite number of minimal
right ideals.

(c) S contains a finite group G, a left zero semigroup X and a right zero
semigroup Y such that S is isomorphic to the semigroup X ×G× Y with
the semigroup operation defined by (x, g, y)(x′, g′, y′) = (x, gyx′g′, y′) for
every x, x′ ∈ X, g, g′ ∈ G, y, y′ ∈ Y . Furthermore, either X or Y is finite.

Proof. [46, Theorem 4]. �

In [46, Theorems 5 and 6] several equivalent conditions to βS being right or
left cancellative are obtained. As a consequence, one has the following.

Theorem 3.4 (Hindman and Strauss). Let S be a discrete semigroup. If K(βS)
contains an element left cancelable in βS and an element right cancelable in βS,
then S is a finite group.
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Proof. [46, Corollary 7]. �

Definition 3.5. Let S be a semigroup.
(a) Let f : S → C, let ε > 0, and let F ∈ Pf (S). Then

S(f, ε, F ) = {t ∈ S : diamf [Ft ∪ {t}] < ε}.
(b) Let f : S → C. Then

so(f) = {A ⊆ S : (∃ε > 0)
(
∃F ∈ Pf (S)

)
(S(f, ε, F ) ⊆ A)}.

Notice that so(f) is a filter. The following theorem characterizes closed left
ideals of βS for certain countable semigroups. (Notice that these include any right
cancellative semigroup which has a left identity.)

Theorem 3.6 (Alaste and Filali). Let S be a countable semigroup, assume that
there exists s ∈ S such that λs has no fixed point in S, and let L be a closed left
ideal of βS. There exists a family F of bounded functions from S to C such that
L =

⋂
f∈F{p ∈ βS : so(f) ⊆ p}.

Proof. [4, Corollary 2.1]. �

Theorem 3.7 (Protasov). Let G be a countable discrete group, let E = {(p, q) ∈
G∗×G∗ : (∃g ∈ G)(gp = q)}, let Ě =

⋂
{R : R is an equivalence relation on G∗, R

is closed in G∗ × G∗, and E ⊆ R}, and for p ∈ G∗, let p̌ = {q ∈ G∗ : (p, q) ∈ Ě}.
For any p ∈ G∗, βGp ⊆ p̌. If p is a P -point in G∗, then βGp = p̌.

Proof. [60, Theorem 4.1]. �

Protasov then asked [60, Question 4.2] whether one can prove in ZFC that
there exist a countable group G and p ∈ G∗ such that βGp = p̌.

Recall that ultrafilters p and q on a discrete space X are of the same type if
and only if there exists f : X

1-1−→onto X such that f̃(p) = q, where f̃ : βX → βX is the
continuous extension of f .

Theorem 3.8 (Protasov). Let G be a countable discrete group and for p ∈ G∗,
let G(p) be the finest topology on G with respect to which G is a left topological group
and p converges to the identity of G, and let p and q be right cancelable members
of G∗. Then G(p) is homeomorphic to G(q) if and only if p and q are of the same
type.

Proof. [61, Theorem 2]. �

Definition 3.9. Let G be an infinite group with identity e and let p be an
idempotent in G∗. Then Tp is the topology on G such that {A∪{e} : A ∈ p} is the
filter of neighborhoods of e and (G, Tp) is a left topological group.

Definition 3.10. Let S be a semigroup and let p be an idempotent in S∗.
Then p is strongly right maximal in S∗ if and only if {q ∈ S∗ : qp = p} = {p}.

The existence of strongly right maximal idempotents in N∗ is a ZFC theorem
[42, Theorem 9.10] due to Protasov. It has been an open question as to whether
there exists a uniform strongly right maximal idempotent on an uncountable semi-
group.

Similarly, it has been an open question as to whether there exists an uncount-
able homogeneous regular space with topology which is (1) maximal among topolo-
gies with no isolated points and (2) has uncountable dispersion character. (Recall
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that the dispersion character of a space is the minimum cardinality of a nonempty
open subset.)

Theorem 3.11 (Protasov). Let G be an infinite group and let p be an idempo-
tent in G∗. Then Tp is Hausdorff. Also, Tp is regular if and only if p is strongly
right maximal in G∗.

Proof. [42, Theorem 9.15]. �

Theorem 3.12 (Zelenyuk). Let S be an infinite cancellative semigroup. There
is a uniform strongly right maximal idempotent in S∗. Consequently, if G is an
infinite group with cardinality κ, then (G, Tp) is a homogeneous regular space with
dispersion character κ such that Tp is maximal among topologies with no isolated
points.

Proof. [75, Corollary 1.4]. �

Given an infinite set J , let I = Pf (J) and consider the semigroup (I,∪).
Grainger characterized the closure of the smallest ideal of I.

Theorem 3.13 (Grainger). Let J be an infinite set and let I = Pf (J). Then
c`K(βI) = {p ∈ βI : (∀F ∈ I)({G ∈ I : F ⊆ G} ∈ p)}.

Proof. [35, Theorem 7.5]. �

Koppleberg showed that in fact the smallest ideal of βI is closed, and extended
the result of Theorem 3.13 to semilattices.

Definition 3.14. A upper semilattice is a commutative semigroup (S, +), every
member of which is an idempotent. If S is an upper semilattice, and x, y ∈ S, then
x ≤ y if and only if x + y = y.

Theorem 3.15 (Koppleberg). Let S be an upper semilattice. Then K(βS) =
{p ∈ βS : (∀x ∈ S)({y ∈ S : x ≤ y} ∈ p)}.

Proof. [53, Theorem 2.4]. �

She also showed that two distinct notions of size are equivalent for an upper
semilattice.

Theorem 3.16 (Koppelberg). Let S be an upper semilattice and let A ⊆ S.
Then A is central if and only if A is piecewise syndetic.

Proof. [53, Corollary 2.5]. �

Notice that, if J is an infinite set and I = Pf (J), then {p ∈ βI : (∀F ∈
I)({G ∈ I : F ⊆ G} ∈ p)} = {p ∈ βI : (∀j ∈ J)({G ∈ I : j ∈ G} ∈ p)}.

Definition 3.17. Let J be an infinite set, let I = Pf (J), and let A ⊆ J . Then
βA(I) = {p ∈ I : (∀j ∈ A)({G ∈ I : j ∈ G} ∈ p) and (∀j ∈ J \ A)({G ∈ I : j /∈
G} ∈ p)}.

Notice that by Theorem 3.15, K(βI) = βJ(I).

Theorem 3.18 (Grainger). Let J be an infinite set, let I = Pf (J), and let
A ⊆ J . Let V =

⋃
{βB(I) : B ⊆ A}. If A and J \ A are infinite, then βA(I) and

V are subsemigroups of β(I), c`K(V ) is a proper subset of βA(I), and K(V ) =
K

(
βA(I)

)
.
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Proof. [35, Proposition 5.4 and Theorem 5.14] and [36, Remark 4.3 and
Proposition 4.8]. �

It has been known for some years that, if S is a countable cancellative semi-
group, there are elements in the closure of the set of minimal idempotents in βS
which are not in S∗S∗ [42, Theorem 8.22]. The proof in [42] depends very essen-
tially on countability. Y. Zelenyuk has obtained an analogous result for a large
class of uncountable semigroups.

Theorem 3.19 (Zelenyuk). Let S be an infinite discrete semigroup which can be
embedded algebraically in a compact topological group. Then K(βS) and E(K(βS))
are not closed.

Proof. [76, Theorem 1]. �

The topological properties of minimal left ideals and minimal right ideals in
compact right topological semigroups can be very different. Every minimal left
ideal is compact; but this statement is far from being true in general for minimal
right ideals. E. Glasner has recently shown that the minimal right ideals of βZ are
not Borel measurable [33].

I. Protasov and J. Pym have obtained results about the discontinuity of the
mappings λx on the remainder spaces G∗ = GLUC \ G, where G denotes a locally
compact non-compact group and GLUC denotes its largest semigroup compactifi-
cation. In the case in which G is discrete, GLUC = βG. They have shown that, for
every q ∈ G∗, λq is discontinuous at some point p ∈ G∗. If G is σ-compact, there
is one element p which will serve for every q [65, Theorem 1].

If S is a discrete semigroup, the dual of C(βS) is M(βS), the Banach space of
complex valued regular Borel measures defined on βS. Since C(βS) can be identi-
fied with l∞(S), the dual of l1(S), M(βS) is the second dual of a Banach algebra
and, as such, it is a compact right topological semigroup for the Arens product tu .
This is a semigroup in which βS is embedded as a compact subsemigroup. H. G.
Dales, A. T.-M. Lau and D. Strauss have shown that, for a class of semigroups S
significantly larger than the class of cancellative semigroups, there are two points
p, q ∈ S∗ such that, for every non-zero µ ∈ M(βS), λµ cannot be continuous at
both p and q [19]. This result was obtained independently by M. Neufang for can-
cellative semigroups. Note that this claim cannot be made in general for fewer than
two points, since, if S is commutative, λµ is continuous at µ for every µ ∈ M(βS).

There is another interesting compact right topological semigroup in which βS
can be embedded as a compact subsemigroup. If X is a topological space, an
inclusion hyperspace of X is a family F of closed non-empty subsets of X which is
closed in the Vietoris topology and has the property that, for any two non-empty
closed subsets A and B of X, A ∈ F and A ⊆ B, implies that B ∈ F . G(X)
denotes the space of all inclusion hyperspaces of X endowed with the topology
defined by choosing the sets of the form U+ and U− as a subbase, where U is an
open subset of X, U+ = {A ∈ G(X) : ∃B ∈ A with B ⊆ U} and U− = {A ∈
G(X) : ∀B ∈ A, B ∩ U 6= ∅}. V. Gavrilkiv has shown that, if S is a discrete
semigroup, the semigroup operation of S can be extended to G(S) so that G(S)
becomes a compact right topological semigroup [32]. G(S) then contains βS, as
well as many other interesting spaces, as compact subsemigroups.
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4. Algebra of βN

One of the most challenging open questions about the algebra of (βN,+) is
whether there are any nontrivial continuous homomorphisms from βN into N∗ =
βN \ N. It is known that if φ is such a homomorphism, then φ[βN] is finite, and
|φ[N∗]| = 1 [42, Theorem 18.10]. There are also two simple equivalent conditions
to the existence of such a homomorphism.

Theorem 4.1. The following statements are equivalent.
(a) There is a nontrivial continuous homomorphism from βN into N∗.
(b) There exist p 6= q in N∗ such that p + p = p + q = q + p = q + q = q.
(c) There is a finite subsemigroup of N∗ whose elements are not all idempo-

tents.

Proof. [42, Corollary 10.20]. �

Definition 4.2. For k ∈ N, define φk : N → N by φk(n) = k · n, let φ̃k : βN →
βN be its continuous extension, and let φ∗k be the restriction of φ̃k to N∗.

Each φ∗k is a continuous homomorphism from N∗ to N∗. It is not known whether
these are the only nontrivial continuous homomorphisms from N∗ to N∗.

Theorem 4.3 (Adams and Strauss). Let φ : N∗ → N∗ be a continuous homo-
morphism which is not equal to φ∗k for any k ∈ N and let C = φ[N∗]. Then

(1) |K(C)| = 1;
(2) C has a unique idempotent q and C + C = {q}; and
(3) |φ2[N∗]| = 1.

Proof. [3, Theorems 3.10 and 3.11 and Corollary 3.12] �

The list from Theorem 4.1 can be extended.

Theorem 4.4 (Adams and Strauss). The following statements are equivalent.
(a) There is a nontrivial continuous homomorphism from N∗ to N∗ which is

not equal to φ∗k for any k ∈ N.
(b) There is a nontrivial continuous homomorphism from βN into N∗.
(c) There exist p 6= q in N∗ such that p + p = p + q = q + p = q + q = q.
(d) There is a finite subsemigroup of N∗ whose elements are not all idempo-

tents.

Proof. [3, Theorem 3.14]. �

This investigation was extended in [28] to consideration of continuous homo-
morphisms from countable semigroups to countable groups.

Theorem 4.5 (Ferri and Strauss). Let S be a countably infinite commutative
semigroup and let T be a countably infinite group. If ϕ : βS → T ∗ is a continuous
homomorphism, then K(ϕ[βS]) is a finite group.

Proof. [28, Corollary 1.13]. �

Given any idempotent p = p + p in βN, {n + p : n ∈ Z} is an algebraic copy of
Z. However it cannot be discrete – indeed it has no isolated points.



ALGEBRA AND RAMSEY THEORY 11

Theorem 4.6 (Hindman and Strauss). Let H be a maximal group in the small-
est ideal of βN. There are 2c discrete copies of Z contained in H, any two of which
intersect only at the identity. There are 2c discrete copies of the free group on 2
generators contained in H, any two of which intersect only at the identity.

Proof. [45, Corollaries 2.2 and 3.4]. �

The identity function ι : N×N → N×N ⊆ βN×βN has a continuous extension
ι̃ : β(N×N) → βN× βN, and ι̃

[
K

(
β(N×N)

)]
= K(βN)×K(βN) = K(βN× βN).

It has been known since the early 1970’s that there are points (p, q) ∈ βN × βN
such that |̃ι−1[{(p, q)}]| = 2c and that it follows from the Continuum Hypothesis
that there are points (p, q) ∈ βN× βN such that |̃ι−1[{(p, q)}]| = 2.

Theorem 4.7 (Moche). Let (p, q) ∈ K(βN)×K(βN). Then {r ∈ K
(
β(N×N)

)
:

ι̃ (r) = (p, q)} is infinite.

Proof. [56, Corollary 3.10]. �

It has been known for some time that the smallest ideals of (βN,+) and (βN, ·)
are disjoint while K(βN, ·) ∩ c`K(βN,+) 6= ∅. (See [42, Corollaries 13.15 and
16.25].)

Theorem 4.8 (Strauss). c`K(βN, ·)∩(N∗+N∗) = ∅. In particular, c`K(βN, ·)∩
K(βN,+) = ∅.

Proof. [68, Corollary 2.3]. �

Definition 4.9. For r ∈ N,

Σr = {p ∈ βN : (∀A ∈ p)(∃〈xt〉rt=1)(FS(〈xt〉rt=1) ⊆ A)} .

Also Σ =
⋂∞

r=1 Σr.

It is easy to see that Σ is a compact subsemigroup of (βN,+) and an ideal of
(βN, ·) and all of the idempotents of (βN,+) are in Σ. Bergelson suggested in a
personal communication that perhaps Σ is the smallest such object.

Theorem 4.10 (Hindman and Strauss). There is a compact subsemigroup of
(βN,+) which contains the idempotents of (βN,+), is a two sided ideal of (βN, ·),
and is properly contained in Σ.

Proof. [47, Theorem 3.1]. �

Theorem 4.11 (Maleki). Let p ∈ N∗.
(1) If a, b, c, d ∈ N and a · p + b · p = c · p + d · p, then a = c and b = d.
(2) If n, m, a1, a2, . . . , an, b1, b2, . . . , bm ∈ N, a1 ·p+ . . . an ·p = b1 ·p+ . . . bm ·p

and p is right cancelable in βN, then m = n and for each i ∈ {1, 2, . . . , n},
ai = bi.

Proof. [55, Theorems E and H]. �

Given f : N → N, let f̃ : βN → βN be its continuous extension.

Definition 4.12. An ultrafilter semiring is a triple (A,⊕,�) such that
(1) ∅ 6= A ⊆ βN;
(2) (∀U ∈ A)(∀f : N → N)(f̃(U) ∈ A);
(3) ⊕ is associative and commutative;
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(4) � is associative and distributive with respect to ⊕;
(5) (∀U ,V ∈ A)(∃!W ∈ A)(U ⊕W = V or V ⊕W = U);
(6) (∀U ,V,W ∈ A)(U ⊕W = V and V ⊕W = U ⇒ U = V); and
(7) (∀U ∈ A)(∀f, g : N → N)(f̃(U) ⊕ g̃(U) = f̃ + g(U) and f̃(U) � g̃(U) =

f̃ · g(U)).

Definition 4.13. A Hausdorff ultrafilter is an ultrafilter U on N such that
(∀f, g : N → N)(f̃(U) = g̃(U) ⇒ {x ∈ N : f(x) = g(x)} ∈ U).

Theorem 4.14 (DiNasso and Forti). Let ∅ 6= A ⊆ βN. Then A is an ultrafilter
semiring if and only if

(a) (∀U ∈ A)(∀f : N → N)(f̃(U) ∈ A);
(b) (∀U ,V ∈ A)(∃f, g : N → N)(∃W ∈ A)(f̃(W) = Uand g∗(W) = V); and
(c) (∀U ∈ A)(U is Hausdorff).

Proof. [25, Theorem 1.6]. �

Since (N, ·) is a semigroup, (βN, ·) is a compact right topological semigroup.
Further, the fact that (N,+, ·) is distributive leads to some strong combinatorial
applications of the algebra of (βN,+) and (βN, ·). (See [42, Sections 5.3 and 17.1].)
However, there is very limited interaction in N∗. For example, by [42, Corollary
13.27], {p ∈ N∗ : (∀q, r ∈ N∗)(q · p + r · p 6= (q + r) · p and r · (q + p) 6= r · q + r · p)}
has dense interior in N∗. There is another way to define a multiplication on βN
which is in some respects better behaved. On the other hand, that multiplication
is not associative.

Theorem 4.15 (Hindman, Pym, and Strauss). For q ∈ βN, define rq : N → βN
by rq(n) = q+q+ . . .+q, n times and let r̃q : βN → βN be its continuous extension.
Define for p, q ∈ βN, p ∗ q = r̃q(p). Then

(1) 1 is a two sided identity for (βN, ∗);
(2) for p, q ∈ βN and x ∈ N, (p + q) ∗ x = p ∗ x + q ∗ x;
(3) for p ∈ βN and x, y ∈ N, p ∗ (x + y) = p ∗ x + p ∗ y;
(4) the topological and algebraic centers of (βN, ∗) are both equal to {1};
(5) ∗ is not associative on βN; and
(6) neither the left nor right distributive laws hold in (βN,+, ∗).

Proof. [41, Theorems 2.1, 6.1, 6.2, and 6.4]. �

5. Central sets and other large subsets of S

In [31] Furstenberg defined a central subset of the set N of positive integers in
terms of some notions from topological dynamics. He showed that if N is partitioned
into finitely many classes, one of these classes contains a central set. Then he proved
the following theorem.

Theorem 5.1 (Furstenberg). Let l ∈ N and for each i ∈ {1, 2, . . . , l}, let
fi : N → Z. Let C be a central subset of N. Then there exist sequences 〈an〉∞n=1 in
N and 〈Hn〉∞n=1 in Pf (N) such that

(1) for all n, max Hn < minHn+1 and
(2) for all F ∈ Pf (N) and all i ∈ {1, 2, . . . , l},

∑
n∈F

(
an+

∑
t∈Hn

fi(t)
)
∈ C.

Proof. [31, Proposition 8.21]. �
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This theorem was strong enough to show that central subsets of N have remark-
ably strong combinatorial properties such as containing solutions to any partition
regular system of homogeneous linear equations.

Subsequently Vitaly Bergelson had the idea that one might be able to derive
the conclusion of the Central Sets Theorem for a set C ⊆ N which is a member of
an idempotent in K(βN). This suggested the following definition of central, which
makes sense in any semigroup. It turned out that in fact this definition agrees with
Furstenberg’s original definition.

Definition 5.2. Let S be a discrete semigroup and let C be a subset of S.
(a) The set C is central if and only there exists an idempotent p ∈ K(βS)∩C.
(b) The set C is quasi-central if and only there exists an idempotent p ∈

c`K(βS) ∩ C.

In [13, Theorem 3.4] a characterization of quasi-central sets in terms of dynam-
ical notions similar to Furstenberg’s original definition of central sets was obtained.

Theorem 5.1 dealt with finitely many sequences at a time and sums from one
of those sequences at a time. In [42, Theorems 14.11 and 14.15] versions for com-
mutative and noncommutative semigroups respectively were proved that dealt with
countably many sequences at a time and allowed the sequence whose sums were
taken to change as n changed. The following is the currently strongest version of
the Central Sets Theorem for commutative semigroups. (For the general version
for arbitrary semigroups see [23, Corollary 3.10].)

Theorem 5.3 (De, Hindman, and Strauss). Let (S, +) be a commutative semi-
group and let T = NS, the set of sequences in S. Let C be a central subset of S.
There exist functions α : Pf (T ) → S and H : Pf (T ) → Pf (N) such that

(1) if F,G ∈ Pf (T ) and F ⊆6 G, then max H(F ) < minH(G) and
(2) whenever m ∈ N, G1, G2, . . . , Gm ∈ Pf (T ), G1 ⊆6 G2 ⊆6 . . . ⊆6 Gm, and

for each i ∈ {1, 2, . . . ,m}, 〈yi,n〉∞n=1 ∈ Gi, one has∑m
i=1(α(Gi) +

∑
t∈H(Gi)

yi,t) ∈ C.

Proof. [23, Theorem 2.2]. �

The following version is superficially stronger than Theorem 5.3, replacing N
by an arbitrary directed set with no largest element. However, as is shown in [24,
Theorem 3.6], any set C satisfying the conclusion of Theorem 5.3 also satisfies the
conclusion of Theorem 5.4.

Theorem 5.4 (De, Hindman, and Strauss). Let (S, +) be a commutative semi-
group, let (D,≤) be a directed set with no largest element, and let T = DS. Let C
be a central subset of S. There exist functions α : Pf (T ) → S and H : Pf (T ) →
{K ∈ Pf (D) : K is linearly ordered} such that

(1) if F,G ∈ Pf (T ) and F ⊆6 G, then max H(F ) < minH(G) and
(2) whenever m ∈ N, G1, G2, . . . , Gm ∈ Pf (T ), G1 ⊆6 G2 ⊆6 . . . ⊆6 Gm, and

for each i ∈ {1, 2, . . . ,m}, 〈yi,n〉∞n=1 ∈ Gi, one has∑m
i=1(α(Gi) +

∑
t∈H(Gi)

yi,t) ∈ C.

Proof. [24, Corollary 3.5]. �

From the point of view of combinatorial applications, what one cares most
about central sets is that they satisfy the conclusion of Theorem 5.3. We call such
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sets C-sets. We give now the definition of such sets for commutative semigroups. We
observe that J-sets and C-sets are defined in arbitrary semigroups. We only state
the definitions for commutative semigroups here because the general definitions are
significantly more complicated. They can be found in [48].

Definition 5.5. Let (S, +) be a commutative semigroup and let T = NS.
(a) Let A ⊆ S. Then A is a C-set if and only if there exist functions

α : Pf (T ) → S and H : Pf (T ) → Pf (N) such that
(1) if F,G ∈ Pf (T ) and F ⊆6 G, then maxH(F ) < minH(G) and
(2) whenever m ∈ N, G1, G2, . . . , Gm ∈ Pf (T ), G1 ⊆6 G2 ⊆6 . . . ⊆6 Gm,

and for each i ∈ {1, 2, . . . ,m}, 〈yi,n〉∞n=1 ∈ Gi, one has∑m
i=1(α(Gi) +

∑
t∈H(Gi)

yi,t) ∈ A.
(b) Let A ⊆ S. Then A is a J-set if and only if whenever F ∈ Pf (T ) there

exist a ∈ S and H ∈ Pf (S) such that for each f ∈ F , a+
∑

t∈H f(t) ∈ A.
(c) J(S) = {p ∈ βS : (∀A ∈ p)(A is a J-set)}.

The following four theorems are in fact valid for arbitrary semigroups (with the
more general definitions of C-sets and J-sets).

Theorem 5.6 (De, Hindman and Strauss). Let S be a commutative semigroup.
Then J(S) is an ideal of βS.

Proof. [23, Theorem 3.5]. �

Theorem 5.7 (Hindman and Strauss). Let (S, +) be a commutative semigroup
and let A ⊆ S. Then A is a C-set if and only if there is an idempotent in J(S)∩A.

Proof. [50, Theorem 1.13]. �

Theorem 5.8 (Hindman and Strauss). Let S be a commutative semigroup and
let A ⊆ S be a J-set in S. If A = A1 ∪A2 then A1 is a J-set in S or A2 is a J-set
in S.

Proof. [48, Theorem 2.14]. �

Theorem 5.9 (Hindman and Strauss). Let S and T be commutative semi-
groups, let A ⊆ S and let B ⊆ T . If A and B are central, so is A×B. If A and B
are C-sets, so is A×B. If A and B are J-sets, so is A×B.

Proof. [48, Corollary 2.2 and Theorems 2.11 and 2.16]. �

In [48] a characterization of when the arbitrary product of central sets is central
was also obtained.

While the following notion of density was introduced by Polya in [58], it is
commonly called “Banach density”.

Definition 5.10. Let A ⊆ N. Then
d∗(A) = sup{α ∈ [0, 1] : (∀k ∈ N)(∃n ≥ k)(∃a ∈ N)

(|A ∩ {a, a + 1, . . . , a + n− 1}| ≥ α · n)} and
∆∗ = {p ∈ βN : (∀A ⊆ N)(p ∈ c`(A) ⇒ d∗(A) > 0)} .

Since ∆∗ is a two sided ideal of (βN,+), one has that if C is a central subset
of N, then d∗(C) > 0. And the following result establishes that a set need not
be central in order to satisfy the conclusion of the original Central Sets Theorem.
(It is a consequence of Theorems 5.18 and 5.19, that there are idempotents in
∆∗ \ c`

(
K(βN)

)
.)
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Theorem 5.11 (Beiglböck, Bergelson, Downarowicz, and Fish). Let C ⊆ N
and assume that there is an idempotent in ∆∗ ∩ c`(C). Let l ∈ N and for each
i ∈ {1, 2, . . . , l}, let fi be a sequence in Z. Then there exist sequences 〈an〉∞n=1 in N
and 〈Hn〉∞n=1 in Pf (N) such that

(1) for all n, max Hn < minHn+1 and
(2) for all F ∈ Pf (N) and all i ∈ {1, 2, . . . , l},

∑
n∈F

(
an+

∑
t∈Hn

fi(t)
)
∈ C.

Proof. [8, Theorem 11]. �

The question then naturally arose as to whether any subset C of N which
satisfies the conclusion of Theorem 5.11 must satisfy d∗(C) > 0. This question was
answered in the negative in [39, Theorem 2.1], where it was shown that there is a
C-set C ⊆ N with d∗(C) = 0.

Banach density extends naturally to any semigroup satisfying the Strong Følner
condition.

Definition 5.12. Let (S, ·) be a semigroup.
(a) S satisfies the Strong Følner Condition (SFC) if and only if

(
∀H ∈

Pf (S)
)(
∀ε > 0

)(
∃K ∈ Pf (S)

)(
∀s ∈ H

)(
|K 4 sK| < ε · |K|

)
.

(b) For A ⊆ S, d(A) = sup{α ∈ [0, 1] :
(
∀H ∈ Pf (S)

)
(∀ε > 0)

(
∃K ∈ Pf (S)

)(
(∀s ∈ H)(|K \ sK| < ε · |K|) and |A ∩K| ≥ α · |K|

)
}.

(c) ∆∗(S) = {p ∈ βS : (∀A ⊆ S)(p ∈ c`(A) ⇒ d(A) > 0)}.

Sets satisfying SFC include all commutative semigroups [6, Theorem 4]. By
[50, Theorem 1.9] for A ⊆ N, the densities as defined in Definitions 5.10 and 5.12
are the same, and so ∆∗(N) = ∆∗.

Theorem 5.13 (Hindman and Strauss). Let S and T be left cancellative semi-
groups satisfying SFC, let A ⊆ S, and let B ⊆ T . Then S × T satisfies SFC and
d(A×B) = d(A) · d(B).

Proof. [51, Lemma 3.1 and Theorems 2.12 and 3.4]. �

A stronger version of Theorem 5.11 holds.

Theorem 5.14 (Hindman and Strauss). Let (S, +) be a commutative semigroup
and let A ⊆ S. If A is central, then d(A) > 0. If d(A) > 0, then A is a J-set in S.
If there is an idempotent in ∆∗(S) ∩A, then A is a C-set in S.

Proof. [50, Theorem 5.12]. �

In view of Theorem 5.14 and the fact already mentioned that there are C-sets
contained in N with density zero, one asks how common are semigroups that contain
C-sets with density zero.

Theorem 5.15 (Hindman and Strauss). If S is a subsemigroup of (R,+) such
that Z ⊆ S or S is the direct sum of countably many finite abelian groups, then
there is a C-set C ⊆ S such that d(C) = 0.

Proof. [50, Theorems 3.5 and 4.3]. �

Elementary characterizations of central sets have been known for some time.
(See [42, Section 14.5].) These characterizations have, however, limited utility be-
cause they all involve showing that some collection of sets is collectionwise piecewise
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syndetic, a notion with a very complicated definition. The corresponding charac-
terization of C-sets, only recently discovered, involves the much simpler notion of
a J-set.

Theorem 5.16 (Hindman and Strauss). Let S be an infinite semigroup and let
A ⊆ S. Statements (a) and (b) are equivalent and are implied by statement (c). If
S is countable, then all three statements are equivalent.

(a) A is a C-set.
(b) There is a downward directed family 〈CF 〉F∈I of subsets of A such that

(i) for all F ∈ I and all x ∈ CF , there exists G ∈ I such that
CG ⊆ x−1CF and

(ii) for each F ∈ I, CF is a J-set.
(c) There is a decreasing sequence 〈Cn〉∞n=1 of subsets of A such that

(i) for all n ∈ N and all x ∈ Cn, there exists m ∈ N such that
Cm ⊆ x−1Cn and

(ii) for all n ∈ N, Cn is a J-set.

Proof. [49, Theorem 2.6]. �

The notions of syndetic and piecewise syndetic have reasonably simple combi-
natorial characterizations. (See [42, Definition 4.38].) We take the following even
simpler algebraic characterizations as the definitions here.

Definition 5.17. Let S be a semigroup and let A ⊆ S.
(a) A is syndetic if and only if for every left ideal L of βS, A ∩ L 6= ∅.
(b) A is piecewise syndetic if and only if A ∩K(βS) 6= ∅.

If 〈xn〉∞n=1 is a sequence in N such that for each n ∈ N, xn+1 >
∑n

t=1 xt, then⋂∞
m=1 c`βSFS(〈xn〉∞n=m) contains much of the known algebraic structure of K(βN).

The following result says that several notions of size are equivalent for such nicely
behaved sequences in N.

Theorem 5.18 (Adams, Hindman, and Strauss). Let 〈xn〉∞n=1 be a sequence
in N such that for each n ∈ N, xn+1 >

∑n
t=1 xt. The following statements are

equivalent:
(a) For all m ∈ N, FS(〈xn〉∞n=m) is central.
(b) FS(〈xn〉∞n=1) is central.
(c) For all m ∈ N, FS(〈xn〉∞n=m) is piecewise syndetic.
(d) FS(〈xn〉∞n=1) is piecewise syndetic.
(e) {xn+1 −

∑n
t=1 xt : n ∈ N} is bounded.

(f) FS(〈xn〉∞n=1) is syndetic.
(g) For all m ∈ N, FS(〈xn〉∞n=m) is syndetic.
(h)

⋂∞
m=1 c`βSFS(〈xn〉∞n=m) ∩K(βN) 6= ∅.

Proof. [2, Theorem 2.8 and Corollary 4.2] �

As a consequence of the following theorem, one has much of the algebraic
structure of K(βN), specifically all of the structure of K(H), close to, but disjoint
from, K(βN).

Theorem 5.19 (Adams). Let ε > 0. There exists a sequence 〈xn〉∞n=1 in N such
that for each n ∈ N, xn+1 >

∑n
t=1 xt, {xn+1 −

∑n
t=1 xt : n ∈ N} is unbounded, and

the density d
(
FS(〈xn〉∞n=1)

)
> 1− ε.
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Proof. [1, Theorem 2.15] �

Recall that a set A of subsets of a set X is said to be a set of almost disjoint
subsets of X if and only if for each A ∈ A, |A| = |X| and if A and B are distinct
members of A, then |A ∩ B| < |X|. As is well known, there is a set A of c almost
disjoint subsets of N. If |S| = κ > ω, there may not exist any set of 2κ almost
disjoint subsets of S. (Baumgartner proved [7, Theorem 2.8] that there is always
a family of κ+ almost disjoint subsets of S, and also showed that it is consistent
with ZFC that if κ = ω1, there is no family of 2κ almost disjoint subsets of S.)

Theorem 5.20 (Carlson, Hindman, McLeod, and Strauss). Let S be an infinite
very weakly left cancellative semigroup with cardinality κ. Assume that κ has a set
of µ almost disjont sets. Then every central set in S has a set of µ almost disjoint
central subsets. Furthermore, every central set in S contains κ pairwise disjoint
central subsets.

Proof. [17, Theorem 3.4]. �

6. Combinatorial applications

Definition 6.1. Let u, v ∈ N and let A be a u × v matrix with entries from
Q. Let S be a subsemigroup of (R,+).

(a) A is kernel partition regular over S (KPR/S) if and only if, whenever
S \ {0} is finitely colored, there must exist monochromatic ~x ∈ Sv such
that A~x = 0.

(b) A is image partition regular over S (IPR/S) if and only if, whenever S\{0}
is finitely colored, there must exist ~x ∈ Sv such that the entries of A~x are
monochromatic.

A survey of results on image and kernel partition regular matrices can be found
in [38].

A particularly simple class of image partition regular matrices is the class of
first entries matrices.

Definition 6.2. Let u, v ∈ N and let A be a u × v matrix. Then A is a first
entries matrix if and only if

(1) the entries of A are from Q;
(2) no row of A is 0;
(3) the first (leftmost) nonzero entry of each row is positive; and
(4) the first nonzero entries of any two rows are equal if they occur in the

same column.
The first non-zero entry in any row of A is called a first entry of A.

The following theorem, which extends Theorem 15.5 in [42], illustrates the
combinatorial richness of C-sets.

Theorem 6.3 (Hindman and Strauss). Let u, v ∈ N and let A be a u × v
first entries matrix with entries from ω. Let (S, +) be a commutative semigroup
with an identity 0. For n ∈ N and s ∈ S, let ns denote the sum s + s + · · · + s
with n terms and let 0s = 0. Let C be a C-set in S and let p be an idempo-
tent in J(S) ∩ C such that nS ∈ p for every first entry n of A. Then there ex-
ist sequences 〈x1,n〉∞n=1, 〈x2,n〉∞n=1, . . . , 〈xv,n〉∞n=1 such that for every F ∈ Pf (N),
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~xF ∈ (S \ {0})v and A~xF ⊆ Cu, where ~xF =
∑

n∈F


x1,n

x2,n

...
xv,n

. In the case in which

S is a commutative group, this statement holds if A is a first entries matrix with
entries from Z.

Proof. [50, Theorem 2.8]. �

In his 1933 paper [66] Rado characterized the kernel partition regularity of
matrices, which of course correspond to linear transformations. In that same paper
he also characterized the kernel partition regularity of affine transformations. These
characterizations are not as well known as his linear characterizations, probably
because, with the exception of Theorem 6.4(b)(ii), the answer is that the affine
transformation is kernel partition regular if and only if it is trivially so, that is it
has a constant solution. (Given a number k we write k for a vector with all terms
equal to k.)

Theorem 6.4 (Rado). Let u, v ∈ N, let A be a u× v matrix with entries from
Q, and let ~b ∈ Qu \ {0}.

(a) Whenever Z is finitely colored, there exists a monochromatic ~x ∈ Zv such
that A~x +~b = 0 if and only if there exists k ∈ Z such that Ak +~b = 0.

(b) Whenever N is finitely colored, there exists a monochromatic ~x ∈ Nv such
that A~x +~b = ~0 if and only if either
(i) there exists k ∈ N such that Ak +~b = 0 or
ii) there exists k ∈ Z such that Ak + ~b = 0 and the linear mapping

~x 7→ A~x is kernel partition regular.

Proof. (a) [66, Satz VIII].
(b) [66, Satz V]. �

The following characterization of image partition regularity of an affine trans-
formation over Z is nearly identical to Rado’s characterization of kernel partition
regularity of affine transformations.

Theorem 6.5 (Moshesh). Let u, v ∈ N, let A be a u × v matrix with entries
from Q, and let ~b ∈ Qu \ {0}. Whenever Z is finitely colored, there exists ~x ∈ Zv

such that the entries of A~x +~b are monochromatic if and only if there exist ~x ∈ Zv

and k ∈ Z such that A~x +~b = k.

Proof. [57, Theorem 4.8]. �

The characterization in the following is significantly more interesting. (Note in
particular the appearance of central sets.)

Theorem 6.6 (Hindman and Moshesh). Let u, v ∈ N, let A be a u× v matrix
with entries from Q, and let ~b ∈ Qu\{0}. Whenever N is finitely colored there exists
~x ∈ Zv such that the entries of A~x +~b are monochromatic if and only if either

(i) there exists k ∈ N and ~x ∈ Zv such that A~x +~b = k or,
(ii) there exists k ∈ Z and ~x ∈ Zv such that A~x +~b = k and for every central

set C in N, there exists ~x ∈ Zv such that A~x ∈ Cu.
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Proof. [40, Theorem 4.5]. �

Definition 6.7. Let S be a subsemigroup of (R,+) with 0 ∈ c`S, let u, v ∈ N,
and let A be a u × v matrix with entries from Q. Then A is image partition
regular over S near zero (abbreviated IPR/S0) if and only if, whenever S \ {0}
is finitely colored and δ > 0, there exists ~x ∈ Sv such that the entries of A~x are
monochromatic and lie in the interval (−δ, δ).

D denotes the set of dyadic rational numbers.

Theorem 6.8. Let u, v ∈ N and let A be a u × v matrix with entries from Q.
The seven statements in (I) below are equivalent and are strictly stronger than the
seven equivalent statements in (II).

(I)
(a) A is IPR/N.
(b) A is IPR/D+.
(c) A is IPR/Q+.
(d) A is IPR/R+.
(e) A is IPR/D+

0 .
(f) A is IPR/Q+

0 .
(g) A is IPR/R+

0 .
(II)

(a) A is IPR/Z.
(b) A is IPR/D.
(c) A is IPR/Q.
(d) A is IPR/R.
(e) A is IPR/D0.
(f) A is IPR/Q0.
(g) A is IPR/R0.

Proof. [22, Theorem 2.6]. �

In [22] it is also demonstrated that there are many distinct notions of image
partion regularity near zero for infinite matrices.

Let A denote a nonempty finite set (the alphabet). We choose a set V = {vn :
n ∈ ω} (of variables) such that A ∩ V = ∅ and define W to be the semigroup of
words over the alphabet A ∪ V (including the empty word), with concatenation as
the semigroup operation. (Formally a word w is a function with domain k ∈ ω to
the alphabet and the length `(w) of w is k. We shall need to resort to this formal
meaning, so that if i ∈ {0, 1, . . . , `(w)− 1}, then w(i) denotes the (i + 1)st letter of
w.)

Definition 6.9. Let n ∈ ω and let k ∈ {0, 1, . . . , n}. Then [A]
(
n
k

)
is the set of

all words w over the alphabet A ∪ {v0, v1, . . . , vk−1} of length n such that
(1) for each i ∈ {0, 1, . . . , k − 1}, if any, vi occurs in w and
(2) for each i ∈ {0, 1, . . . , k−2}, if any, the first occurrence of vi in w precedes

the first occurrence of vi+1.
Let k ∈ N. Then the set of k-variable words is Sk =

⋃∞
n=k[A]

(
n
k

)
. Also S0 is

the semigroup of words over A. Given w ∈ Sn and u ∈ W with `(u) = n, we define
w〈u〉 to be the word with length `(w) such that for i ∈ {0, 1, . . . , `(w)− 1}

w〈u〉(i) =
{

w(i) if w(i) ∈ A
u(j) if w(i) = vj .
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That is, w〈u〉 is the result of substituting u(j) for each occurrence of vj in w.
For example, let A = {a, b}, let w = av0bv1v0abv2bv0, and let u = bv0v1. Then
w〈u〉 = abbv0babv1bb.

The following theorem is commonly known as the Graham-Rothschild Parame-
ter Sets Theorem. The original theorem [34] (or see [59]) is stated in a significantly
stronger fashion. However this stronger version is derivable from the version stated
here in a reasonably straightforward manner. (See [16, Theorem 5.1].)

Theorem 6.10 (Graham-Rothschild). Let m,n ∈ ω with m < n, and let Sm be
finitely colored. There exists w ∈ Sn such that

{
w〈u〉 : u ∈ [A]

(
n
m

)}
is monochro-

matic.

Section 9 of [34] contains 13 corollaries. Included among these are four results
that were known at the time (namely the Hales-Jewett Theorem, van der Waerden’s
Theorem, Ramsey’s Theorem, and the finite version of the Finite Sums Theorem).
We believe that the other nine were new at the time. (These include the finite
version of the Finite Unions Theorem. While the infinite version of the Finite
Unions Theorem is obviously derivable from the infinite version of the Finite Sums
Theorem, the finite version of the Finite Unions Theorem is not obviously derivable
from the finite version of the Finite Sums Theorem.)

Definition 6.11. For r, n ∈ N with r > n and u ∈ [A]
(
r
n

)
define hu : Sr → Sn

by, for w ∈ Sr, hu(w) = w〈u〉, and let h̃u : βSr → βSn be the continuous extension
of hu.

The following algebraic result was used in [16] to derive an infinitary extension
of Theorem 6.10.

Theorem 6.12 (Carlson, Hindman, and Strauss). Let A be a nonempty al-
phabet. Let p be a minimal idempotent in βS0. There is a sequence 〈pn〉∞n=0 such
that

(1) p0 = p;
(2) for each n ∈ N, pn is a minimal idempotent in βSn;
(3) for each n ∈ N, pn ≤ pn−1; and
(4) for each n ∈ N and each u ∈ [A]

(
n
n−1

)
, h̃u(pn) = pn−1.

Further, p1 can be any minimal idempotent of βS1 such that p1 ≤ p0.

Proof. [16, Theorem 2.12]. �

Theorem 6.13 (Carlson, Hindman, and Strauss). Let A be a nonempty alpha-
bet, let n ∈ N, and let

Tn = {p ∈ βSn : (∀r > n)(∃q ∈ βSr)(∀u ∈ [A]
(
r
n

)
)(h̃u(q) = p)} .

Let κ = max{|A|, ω}. Then Tn is a subsemigroup of βSn, K(Tn) = Tn ∩K(βSn),
each minimal right ideal and each minimal left ideal of Tn contains 22κ

idempotents,
and each maximal group in K(Tn) contains a free group on 22κ

generators.

Proof. [14, Theorems 2.3, 2.13, and 2.18] and [42, Theorem 1.65]. �

We shall not state here the infinitary generalization of Theorem 6.10 obtained
using Theorem 6.12 because of the additional notation needed, stating instead the
following consequence of that generalization.
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Theorem 6.14 (Carlson, Hindman, and Strauss). Let u, v, k ∈ N, let M be a
u×v first entries matrix with entries from Z, let C be a central subset of N, and let
G be a Kk-free graph on N. There is a sequence 〈 ~xn〉∞n=1 in Nv such that for every
F ∈ Pf (N), the set of entries of M(

∑
n∈F ~xn) is an independent subset of C.

Proof. [16, Theorem 4.8]. �

Another application of Theorem 6.12 is the following.

Theorem 6.15 (Carlson, Hindman, and Strauss). Let N be finitely colored.
Then there is a color class D which is central in N and

(1) there exists a pairwise disjoint collection {Di,j : i, j ∈ ω} of central subsets
of D and for each i ∈ ω there exists a sequence 〈xi,n〉∞n=i in Di,i such that
whenever F is a finite nonempty subset of ω and f : F → {1, 2, . . . ,minF}
one has that Σn∈F xf(n),n ∈ Di,j where i = f(minF ) and j = f(max F );
and

(2) at stage n when one is chosing (x0,n, x1,n, . . . , xn,n), each xi,n may be
chosen as an arbitrary element of a certain central subset of Di,i, with the
choice of xi,n independent of the choice of xj,n.

Proof. [15, Corollary 2.9]. �

In [10] several combined additive and multiplicative combinatorial structures
were shown to exist in any multiplicatively large set. As an example consider the
following.

Theorem 6.16 (Beiglböck, Bergelson, Hindman, and Strauss). Let C be a
central subset of (N, ·) and let k ∈ N. There exist a, b, d ∈ N such that{

b(a + id)j : i, j ∈ {0, 1, . . . , k}
}
∪

{
bdj : j ∈ {0, 1, . . . , k}

}
∪

{
a + id : i ∈ {0, 1, . . . , k}

}
∪ {d} ⊆ C .

Proof. [10, Corollary 4.3]. �

By way of contrast, comparatively little multiplicative structure is guaranteed
to additively large sets as is demonstrated by several purely combinatorial results
in [9]. (We do not address these here as we are concerned with applications of the
algebra of βS.) However, if a set A is very large additively, there must be significant
multiplicative structure.

Theorem 6.17 (Beiglböck, Bergelson, Hindman, and Strauss). Let A ⊆ N and
assume that K(βN,+) ⊆ A. Then for all t ∈ Z, c`K(βN,+) ⊆ (t + A) ∩ N and in
particular, (t + A) ∩ N is central in (N,+) and in (N, ·).

Proof. [9, Theorem 3.11]. �

In [20, Theorem 2.5], Davenport presented a proof using the algebraic structure
of β(Nk) of the multidimensional van der Waerden theorem, otherwise known as
Grünwald’s theorem or Gallai’s theorem. (Grünwald and Gallai were the same
person.)

Theorem 6.18 (Grünwald=Gallai). Let k, r ∈ N and asssume that Nk =⋃r
i=1 Ai. Then there exist l, d, a1, a2, . . . , ak ∈ N and j ∈ {1, 2, . . . , r} such that{
(a1 + n1d, a2 + n2d, . . . , ak + nkd) : {n1, n2, . . . , nk} ⊆ {1, 2, . . . , l}

}
⊆ Aj.



22 NEIL HINDMAN AND DONA STRAUSS

It is an old result of Bergelson [11] that if N is partitioned into finitely many
cells, then one cell C satisfies d({n ∈ C : d

(
C ∩ (−n + C)

)
> 0}) > 0, where d is

upper asymptotic density. In a similar vein we have the following, where d is the
Følner density as defined in Definition 5.12.

Theorem 6.19 (Hindman and Strauss). Let k ∈ N. Let S be a left cancellative
semigroup satisfying SFC and assume that for all x, y ∈ S, |{s ∈ S : sx = y}| ≤ k.
Let s ∈ S and let A ⊆ S. If d(A) > 0, then for each l ∈ N there exists d ∈ N such
that d({b ∈ S : {sdb, s2db, . . . , sldb} ⊆ A) > 0.

Proof. [44, Theorems 4.16 and 5.5]. �

By [44, Theorems 2.4, 2.7, and 4.11] if S is as in Theorem 6.19 and A is
a piecewise syndetic subset of S, then d(A) > 0, so the conclusion of Theorem
6.19 applies to A. One may wonder why the geometric progression is written in
the form {sdb, s2db, . . . , sldb} rather than {bsd, bs2d, . . . , bsld}. It is shown in [44,
Theorem 5.8] that there is a countable cancellative semigroup S satisfying SFC and
a subset A such that A contains a left ideal of βS (so in particular A is central
and hence piecewise syndetic) but there is some s ∈ S such that {bsn : n ∈ N and
b ∈ S} ∩A = ∅.
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