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Preface to the First Edition

The semigroup operation defined on a discrete semigroup .S; �/ has a natural exten-
sion, also denoted by �, to the Stone–Čech compactification ˇS of S . Under the
extended operation, ˇS is a compact right topological semigroup with S contained
in its topological center. That is, for each p 2 ˇS , the function �p W ˇS ! ˇS is
continuous and for each s 2 S , the function �s W ˇS ! ˇS is continuous, where
�p.q/ D q � p and �s.q/ D s � q.

In Part I of this book, assuming only the mathematical background standardly pro-
vided in the first year of graduate school, we develop the basic background informa-
tion about compact right topological semigroups, the Stone–Čech compactification
of a discrete space, and the extension of the semigroup operation on S to ˇS . In
Part II, we study in depth the algebra of the semigroup .ˇS; �/ and in Part III present
some of the powerful applications of the algebra of ˇS to the part of combinatorics
known as Ramsey Theory. We conclude in Part IV with connections with Topological
Dynamics, Ergodic Theory, and the general theory of semigroup compactifications.

The study of the semigroup .ˇS; �/ has interested several mathematicians since it
was first defined in the late 1950s. As a glance at the bibliography will show, a large
number of research papers have been devoted to its properties.

There are several reasons for an interest in the algebra of ˇS .
It is intrinsically interesting as being a natural extension of S which plays a special

role among semigroup compactifications of S . It is the largest possible compactifi-
cation of this kind: If T is a compact right topological semigroup, ' is a continuous
homomorphism from S to T , 'ŒS� is dense in T , and �'.s/ is continuous for each
s 2 S , then T is a quotient of ˇS .

We believe that ˇN is interesting and challenging for its own sake, as well as for
its applications. Although it is a natural extension of the most familiar of all semi-
groups, it has an algebraic structure of extraordinary complexity, which is constantly
surprising. For example, ˇN contains many copies of the free group on 2c generators
[244]. Algebraic questions about ˇN which sound deceptively simple have remained
unsolved for many years. It is, for instance, not known whether ˇN contains any el-
ements of finite order, other than idempotents. And the corresponding question about
the existence of nontrivial finite groups was only very recently answered by Y. Ze-
lenyuk. (His negative answer is presented in Chapter 7.)

The semigroup ˇS is also interesting because of its applications to combinatorial
number theory and to topological dynamics.

Algebraic properties of ˇS have been a useful tool in Ramsey theory. Results in
Ramsey Theory have a twin beauty. On the one hand they are representatives of
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pure mathematics at its purest: simple statements easy for almost anyone to under-
stand (though not necessarily to prove). On the other hand, the area has been widely
applied from its beginning. In fact a perusal of the titles of several of the original
papers reveals that many of the classical results were obtained with applications in
mind. (Hilbert’s Theorem – Algebra; Schur’s Theorem – Number Theory; Ramsey’s
Theorem – Logic; the Hales–Jewett Theorem – Game Theory).

The most striking example of an application of the algebraic structure of ˇS to
Ramsey Theory is perhaps provided by the Finite Sums Theorem. This theorem
says that whenever N is partitioned into finitely many classes (or in the terminol-
ogy common within Ramsey Theory, is finitely colored), there is a sequence hxni1nD1
with FS.hxni1nD1/ contained in one class (or monochrome). (Here FS.hxni1nD1/ D
¹
P
n2F xn W F is a finite nonempty subset of Nº.) This theorem had been an open

problem for some decades, even though several mathematicians (including Hilbert)
had worked on it. Although it was initially proved without using ˇN, the first proof
given was one of enormous complexity.

In 1975 F. Galvin and S. Glazer provided a brilliantly simple proof of the Finite
Sums Theorem using the algebraic structure of ˇN. Since this time numerous strong
combinatorial results have been obtained using the algebraic structure of ˇS , where
S is an arbitrary discrete semigroup. In the process, more detailed knowledge of the
algebra of ˇS has been obtained.

Other famous combinatorial theorems, such as van der Waerden’s Theorem or
Rado’s Theorem, have elegant proofs based on the algebraic properties of ˇN. These
proofs have in common with the Finite Sums Theorem the fact that they were ini-
tially established by combinatorial methods. A simple extension of the Finite Sums
Theorem was first established using the algebra of ˇN. This extension says that
whenever N is finitely colored there exist sequences hxni1nD1 and hyni1nD1 such that
FS.hxni1nD1/ [ FP.hyni1nD1/ is monochrome, where FP.hyni1nD1/ D ¹

Q
n2F yn W F

is a finite nonempty subset of Nº. This combined additive and multiplicative result
was first proved in 1975 using the algebraic structure of ˇN and it was not until 1993
that an elementary proof was found.

Other fundamental results have been established for which it seems unlikely that
elementary proofs will be found. Among such results is a density version of the Finite
Sums Theorem, which says roughly that the sequence hxni1nD1 whose finite sums
are monochrome can be chosen inductively in such a way that at each stage of the
induction the set of choices for the next term has positive upper density. Another
such result is the Central Set Theorem, which is a common generalization of many of
the basic results of Ramsey Theory. Significant progress continues to be made in the
combinatorial applications.

The semigroup ˇS also has applications in topological dynamics. A semigroup S
of continuous functions acting on a compact Hausdorff space X has a closure in XX
(the space of functions mapping X to itself with the product topology), which is a
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compact right topological semigroup. This semigroup, called the enveloping semi-
group, was first studied by R. Ellis [134]. It is always a quotient of the Stone–Čech
compactification ˇS , as is every semigroup compactification of S , and is, in some
important cases, equal to ˇS . In this framework, the algebraic properties of ˇS have
implications for the dynamical behavior of the system.

The interaction with topological dynamics works both ways. Several notions which
originated in topological dynamics, such as syndetic and piecewise syndetic sets, are
important in describing the algebraic structure of ˇS . For example, a point p of ˇS
is in the closure of the smallest ideal of ˇS if and only if for every neighborhood U
of p, U \ S is piecewise syndetic.

This last statement can be made more concise when one notes the particular con-
struction of ˇS that we use. That is, ˇS is the set of all ultrafilters on S , the principal
ultrafilters being identified with the points of S . Under this construction, any point p
of ˇS is precisely ¹U \ S W U is a neighborhood of pº. Thus p is in the closure of
the smallest ideal of ˇS if and only if every member of p is piecewise syndetic.

In this book, we develop the algebraic theory of ˇS and present several of its com-
binatorial applications. We assume only that the reader has had graduate courses in
algebra, analysis, and general topology as well as a familiarity with the basic facts
about ordinal and cardinal numbers. In particular we develop the basic structure of
compact right topological semigroups and provide an elementary construction of the
Stone–Čech compactification of a discrete space.

With only three exceptions, this book is self contained for those with that min-
imal background. The three cases where we appeal to non elementary results not
proved here are Theorem 6.36 (due to M. Rudin and S. Shelah) which asserts the ex-
istence of a collection of 2c elements of ˇN no two of which are comparable in the
Rudin–Keisler order, Theorem 12.37 (due to S. Shelah) which states that the exis-
tence of P-points in ˇN nN cannot be established in ZFC, and Theorem 20.13 (due to
H. Furstenberg) which is an ergodic theoretic result that we use to derive Szemerédi’s
Theorem.

All of our applications involve Hausdorff spaces, so we will be assuming through-
out, except in Chapter 7, that all hypothesized topological spaces are Hausdorff.

The first five chapters are meant to provide the basic preliminary material. The
concepts and theorems given in the first three of these chapters are also available in
other books. The remaining chapters of the book contain results which, for the most
part, can only be found in research papers at present, as well as several previously
unpublished results.

Notes on the historical development are given at the end of each chapter.
Let us make a few remarks about organization. Chapters are numbered consecu-

tively throughout the book, regardless of which of the four parts of the book contains
them. Lemmas, theorems, corollaries, examples, questions, comments, and remarks
are numbered consecutively in one group within chapters (so that Lemma 2.4 will
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be found after Theorem 2.3, for example). There is no logical distinction between a
theorem and a remark. The difference is that proofs are never included for remarks.
Exercises come at the end of sections and are numbered consecutively within sections.

The authors would like to thank Andreas Blass, Karl Hofmann, Paul Milnes, and
Igor Protasov for much helpful correspondence and discussions. Special thanks go
to John Pym for a careful and critical reading of an early version of the manuscript.
The authors also wish to single out Igor Protasov for special thanks, as he has con-
tributed several new theorems to the book. They would like to thank Arthur Grainger,
Amir Maleki, Dan Tang, Elaine Terry, and Wen Jin Woan for participating in a sem-
inar where much of the material in this book was presented, and David Gunderson
for presenting lectures based on the early material in the book. Acknowledgement is
also due to our collaborators whose efforts are featured in this book. These collabo-
rators include John Baker, Vitaly Bergelson, John Berglund, Andreas Blass, Dennis
Davenport, Walter Deuber, Ahmed El-Mabhouh, Hillel Furstenberg, Salvador García-
Ferreira, Yitzhak Katznelson, Jimmie Lawson, Amha Lisan, Imre Leader, Hanno Lef-
mann, Amir Maleki, Jan van Mill, Paul Milnes, John Pym, Petr Simon, Benjamin
Weiss, and Wen-jin Woan.

The authors would like to acknowledge support of a conference on the subject of
this book in March of 1997 by DFG Sonderforschungsbereich 344, Diskrete Struk-
turen in der Mathematik, Universität Bielefeld, and they would like to thank Walter
Deuber for organizing this conference. Both authors would like to thank the EPSRC
(UK) for support of a visit and the first author acknowledges support received from
the National Science Foundation (USA) under grant DMS 9424421 during the prepa-
ration of this book.

Finally, the authors would like to thank their spouses, Audrey and Ed, for their
patience throughout the writing of this book as well as hospitality extended to each of
us during visits with the other.

April 1998 Neil Hindman, Dona Strauss



Preface to the Second Edition

In the fourteen years since the publication of the first edition, research in the algebraic
theory of the Stone–Čech compactification of a discrete semigroup has been very
active. (We have added more than 165 research papers to the bibliography.) In this
edition we have added several of the more accessible results that have been established
during this time. These include six new sections, namely 1.1.1, 4.5, 7.4, 9.5, 14.6,
and 15.6. They also include more than 50 new lemmas and theorems. In addition,
many typographical errors have been corrected, and the notes at the end of chapters
have been extended.

The first edition has been widely cited in the mathematical literature, and we have
been very concerned with maintaining its value as a reference. Accordingly, with two
exceptions, any results in the second edition that share a number with a result from the
first edition are either identical with that result or trivially imply the result from the
first edition. (The two exceptions are Lemmas 12.40 and 12.41 which are technical
lemmas replacing earlier technical lemmas which we do not feel are of independent
interest.) New material that has been inserted before the old end of chapter receives a
new number of the form x.y.z where the number x.y is the item from the first edition
that immediately precedes it. For example in between Definition 14.14 and Theo-
rem 14.15 from the first edition come a definition and eight lemmas and theorems
numbered 14.14.1 through 14.14.9.

In some cases, we have had to move results earlier in the text because newly inserted
material needed these results. For example, Lemma 6.6 was needed for new material
which fit naturally in Chapter 5 so it became Lemma 5.19.1. We also kept Lemma 6.6
in its place and simply cited Lemma 5.19.1 for its proof. We do not, however, repeat
definitions which we have been forced to move earlier in the text. In those cases, the
number associated with the definition in the first edition is simply omitted.

We have added one more result, namely Theorem 17.35.1, to the three results in the
first edition which we use but do not prove.

In the preface to the first edition, we said that we thought it unlikely that an elemen-
tary proof of the dense Finite Sums Theorem would be found. However, H. Towsner
has recently discovered such a proof [378].

The first author acknowledges support received from the National Science Founda-
tion (USA) via grant DMS-0852512 during the preparation of this revision.

Washington/Leeds, September 2001 Neil Hindman, Dona Strauss





Notation

We write N for the set ¹1; 2; 3; : : :º of positive integers and ! D ¹0; 1; 2; : : :º for
the nonnegative integers. Also ! is the first infinite ordinal, and thus the first infinite
cardinal. Each ordinal is the set of all smaller ordinals.

RC D ¹x 2 R W x > 0º:

QC D ¹x 2 Q W x > 0º:

Given a function f and a set A contained in the domain of f , we write

f ŒA� D ¹f .x/ W x 2 Aº

and given any set B we write

f �1ŒB� D ¹x 2 Domain.f / W f .x/ 2 Bº:

Given a set A, Pf .A/ D ¹F W ; ¤ F � A and F is finiteº.
Definitions of additional unfamiliar notation can be located by way of the index.
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4 ˇS – The Stone–Čech Compactification of a Discrete Semigroup 85
4.1 Extending the Operation to ˇS . . . . . . . . . . . . . . . . . . . . . 85
4.2 Commutativity in ˇS . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3 S� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.4 K.ˇS/ and its Closure . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.5 Notions of Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5 ˇS and Ramsey Theory – Some Easy Applications 108
5.1 Ramsey Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.2 Idempotents and Finite Products . . . . . . . . . . . . . . . . . . . . 110
5.3 Sums and Products in N . . . . . . . . . . . . . . . . . . . . . . . . 114
5.4 Adjacent Finite Unions . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.5 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

II Algebra of ˇS 125

6 Ideals and Commutativity in ˇS 127
6.1 The Semigroup H . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.2 Intersecting Left Ideals . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.3 Numbers of Idempotents and Ideals – Copies of H . . . . . . . . . . 137
6.4 Weakly Left Cancellative Semigroups . . . . . . . . . . . . . . . . . 150
6.5 Semiprincipal Left Ideals and the Center of p.ˇS/p . . . . . . . . . 156
6.6 Principal Ideals in ˇZ . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.7 Ideals and Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.8 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7 Groups in ˇS 168
7.1 Zelenyuk’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.2 Semigroups Isomorphic to H . . . . . . . . . . . . . . . . . . . . . . 182
7.3 Free Semigroups and Free Groups in ˇS . . . . . . . . . . . . . . . . 187
7.4 Discrete copies of Z . . . . . . . . . . . . . . . . . . . . . . . . . . 192
7.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

8 Cancellation 196
8.1 Cancellation Involving Elements of S . . . . . . . . . . . . . . . . . 196
8.2 Right Cancelable Elements in ˇS . . . . . . . . . . . . . . . . . . . 199
8.3 Right Cancellation in ˇN and ˇZ . . . . . . . . . . . . . . . . . . . 208
8.4 Left Cancelable Elements in ˇS . . . . . . . . . . . . . . . . . . . . 212



Contents xv

8.5 Compact Semigroups Determined by Right Cancelable Elements in
Countable Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

8.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

9 Idempotents 226
9.1 Right Maximal Idempotents . . . . . . . . . . . . . . . . . . . . . . 226
9.2 Topologies Defined by Idempotents . . . . . . . . . . . . . . . . . . 235
9.3 Chains of Idempotents . . . . . . . . . . . . . . . . . . . . . . . . . 240
9.4 Identities in ˇS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
9.5 Rectangular Semigroups in ˇN . . . . . . . . . . . . . . . . . . . . . 246
9.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

10 Homomorphisms 252
10.1 Homomorphisms to the Circle Group . . . . . . . . . . . . . . . . . . 253
10.2 Homomorphisms from ˇT into S� . . . . . . . . . . . . . . . . . . . 257
10.3 Homomorphisms from T � into S� . . . . . . . . . . . . . . . . . . . 261
10.4 Isomorphisms Defined on Principal Left and Right Ideals . . . . . . . 266
10.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

11 The Rudin–Keisler Order 271
11.1 Connections with Right Cancelability . . . . . . . . . . . . . . . . . 272
11.2 Connections with Left Cancelability in N� . . . . . . . . . . . . . . . 278
11.3 Further Connections with the Algebra of ˇS . . . . . . . . . . . . . . 281
11.4 The Rudin–Frolík Order . . . . . . . . . . . . . . . . . . . . . . . . 282
11.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

12 Ultrafilters Generated by Finite Sums 286
12.1 Martin’s Axiom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
12.2 Strongly Summable Ultrafilters – Existence . . . . . . . . . . . . . . 290
12.3 Strongly Summable Ultrafilters – Independence . . . . . . . . . . . . 296
12.4 Algebraic Properties of Strongly Summable Ultrafilters . . . . . . . . 300
12.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

13 Multiple Structures in ˇS 308
13.1 Sums Equal to Products in ˇZ . . . . . . . . . . . . . . . . . . . . . 308
13.2 The Distributive Laws in ˇZ . . . . . . . . . . . . . . . . . . . . . . 315
13.3 Ultrafilters on R near 0 . . . . . . . . . . . . . . . . . . . . . . . . . 318
13.4 The Left and Right Continuous Extensions of One Operation . . . . . 323
13.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327



xvi Contents

III Combinatorial Applications 329

14 The Central Sets Theorem 331
14.1 Van der Waerden’s Theorem . . . . . . . . . . . . . . . . . . . . . . 331
14.2 The Hales–Jewett Theorem . . . . . . . . . . . . . . . . . . . . . . . 333
14.3 The Commutative Central Sets Theorem . . . . . . . . . . . . . . . . 335
14.4 The Noncommutative Central Sets Theorem . . . . . . . . . . . . . . 342
14.5 A Combinatorial Characterization of Central Sets . . . . . . . . . . . 352
14.6 Geoarithmetic Progressions . . . . . . . . . . . . . . . . . . . . . . . 360
14.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

15 Partition Regularity of Matrices 364
15.1 Image Partition Regular Matrices . . . . . . . . . . . . . . . . . . . . 364
15.2 Kernel Partition Regular Matrices . . . . . . . . . . . . . . . . . . . 371
15.3 Kernel Partition Regularity over N – Rado’s Theorem . . . . . . . . . 374
15.4 Image Partition Regularity over N . . . . . . . . . . . . . . . . . . . 378
15.5 Matrices with Entries from Fields . . . . . . . . . . . . . . . . . . . 389
15.6 Infinite Image Partition Regular Matrices . . . . . . . . . . . . . . . 393
15.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

16 IP, IP*, Central, and Central* Sets 405
16.1 IP, IP*, Central, and Central* Sets in Arbitrary Semigroups . . . . . . 405
16.2 IP* and Central Sets in N . . . . . . . . . . . . . . . . . . . . . . . . 409
16.3 IP* Sets in Weak Rings . . . . . . . . . . . . . . . . . . . . . . . . . 418
16.4 Spectra and Iterated Spectra . . . . . . . . . . . . . . . . . . . . . . 423
16.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

17 Sums and Products 427
17.1 Ultrafilters with Rich Additive and Multiplicative Structure . . . . . . 427
17.2 Pairwise Sums and Products . . . . . . . . . . . . . . . . . . . . . . 429
17.3 Sums of Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
17.4 Linear Combinations of Sums – Infinite Partition Regular Matrices . . 444
17.5 Sums and Products in .0; 1/ – Measurable and Baire Partitions . . . . 452
17.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458

18 Multidimensional Ramsey Theory 460
18.1 Ramsey’s Theorem and Generalizations . . . . . . . . . . . . . . . . 460
18.2 IP* Sets in Product Spaces . . . . . . . . . . . . . . . . . . . . . . . 467
18.3 Spaces of Variable Words . . . . . . . . . . . . . . . . . . . . . . . . 473
18.4 Carlson’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
18.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486



Contents xvii

IV Connections With Other Structures 489

19 Relations With Topological Dynamics 491
19.1 Minimal Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . 491
19.2 Enveloping Semigroups . . . . . . . . . . . . . . . . . . . . . . . . . 494
19.3 Dynamically Central Sets . . . . . . . . . . . . . . . . . . . . . . . . 499
19.4 Dynamically Generated IP* Sets . . . . . . . . . . . . . . . . . . . . 503
19.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507

20 Density – Connections with Ergodic Theory 508
20.1 Upper Density and Banach Density . . . . . . . . . . . . . . . . . . . 508
20.2 The Correspondence Principle . . . . . . . . . . . . . . . . . . . . . 513
20.3 A Density Version of the Finite Sums Theorem . . . . . . . . . . . . 515
20.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521

21 Other Semigroup Compactifications 523
21.1 The LMC , WAP , AP , and SAP Compactifications . . . . . . . . 523
21.2 Right Topological Compactifications . . . . . . . . . . . . . . . . . . 527
21.3 Periodic Compactifications as Quotients . . . . . . . . . . . . . . . . 530
21.4 Semigroup Compactifications as Spaces of Filters . . . . . . . . . . . 540
21.5 Uniform Compactifications . . . . . . . . . . . . . . . . . . . . . . . 544
21.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553

Bibliography 555

Index 577





Part I

Background Development





Chapter 1

Semigroups and Their Ideals

We assume that the reader has had an introductory modern algebra course. This as-
sumption is not explicitly used in this chapter beyond the fact that we expect a certain
amount of mathematical maturity.

1.1 Semigroups

Definition 1.1. A semigroup is a pair .S;�/ where S is a nonempty set and � is a
binary associative operation on S .

Formally a binary operation on S is a function � W S �S ! S and the operation is
associative if and only if �.�.x; y/; z/ D �.x;�.y; z// for all x, y, and z in S . How-
ever, we customarily write x � y instead of �.x; y/ so the associativity requirement
becomes the more familiar .x�y/�z D x�.y�z/. The statement that � W S�S ! S ,
i.e., that x � y 2 S whenever x; y 2 S is commonly referred to by saying that “S is
closed under �”.

Example 1.2. Each of the following is a semigroup:

(a) .N;C/.

(b) .N; � /.

(c) .R;C/.

(d) .R; � /.

(e) .R n ¹0º; � /.

(f) .RC;C/.

(g) .RC; � /.

(h) .N;_/, where x _ y D max¹x; yº.

(i) .N;^/, where x ^ y D min¹x; yº.

(j) .R;^/.

(k) .S;�/, where S is any nonempty set and x � y D y for all x; y 2 S .

(l) .S;�/, where S is any nonempty set and x � y D x for all x; y 2 S .

(m) .S;�/, where S is any nonempty set and a 2 S and x � y D a for all x; y 2 S .

(n) .XX; ı/, where XX D ¹f W f W X ! Xº and ı represents the composition of
functions.
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The semigroups of Example 1.2 (k) and (l) are called respectively right zero and
left zero semigroups.

An important class of semigroups are the free semigroups. These require a more
detailed explanation.

Definition 1.3. Let A be a nonempty set. The free semigroup on the alphabet A is
the set S D ¹f W f is a function and range.f / � A and there is some n 2 N such
that domain.f / D ¹0; 1; : : : ; n � 1ºº. Given f and g in S , the operation (called
concatenation) is defined as follows. Assume domain.f / D ¹0; 1; : : : ; n � 1º and
domain.g/ D ¹0; 1; : : : ; m � 1º. Then domain.f_g/ D ¹0; 1; : : : ; m C n � 1º and
given i 2 ¹0; 1; : : : ; mC n � 1º,

f_g D

´
f .i/ if i < n

g.i � n/ if i � n:

The free semigroup with identity on the alphabet A is S [ ¹;º where S is the free
semigroup on the alphabet A. Given f 2 S [ ¹;º one defines f _; D ;_f D f .

One usually refers to the elements of a free semigroup as words and writes them by
listing the values of the function in order. The length of a word is n where the domain
of the word is ¹0; 1; : : : ; n � 1º (and the length of ; is 0). Thus if A D ¹2; 4º and
f D ¹.0; 4/; .1; 2/; .2; 2/º (so that the length of f is 3 and f .0/ D 4, f .1/ D 2, and
f .2/ D 2), then one represents f as 422. Furthermore given the “words” 422 and
24424, one has 422_24424 D 42224424.

We leave to the reader the routine verification of the fact that concatenation is asso-
ciative, so that the free semigroup is a semigroup.

Definition 1.4. Let .S;�/ and .T; � / be semigroups.

(a) A homomorphism from S to T is a function ' W S ! T such that '.x � y/ D
'.x/ � '.y/ for all x; y 2 S .

(b) An isomorphism from S to T is a homomorphism from S to T which is both
one-to-one and onto T .

(c) The semigroups S and T are isomorphic if and only if there exists an isomor-
phism from S to T . If S and T are isomorphic we write S � T .

(d) An anti-homomorphism from S to T is a function ' W S ! T such that '.x �
y/ D '.y/ � '.x/ for all x; y 2 S .

(e) An anti-isomorphism from S to T is an anti-homomorphism from S to T which
is both one-to-one and onto T .

(f) The semigroups S and T are anti-isomorphic if and only if there exists an anti-
isomorphism from S to T .
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Clearly, the composition of two homomorphisms, if it exists, is also a homomor-
phism. The reader who is familiar with the concept of a category will recognize that
there is a category of semigroups, in which the objects are semigroups and the mor-
phisms are homomorphisms.

The free semigroup S on the alphabetA has the following property. Suppose that T
is an arbitrary semigroup and that g W A! T is any mapping. Then there is a unique
homomorphism h W S ! T with the property that h.a/ D g.a/ for every a 2 A. (The
proof of this assertion is Exercise 1.1.1.)

Definition 1.5. Let .S;�/ be a semigroup and let a 2 S .

(a) The element a is a left identity for S if and only if a � x D x for every x 2 S .

(b) The element a is a right identity for S if and only if x � a D x for every x 2 S .

(c) The element a is a two sided identity (or simply an identity) for S if and only if
a is both a left identity and a right identity.

Note that in a “free semigroup with identity” the element ; is a two sided identity
(so the terminology is appropriate).

Note also that in a left zero semigroup, every element is a right identity and in a
right zero semigroup, every element is a left identity. On the other hand we have the
following simple fact.

Remark 1.6. Let .S;�/ be a semigroup. If e is a left identity for S and f is a right
identity for S , then e D f . In particular, a semigroup can have at most one two sided
identity.

Given a collection of semigroups h.Si ;�i /ii2I , the Cartesian product ⨉i2I Si is
naturally a semigroup with the coordinatewise operations.

Definition 1.7. (a) Let h.Si ;�i /ii2I be an indexed family of semigroups and let
S D ⨉i2I Si . With the operation � defined by .Ex� Ey/i D xi�iyi , the semigroup
.S;�/ is called the direct product of the semigroups .Si ;�i /.

(b) Let h.Si ;�i /ii2I be an indexed family of semigroups where each Si has a two
sided identity ei . Then the direct sum of the semigroups .Si ;�i/ is

L
i2I Si D

¹Ex 2 ⨉i2I Si W ¹i 2 I W xi ¤ eiº is finiteº.

We leave to the reader the easy verification that the direct product operation is
associative as well as the verification that if Ex; Ey 2

L
i2I Si , then Ex � Ey 2

L
i2I Si .

Definition 1.8. Let .S;�/ be a semigroup and let a; b; c 2 S .

(a) The element c is a left a-inverse for b if and only if c � b D a.

(b) The element c is a right a-inverse for b if and only if b � c D a.

(c) The element c is an a-inverse for b if and only if c is both a left a-inverse for b
and a right a-inverse for b.
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The terms left a-inverse, right a-inverse, and a-inverse are usually replaced by left
inverse, right inverse, and inverse respectively. We introduce the more precise notions
because one may have many left or right identities.

Definition 1.9. A group is a pair .S;�/ such that

(a) .S;�/ is a semigroup and

(b) There is an element e 2 S such that

(i) e is a left identity for S and

(ii) for each x 2 S there exists y 2 S such that y is a left e-inverse for x.

Theorem 1.10. Let .S;�/ be a semigroup. The following statements are equivalent:

(a) .S;�/ is a group.

(b) There is a two sided identity e for S with the property that for each x 2 S there
is some y 2 S such that y is a (two sided) e-inverse for x.

(c) There is a left identity for S and given any left identity e for S and any x 2 S
there is some y 2 S such that y is a left e-inverse for x.

(d) There is a right identity e for S such that for each x 2 S there is some y 2 S
such that y is a right e-inverse for x.

(e) There is a right identity for S and given any right identity e for S and any x 2 S
there is some y 2 S such that y is a right e-inverse for x.

Proof. (a) implies (b). Pick e as guaranteed by Definition 1.9. We show first that any
element has an e-inverse, so let x 2 S be given and let y be a left e-inverse for x.
Let z be a left e-inverse for y. Then x � y D e � .x � y/ D .z � y/ � .x � y/ D

z � .y � .x � y// D z � ..y � x/ � y/ D z � .e � y/ D z � y D e, so y is also a right
e-inverse for x as required.

Now we show that e is a right identity for S , so let x 2 S be given. Pick an
e-inverse y for x. Then x � e D x � .y � x/ D .x � y/ � x D e � x D x.

(b) implies (c). Pick e as guaranteed by (b). Given any left identity f for S we
have by Remark 1.6 that e D f so every element of S has a left f -identity.

That (c) implies (a) is trivial.
The implications (d) implies (b), (b) implies (e), and (e) implies (d) follow now by

left-right switches, the details of which form Exercise 1.1.2.

In the proof that (a) implies (b) above we explicitly showed each use of associativ-
ity. It is common to not show such uses so that the equalities x � y D e � .x � y/ D
.z � y/ � .x � y/ D z � .y � .x � y// D z � ..y � x/ � y/ D z � .e � y/ D z � y D e

become x � y D e � x � y D z � y � x � y D z � e � y D z � y D e.
In a right zero semigroup S (Example 1.2 (k)) every element is a left identity and

given any left identity e and any x 2 S , e is a right e-inverse for x. This is essentially
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the only example of this phenomenon. That is, we shall see in Theorem 1.40 that any
semigroup with a left identity e such that every element has a right e-inverse is the
Cartesian product of a group with a right zero semigroup. In particular we see that if
a semigroup has a unique left identity e and every element has a right e-inverse, then
the semigroup is a group.

In the semigroup .N;_/, 1 is the unique identity and the only element with an
inverse.

When dealing with arbitrary semigroups it is customary to denote the operation
by � . Furthermore, given a semigroup .S; � / one customarily writes xy in lieu of
x � y. We shall now adopt these conventions. Accordingly, from this point on, when
we write “Let S be a semigroup” we mean “Let .S; � / be a semigroup” and when we
write “xy” we mean “x � y”.

Definition 1.11. Let S be a semigroup.

(a) S is commutative if and only if xy D yx for all x; y 2 S .

(b) The center of S is ¹x 2 S W for all y 2 S , xy D yxº.

(c) Given x 2 S , �x W S ! S is defined by �x.y/ D xy.

(d) Given x 2 S , �x W S ! S is defined by �x.y/ D yx.

(e) L.S/ D ¹�x W x 2 Sº.

(f) R.S/ D ¹�x W x 2 Sº.

Remark 1.12. Let S be a semigroup. Then .L.S/; ı/ and .R.S/; ı/ are semigroups.

Since our semigroups are not necessarily commutative we need to specify what we
mean by

Qn
iD1 xi . There are 2 reasonable interpretations (and nŠ � 2 unreasonable

ones). We choose it to mean the product in increasing order of indices because that
is the order that naturally arises in our applications of right topological semigroups.
More formally we have the following.

Definition 1.13. Let S be a semigroup. We define
Qn
iD1 xi for ¹x1; x2; : : : ; xnº � S

inductively on n 2 N.

(a)
Q1
iD1 xi D x1.

(b) Given n 2 N,
QnC1
iD1 xi D .

Qn
iD1 xi / � xnC1.

Definition 1.14. Let S be a semigroup.

(a) An element x 2 S is right cancelable if and only if whenever y; z 2 S and
yx D zx, one has y D z.

(b) An element x 2 S is left cancelable if and only if whenever y; z 2 S and
xy D xz, one has y D z.

(c) S is right cancellative if and only if every x 2 S is right cancelable.
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(d) S is left cancellative if and only if every x 2 S is left cancelable.

(e) S is cancellative if and only if S is both left cancellative and right cancellative.

Theorem 1.15. Let S be a semigroup.

(a) The function � W S ! L.S/ is a homomorphism onto L.S/.

(b) The function � W S ! R.S/ is an anti-homomorphism onto R.S/.

(c) If S is right cancellative, then S and L.S/ are isomorphic.

(d) If S is left cancellative, then S and R.S/ are anti-isomorphic.

Proof. (a) Given x, y, and z in S one has .�x ı �y/.z/ D �x.yz/ D x.yz/ D

.xy/z D �xy.z/ so �x ı �y D �xy .
(c) This is part of Exercise 1.1.4.
The proofs of (b) and (d) are left-right switches of the proofs of (a) and (c).

Right cancellation is a far stronger requirement than is needed to have S � L.S/.
See Exercise 1.1.4.

Exercise 1.1.1. Let S be the free semigroup on the alphabet A and let T be an arbi-
trary semigroup. Assume that g W A! T is any mapping. Prove that there is a unique
homomorphism h W S ! T with the property that h.a/ D g.a/ for every a 2 A.

Exercise 1.1.2. Prove that statements (b), (d), and (e) of Theorem 1.10 are equivalent.

Exercise 1.1.3. Prove that, in the semigroup (XX; ı/, the left cancelable elements are
the injective functions and the right cancelable elements are the surjective functions.

Exercise 1.1.4. (a) Prove Theorem 1.15 (c).

(b) Give an example of a semigroup S which is not right cancellative such that
S � L.S/.

Exercise 1.1.5. Let S be a right cancellative semigroup and let a 2 S . Prove that if
there is some b 2 S such that ab D b, then a is a right identity for S .

Exercise 1.1.6. Prove that “if S does not have an identity, one may be adjoined” (and
in fact one may be adjoined even if S already has an identity). That is, Let S be a
semigroup and let e be an element not in S . Define an operation � on S [ ¹eº by
x �y D xy if x; y 2 S and x � e D e �x D x. Prove that .S [¹eº;�/ is a semigroup
with identity e. (Note that if S has an identity f , it is no longer the identity of S[¹eº.)

Exercise 1.1.7. Suppose that S is a cancellative semigroup which does not have an
identity. Prove that an identity can be adjoined to S so that the extended semigroup is
also cancellative.



Section 1.1.1 Partial Semigroups 9

Exercise 1.1.8. Let S be a commutative cancellative semigroup. We define a relation
	 on S � S by stating that .a; b/ 	 .c; d/ if and only if ad D bc: Prove that this
is an equivalence relation. Let .a; b/ denote the equivalence class which contains the
element .a; b/ 2 S � S , and let G denote the set of all these equivalence classes. We
define a binary relation � on G by stating that .a; b/ � .c; d/ D .ac; bd/. Prove that
this is well defined, that .G; � / is a group and that it contains an isomorphic copy of
S . (The group G is called the group of quotients of S . If S D .N;C/, G D .Z;C/;
if S D .N; � /, G D .QC; � /, where QC D ¹x 2 Q W x > 0º.)

1.1.1 Partial Semigroups

We deal in this sections with sets which have operations defined only on some of their
pairs, either because the operation is only naturally defined under certain conditions
or because it is only well behaved under certain conditions.

Definition 1.15.1. Let S be a nonempty set. A partial multiplication on S is a func-
tion � taking a subset D of S � S to S . As usual, we write x � y for the value of
the function at .x; y/. Given x; y 2 S , we say that x � y is defined if and only if
.x; y/ 2 D.

Definition 1.15.2. A partial semigroup is a pair .S;�/ such that � is a partial multi-
plication on S and for all x; y; z 2 S , x � .y � z/ D .x � y/ � z in the sense that, if
either side is defined, then so is the other, and they are equal.

Of course, any semigroup is a partial semigroup.

Example 1.15.3. Each of the following is a partial semigroup:

(a) .Pf .X/;�/ whereX is a nonempty set and for F;G 2 Pf .X/, F �G D F [G
is defined if and only if F \ G D ;. (That is, the domain of � is ¹.F;G/ 2
Pf .X/ �Pf .X/ W F \G D ;º.)

(b) .Pf .!/;˘/ where for F;G 2 Pf .!/, F ˘G D F [G is defined if and only if
maxF < minG.

(c) .T;�/ where T is the set of functions whose domain is in Pf .!/ and whose
range is contained in a given nonempty set A and f � g D f [ g is defined if
and only if dom.f / \ dom.g/ D ;.

(d) .T;�/ where T is as in (c) and f � g D f [ g is defined if and only if
max dom.f / < min dom.g/.

(e) .M; � / where M is the set of finite matrices with entries from R and � is the
usual multiplication of matrices.

Notice the difference between examples (a) and (c). In the first case F [G makes
sense, even if F \G ¤ ;. In the second case, f [g is not guaranteed to be a function
if dom.f / \ dom.g/ ¤ ;.
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Definition 1.15.4. Let .S;�/ and .T;˘/ be partial semigroups. A partial semigroup
homomorphism from S to T is a function f W S ! T such that for all x; y 2 S , if
x � y is defined then f .x/ ˘ f .y/ is defined and f .x � y/ D f .x/ ˘ f .y/.

Remark 1.15.5. Define the function f W Pf .!/ ! N by f .F / D
P
t2F 2

t . Then
f is not a homomorphism from the semigroup .Pf .!/;[/ to .N;C/ but it is a par-
tial semigroup homomorphism from each of the partial semigroups .Pf .!/;�/ and
.Pf .!/;˘/ to .N;C/, where � and ˘ are defined as in Example 1.15.3 (a) and (b).

We shall see in Chapter 4 that under a certain minimal condition which we now
introduce, the Stone–Čech compactification of S can yield useful information about
the partial semigroup .S;�/.

Definition 1.15.6. Let .S;�/ be a partial semigroup.

(a) For F 2 Pf .S/, �.F / D ¹y 2 S W x � y is defined for all x 2 F º.

(b) The partial semigroup .S;�/ is adequate if and only if for every F 2 Pf .S/,
�.F / ¤ ;.

Notice that the partial semigroups in (b), (c), and (d) of Example 1.15.3 are all
adequate, while the partial semigroup .M; � / of Example 1.15.3 (e) is not adequate.
The partial semigroup in (a) is adequate if and only if X is infinite.

Exercise 1.1.1.1. Let S be the free semigroup on the alphabet ¹an W n 2 !º, where
an ¤ am when n ¤ m. Define f W Pf .!/ ! S by f .F / D

Q
t2F at , where the

products are taken in increasing order of indices. (So f .¹1; 3; 4º/ D a1a3a4.) Prove
that f is a partial semigroup homomorphism from .Pf .!/;˘/ to S but is not a partial
semigroup homomorphism from .Pf .!/;�/ to S , where � and ˘ are defined as in
Example 1.15.3 (a) and (b).

1.2 Idempotents and Subgroups

Our next subject is “idempotents”. They will be very important to us throughout this
book.

Definition 1.16. Let S be a semigroup.

(a) An element x 2 S is an idempotent if and only if xx D x.

(b) E.S/ D ¹x 2 S W x is an idempotentº.

(c) T is a subsemigroup of S if and only if T � S and T is a semigroup under the
restriction of the operation of S .

(d) T is a subgroup of S if and only if T � S and T is a group under the restriction
of the operation of S .

(e) Let e 2 E.S/. Then H.e/ D
S
¹G W G is a subgroup of S and e 2 Gº.
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Lemma 1.17. Let G be a group with identity e. Then E.G/ D ¹eº.

Proof. Assume f 2 E.G/. Then ff D f D fe. Multiplying on the left by the
inverse of f , one gets f D e.

As a consequence of Lemma 1.17 the statement “e 2 G” in the definition of H.e/
is synonymous with “e is the identity of G”. Note that it is quite possible for H.e/ to
equal ¹eº, but H.e/ is never empty.

Theorem 1.18. Let S be a semigroup and let e 2 E.S/. Then H.e/ is the largest
subgroup of S with e as identity.

Proof. It suffices to show that H.e/ is a group since e is trivially an identity for
H.e/ and H.e/ contains every group with e as identity. For this it in turn suffices
to show that H.e/ is closed. So let x; y 2 H.e/ and pick subgroups G1 and G2 of
S with e 2 G1 \ G2 and x 2 G1 and y 2 G2. Let G D ¹

Qn
iD1 xi W n 2 N and

¹x1; x2; : : : ; xnº � G1 [ G2º. Then xy 2 G and e 2 G so it suffices to show that
G is a group. For this the only requirement that is not immediate is the existence of
inverses. So let

Qn
iD1 xi 2 G. For i 2 ¹1; 2; : : : ; nº, pick yi such that xnC1�iyi D e.

Then
Qn
iD1 yi 2 G and .

Qn
iD1 xi / � .

Qn
iD1 yi / D e.

The groups H.e/ are referred to as maximal groups. Indeed, given any group
G � S , G has an identity e and G � H.e/.

Lemma 1.19. Let S be a semigroup, let e 2 E.S/, and let x 2 S . Then the following
statements are equivalent:

(a) x 2 H.e/.

(b) xe D x and there is some y 2 S such that ye D y and xy D yx D e.

(c) ex D x and there is some y 2 S such that ey D y and xy D yx D e.

Proof. We show the equivalence of (a) and (b); the equivalence of (a) and (c) then
follows by a left-right switch. The fact that (a) implies (b) is immediate.

(b) implies (a). Let G D ¹x 2 S W xe D x and there is some y 2 S such that
ye D y and xy D yx D eº. It suffices to show that G is a group with identity e.
To establish closure, let x; z 2 G. Then xze D xz. Pick y and w in S such that
ye D y, we D w, xy D yx D e, and zw D wz D e. Then wye D wy and
xzwy D xey D xy D e D wz D wez D wyxz.

Trivially, e is a right identity for G so it suffices to show that each element of
G has a right e-inverse in G. Let x 2 G and pick y 2 S such that ye D y and
yx D xy D e. Note that indeed y does satisfy the requirements to be in G.

Example 1.20. Let X be any set. Then the idempotents in .XX; ı/ are the functions
f 2 XX with the property that f .x/ D x for every x 2 f ŒX�.
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We next define the concept of a free group on a given set of generators. The un-
derlying idea is simple, but the rigorous definition may seem a little troublesome.
The basic idea is that we want to construct all expressions of the form a

e1
1 a

e2
2 � � � a

ek
k

,
where each ai 2 A and each exponent ei 2 Z; and to combine them in the way that
we are forced to by the group axioms.

Definition 1.21. Let S be the free semigroup with identity on the alphabetA�¹1;�1º
and let

G D ¹g 2 S W there do not exist t; t C 1 2 domain.g/; a 2 A and i 2 ¹1;�1º

for which g.t/ D .a; i/ and g.t C 1/ D .a;�i/º:

Given f; g 2 G n ¹;º with

domain.f / D ¹0; 1; : : : ; n � 1º and domain.g/ D ¹0; 1; : : : ; m � 1º;

define f � g D f_g unless there exist a 2 A and i 2 ¹1;�1º with f .n� 1/ D .a; i/
and g.0/ D .a;�i/.

In the latter case, pick the largest k 2 N such that for all t 2 ¹1; 2; : : : ; kº, there
exist b 2 A and j 2 ¹1;�1º such that f .n � t / D .b; j / and g.t � 1/ D .b;�j /. If
k D m D n, then f �g D ;. Otherwise, domain.f �g/ D ¹0; 1; : : : ; nCm� 2k � 1º
and for t 2 ¹1; 2; : : : ; nCm � 2k � 1º,

.f � g/.t/ D

´
f .t/ if t < n � k

g.t C 2k � n/ if t � n � k:

Then .G; � / is the free group generated by A.

It is not hard to prove that, with the operation defined above, G is a group.
We customarily write a in lieu of .a; 1/ and a�1 in lieu of .a;�1/. Then in keeping

with the notation to be introduced in the next section (Section 1.3) we shall write the
word ab�1b�1b�1a�1a�1bb, for example, as ab�3a�2b2. As an illustration, we
have .ab�3a�2b2/ � .b�2a3b�4/ D ab�3ab�4.

We observe that the free group G generated by A has a universal property given by
the following lemma.

Lemma 1.22. Let A be a set, let G be the free group generated by A, let H be an ar-
bitrary group, and let � W A! H be any mapping. There is a unique homomorphismb� W G ! H for whichb�.g/ D �.g/ for every g 2 A.

Proof. This is Exercise 1.2.1.
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We shall need the following result later.

Theorem 1.23. Let A be a set, let G be the free group generated by A, and let g 2
G n ¹;º. There exist a finite group F and a homomorphism b� W G ! F such thatb�.g/ is not the identity of F .

Proof. Let n be the length of g, let X D ¹0; 1; : : : ; nº, and let F D ¹f 2 XX W f
is one-to-one and onto Xº. (Since X is finite, the “onto” requirement is redundant.)
Then .F; ı/ is a group whose identity is �, the identity function from X to X . Given
a 2 A, let D.a/ D ¹i 2 ¹0; 1; : : : ; n � 1º W g.i/ D a�1º and let E.a/ D ¹i 2
¹1; 2; : : : ; nº W g.i � 1/ D aº. Note that since g 2 G, D.a/ \ E.a/ D ;. Define
�.a/ W D.a/ [E.a/! X by

�.a/.i/ D

´
i C 1 if i 2 D.a/

i � 1 if i 2 E.a/;

and note that, because g 2 G, �.a/ is one-to-one. Extend �.a/ in any way to a
member of F . Let b� W G ! F be the homomorphism extending � which was
guaranteed by Lemma 1.22.

Suppose that g D a0
i0a1

i1 � � � an�1
in�1 ; where ar 2 A and ir 2 ¹�1; 1º for

each r 2 ¹0; 1; 2; : : : ; n � 1º: We shall show that, for each k 2 ¹1; 2; : : : ; nº,b�.ak�1ik�1/.k/ D k � 1:
To see this, first suppose that ik�1 D 1. Then k 2 E.ak�1/ and so �.ak�1/.k/ D

k � 1.
Now suppose that ik�1 D �1. Then k�1 2 D.ak�1/ and so �.ak�1/.k�1/ D k:

Thusb�.ak�1�1/.k/ D �.ak�1/�1.k/ D k � 1.
It is now easy to see that b�.g/.n/ D b�.a0i0/b�.a1i1/ � � �b�.an�1in�1/.n/ D 0 and

hence thatb�.g/ is not the identity map.

Exercise 1.2.1. Prove Lemma 1.22.

1.3 Powers of a Single Element

Suppose that x is a given element in a semigroup S . For each n 2 N, we define an
element xn in S . We do this inductively, by stating that x1 D x and that xnC1 D
xxn if xn has already been defined. It is then straightforward to prove by induction
that xmxn D xmCn for every m; n 2 N. Thus ¹xn W n 2 Nº is a commutative
subsemigroup of S . We shall say that x has finite order if this subsemigroup is finite;
otherwise we shall say that x has infinite order.

If S has an identity e, we shall define x0 for every x 2 S by stating that x0 D e.
If x has an inverse in S , we shall denote this inverse by x�1, and we shall define x�n

for every n 2 N by stating that x�n D .x�1/n. If x does have an inverse, it is easy to
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prove that xmxn D xmCn for every m; n 2 Z. Thus ¹xn W n 2 Zº forms a subgroup
of S .

If additive notation is being used, xn might be denoted by nx instead. The index
law mentioned above would then be written as: mx C nx D .mC n/x.

Theorem 1.24. Suppose that S is a semigroup and that x 2 S has infinite order.
Then the subsemigroup T D ¹xn W n 2 Nº of S is isomorphic to .N;C/.

Proof. The mapping n 7! xn from .N;C/ onto T is a surjective homomorphism, and
so it will be sufficient to show that it is one-to-one. Suppose then that xm D xn for
some m; n 2 N satisfying m < n. Then xn�m is an identity for xm, and the same
statement holds for xq.n�m/, where q denotes any positive integer. Suppose that s is
any integer satisfying s > m. We can write s �m D q.n�m/C r where q and r are
nonnegative integers and r < .n�m/. So xs D xs�mxm D xq.n�m/Crxm D xrxm.
It follows that ¹xs W s > mº is finite and hence that T is finite, contradicting our
assumption that x has infinite order.

Theorem 1.25. Any finite semigroup S contains an idempotent.

Proof. This statement is obviously true if S contains only one element. We shall prove
it by induction on the number of elements in S . We make the inductive assumption
that the theorem is true for all semigroups with fewer elements than S . Choose any
x 2 S . There are positive integers m and n satisfying xm D xn and m < n. Then
xn�mxm D xn D xm. Consider the subsemigroup ¹y 2 S W xn�my D yº of S . If
this is the whole of S it contains xn�m and so xn�m is idempotent. If it is smaller
than S , it contains an idempotent by our inductive assumption.

Exercise 1.3.1. Prove that any finite cancellative semigroup is a group.

1.4 Ideals

The terminology “ideal” is borrowed from ring theory. Given subsets A and B of a
semigroup S , by AB we of course mean ¹ab W a 2 A and b 2 Bº.

Definition 1.26. Let S be a semigroup.

(a) L is a left ideal of S if and only if ; ¤ L � S and SL � L.

(b) R is a right ideal of S if and only if ; ¤ R � S and RS � R.

(c) I is an ideal of S if and only if I is both a left ideal and a right ideal of S .

An ideal I of S satisfying I ¤ S is called a proper ideal of S .
Sometimes for emphasis an ideal is called a “two sided ideal”. We often deal with

semigroups in which the operation is denoted byC. In this case the terminology may
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seem awkward for someone who is accustomed to working with rings. That is, a left
ideal L satisfies S C L � L and a right ideal R satisfies RC S � R.

Of special importance for us is the notion of minimal left and right ideals. By this
we mean simply left or right ideals which are minimal with respect to set inclusion.

Definition 1.27. Let S be a semigroup.

(a) L is a minimal left ideal of S if and only if L is a left ideal of S and whenever
J is a left ideal of S and J � L one has J D L.

(b) R is a minimal right ideal of S if and only ifR is a right ideal of S and whenever
J is a right ideal of S and J � R one has J D R.

(c) S is left simple if and only if S is a minimal left ideal of S .

(d) S is right simple if and only if S is a minimal right ideal of S .

(e) S is simple if and only if the only ideal of S is S .

We do not define a minimal ideal. As a consequence of Lemma 1.29 below, we shall
see that there is at most one minimal two sided ideal of a semigroup. Consequently
we use the term “smallest” to refer to an ideal which does not properly contain another
ideal.

Observe that S is left simple if and only if it has no proper left ideals. Similarly, S
is right simple if and only if it has no proper right ideals. Whenever one has a theorem
about left ideals, there is a corresponding theorem about right ideals. We shall not
usually state both results.

Clearly any semigroup which is either right simple or left simple must be simple.
The following simple example (pun intended) shows that the converse fails.

Example 1.28. Let S D ¹a; b; c; dº where a, b, c, and d are any distinct objects
and let S have the following multiplication table. Then S is simple but is neither left
simple nor right simple.

� a b c d

a a b a b

b a b a b

c c d c d

d c d c d

One can laboriously verify that the table does define an associative operation. But
128 computations .of .xy/z and x.yz// are required, somewhat fewer if one is clever.
It is usually much easier to establish associativity by representing the new semigroup
as a subsemigroup of one with which we are already familiar. In this case, we can
represent S as a semigroup of 3 � 3 matrices, by putting:

a D

0@ 1 1 0

0 0 0

0 0 0

1A; b D

0@ 1 1 1

0 0 0

0 0 0

1A; c D

0@ 0 0 0

1 1 0

0 0 0

1A; d D

0@ 0 0 0

1 1 1

0 0 0

1A:
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To verify the assertions of the example, note that ¹a; bº and ¹c; dº are right ideals
of S and ¹a; cº and ¹b; dº are left ideals of S .

Lemma 1.29. Let S be a semigroup.

(a) Let L1 and L2 be left ideals of S . Then L1 \ L2 is a left ideal of S if and only
if L1 \ L2 ¤ ;.

(b) Let L be a left ideal of S and let R be a right ideal of S . Then L \R ¤ ;.

Proof. Statement (a) is immediate. To see (b), let x 2 L and y 2 R. Then yx 2 L
because x 2 L and yx 2 R because y 2 R.

Lemma 1.30. Let S be a semigroup.

(a) Let x 2 S . Then xS is a right ideal , Sx is a left ideal and SxS is an ideal.

(b) Let e 2 E.S/. Then e is a left identity for eS , a right identity for Se, and an
identity for eSe.

Proof. Statement (a) is immediate. For (b), let e 2 E.S/. To see that e is a left
identity for eS , let x 2 eS and pick t 2 S such that x D et . Then ex D eet D et D
x. Likewise e is a right identity for Se.

Theorem 1.31. Let S be a semigroup.

(a) If S is left simple and e 2 E.S/, then e is a right identity for S .

(b) If L is a left ideal of S and s 2 L, then Ss � L.

(c) Let ; ¤ L � S . Then L is a minimal left ideal of S if and only if for each
s 2 L, Ss D L.

Proof. (a) By Lemma 1.30 (a), Se is a left ideal of S , so Se D S so Lemma 1.30 (b)
applies.

(b) This follows immediately from the definition of left ideal.
(c) Necessity. By Lemma 1.30 (a) Ss is a left ideal and by (b) Ss � L so, since L

is minimal, Ss D L.
Sufficiency. Since L D Ss for some s 2 L, L is a left ideal. Let J be a left ideal

of S with J � L and pick s 2 J . Then by (b), Ss � J so J � L D Ss � J .

We shall observe at the conclusion of the following definition that the objects de-
fined there exist.
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Definition 1.32. Let S be a semigroup.

(a) The smallest ideal of S which contains a given element x 2 S is called the
principal ideal generated by x.

(b) The smallest left ideal of S which contains x is called the principal left ideal of
S generated by x.

(c) The smallest right ideal of S which contains x is called the principal right ideal
generated by x.

Theorem 1.33. Let S be a semigroup and let x 2 S .

(a) The principal ideal generated by x is SxS [ xS [ Sx [ ¹xº.

(b) If S has an identity, then the principal ideal generated by x is SxS .

(c) The principal left ideal generated by x is Sx[¹xº and the principal right ideal
generated by x is xS [ ¹xº.

Proof. This is Exercise 1.4.1.

Exercise 1.4.1. Prove Theorem 1.33.

Exercise 1.4.2. Describe the ideals in each of the following semigroups. Also de-
scribe the minimal left ideals and the minimal right ideals in the cases in which these
exist.

(i) .N;C/.

(ii) .P .X/;[/, where X is any set.

(iii) .P .X/;\/, where X is any set.

(iv) .Œ0; 1�; � /, where � denotes multiplication.

(v) The set of real-valued functions defined on a given set, with pointwise multipli-
cation as the semigroup operation.

(vi) A left zero semigroup.

(vii) A right zero semigroup.

Exercise 1.4.3. Let X be any set. Describe the minimal left and right ideals in XX .

Exercise 1.4.4. Let S be a commutative semigroup with an identity e. Prove that S
has a proper ideal if and only if there is some s 2 S which has no e-inverse. In this
case, prove that ¹s 2 S W s has no e-inverseº is the unique maximal proper ideal of S .
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1.5 Idempotents and Order

Intimately related to the notions of minimal left and minimal right ideals is the notion
of minimal idempotents.

Definition 1.34. Let S be a semigroup and let e; f 2 E.S/. Then

(a) e
Lf if and only if e D ef ,

(b) e
Rf if and only if e D fe, and

(c) e 
 f if and only if e D ef D fe.

In the semigroup of Example 1.28, one sees that c
La, a
Lc, b
Ld , d
Lb,
a
Rb, b
Ra, c
Rd , and d
Rc, while the relation 
 is simply equality on this
semigroup.

Remark 1.35. Let S be a semigroup. Then
L,
R, and
 are transitive and reflexive
relations on E.S/. In addition, 
 is antisymmetric.

When we say that a point e is minimal with respect to a (not necessarily antisym-
metric) relation � on a set B , we mean that if f 2 B and f � e, then e � f (so if �
is antisymmetric, the conclusion becomes e D f ).

Theorem 1.36. Let S be a semigroup and let e 2 E.S/. The following statements
are equivalent:

(a) The element e is minimal with respect to 
.

(b) The element e is minimal with respect to 
R.

(c) The element e is minimal with respect to 
L.

Proof. (b) implies (a). Assume that e is minimal with respect to 
R and let f 
 e.
Then f D ef so f 
Re so e
Rf . Then e D fe D f .

We show that (a) implies (b). (Then the equivalence of (a) and (c) follows by a
left-right switch.) Assume that e is minimal with respect to 
 and let f 
Re. Let
g D fe. Then gg D fefe D ffe D fe D g so g 2 E.S/. Also, g D fe D efe so
eg D eefe D efe D g D efee D ge. Thus g 
 e so g D e by the minimality of e.
That is, e D fe so e
Rf as required.

As a consequence of Theorem 1.36, we are justified in making the following defi-
nition.

Definition 1.37. Let S be a semigroup. Then e is a minimal idempotent if and only
if e 2 E.S/ and e is minimal with respect to any (hence all) of the orders 
, 
R,
or 
L.
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We see that the notions of “minimal idempotent” and “minimal left ideal” and
“minimal right ideal” are intimately related. We remind the reader that there is a
corresponding “right” version of the following theorem.

Theorem 1.38. Let S be a semigroup and let e 2 E.S/.

(a) If e is a member of some minimal left ideal (equivalently if Se is a minimal left
ideal), then e is a minimal idempotent.

(b) If S is simple and e is minimal, then Se is a minimal left ideal.

(c) If every left ideal of S contains an idempotent and e is minimal, then Se is a
minimal left ideal.

(d) If S is simple or every left ideal of S has an idempotent then the following
statements are equivalent:

(i) e is minimal.

(ii) e is a member of some minimal left ideal of S .

(iii) Se is a minimal left ideal of S .

Proof. (a) Let L be a minimal left ideal with e 2 L. (The existence of a set L with
this property is equivalent to Se being minimal, by Theorem 1.31 (c).) Then L D Se.
Let f 2 E.S/ with f 
 e. Then f D fe so f 2 L so .by Theorem 1.31 (c)/
L D Sf so e 2 Sf so by Lemma 1.30 (b), e D ef so e D ef D f .

(b) Let L be a left ideal with L � Se. We show that Se � L (and hence Se D L).
Pick some s 2 L. Then s 2 Se so by Lemma 1.30 (b), s D se. Also, since S is
simple SsS D S , so pick u and v in S with e D vsu. Let r D eue and t D ev. Then
tsr D evseue D evsue D eee D e and er D eeue D eue D r . Let f D rts.
Then ff D rtsrts D r.tsr/ts D rets D reevs D revs D rts D f , so f 2 E.S/.
Also, fe D rtse D rts D f and ef D erts D rts D f so f 
 e so f D e. Thus
Se D Sf D Srts � Ss � L.

(c) Let L be a left ideal with L � Se. We show that e 2 L (so that Se � L and
hence Se D L). Pick an idempotent t 2 L, and let f D et . Then f 2 L. Since
t 2 Se, t D te. Thus f D et D ete. Therefore ff D etet D et t D et D f so
f 2 E.S/. Also ef D eete D ete D f and fe D etee D ete D f so f 
 e so
f D e and hence e 2 L.

(d) This follows from (a), (b), and (c).

We now obtain several characterizations of a group.

Theorem 1.39. Let S be a semigroup. The following statements are equivalent:

(a) S is cancellative and simple and E.S/ ¤ ;.

(b) S is both left simple and right simple.
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(c) For all a and b in S , the equations ax D b and ya D b have solutions x; y
in S .

(d) S is a group.

Proof. (a) implies (b). Pick an idempotent e in S . We show first that e is a (two sided)
identity for S . Let x 2 S . Then ex D eex so by left cancellation x D ex. Similarly,
x D xe. To see that S is left simple, let L be a left ideal of S . Then LS is an ideal of
S so LS D S , so pick t 2 L and s 2 S such that e D ts. Then sts D se D s D es so
cancelling on the right one has st D e. Thus e 2 L so S D SL � L. Consequently
S is left simple, and similarly S is right simple.

(b) implies (c). Let a; b 2 S . Then aS D S so there is some x 2 S such that
ax D b. Similarly, since Sa D S , there is some y 2 S such that ya D b.

(c) implies (d). Pick a 2 S and pick e 2 S such that ea D a. We show that e is
a left identity for S . Let b 2 S . We show that eb D b. Pick some y 2 S such that
ay D b. Then eb D eay D ay D b.

Now given any x 2 S there is some y 2 S such that yx D e so every element of S
has a left e-inverse.

(d) implies (a). Trivially S is cancellative and E.S/ ¤ ;. To see that S is simple,
let I be an ideal of S and pick x 2 I . Let y be the inverse of x. Then xy 2 I so
I D S .

As promised earlier, we now see that any semigroup with a left identity e such that
every element has a right e-inverse must be (isomorphic to) the Cartesian product of
a group with a right zero semigroup.

Theorem 1.40. Let S be a semigroup and let e be a left identity for S such that for
each x 2 S there is some y 2 S with xy D e. Let Y D E.S/ and let G D Se. Then
Y is a right zero semigroup, G is a group, and S D GY � G � Y .

Proof. We show first that:

For all x 2 Y and for all y 2 S , xy D y. (�)

To establish (�), let x 2 Y and y 2 S be given. Pick z 2 S such that xz D e. Then
xe D xxz D xz D e. Therefore xy D x.ey/ D .xe/y D ey D y, as required.

From (�) it follows that for all x; y 2 Y , xy D y, and Y ¤ ; because e 2 Y ,
so to see that Y is a right zero semigroup, it suffices to show that it is a semigroup,
that is that Y is closed. But this also follows from (�) since, given x; y 2 Y one has
xy D y 2 Y .

Now we establish that G D Se is a group. By Lemma 1.30 (b), e is a right identity
for G. Now every element in S has a right e-inverse in S . So every element of G has
a right e-inverse in S . By Theorem 1.10 we need only to show that every element of
G has a right e-inverse in G. To this end let x 2 G be given and pick y 2 S such that
xy D e. Then ye 2 G and xye D ee D e so ye is as required. Since we also have
GG D SeSe � SSSe � Se D G, it follows that G is a group.
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Now define ' W G � Y ! S by '.g; y/ D gy. To see that ' is a homomorphism,
let .g1; y1/; .g2; y2/ 2 G � Y . Then

'.g1; y1/'.g2; y2/ D g1y1g2y2

D g1g2y2 (by (�))

D g1g2y1y2 (by (�))

D '.g1g2; y1y2/:

To see that ' is surjective, let s 2 S be given. Then se 2 Se D G, and so there
exists x 2 Se such that x.se/ D .se/x D e. We claim that xs 2 Y D E.S/. Indeed,

xsxs D xsexs .since x 2 G; ex D x/

D xes

D xs .since x 2 G; xe D x/:

Thus .se; xs/ 2 G � Y and '.se; xs/ D sexs D es D s. Since ' is onto S , we have
established that S D GY .

Finally to see that ' is one-to-one, let .g; y/ 2 G�Y and let s D '.g; y/We show
that g D se and y D xs where x is the (unique) inverse of se in Se. Now s D gy so

se D gye

D ge .by .�/ ye D e/

D g .since g 2 Se/:

Also

xs D xgy

D xgyey .ye 2 Y so by .�/ yey D y/

D xsey

D ey

D y

We know that the existence of a left identity e for a semigroup S such that every
element of S has a right e-inverse does not suffice to make S a group. A right zero
semigroup is the standard example. Theorem 1.40 tells us that is essentially the only
example.

Corollary 1.41. Let S be a semigroup and assume that S has a unique left identity e
and that every element of S has a right e-inverse. Then S is a group.

Proof. This is Exercise 1.5.1.

Exercise 1.5.1. Prove Corollary 1.41. (Hint: Consider jY j in Theorem 1.40.)
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1.6 Minimal Left Ideals

We shall see in this section that many significant consequences follow from the ex-
istence of minimal left (or right) ideals, especially those with idempotents. This is
important for us, because, as we shall see in Corollary 2.6, any compact right topo-
logical semigroup has minimal left ideals with idempotents.

We begin by establishing an easy consequence of Theorem 1.40.

Theorem 1.42. Let S be a semigroup and assume that there is a minimal left ideal L
of S which has an idempotent e. Then L D XG � X � G where X is the (left zero)
semigroup of idempotents of L, and G D eL D eSe is a group. All maximal groups
in L are isomorphic to G.

Proof. Given x 2 L, Lx is a left ideal of S and Lx � L so Lx D L and hence there
is some y 2 L such that yx D e. By Lemma 1.30 (b), e is a right identity forLe D L.
Therefore the right-left switch of Theorem 1.40 applies (with L replacing S ). It is a
routine exercise to show that the maximal groups of X � G are the sets of the form
¹xº �G.

Lemma 1.43. Let S be a semigroup, let L be a left ideal of S , and let T be a left
ideal of L.

(a) For all t 2 T , Lt is a left ideal of S and Lt � T .

(b) If L is a minimal left ideal of S , then T D L. (So minimal left ideals are left
simple.)

(c) If T is a minimal left ideal of L, then T is a minimal left ideal of S .

Proof. (a) S.Lt/ D .SL/t � Lt and Lt � LT � T .
(b) Pick any t 2 T . By (a), Lt is a left ideal of S and Lt � T � L so Lt D L so

T D L.
(c) To see that T is a left ideal of S , pick any t 2 T . By (a), Lt is a left ideal of

S , so Lt is a left ideal of L. Since Lt � T , Lt D T . Therefore, ST D S.Lt/ D

.SL/t � Lt D T . To see that T is minimal in S , let J be a left ideal of S with
J � T . Then J is a left ideal of L, so J D T .

As a consequence of Lemma 1.43, if L is a left ideal of S and T is a left ideal of
L and either L is minimal in S or T is minimal in L, then T is a left ideal of S . Of
course, the right-left switch of this statement also holds. That is, if R is a right ideal
of S and T is a right ideal of R and either R is minimal in S or T is minimal in R,
then T is a right ideal of S . We see now that without some assumptions, T need not
be a right ideal of S .
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Example 1.44. Let X D ¹0; 1; 2º and let S D XX . Let R D ¹f 2 S W Range.f / �
¹0; 1ºº and let T D ¹0; aº where 0 is the constant function and a W 0 7! 0, 1 7! 0,
2 7! 1. Then R is a right ideal of S and T is a right ideal of R, but T is not a right
ideal of S .

Lemma 1.45. Let S be a semigroup, let I be an ideal of S and let L be a minimal
left ideal of S . Then L � I .

Proof. This is Exercise 1.6.1.

We now see that all minimal left ideals of a semigroup are intimately connected
with each other.

Theorem 1.46. Let S be a semigroup, let L be a minimal left ideal of S , and let
T � S . Then T is a minimal left ideal of S if and only if there is some a 2 S such
that T D La.

Proof. Necessity. Pick a 2 T . Then SLa � La and La � ST � T so La is a left
ideal of S contained in T so La D T .

Sufficiency. Since SLa � La, La is a left ideal of S . Assume that B is a left ideal
of S and B � La. Let A D ¹s 2 L W sa 2 Bº. Then A � L and A ¤ ;. We claim
that A is a left ideal of S , so let s 2 A and let t 2 S . Then sa 2 B so tsa 2 B and,
since s 2 L, ts 2 L, so ts 2 A as required. Thus A D L so La � B so La D B .

Corollary 1.47. Let S be a semigroup. If S has a minimal left ideal, then every left
ideal of S contains a minimal left ideal.

Proof. Let L be a minimal left ideal of S and let J be a left ideal of S . Pick a 2 J .
Then by Theorem 1.46, La is a minimal left ideal which is contained in J .

Theorem 1.48. Let S be a semigroup and let e 2 E.S/. Statements (a) through (f)
are equivalent and imply statement (g). If either S is simple or every left ideal of S
has an idempotent, then all statements are equivalent.

(a) Se is a minimal left ideal.

(b) Se is left simple.

(c) eSe is a group.

(d) eSe D H.e/.

(e) eS is a minimal right ideal.

(f) eS is right simple.

(g) e is a minimal idempotent.
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Proof. By Theorem 1.38 (a), we have that (a) implies (g) and by Theorem 1.38 (d), if
either S is simple or every left ideal of S has an idempotent, then (g) implies (a).

We show that

(a) ) (b)

* +

(d) ( (c)

from which

(e) ) (f)

* +

(d) ( (c)

follows by left-right duality and the fact that (c) and (d) are two sided statements.
That (a) implies (b) follows from Lemma 1.43 (b).
(b) implies (c). Trivially eSe is closed. By Lemma 1.30 e is a two sided identity

for eSe. Also let x D ese 2 eSe be given. One has x 2 Se so Sx is a left ideal of
Se and consequently Sx D Se, since Se is left simple. Thus e 2 Sx, so pick y 2 S
such that e D yx. Then eye 2 eSe and eyex D eyx D ee D e so x has a left
e-inverse in eSe.

(c) implies (d). Since eSe is a group and e 2 eSe, one has eSe � H.e/. On the
other hand, by Theorem 1.18, e is the identity of H.e/ so given x 2 H.e/, one has
that x D exe 2 eSe, so H.e/ � eSe

(d) implies (a). LetL be a left ideal of S withL � Se and pick t 2 L. Then t 2 Se
so et 2 eSe. Pick x 2 eSe such that x.et/ D e. Then xt D .xe/t D x.et/ D e so
e 2 L so Se � SL � L.

We note that in the semigroup .N; � /, 1 is the only idempotent, and is consequently
minimal, while N1 is not a minimal left ideal. Thus Theorem 1.48 (g) does not in
general imply the other statements of Theorem 1.48.

We recall that in a ring there may be many minimal two sided ideals. This is
because a “minimal ideal” in a ring is an ideal minimal among all ideals not equal to
¹0º, and one may have ideals I1 and I2 with I1 \ I2 D ¹0º. By contrast, we see that
a semigroup can have at most one minimal two-sided ideal.

Lemma 1.49. Let S be a semigroup and let K be an ideal of S . If K is minimal in
¹J W J is an ideal of Sº and I is an ideal of S , then K � I .

Proof. By Lemma 1.29 (b), K \ I ¤ ; so K \ I is an ideal contained in K so
K \ I D K.

The terminology “minimal ideal” is widely used in the literature. Since, by Lemma
1.49, there can be at most one minimal ideal in a semigroup, we prefer the terminology
“smallest ideal”.
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Definition 1.50. Let S be a semigroup. If S has a smallest ideal, then K.S/ is that
smallest ideal.

We see that a simple condition guarantees the existence of K.S/.

Theorem 1.51. Let S be a semigroup. If S has a minimal left ideal, thenK.S/ exists
and K.S/ D

S
¹L W L is a minimal left ideal of Sº.

Proof. Let I D
S
¹L W L is a minimal left ideal of Sº. By Lemma 1.45, if J is any

ideal of S , then I � J , so it suffices to show that I is an ideal of S . We have that
I ¤ ; by assumption, so let x 2 I and let s 2 S . Pick a minimal left ideal L of S
such that x 2 L. Then sx 2 L � I . Also, by Theorem 1.46, Ls is a minimal left
ideal of S so Ls � I while xs 2 Ls.

Observe, however, that many common semigroups do not have a smallest ideal.
This is true for example of both .N;C/ and .N; � /.

Lemma 1.52. Let S be a semigroup.

(a) Let L be a left ideal of S . Then L is minimal if and only if Lx D L for every
x 2 L.

(b) Let I be an ideal of S . Then I is the smallest ideal if and only if IxI D I for
every x 2 I .

Proof. (a) If L is minimal and x 2 L, then Lx is a left ideal of S and Lx � L so
Lx D L. Now assume Lx D L for every x 2 L and let J be a left ideal of S with
J � L. Pick x 2 J . Then L D Lx � LJ � J � L.

(b) This is Exercise 1.6.2.

Theorem 1.53. Let S be a semigroup. If L is a minimal left ideal of S and R is a
minimal right ideal of S , then K.S/ D LR.

Proof. Clearly LR is an ideal of S . We use Lemma 1.52 to show that K.S/ D LR.
So, let x 2 LR. Then LRxL is a left ideal of S which is contained in L so LRxL D
L and hence LRxLR D LR.

Theorem 1.54. Let S be a semigroup and assume that K.S/ exists and e 2 E.S/.
The following statements are equivalent and are implied by any of the equivalent
statements (a) through (f) of Theorem 1.48.

(h) e 2 K.S/.

(i) K.S/ D SeS .
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Proof. By Theorem 1.51, it follows that Theorem 1.48 (a) implies (h).
(h) implies (i). Since SeS is an ideal, we have K.S/ � SeS . Since e 2 K.S/, we

have SeS � K.S/.
(i) implies (h). We have e D eee 2 SeS D K.S/.

Two natural questions are raised by Theorems 1.51 and 1.54. First, if K.S/ exists,
is it the union of all minimal left ideals or at least is it either the union of all minimal
left ideals or be the union of all minimal right ideals? Second, given that K.S/ exists
and e is an idempotent in K.S/; must Se be a minimal left ideal, or at least must e
be a minimal idempotent? The following example, known as the bicyclic semigroup,
answers the weaker versions of both of these questions in the negative. Recall that
! D N [ ¹0º D ¹0; 1; 2; : : :º.

Example 1.55. Let S D ! � ! and define an operation � on S by

.m; n/ � .r; s/ D

´
.m; s C n � r/ if n � r

.mC r � n; s/ if n < r:

Then S is a simple semigroup (so K.S/ D S ), S has no minimal left ideals and no
minimal right ideals, E.S/ D ¹.n; n/ W n 2 !º, and for each n 2 !, .nC 1; nC 1/ 

.n; n/.

One may verify directly that the operation in Example 1.55 is associative. It is
probably easier, however, to observe that S is isomorphic to a subsemigroup of NN.

Specifically define f; g 2 NN by f .t / D t C 1 and g.t/ D
°
t�1 if t>1
1 if tD1

. Then given

n; r 2 ! one has gn ı f r D
°
gn�r if n�r

f r�n if n<r
. Consequently, one has

.f m ı gn/ ı .f r ı gs/ D

´
f m ı gsCn�r if n � r

f mCr�n ı gs if n < r:

To see that the semigroup in Example 1.55 is simple, note that given any .m; n/,
.k; r/ 2 S , .k;m/ � .m; n/ � .n; r/ D .k; r/. To see that S has no minimal left ideals,
let L be a left ideal of S and pick .m; n/ 2 L. Then ¹.k; r/ 2 S W r > nº is a left
ideal of S which is properly contained in L. Similarly, if R is a right ideal of S and
.m; n/ 2 R then ¹.k; r/ 2 S W k > mº is a right ideal of S which is properly contained
in R.

It is routine to verify the assertions about the idempotents in Example 1.55.

Exercise 1.6.1. Prove Lemma 1.45.

Exercise 1.6.2. Prove Lemma 1.52 (b).



Section 1.7 Minimal Left Ideals with Idempotents 27

Exercise 1.6.3. Let S D ¹f 2 NN W f is one-to-one and Nnf ŒN� is infiniteº. Prove
that .S; ı/ is left simple (so S is a minimal left ideal of S ) and S has no idempotents.

Exercise 1.6.4. Suppose that a minimal left ideal L of a semigroup is commutative.
Prove that L is a group.

Exercise 1.6.5. Let S be a semigroup and assume that there is a minimal left ideal
of S . Prove that, if K.S/ is commutative, then it is a group.

1.7 Minimal Left Ideals with Idempotents

We present here several results that have as hypothesis “Let S be a semigroup and
assume that there is a minimal left ideal of S which has an idempotent”. These are
important to us because, as we shall see in Corollary 2.6, this hypothesis holds in any
compact right topological semigroup. (See Exercise 1.6.3 to show that the reference
to the existence of an idempotent cannot be deleted from this hypothesis.)

Theorem 1.56. Let S be a semigroup and assume that there is a minimal left ideal
of S which has an idempotent. Then every minimal left ideal has an idempotent.

Proof. Let L be a minimal left ideal with an idempotent e and let J be a minimal
left ideal. By Theorem 1.46, there is some x 2 S such that J D Lx. By Theorem
1.42, eL D eSe is a group, so let y D eye be the inverse of exe in this group. Then
yx 2 Lx D J and yxyx D .ye/x.ey/x D y.exe/yx D eyx D yx.

We shall get left and right conclusions from this one sided hypothesis. We see now
that in fact the right version follows from the left.

Lemma 1.57. Let S be a semigroup and assume that there is a minimal left ideal
of S which has an idempotent. Then there is a minimal right ideal of S which has an
idempotent.

Proof. Pick a minimal left ideal L of S and an idempotent e 2 L. By Theorem
1.31 (c) Se is a minimal left ideal of S so by Theorem 1.48 eS is a minimal right
ideal of S and e is an idempotent in eS .

Theorem 1.58. Let S be a semigroup and assume that there is a minimal left ideal
of S which has an idempotent. Let T � S .

(a) T is a minimal left ideal of S if and only if there is some e 2 E.K.S// such that
T D Se.

(b) T is a minimal right ideal of S if and only if there is some e 2 E.K.S// such
that T D eS .
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Proof. Pick a minimal left ideal L of S and an idempotent f 2 L.
(a) Necessity. Since Sf is a left ideal contained in L, Sf D L. Thus by Theorem

1.48, fSf is a group. Pick any a 2 T . Then faf 2 fSf so pick x 2 fSf such that
x.faf / D f . Then

xaxa D .xf /a.f x/a

D .xfaf /xa

D f xa

D xa:

Consequently, xa is an idempotent. Also xa 2 T while T � K.S/ by Theorem 1.51
so xa 2 E.K.S//. Finally, Sxa is a left ideal contained in T , so T D Sxa.

Sufficiency. Since e 2 K.S/, pick by Theorem 1.51 a minimal left ideal I of S
with e 2 I . Then Se D I by Theorem 1.31 (c).

(b) As a consequence of Lemma 1.57 this follows by a left-right switch.

Theorem 1.59. Let S be a semigroup, assume that there is a minimal left ideal of S
which has an idempotent, and let e 2 E.S/. The following statements are equivalent:

(a) Se is a minimal left ideal.

(b) Se is left simple.

(c) eSe is a group.

(d) eSe D H.e/.

(e) eS is a minimal right ideal.

(f) eS is right simple.

(g) e is a minimal idempotent.

(h) e 2 K.S/.

(i) K.S/ D SeS .

Proof. By Corollary 1.47 and Theorem 1.56 every left ideal of S contains an idem-
potent so by Theorem 1.48 statements (a) through (g) are equivalent. By Theorems
1.51 and 1.54 we need only show that (h) implies (a). But this follows from Theo-
rem 1.58.

Theorem 1.60. Let S be a semigroup, assume that there is a minimal left ideal of S
which has an idempotent, and let e be an idempotent in S . There is a minimal idem-
potent f of S such that f 
 e.
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Proof. Se is a left ideal which thus contains a minimal left idealLwith an idempotent
g by Corollary 1.47 and Theorem 1.56. Now g 2 Se so ge D g by Lemma 1.30. Let
f D eg. Then ff D egeg D egg D eg D f so f is an idempotent. Also f 2 L
so L D Sf so by Theorem 1.59 f is a minimal idempotent. Finally ef D eeg D

eg D f and fe D ege D eg D f so f 
 e.

Theorem 1.61. Let S be a semigroup and assume that there is a minimal left ideal
of S which has an idempotent. Given any minimal left ideal L of S and any minimal
right ideal R of S , there is an idempotent e 2 R \ L such that R \ L D RL D eSe
and eSe is a group.

Proof. Let R and L be given. Pick by Theorem 1.58 an idempotent f 2 K.S/ such
that L D Sf . By Theorem 1.48, fSf is a group. Pick a 2 R and let x be the inverse
of faf in fSf . Then x 2 Sf D L so ax 2 R \ L. By Theorem 1.51 ax 2 K.S/.
Also

axax D a.xf /a.f x/

D a.xfaf /x

D af x

D ax:

Let e D ax. Then eSe � Sx � L and eSe � aS � R so eSe � R \L. To see that
R \ L � eSe, let b 2 R \ L. By Theorem 1.31 L D Se and R D eS so by Lemma
1.30, b D eb D be. Thus b D eb D ebe 2 eSe.

Now RL D eSSe � eSe � RL, so RL D eSe.
As we have observed, e 2 K.S/, so by Theorem 1.59 eSe is a group.

Because of the results of this section, we are interested in knowing when we can
guarantee the existence of a minimal left ideal with an idempotent.

Lemma 1.61.1. Let S be a semigroup and assume that there is a minimal left ideal
of S which has an idempotent. Let L be a left ideal of S and let R be a right ideal
of S .

(a) There is a minimal left ideal of L which has an idempotent.

(b) There is a minimal left ideal of L\R which has an idempotent. In fact if J is a
minimal left ideal of S with J � L, then R\ J is a minimal left ideal of R\L
which has an idempotent.

(c) There is a minimal left ideal of R which has an idempotent.

Proof. Pick by Corollary 1.47 a minimal left ideal J of S such that J � L.
(a) If I is a left ideal of L with I � J , then I is a left ideal of J so by Lemma

1.43 (b), I D J . By Theorem 1.56, J has an idempotent.
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(b) Pick by Lemma 1.57 and the right-left switch of Corollary 1.47 a minimal right
ideal M of S such that M � R. Pick by Theorem 1.61 an idempotent e 2 M \ J .
To see that R \ J is a minimal left ideal of R \L, let I be a left ideal of R \L with
I � R \ J . To see that R \ J � I , let u 2 R \ J . Pick x 2 I . Now e 2 J and
J D Jx by Lemma 1.52 (a) so pick y 2 J such that e D yx. Then e D ee D eyx.
Now e 2 R and y 2 L so eyx 2 .R \ L/x � I so e 2 I . Now u 2 J D Je so
u D ue. Also u 2 R \ L so u 2 .R \ L/e � I as required.

(c) By (b) R \ J is a minimal left ideal of R \ L. Also R \ L is a left ideal of R.
So by Lemma 1.43 (c), R \ J is a minimal left ideal of R.

Lemma 1.62. Let S be a semigroup and assume that there is a minimal left ideal of S
which has an idempotent. Then all minimal left ideals of S are isomorphic.

Proof. Let L be a minimal left ideal of S with an idempotent e. Then L D Se so by
Theorem 1.59 eSe is a group.

We claim first that given any s 2 K.S/ and any t 2 S , s.ese/�1 D st.este/�1,
where the inverses are taken in eSe. Indeed, using the fact that .ese/�1e D
e.ese/�1 D .ese/�1,

s.ese/�1s.ese/�1 D s.ese/�1ese.ese/�1 D s.ese/�1e D s.ese/�1

and similarly st.este/�1 is an idempotent. By Lemma 1.57 and Theorem 1.51,
K.S/ D

S
¹R W R is a minimal right ideal of Sº. Pick a minimal right ideal R

of S such that s 2 R. Then s.ese/�1 and st.este/�1 are both idempotents in R \L,
which is a group by Theorem 1.61. Thus s.ese/�1 D st.este/�1 as claimed.

Now let L0 be any other minimal left ideal of S . By Theorem 1.59, eS is a minimal
right ideal of S so by Theorem 1.61 L0 \ eS is a group so pick an idempotent d 2
L0 \ eS . Notice that L0 D Sd and dS D eS . In particular, by Lemma 1.30 (b),
de D e, ed D d , and for any s 2 L0, sd D s.

Define  W Sd ! Se by  .s/ D s.ese/�1dse, where the inverse is in the group
eSe. We claim first that  is a homomorphism. To this end, let s; t 2 Sd . Then

 .s/ .t/ D s.ese/�1dset.ete/�1dte

D s.ese/�1dsete.ete/�1dte (e.ete/�1 D .ete/�1)

D s.ese/�1dsedte

D s.ese/�1dste (ed D d and sd D s)

D st.este/�1dste (s.ese/�1 D st.este/�1)

D  .st/:

Now define � W Se ! Sd by �.t/ D t .dtd/�1etd where the inverse is in dSd ,
which is a group by Theorem 1.59. We claim that � is the inverse of  (and hence  
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takes Sd one-to-one onto Se). To this end, let s 2 L0. Then ds 2 L0 so Sds is a left
ideal contained in L0 and thus L0 D Sds. So pick x 2 S such that s D xds. Then

�. .s// D  .s/.d .s/d/�1e .s/d

D s.ese/�1dse.ds.ese/�1dsed/�1es.ese/�1dsed

D xds.ese/�1dsed.ds.ese/�1dsed/�1ese.ese/�1dsed

D xdedsed

D xddsd

D xds

D s:

Similarly, if t 2 L, then  .�.t// D t .

We now analyze in some detail the structure of a particular semigroup. Our motive
is that this allows us to analyze the structure of the smallest ideal of any semigroup
that has a minimal left ideal with an idempotent.

Theorem 1.63. Let X be a left zero semigroup, let Y be a right zero semigroup,
and let G be a group. Let e be the identity of G, fix u 2 X and v 2 Y and let
Œ ; � W Y � X ! G be a function such that Œy; u� D Œv; x� D e for all y 2 Y and all
x 2 X . Let S D X �G�Y and define an operation � on S by .x; g; y/ � .x0; g0; y0/ D
.x; gŒy; x0�g0; y0/. Then S is a simple semigroup (so that K.S/ D S D X �G � Y )
and each of the following statements holds:

(a) For every .x; y/ 2 X�Y , .x; Œy; x��1; y/ is an idempotent (where the inverse is
taken in G) and all idempotents are of this form. In particular, the idempotents
in X �G �¹vº are of the form .x; e; v/ and the idempotents in ¹uº�G �Y are
of the form .u; e; y/.

(b) For every y 2 Y , X �G � ¹yº is a minimal left ideal of S and all minimal left
ideals of S are of this form.

(c) For every x 2 X , ¹xº � G � Y is a minimal right ideal of S and all minimal
right ideals of S are of this form.

(d) For every .x; y/ 2 X � Y , ¹xº � G � ¹yº is a maximal group in S and all
maximal groups in S are of this form.

(e) The minimal left ideal X � G � ¹vº is the direct product of X , G, and ¹vº and
the minimal right ideal ¹uº �G � Y is the direct product of ¹uº, G, and Y .

(f) All maximal groups in S are isomorphic to G.

(g) All minimal left ideals of S are isomorphic toX�G and all minimal right ideals
of S are isomorphic to G � Y .
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Proof. The associativity of � is immediate. To see that S is simple, let .x; g; y/,
.x0; g0; y0/ 2 S . By Lemma 1.52 (b), it suffices to show that .x0; g0; y0/ 2 S.x; g; y/S .
To see this, let h D g0g�1Œy; x��1g�1Œy; x��1. Then .x0; g0; y0/ D .x0; h; y/ �

.x; g; y/ � .x; g; y0/.
(a) That .x; Œy; x��1; y/ is an idempotent is immediate. Given an idempotent

.x; g; y/, one has that gŒy; x�g D g so g D Œy; x��1.
(b) Let y 2 Y . Trivially X � G � ¹yº is a left ideal of S . To see that it is

minimal, let .x; g/; .x0; g0/ 2 X � G. It suffices by Lemma 1.52 (a) to note that
.x0; g0; y/ D .x0; g0g�1Œy; x��1; y/ � .x; g; y/. Given any minimal left ideal L of S ,
pick .x; g; y/ 2 L. Then L \ .X �G � ¹yº/ ¤ ; so L D X �G � ¹yº.

Statement (c) is the right-left switch of statement (b).
(d) By the equivalence of (h) and (d) in Theorem 1.59 we have that the maximal

groups in S are precisely the sets of the form fSf where f is an idempotent of
K.S/ D S . That is, by (a), where f D .x; Œy; x��1; y/. Since

.x; Œy; x��1; y/S.x; Œy; x��1; y/ D ¹xº �G � ¹yº;

we are done.
(e) We show that X �G �¹vº is a direct product, the other statement being similar.

Let .x; g/; .x0; g0/ 2 X �G. Then

.x; g; v/ � .x0; g0; v/ D .x; gŒv; x0�g0; v/

D .x; geg0; v/

D .xx0; gg0; vv/:

(f) Trivially ¹uº � G � ¹vº is isomorphic to G. Now, let .x; y/ 2 X � Y . Then
¹xº � G � ¹vº and ¹uº � G � ¹vº are maximal groups in the minimal left ideal
X � G � ¹vº, hence are isomorphic by Theorem 1.42. Also ¹xº � G � ¹vº and
¹xº �G � ¹yº are maximal groups in the minimal right ideal ¹xº �G � Y , hence are
isomorphic by the left-right switch of Theorem 1.42.

(g) By Lemma 1.62 all minimal left ideals of S are isomorphic and by (e) X �G �
¹vº is isomorphic to X �G. The other conclusion follows similarly.

Note that in Theorem 1.63, the set S is the Cartesian product of X , G, and Y , but
is not the direct product unless Œy; x� D e for every .y; x/ 2 Y �X .

Observe that as a consequence of Theorem 1.63 (g) we have that for any y 2 Y ,
X�G�¹yº � X�G. However, there is no transparent isomorphism unless Œy; x� D e
for all x 2 X , such as when y D v.

Theorem 1.63 spells out in detail the structure of X �G � Y . We see now that this
is in fact the structure of the smallest ideal of any semigroup which has a minimal left
ideal with an idempotent.
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Theorem 1.64 (The Structure Theorem). Let S be a semigroup and assume that there
is a minimal left ideal of S which has an idempotent. LetR be a minimal right ideal of
S , let L be a minimal left ideal of S , let X D E.L/, let Y D E.R/, and let G D RL.
Define an operation � on X � G � Y by .x; g; y/ � .x0; g0; y0/ D .x; gyx0g0; y0/.
Then X � G � Y satisfies the conclusions of Theorem 1.63 (where Œy; x� D yx) and
K.S/ � X �G � Y . In particular:

(a) The minimal right ideals of S partition K.S/ and the minimal left ideals of S
partition K.S/.

(b) The maximal groups in K.S/ partition K.S/.

(c) All minimal right ideals of S are isomorphic and all minimal left ideals of S are
isomorphic.

(d) All maximal groups in K.S/ are isomorphic.

Proof. After noting that, by Lemma 1.43 and Theorem 1.51, the minimal left ideals
of S and of K.S/ are identical (and the minimal right ideals of S and of K.S/ are
identical), the “in particular” conclusions follow immediately from Theorem 1.63. So
it suffices to show that X � G � Y satisfies the hypotheses of Theorem 1.63 with
Œy; x� D yx and that K.S/ � X �G � Y .

We know by Lemma 1.57 that S has a minimal right ideal with an idempotent (soR
exists) and hence by Theorem 1.56 R has an idempotent. We know by Theorem 1.61
that RL is a group and we know by Theorem 1.42 that X is a left zero semigroup and
Y is a right zero semigroup. Let e be the identity of RL D R\L and let u D v D e.
Given y 2 Y one has, since Y is a right zero semigroup, that Œy; u� D yu D u D e.
Similarly, given x 2 X , Œv; x� D e. Consequently the hypotheses of Theorem 1.63
are satisfied.

Define ' W X � G � Y ! S by '.x; g; y/ D xgy. We claim that ' is an iso-
morphism onto K.S/. From the definition of the operation in X � G � Y we see
immediately that ' is a homomorphism. By Theorem 1.42 we have that L D XG and
R D GY . By Theorem 1.53, K.S/ D LR D XGGY D XGY D 'ŒX � G � Y �.
Thus it suffices to produce an inverse for '.

For each t 2 K.S/, let �.t/ be the inverse of ete in eSe D G. Then t�.t/ D
t�.t/e 2 Se D L and

t�.t/t�.t/ D t�.t/ete�.t/

D te�.t/

D t�.t/;

so t�.t/ 2 X . Similarly, �.t/t 2 Y .
Define 	 W K.S/ ! X � G � Y by 	.t/ D .t�.t/; ete; �.t/t/. We claim that

	 D '�1. So let .x; g; y/ 2 X �G � Y . Then

	.'.x; g; y// D .xgy�.xgy/; exgye; �.xgy/xgy/:
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Now

xgy�.xgy/ D xxgy�.xgy/ .x D xx/

D xexgye�.xgy/ .x D xe and �.xgy/ D e�.xgy//

D xe

D x:

Similarly �.xgy/xgy D y. Since also exgye D ege D g, we have that 	 D '�1 as
required.

The following theorem enables us to identify the smallest ideal of many semigroups
that arise in topological applications.

Theorem 1.65. Let S be a semigroup which contains a minimal left ideal with an
idempotent. Let T be a subsemigroup of S which also contains a minimal left ideal
with an idempotent and assume that T \ K.S/ ¤ ;. Then the following statements
hold:

(1) K.T / D T \K.S/.

(2) The minimal left ideals of T are precisely the nonempty sets of the form T \L,
where L is a minimal left ideal of S .

(3) The minimal right ideals of T are precisely the nonempty sets of the form T \R,
where R is a minimal right ideal of S .

(4) If T is an ideal of S , then K.T / D K.S/.

Proof. (1) By Theorem 1.51,K.T / exists so, sinceK.S/\T is an ideal of T ,K.T / �
K.S/ \ T . For the reverse inclusion, let x 2 K.S/ \ T be given. Then T x is a left
ideal of T so by Corollary 1.47 and Theorem 1.56, T x contains a minimal left ideal
Te of T for some idempotent e 2 T . Now x 2 K.S/ so by Theorem 1.51 pick a
minimal left ideal L of S with x 2 L. Then L D Sx and e 2 T x � Sx so L D Se

so x 2 Se so by Lemma 1.30, x D xe 2 Te � K.T /.
(2) We show first that, for every idempotent e 2 T , Se \ T D Te. To see this, let

x 2 Se \ T . Then x D xe 2 Te. So Se \ T � Te, and the reverse inclusion is
obvious.

Suppose that L is a minimal left ideal of S and that T \ L ¤ ;. By Corollary
1.47, T \ L contains a minimal left ideal M of T and by Theorem 1.56, there is an
idempotent e 2M . Now Se is a left ideal of S and Te is a left ideal of T so Se D L
and Te DM . Thus L \ T D Se \ T D Te DM .

Now suppose that M is a minimal left ideal of T . Then M contains an idempotent
e 2 K.T /. Since e 2 K.S/ by (1), Se is a minimal left ideal of S by Theorem 1.59
and Se \ T D Te DM .
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(3) This proof is the right-left switch of the proof of (2).
(4) If T is an ideal of S , then K.S/ � T . So K.T / D T \K.S/ D K.S/.

We know from the Structure Theorem (Theorem 1.64) that maximal groups in the
smallest ideal are isomorphic. It will be convenient for us later to know an explicit
isomorphism between them.

Theorem 1.66. Let S be a semigroup and assume that there is a minimal left ideal
of S which has an idempotent. Let e; f 2 E.K.S//. If g is the inverse of efe in eSe,
then the function ' W eSe ! fSf defined by '.x/ D f xgf is an isomorphism.

Proof. To see that ' is a homomorphism, let x; y 2 eSe. Then

'.x/'.y/ D f xgffygf

D f xgfygf

D f xgefeygf .ge D g; ey D y/

D f xeygf

D f xygf

D '.xy/:

To see that ' is one-to-one, let x be in the kernel of '. Then

f xgf D f

ef xgfe D efe

efexgefe D efe .ex D x; ge D g/

efexe D efe

efex D efee

x D e (left cancellation in eSe).

To see that ' is onto fSf , let y 2 fSf and let h and k be the inverses of fgf and
fef respectively in fSf . Then ekyhe 2 eSe and

'.ekyhe/ D fekyhegf

D fef kyhgf .f k D k; eg D g/

D fyhgf .fef k D f /

D fyhfgf .h D hf /

D fyf .hfgf D f /

D y:
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We conclude the chapter with a theorem characterizing arbitrary elements ofK.S/.

Theorem 1.67. Let S be a semigroup and assume that there is a minimal left ideal
of S which has an idempotent. Let s 2 S . The following statements are equivalent:

(a) s 2 K.S/.

(b) For all t 2 S , s 2 Sts.

(c) For all t 2 S , s 2 stS .

(d) For all t 2 S , s 2 stS \ Sts.

Proof. (a) implies (d). Pick by Theorem 1.51 and Lemma 1.57 a minimal left ideal L
of S and a minimal right ideal R of S with s 2 L \ R. Let t 2 S . Then ts 2 L so
Sts is a left ideal contained in L so Sts D L. Similarly stS D R.

The facts that (d) implies (c) and (d) implies (b) are trivial.
(b) implies (a). Pick t 2 K.S/. Then s 2 Sts � K.S/.
Similarly (c) implies (a).

Exercise 1.7.1. Let S be a semigroup and assume that there is a minimal left ideal
of S which has an idempotent. Prove that if K.S/ ¤ S and x 2 K.S/, then x is
neither left nor right cancelable in S . (Hint: If x is a member of the minimal left ideal
L, then L D Sx D Lx.)

Exercise 1.7.2. Identify K.S/ for those semigroups S in Exercises 1.4.2 and 1.4.3
for which the smallest ideal exists.

Exercise 1.7.3. Let S and T be semigroups and let h W S ! T be a surjective
homomorphism. If S has a smallest ideal, show that T does as well and that K.T / D
hŒK.S/�. If L is a minimal left ideal of S , show that hŒL� is a minimal left ideal of T ,
and that the corresponding statement also holds for minimal right ideals. If S has a
minimal left ideal which contains an idempotent, show that T does as well. Show
that, in this case, the following statements hold:

(1) For every minimal left ideal L of T , there is a minimal left ideal L0 of S for
which hŒL0� D L;

(2) For every minimal right ideal R of T , there is a minimal right ideal R0 of S for
which hŒR0� D R;

(3) For every minimal idempotent p of T , there is a minimal idempotent p0 of S
for which h.p0/ D p. (Hint: Let L D Tp and R D pT and use (1) and (2).)
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1.8 Notes

Much of the material in this chapter is based on the treatment in [63, Section II.1].
The presentation of the Structure Theorem was suggested to us by J. Pym and is
based on his treatment in [339]. The Structure Theorem (Theorem 1.64) is due to
A. Suschkewitsch [373] in the case of finite semigroups and to D. Rees [347] in the
general case.



Chapter 2

Right Topological (and Semitopological and
Topological) Semigroups

In this (and subsequent) chapters, we assume that the reader has mastered an introduc-
tory course in general topology. In particular, we expect familiarity with the notions
of continuous functions, nets, and compactness.

2.1 Topological Hierarchy

Definition 2.1. (a) A right topological semigroup is a triple .S; � ; T / where .S; � /
is a semigroup, .S; T / is a topological space, and for all x 2 S , �x W S ! S is
continuous.

(b) A left topological semigroup is a triple .S; � ; T / where .S; � / is a semigroup,
.S; T / is a topological space, and for all x 2 S , �x W S ! S is continuous.

(c) A semitopological semigroup is a right topological semigroup which is also a
left topological semigroup.

(d) A topological semigroup is a triple .S; � ; T /where .S; � / is a semigroup, .S; T /
is a topological space, and � W S � S ! S is continuous.

(e) A topological group is a triple .S; � ; T / such that .S; � / is a group, .S; T / is a
topological space, � W S � S ! S is continuous, and InW S ! S is continuous
(where In.x/ is the inverse of x in S ).

We did not include any separation axioms in the definitions given above. However,
all of our applications involve Hausdorff spaces. So we shall be assuming throughout,
except in Chapter 7, that all hypothesized topological spaces are Hausdorff.

In a right topological semigroup we say that the operation “ � ” is “right continu-
ous”. We should note that many authors use the term “left topological” for what we
call “right topological” and vice versa. One may reasonably ask why someone would
refer to an operation for which multiplication on the right is continuous as “left con-
tinuous”. The people who do so ask why we refer to an operation which is continuous
in the left variable as “right continuous”.

We shall customarily not mention either the operation or the topology and say
something like “let S be a right topological semigroup”.

Note that trivially each topological group is a topological semigroup, each topolog-
ical semigroup is a semitopological semigroup and each semitopological semigroup
is both a left and right topological semigroup.
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Of course any semigroup which is not a group provides an example of a topological
semigroup which is not a topological group simply by providing it with the discrete
topology. It is the content of Exercise 2.1.1 to show that there is a topological semi-
group which is a group but is not a topological group.

It is a celebrated theorem of R. Ellis [131], that if S is a locally compact semi-
topological semigroup which is a group then S is a topological group. That is, if
S is locally compact and a group, then separate continuity implies joint continuity
and continuity of the inverse. We shall prove this theorem in the last section of this
chapter. For an example of a semitopological semigroup which is a group but is not a
topological semigroup see Exercise 9.2.7.

It is the content of Exercise 2.1.2 that there is a semitopological semigroup which
is not a topological semigroup.

Recall that given any topological space .X; T /, the product topology on XX is the
topology with subbasis ¹
�1x ŒU � W x 2 X and U 2 T º, where for f 2 XX and
x 2 X , 
x.f / D f .x/. Whenever we refer to a “basic” or “subbasic” open set in
XX , we mean sets defined in terms of this subbasis. The product topology is also often
referred to as the topology of pointwise convergence . The reason for this terminology
is that a net hf�i�2I converges to f in XX if and only if hf�.x/i�2I converges to f .x/
for every x 2 X .

Theorem 2.2. Let .X; T / be any topological space and let V be the product topology
on XX .

(a) .XX; ı;V/ is a right topological semigroup.

(b) For each f 2 XX , �f is continuous if and only if f is continuous.

Proof. Let f 2 XX . Suppose that the net hg�i�2I converges to g in .XX;V/. Then,
for any x 2 X , hg�.f .x//i�2I converges to g.f .x// inX . Thus hg�ıf i�2I converges
to g ı f in .XX;V/, and so �f is continuous. This establishes (a).

Now �f is continuous if and only if hf .g�.x//i�2I converges to f .g.x// for every

net hg�i�2I converging to g in .XX;V/ and every x 2 X . This is obviously the case
if f is continuous. Conversely, suppose that �f is continuous. Let hx�i�2I be a net

converging to x inX . We define g� D x�, the function inXX which is constantly equal
to x� and g D x. Then hg�i�2I converges to g in XX and so hf ı g�i�2I converges to
f ı g. This means that hf .x�/i�2I converges to f .x/. Thus f is continuous, and we
have established (b).

Corollary 2.3. Let X be a topological space. The following statements are equiva-
lent:

(a) XX is a topological semigroup.

(b) XX is a semitopological semigroup.
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(c) For all f 2 XX , f is continuous.

(d) X is discrete.

Proof. Exercise 2.1.3

If X is any nondiscrete space, it follows from Theorem 2.2 and Corollary 2.3 that
XX is a right topological semigroup which is not left topological. Of course, re-
versing the order of operation yields a left topological semigroup which is not right
topological.

Definition 2.4. Let S be a right topological semigroup. The topological center of S
is the set ƒ.S/ D ¹x 2 S W �x is continuousº.

Thus a right topological semigroup S is a semitopological semigroup if and only if
ƒ.S/ D S . Note that trivially the algebraic center of a right topological semigroup is
contained in its topological center.

Exercise 2.1.1. Let T be the topology on R with basis B D ¹.a; b� W a; b 2 R and
a < bº. Prove that .R;C; T / is a topological semigroup but not a topological group.

Exercise 2.1.2. Let S D R[¹1º, let S have the topology of the one point compact-
ification of R (with its usual topology), and define an operation � on S by

x � y D

´
x C y if x; y 2 R

1 if x D1 or y D1 :

(a) Prove that .S;�/ is a semitopological semigroup.

(b) Show that � W S � S ! S is not continuous at .1;1/.

Exercise 2.1.3. Prove Corollary 2.3.

2.2 Compact Right Topological Semigroups

We shall be concerned throughout this book with certain compact right topological
semigroups. Of fundamental importance is the following theorem.

Theorem 2.5. Let S be a compact right topological semigroup. Then E.S/ ¤ ;.

Proof. Let A D ¹T � S W T ¤ ;, T is compact, and T �T � T º. That is, A is the set
of compact subsemigroups of S . We show that A has a minimal member using Zorn’s
Lemma. Since S 2 A, A ¤ ;. Let C be a chain in A. Then C is a collection of closed
subsets of the compact space S with the finite intersection property, so

T
C ¤ ; and
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T
C is trivially compact and a semigroup. Thus

T
C 2 A, so we may pick a minimal

member A of A.
Pick x 2 A. We shall show that xx D x. (It will follow that A D ¹xº, but we

do not need this.) We start by showing that Ax D A. Let B D Ax. Then B ¤ ;
and since B D �x ŒA�, B is the continuous image of a compact space, hence compact.
Also BB D AxAx � AAAx � Ax D B . Thus B 2 A. Since B D Ax � AA � A
and A is minimal, B D A.

Let C D ¹y 2 A W yx D xº. Since x 2 A D Ax, we have C ¤ ;. Also,
C D A \ ��1x Œ¹xº�, so C is closed and hence compact. Given y; z 2 C one has
yz 2 AA � A and yzx D yx D x so yz 2 C . Thus C 2 A. Since C � A and A is
minimal, we have C D A so x 2 C and so xx D x as required.

In Section 1.7 there were several results which had as part of their hypotheses “Let
S be a semigroup and assume there is a minimal left ideal of S which has an idem-
potent.” Because of the following corollary, we are able to incorporate all of these
results.

Corollary 2.6. Let S be a compact right topological semigroup. Then every left ideal
of S contains a minimal left ideal. Minimal left ideals are closed, and each minimal
left ideal has an idempotent.

Proof. If L is any left ideal L of S and x 2 L, then Sx is a compact left ideal
contained in L. (It is compact because Sx D �x ŒS�.) Consequently any minimal left
ideal is closed and by Theorem 2.5 any minimal left ideal contains an idempotent.
Thus we need only show that any left ideal of S contains a minimal left ideal. So let
L be a left ideal of S and let A D ¹T W T is a closed left ideal of S and T � Lº.
Applying Zorn’s Lemma to A, one gets a left ideal M minimal among all closed left
ideals contained in L. But since every left ideal contains a closed left ideal, M is a
minimal left ideal.

We now deduce some consequences of Corollary 2.6. Note that these consequences
apply in particular to any finite semigroup S , since S is a compact topological semi-
group when provided with the discrete topology.

Theorem 2.7. Let S be a compact right topological semigroup.

(a) Every right ideal of S contains a minimal right ideal which has an idempotent.

(b) Let T � S . Then T is a minimal left ideal of S if and only if there is some
e 2 E.K.S// such that T D Se.

(c) Let T � S . Then T is a minimal right ideal of S if and only if there is some
e 2 E.K.S// such that T D eS .

(d) Given any minimal left ideal L of S and any minimal right ideal R of S , there
is an idempotent e 2 R \ L such that R \ L D eSe and eSe is a group.



42 Chapter 2 Right Topological (and Semitopological and Topological) Semigroups

Proof. (a) Corollary 2.6, Lemma 1.57, Corollary 1.47, and Theorem 1.56.
(b) and (c) Corollary 2.6 and Theorem 1.58.
(d) Corollary 2.6 and Theorem 1.61.

Theorem 2.8. Let S be a compact right topological semigroup. Then S has a smallest
(two sided) ideal K.S/ which is the union of all minimal left ideals of S and also the
union of all minimal right ideals of S . Each of ¹Se W e 2 E.K.S//º, ¹eS W e 2
E.K.S//º, and ¹eSe W e 2 E.K.S//º are partitions of K.S/.

Proof. Corollary 2.6 and Theorems 1.58, 1.61, and 1.64.

Theorem 2.9. Let S be a compact right topological semigroup and let e 2 E.S/.
The following statements are equivalent:

(a) Se is a minimal left ideal.

(b) Se is left simple.

(c) eSe is a group.

(d) eSe D H.e/.

(e) eS is a minimal right ideal.

(f) eS is right simple.

(g) e is a minimal idempotent.

(h) e 2 K.S/.

(i) K.S/ D SeS .

Proof. Corollary 2.6 and Theorem 1.59.

Theorem 2.10. Let S be a compact right topological semigroup. Let s 2 S . The
following statements are equivalent:

(a) s 2 K.S/.

(b) For all t 2 S , s 2 Sts.

(c) For all t 2 S , s 2 stS .

(d) For all t 2 S , s 2 stS \ Sts.

Proof. Corollary 2.6 and Theorem 1.67.

The last few results have had purely algebraic conclusions. We now obtain a result
with both topological and algebraic conclusions. Suppose that we have two topo-
logical spaces which are also semigroups. We say that they are topologically and
algebraically isomorphic if there is a function from one of them onto the other which
is both an isomorphism and a homeomorphism.
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Theorem 2.11. Let S be a compact right topological semigroup.

(a) All maximal subgroups of K.S/ are (algebraically) isomorphic.

(b) Maximal subgroups of K.S/ which lie in the same minimal right ideal are
topologically and algebraically isomorphic. In fact, ifR is a minimal right ideal
of S and e; f 2 E.R/, then the restriction of �f to eSe is an isomorphism and
a homeomorphism onto fSf .

(c) All minimal left ideals of S are homeomorphic. In fact, if L and L0 are minimal
left ideals of S and z 2 L0, then �z jL is a homeomorphism from L onto L0.

Proof. (a) Corollary 2.6 and Theorem 1.66.
(b) Let R be a minimal right ideal of S and let e; f 2 E.R/. Then eS and fS are

right ideals contained inR and soR D eS D fS . Then by Lemma 1.30, ef D f and
fe D e. If x 2 eSe, then �f .x/ D xf D exf D fexf D f xf and �e.�f .x// D
xfe D xe D x. If z 2 fSf , then �f .eze/ D ef zef D f zf D z. Since �f
and �e are continuous, we have that the restriction of �f to eSe is a homeomorphism
from eSe onto fSf . To see that it is a homomorphism, let x; y 2 eSe. Then
�f .xy/ D xeyf D xfeyf D xfyf D �f .x/�f .y/.

(c) Let L and L0 be minimal left ideals of S and let z 2 L0. By Theorem 2.7 (b),
pick e 2 E.K.S// such that L D Se. Then �z jL is a continuous function from Se to
Sz D L0 and �zŒSe� D L0 because Sez is a left ideal of S which is contained in L0.
To see that �z is one-to-one on Se, let g be the inverse of eze in eSe. We show that
for x 2 Se, �g.�z.x// D x, so let x 2 Se be given.

xzg D xezeg .x D xe and g D eg/

D xe

D x:

Since �zjL is one-to-one and continuous andL is compact, �zjL is a homeomorphism.

Recall that given any idempotents e; f in a semigroup S , e 
R f if and only if
fe D e.

Theorem 2.12. Let S be a compact right topological semigroup and let e 2 E.S/.
There is a 
R-maximal idempotent f in S with e 
R f .

Proof. Let A D ¹x 2 E.S/ W e 
R xº. Then A ¤ ; because e 2 A. Let C be a

R-chain in A. Then ¹c`¹r 2 C W x 
R rº W x 2 C º is a collection of closed subsets
of S with the finite intersection property, so

T
x2C c`¹r 2 C W x 
R rº ¤ ;. Since

S is Hausdorff,
T
x2C c`¹r 2 C W x 
R rº � ¹t 2 S W for all x 2 C , tx D xº.

Consequently, ¹t 2 S W for all x 2 C , tx D xº is a compact subsemigroup of S and
hence by Theorem 2.5 there is an idempotent y such that for all x 2 C , yx D x. This
y is an upper bound for C , so A has a maximal member.
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Given e; f 2 E.K.S// and an assignment to find an isomorphism from eSe onto
fSf , most of us would try first the function 	 W eSe ! fSf defined by 	.y/ D
fyf . In fact, if eS D fS , this works (Exercise 2.2.1). We see now that this natural
function need not be a homomorphism if eS ¤ fS and Se ¤ Sf .

Example 2.13. Let S be the semigroup consisting of the eight distinct elements e, f ,
ef , fe, efe, fef , efef , and fefe, with the following multiplication table.

� e f ef fe efe fef efef fefe

e e ef ef efe efe efef efef e

f fe f fef fe fefe fef f fefe

ef efe ef efef efe e efef ef e

fe fe fef fef fefe fefe f f fe

efe efe efef efef e e ef ef efe

fef fefe fef f fefe fe f fef fe

efef e efef ef e efe ef efef efe

fefe fefe f f fe fe fef fef fefe

Then S with the discrete topology is a compact topological semigroup and fef is
not an idempotent so the function 	 W eSe ! fSf defined by 	.x/ D f xf is not a
homomorphism.

Once again, the simplest way to see that one has in fact defined a semigroup is to
produce a concrete representation. In this case the 2 � 2 integer matrices e D

�
1 0
0 0

�
and f D

�
�1 �2
1 2

�
generate the semigroup S .

The topological center of a compact right topological semigroup is important for
many applications. The following lemma will be used later in this book.

Lemma 2.14. Let S and T be compact right topological semigroups, letD be a dense
subsemigroup of S such that D � ƒ.S/, and let � be a continuous function from S

to T such that

(1) �ŒD� � ƒ.T / and

(2) �jD is a homomorphism.

Then � is a homomorphism.

Proof. For each d 2 D, � ı �d and ��.d/ ı � are continuous functions agreeing on
the dense subset D of S . Thus for all d 2 D and all y 2 S , �.dy/ D �.d/�.y/.
Therefore, for all y 2 S , � ı �y and ��.y/ ı � are continuous functions agreeing on a
dense subset of S so for all x and y in S , �.xy/ D �.x/�.y/.

Exercise 2.2.1. Let S be a compact right topological semigroup and let e; f 2
E.K.S// such that eS D fS . Let g be the inverse of efe in the group eSe and
define ' W eSe ! fSf by '.x/ D f xgf . Define 	 W eSe ! fSf by 	.x/ D f xf .
Prove that 	 D '.
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Exercise 2.2.2. Let S be a compact right topological semigroup, let T be a semigroup
with topology, and let ' W S ! T be a continuous homomorphism. Prove that 'ŒS�
is a compact right topological semigroup.

Exercise 2.2.3. Prove that a compact cancellative right topological semigroup is a
group.

2.3 Closures and Products of Ideals

We investigate briefly the closures of right ideals, left ideals, and maximal subgroups
of right topological semigroups. We also consider their Cartesian product.

Theorem 2.15. Let S be a right topological semigroup and let R be a right ideal
of S . Then c`R is a right ideal of S .

Proof. This is Exercise 2.3.1.

On the other hand, the closure of a left ideal need not be a left ideal. We leave the
verification of the details in the following example to the reader.

Example 2.16. LetX be any compact space with a subsetD such that c`D ¤ X and
jc`D nDj � 2. Define an operation � on X by

x � y D

´
y if y 2 D

x if y … D:

ThenX is a compact right topological semigroup,ƒ.X/ D ;, and the set of left ideals
of X is ¹Xº [ ¹B W ; ¤ B � Dº. In particular, D is a left ideal of X and c`D is not
a left ideal.

Often, however, we see that the closure of a left ideal is an ideal.

Theorem 2.17. Let S be a compact right topological semigroup and assume that
ƒ.S/ is dense in S . Let L be a left ideal of S . Then c`L is a left ideal of S .

Proof. Let x 2 c`L and let y 2 S . To see that yx 2 c`L, let U be an open
neighborhood of yx. Pick a neighborhood V of y such that Vx D �x ŒV � � U and
pick z 2 ƒ.S/\V . Then zx D �z.x/ 2 U so pick a neighborhoodW of x such that
zW � U . Pick w 2 W \ L. Then zw 2 U \ L.

In our applications we shall often be concerned with semigroups with dense center.
(If S is discrete and commutative, then ˇS has dense center – see Theorem 4.23.)



46 Chapter 2 Right Topological (and Semitopological and Topological) Semigroups

Lemma 2.18. Let S be a compact right topological semigroup. The following state-
ments are equivalent:

(a) The (algebraic) center of S is dense in S .

(b) There is a dense commutative subset A of S with A � ƒ.S/.

Proof. The fact that (a) implies (b) is trivial. To see that (b) implies (a), let A be a
dense commutative subset of S with A � ƒ.S/. For every x 2 A, the continuous
functions �x and �x are equal on A and are therefore equal on S . So A is contained
in the center of S .

Theorem 2.19. Let S be a compact right topological semigroup with dense center.

(a) If R is a right ideal of S , then c`R is a two sided ideal of S .

(b) If e 2 E.K.S//, then c`.eSe/ D Se.

Proof. Let A be the center of S .
(a) By Theorem 2.15, c`R is a right ideal of S . To see that S �.c`R/ � c`R, let y 2

c`R be given. Then given any x 2 A one has �y.x/ D xy D yx 2 .c`R/x � c`R.
Thus �y ŒA� � c`R, so �y ŒS� D �y Œc`A� � c` �y ŒA� � c`R. That is Sy � c`R as
required.

(b) Since Se is closed (being the continuous image of a compact space), c`.eSe/ �
Se. On the other hand, since �e is continuous, Se D .c`A/e D c`.Ae/ D c`.eAe/ �
c`.eSe/.

Theorem 2.20. Let S be a compact right topological semigroup with dense center.
Assume that S has some minimal right ideal R which is closed. Then R D K.S/ and
all maximal subgroups of K.S/ are closed and pairwise algebraically and topologi-
cally isomorphic.

Proof. By Theorem 2.19 (a), c`R is an ideal so K.S/ � c`R D R � K.S/. Given
e 2 E.K.S//, H.e/ D eSe D R \ Se by Theorems 2.9 and 2.7 so H.e/ is closed.
Any two maximal subgroups of K.S/ lie in the same minimal right ideal and so are
algebraically and topologically isomorphic by Theorem 2.11.

Theorem 2.21. Let S be a compact right topological semigroup with dense center.
The following statements are equivalent:

(a) K.S/ is a minimal right ideal of S .

(b) All maximal subgroups of K.S/ are closed.

(c) Some maximal subgroup of K.S/ is closed.
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Proof. (a) implies (b). Let e 2 E.K.S//. Then by Theorem 2.9 eS is a minimal right
ideal and Se is a minimal left ideal so by Theorem 2.7 (d), eSe D eS \ Se. Since
K.S/ is a minimal right ideal eS D K.S/. Since Se � K.S/, eSe D eS\Se D Se,
and Se is closed.

The fact that (b) implies (c) is trivial.
(c) implies (a). Pick e 2 E.K.S// such that eSe is closed. Let R D eS . By

Theorem 2.19 (b), c`.eSe/ D Se. So Se D eSe � eS D R. Now any other minimal
right ideal of S would be disjoint from R so would miss Se, which is impossible by
Lemma 1.29 (b). Thus R is the only minimal right ideal of K.S/, which is the union
of all minimal right ideals, so K.S/ D R.

We have seen that the Cartesian product of semigroups is itself a semigroup un-
der the coordinatewise operation. If the semigroups are also topological spaces the
product is naturally a topological space.

Theorem 2.22. Let hSi ii2I be a family of right topological semigroups and let S D
⨉i2I Si . With the product topology and coordinatewise operations, S is a right topo-
logical semigroup. If each Si is compact, then so is S . If Ex 2 S and for each i 2 I ,
�xi W Si ! Si is continuous, then �Ex W S ! S is continuous.

Proof. This is Exercise 2.3.5.

Note that the following theorem is entirely algebraic. We shall only need it, how-
ever, in the case in which each Si is a compact right topological semigroup. In this
case, each Si does have a smallest ideal by Theorem 2.8.

Theorem 2.23. Let hSi ii2I be a family of semigroups and let S D ⨉i2I Si . Suppose
that, for each i 2 I , Si has a smallest ideal. Then S also has a smallest ideal and
K.S/ D ⨉i2I K.Si /.

Proof. We first note that ⨉i2I K.Si / is an ideal of S .
Let Eu 2 ⨉i2I K.Si /. Then�

⨉
i2I

K.Si /
�
� Eu �

�
⨉
i2I

K.Si /
�
D ⨉
i2I

.K.Si / � ui �K.Si // D ⨉
i2I

K.Si /

so by Lemma 1.52 (b), K.S/ D ⨉i2I K.Si /.

While we are on the subject of products, we use Cartesian products to establish the
following result which will be useful later.

Theorem 2.24. Let A be a set and let G be the free group generated by A. Then G
can be embedded in a compact topological group. This means that there is a compact
topological group H and a one-to-one homomorphism ' W G ! H .
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Proof. Recall that ; is the identity ofG. For each g 2 Gn¹;º D G0, pick by Theorem
1.23 a finite group Fg and a homomorphism �g W G ! Fg such that �g.g/ is not
the identity of Fg . Let each Fg have the discrete topology. Then H D ⨉g2G0 Fg is
a compact topological group. Define a homomorphism ' W G ! H by stating that
'.h/g D �g .h/. Then, if g 2 G0, we know that '.g/g is not the identity of Fg . So
the kernel of ' is ¹;º and hence ' is one-to-one as required.

Exercise 2.3.1. Prove Theorem 2.15.

Exercise 2.3.2. Let S be a right topological semigroup, and let T be a subset of the
topological center of S . Prove that c`T is a semigroup if T is a semigroup.

Exercise 2.3.3. Verify the assertions in Example 2.16.

Exercise 2.3.4. Let X andD be as in Example 2.16 except thatD is open and c`D n
D D ¹zº. Prove that ƒ.X/ D ¹zº.

Exercise 2.3.5. Prove Theorem 2.22.

2.4 Semitopological and Topological Semigroups

We only scratch the surface of the theory of semitopological semigroups and the the-
ory of topological semigroups, in order to indicate the kinds of results that hold in
these settings but not in the setting of right topological semigroups.

We shall see many examples of right topological semigroups that have no closed
minimal right ideals, including our favorite .ˇN;C/. (See Theorems 6.9 and 2.20.)
By way of contrast we have the following theorem.

Theorem 2.25. Let S be a compact semitopological semigroup and let a 2 S . Then
aS , Sa, and aSa are closed.

Proof. Exercise 2.4.1.

Corollary 2.26. Let S be a compact semitopological semigroup with dense center.
Then S is commutative and K.S/ is a group.

Proof. For any x 2 S , �x and �x are continuous functions agreeing on a dense sub-
space of S and therefore on the whole of S . So S is commutative.

By Corollary 2.6 and Exercise 1.6.5, K.S/ is a group.

In fact a stronger conclusion holds. See Corollary 2.40.

Theorem 2.27. Let S be a semitopological semigroup and let T be a subsemigroup
of S . Then c`T is a subsemigroup of S .

Proof. This follows from Exercise 2.3.2.
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By way of contrast we shall now see that in a right topological semigroup, the
closure of a subsemigroup need not be a semigroup. (This also holds, as we shall see
in Theorem 8.21, in .ˇN;C/.)

Theorem 2.28. Let X be the one point compactification of N and let T D ¹f 2
XX W f is one-to-oneº. Then c`T is not a semigroup.

Proof. For each n 2 N, define gn W X ! X by

gn.x/ D

´
x C n if x 2 N

1 if x D1:

Let g W X ! X be the constant function 1. Then each gn 2 T and hgni1nD1
converges to g in XX so g 2 c`T .

Now define f W X ! X by

f .x/ D

´
x C 1 if x 2 N

1 if x D1:

Then f 2 T while f ı g … c`T because ¹h 2 XX W h.1/ D h.2/ D 1º is a
neighborhood of f ı g in XX which misses T .

We see, however, that many subsemigroups of XX do have closures that are semi-
groups.

Theorem 2.29. Let X be a topological space and let S � XX be a semigroup such
that for each f 2 S , f is continuous. Then c`S is a semigroup.

Proof. This follows from Theorem 2.2 and Exercise 2.3.2.

The closed semigroups of Theorem 2.29 are important in topological dynamics and
we will have occasion to refer to them often.

Definition 2.30. Let X be a topological space and let S be a semigroup contained in
XX such that for all f 2 S , f is continuous. Then c`S is the enveloping semigroup
of S .

If T 2 XX is continuous and S D ¹T n W n 2 Nº, then c`S is the enveloping
semigroup of T .

By Theorem 2.29, if T 2 XX is continuous, then c`¹T n W n 2 Nº is a semi-
group. We see that one cannot add a single point of discontinuity and expect the same
conclusion.
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Example 2.31. Let X D Œ0; 1� with the usual topology and define f 2 XX by

f .x/ D

´
1 if x D 0

x=2 if 0 < x 
 1:

Then c`¹f n W n 2 Nº D ¹f n W n 2 Nº [ ¹0º but f ı 0 D 1 … c`¹f n W n 2 Nº.

Theorem 2.32. Let S be a compact topological semigroup. Then all maximal sub-
groups of S are closed and are topological groups.

Proof. Let e 2 E.S/. By Lemma 1.19, an element x 2 eSe is in H.e/ if and only
if there is an element y 2 eSe for which yx D xy D e. Now eSe is closed as it is
the continuous image of S under the mapping �e ı�e . Suppose that x is a limit point
of a net hx�i�2I in H.e/. For each � 2 I there is an element y� 2 H.e/ for which
x�y� D y�x� D e. By joint continuity any limit point y of the net hy�i�2I satisfies
xy D yx D e and so x 2 H.e/.

To see that the inverse function In W H.e/ ! H.e/ is continuous, let x 2 H.e/
and let hx�i�2I be a net in H.e/ converging to x. As observed above, any limit point
y of the net hx��1i�2I satisfies xy D yx D e and so x�1 is the only limit point of
hx�
�1i�2I . That is, hx��1i�2I converges to x�1.

We see that we cannot obtain the conclusion of Theorem 2.32 in an arbitrary com-
pact semitopological semigroup.

Example 2.33. Let S D R [ ¹1º with the topology and semigroup operation given
in Exercise 2.1.2. Then S is a semitopological semigroup, E.S/ D ¹0;1º and
H.0/ D R. Thus H.0/ is not closed.

Note that in Example 2.33, H.1/ D ¹1º, which is closed. In fact, by Theo-
rem 2.25, in any compact semitopological semigroup, all maximal groups in K.S/
are closed.

Exercise 2.4.1. Prove Theorem 2.25

Exercise 2.4.2. Let X be any set. We can identify P .X/ with X¹0; 1º by identifying
each Y 2 P .X/ with its characteristic function �Y , where,

�Y .x/ D

´
1 if x 2 Y

0 if x 2 X n Y:

We can use this identification to give P .X/ a compact topology. Prove that .P .X/;[/
and .P .X/;\/ are topological semigroups. Prove also that .P .X/;/ is a topolog-
ical group which can be identified topologically and algebraically with XZ2 (where
YZ D .Y [Z/ n .Y \Z/, the symmetric difference of Y and Z).
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Exercise 2.4.3. Given a set A � Rn and x 2 Rn define d.x; A/ D inf¹d.x; y/ W
y 2 Aº. Let H .Rn/ denote the set of nonempty compact subsets of Rn. The Haus-
dorff metric on H .Rn/ is defined by

h.A;B/ D inf¹r W d.a; B/ 
 r for all a 2 A and d.b; A/ 
 r for all b 2 Bº:

Prove that with the topology defined by this metric, .H .Rn/;[/ and .H .Rn/;C/ are
topological semigroups, where AC B D ¹aC b W a 2 A and b 2 Bº.

2.5 Ellis’ Theorem

We now set out to show, in Corollary 2.39, that if S is a locally compact semitopolog-
ical group, then S is in fact a topological group. While this result is of fundamental
importance to the theory of semitopological semigroups, it will not be used again in
this book until Chapter 21. Consequently, this section may be viewed as “optional”.

In a metric space .X; d/, given x 2 X and � > 0 we write N.x; �/ D ¹y 2 X W
d.x; y/ < �º.

Lemma 2.34. Let X be a compact metric space and let g W X � X ! R be a
separately continuous function. There is a dense Gı subset D of X such that g is
jointly continuous at each point of D �X .

Proof. Let d be the metric of X . For every � > 0 and every ı > 0, let

Eı;� D ¹x 2 X W whenever y; y0 2 X and d.y; y0/ < ı

one has jg.x; y/ � g.x; y0/j 
 �º:

We first observe that each Eı;� is closed.
We next observe that for each � > 0, X D

S1
nD1E1=n;� . Indeed, for each x the

function y 7! g.x; y/ is uniformly continuous, so for some n, x 2 E1=n;�.
Now letU be a nonempty open subset ofX . For each n 2 N, ifU\intX.E1=n;�/ D
;, then U \ E1=n;� is nowhere dense. Thus, by the Baire Category Theorem, there
exists n 2 N such that U \ intX .E1=n;�/ ¤ ;. Let H� D

S1
nD1 intX .E1=n;�/ DS

ı>0 intX .Eı;�/. Then H� is a dense open subset of X .
Let D D

T
�>0H� D

T1
mD1H1=m. By the Baire Category Theorem, D is dense

in X . To see that g is continuous at each point of D � X , let .x; y/ 2 D � X and
let � > 0. Since x 2 D � H�=2, pick ı > 0 such that x 2 intX .Eı;�=2/. Also
pick a neighborhood U of x such that jg.x; y/ � g.z; y/j < �=2 for all z 2 U . Let
.z; w/ 2 .intX .Eı;�=2/ \ U / � N.y; ı/. Since z 2 Eı;�=2 and d.y;w/ < ı, one
has jg.z; y/ � g.z; w/j 
 �

2
. Since z 2 U , one has jg.x; y/ � g.z; y/j < �

2
. Thus

jg.x; y/ � g.z; w/j < �.
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Lemma 2.35. Let .X; � / be a compact metrizable semitopological semigroup with
identity e and let x be an invertible element of X . Then � is jointly continuous at every
point of .¹xº �X/ [ .X � ¹xº/.

Proof. By symmetry it suffices to show that � is jointly continuous at every point of
¹xº � X . To this end, let y 2 X and let hxni1nD1 and hyni1nD1 be sequences in X
converging to x and y respectively. We shall show that hxnyni1nD1 converges to xy.

To see this, let z be any limit point of the sequence hxnyni1nD1 and choose a subse-
quence hxnrynr i

1
rD1 of hxnyni1nD1 which converges to z.

Suppose that z ¤ xy. Then x�1z ¤ y so pick a continuous function � W X ! R
such that �.x�1z/ D 0 and �.y/ D 1. Define g W X � X ! R by g.u; v/ D �.uv/

and note that g is separately continuous. Pick by Lemma 2.34 a dense subset D of X
such that g is jointly continuous at each point of D �X . Choose a sequence hdni1nD1
in D converging to e.

For each m 2 N, lim
r!1

dmx
�1xnr D dm so, since g is jointly continuous at

.dm; y/,

lim
r!1

�.dmx
�1xnrynr / D lim

r!1
g.dmx

�1xnr ; ynr / D g.dm; y/ D �.dmy/:

Also, for each m, lim
r!1

�.dmx
�1xnrynr / D �.dmx

�1z/. Thus

�.y/ D lim
m!1

�.dmy/ D lim
m!1

lim
r!1

�.dmx
�1xnrynr /

D lim
m!1

�.dmx
�1z/ D �.x�1z/;

a contradiction.

We shall need the following simple lemma.

Lemma 2.36. Let X be a semitopological semigroup, let C be a dense subset of X ,
and let � be a continuous function from X to a topological space Z. Let x; y 2 X . If
�.uxv/ D �.uyv/ for every u; v 2 C , then �.uxv/ D �.uyv/ for every u; v 2 X .

Proof. This is Exercise 2.5.1.

Lemma 2.37. Let X be a compact semitopological semigroup and let � be a contin-
uous real valued function defined on X . We define an equivalence relation on X by
stating that x 	 y if �.uxv/ D �.uyv/ for every u; v 2 X . Let Y denote the quotient
spaceX=	 and let 
 W X ! Y denote the canonical projection. Then Y can be given
a semigroup structure for which Y is also a compact semitopological semigroup and

 is a homomorphism. Furthermore, if X is separable, Y is metrizable.

Proof. First notice that Y is compact since it is the continuous image of a compact
space. To see that Y is Hausdorff, let x; y 2 X and assume that 
.x/ ¤ 
.y/.
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Pick u; v 2 X such that a D �.uxv/ ¤ �.uyv/ D b and let � D ja � bj. Let U D
.�ı�uı�v/

�1ŒN.a; �
2
/� and let V D .�ı�uı�v/�1ŒN.b; �2/�. Then U D 
�1Œ
ŒU ��

and V D 
�1Œ
ŒV �� so 
ŒU � and 
ŒV � are disjoint neighborhoods of 
.x/ and 
.y/.
Define an operation on Y by 
.x/
.y/ D 
.xy/. To see that the operation is

well defined, assume that x 	 x0 and y 	 y0 and let u; v 2 X . Then �.uxyv/ D
�.ux0yv/ D �.ux0y0v/. The operation is clearly associative. It follows from Exer-
cise 2.2.2 and its dual that Y is a semitopological semigroup.

Now suppose that X has a countable dense subset C . Let  W X ! C�CR be
defined by  .x/.u; v/ D �.uxv/. Then  is continuous. Define b W Y ! C�CR byb .
.x// D  .x/. Then b is clearly well defined. To see that b is continuous, let U
be an open subset of C�CR and let V D b �1ŒU �. Then 
�1ŒV � D  �1ŒU � so V is
open.

We claim that b is one-to-one. To see this, suppose that b .
.x// D b .
.y//.
Then �.uxv/ D �.uyv/ for every u; v 2 C . It follows that �.uxv/ D �.uyv/ for
every u; v 2 X (by Lemma 2.36) and hence that 
.x/ D 
.y/.

We can now conclude that Y is homeomorphic to O ŒY �. This is metrizable, as it is
a subspace of C�CR, the product of a countable number of copies of R.

Theorem 2.38. Let .S; � / be a compact semitopological semigroup with identity e
and let x be an invertible element of S . Then � is jointly continuous at every point of
.¹xº � S/ [ .S � ¹xº/.

Proof. Let y 2 S . To show that � is jointly continuous at .x; y/, it is sufficient to show
that the mapping .w; z/ 7! �.wz/ is jointly continuous at .x; y/ for every continuous
real valued function � .

Suppose, on the contrary, that there exists a continuous real valued function � for
which this mapping is not jointly continuous at .x; y/. Then there exists ı > 0 such
that every neighborhood of .x; y/ in S�S contains a point .w; z/ for which j�.wz/�
�.xy/j > ı.

We shall inductively choose sequences hxni1nD1 and hyni1nD1 in S . We first choose
x1 and y1 arbitrarily. We then assume that m 2 N and that xi and yi have been
chosen for every i 2 ¹1; 2; : : : ; mº. Put

Cm D
° mY
iD1

wi W for all i; wi 2 ¹e; x; x�1; yº[¹x1; x2; : : : ; xmº[¹y1; y2; : : : ; ymº
±
:

We note that Cm is finite and that for each u; v 2 Cm, � ı �u ı �v is continuous.
We can therefore choose xmC1 and ymC1 satisfying j�.uxmC1v/ � �.uxv/j < 1

mC1

and j�.uymC1v/ � �.uyv/j < 1
mC1

for every u; v 2 Cm, while j�.xmC1ymC1/ �
�.xy/j > ı.

Let C D
S1
mD1 Cm. Then C is a subsemigroup of S , because, if u 2 Ck and

v 2 Cm, then uv 2 CkCm. Let X D c`C . Then X is a subsemigroup of S by
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Theorem 2.27. Let � D �jX and let Y be the quotient of X as described in Lemma
2.37. Then Y is a compact metrizable semitopological semigroup with identity 
.e/,
and 
.x/ has the inverse 
.x�1/ in Y . So, by Lemma 2.35, � is jointly continuous at
.
.x/; 
.y//.

We claim that 
.xn/ ! 
.x/. Suppose instead that there is some z 2 X such
that 
.z/ ¤ 
.x/ and 
.z/ is an accumulation point of the sequence h
.xn/i1nD1.
Choose by Lemma 2.36 some u; v 2 C such that �.uzv/ ¤ �.uxv/ and pick k 2
N such that j�.uzv/ � �.uxv/j > 1

k
. Pick m � 2k such that u; v 2 Cm. Let

V D ¹w 2 X W j�.uwv/ � �.uzv/j < 1
2k
º. Then V D 
�1Œ
ŒV �� so 
ŒV � is a

neighborhood of 
.z/ so choose n > m such that j�.uxnv/ � �.uzv/j < 1
2k

. Since
also j�.uxnv/��.uxv/j < 1

n
, we have that j�.uzv/��.uxv/j < 1

k
, a contradiction.

Similarly, 
.yn/! 
.y/.
So 
.xn/
.yn/ ! 
.xy/ in Y . Let W D ¹w 2 X W j�.w/ � �.xy/j < ıº. Then


ŒW � is a neighborhood of 
.xy/ in Y , so pick n such that 
.xnyn/ 2 
ŒW �. Then
j�.xnyn/ � �.xy/j < ı, a contradiction.

This establishes that � is jointly continuous at every point of ¹xº�S . By symmetry,
it is also jointly continuous at every point of S � ¹xº.

We can now prove Ellis’ Theorem.

Corollary 2.39 (Ellis’ Theorem). Let S be a locally compact semitopological semi-
group which is algebraically a group. Then S is a topological group.

Proof. If S is compact, let eS D S . Otherwise, let eS D S [ ¹1º denote the one-
point compactification of S . We extend the semigroup operation of S to eS by putting
s � 1 D 1 � s D 1 for every s 2 eS . It is then simple to check that eS is a compact
semitopological semigroup with an identity. So, by Theorem 2.38, the semigroup
operation oneS is jointly continuous at every point of .S �eS/[ .eS �S/. In particular,
S is a topological semigroup.

To see that the inverse function is continuous on S , let x 2 S and let hx˛i˛2I be
a net in S converging to x. We claim that hx˛�1i˛2I converges to x�1. To see this,
let z be any cluster point of hx˛�1i˛2I in eS and choose a subnet hxı�1iı2J which
converges to z. Then by the continuity of � at .x; z/, hxıxı�1iı2J converges to xz.
Therefore z D x�1.

Corollary 2.40. Let S be a compact semitopological semigroup with dense center.
Then K.S/ is a compact topological group.

Proof. By Corollary 2.26, K.S/ is a semitopological group. ThusK.S/ has a unique
idempotent e and so K.S/ D Se by Theorem 2.8. Thus K.S/ is compact and so by
Corollary 2.39, K.S/ is a topological group.

Exercise 2.5.1. Prove Lemma 2.36.
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2.6 Notes

Theorem 2.5 was proved for topological semigroups by K. Numakura [313] and
A. Wallace [384, 385, 386]. The first proof using only one sided continuity seems
to be that of R. Ellis [132, Lemma 1].

Theorem 2.9 is due to W. Ruppert [353].
Example 2.13 is from [62], a result of collaboration with J. Berglund.
Example 2.16 is due to W. Ruppert [353], as is Theorem 2.19 (a) [356].
Lemma 2.34 is a special case of a theorem of J. Christensen [101]. As we have

already remarked, Corollary 2.39 is a result of R. Ellis [131]. The proof given here
involves essentially the same ideas as that given by W. Ruppert in [354]. (An al-
ternate proof of comparable length to that given here is presented by J. Auslander
in [12, pp. 57–63].) Theorem 2.38 was proved by J. Lawson [288]. For additional
information see [354] and [289].



Chapter 3

ˇD-Ultrafilters and The Stone–Čech
Compactification of a Discrete Space

There are many different constructions of the Stone–Čech compactification of a topo-
logical space X . In the case in which the space is discrete, the Stone–Čech compacti-
fication of X may be viewed as the set of ultrafilters on S and it is this approach that
we adopt.

3.1 Ultrafilters

Definition 3.1. Let D be any set. A filter on D is a nonempty set U of subsets of D
with the following properties:

(a) If A;B 2 U, then A \ B 2 U.

(b) If A 2 U and A � B � D, then B 2 U.

(c) ; … U.

A classic example of a filter is the set of neighborhoods of a point in a topological
space. (We remark that a neighborhood of a point is a set containing an open set
containing that point. That is neighborhoods do not, in our view, have to be open.)
Another example is the set of subsets of any infinite set whose complements are finite.

We observe that, if U is any filter on D, then D 2 U.

Definition 3.2. Let D be a set and let U be a filter on D. A family A is a filter base
for U if and only if A � U and for each B 2 U there is some A 2 A such that
A � B .

Thus, in a topological space, the open neighborhoods of a point form a filter base
for the filter of neighborhoods of that point.

Definition 3.3. An ultrafilter onD is a filter onD which is not properly contained in
any other filter on D.

We record immediately the following very simple but also very useful fact about
ultrafilters.

Remark 3.4. Let D be a set and let U and V be ultrafilters on D. Then U D V if
and only if U � V .
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Those more familiar with measures may find it helpful to view an ultrafilter on D
as a ¹0; 1º-valued finitely additive measure on P .D/. (The members of the ultrafilter
are the “big” sets. See Exercise 3.1.2.)

Lemma 3.5. Let U be a filter on the set D and let A � D. Either

(a) there is some B 2 U such that A \ B D ; or

(b) ¹C � D W there is some B 2 U with A \ B � C º is a filter on D.

Proof. This is Exercise 3.1.3.

Recall that a set A of sets has the finite intersection property if and only if whenever
F is a finite nonempty subset of A,

T
F ¤ ;.

Theorem 3.6. Let D be a set and let U � P .D/. The following statements are
equivalent:

(a) U is an ultrafilter on D.

(b) U has the finite intersection property and for each A 2 P .D/nU there is some
B 2 U such that A \ B D ;.

(c) U is maximal with respect to the finite intersection property. (That is, U is a
maximal member of ¹V � P .D/ W V has the finite intersection propertyº.)

(d) U is a filter on D and for all F 2 Pf .P .D//, if
S

F 2 U, then F \U ¤ ;.

(e) U is a filter on D and for all A � D either A 2 U or D n A 2 U.

Proof. (a) implies (b). By conditions (a) and (c) of Definition 3.1, U has the finite
intersection property. Let A 2 P .D/ n U and let V D ¹C � D W there is some
B 2 U with A \ B � C º. Then A 2 V so U ¨ V so V is not a filter on D. Thus by
Lemma 3.5, there is some B 2 U such that A \ B D ;.

(b) implies (c). If U ¨ V � P .D/, pick A 2 V nU and pick B 2 U such that
A \ B D ;. Then A;B 2 V so V does not have the finite intersection property.

(c) implies (d). Assume that U is maximal with respect to the finite intersection
property among subsets of P .D/. Then one has immediately that U is a nonempty set
of subsets ofD. Since U[¹Dº has the finite intersection property and U � U[¹Dº,
one has U D U[¹Dº. That is,D 2 U. Given A;B 2 U, U[¹A\Bº has the finite
intersection property so A \ B 2 U. Given A and B with A 2 U and A � B � D,
U [ ¹Bº has the finite intersection property so B 2 U. Thus U is a filter.

Now let F 2 Pf .P .D// with
S

F 2 U, and suppose that for each A 2 F ,
A … U. Then given A 2 F , U ¨ U [ ¹Aº so U [ ¹Aº does not have the finite
intersection property so there exists GA 2 Pf .U/ such that A \

T
GA D ;. Let

H D
S
A2F GA. Then H [ ¹

S
F º � U while .

S
F / \

T
H D ;, a contradiction.

(d) implies (e). Let F D ¹A;D n Aº.
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(e) implies (a). Assume that U is a filter on D and for all A � D either A 2 U or
D nA 2 U. Let V be a filter with U � V and suppose that U ¤ V . Pick A 2 V nU.
Then D n A 2 U � V while A \ .D n A/ D ;, a contradiction.

If a 2 D, ¹A 2 P .D/ W a 2 Aº is easily seen to be an ultrafilter on D. This
ultrafilter is called the principal ultrafilter defined by a.

Theorem 3.7. Let D be a set and let U be an ultrafilter on D. The following state-
ments are equivalent:

(a) U is a principal ultrafilter.

(b) There is some F 2 Pf .D/ such that F 2 U.

(c) The set ¹A � D W D n A is finiteº is not contained in U.

(d)
T

U ¤ ;.

(e) There is some x 2 D such that
T

U D ¹xº.

Proof. (a) implies (b). Pick x 2 D such that U D ¹A � D W x 2 Aº. Let F D ¹xº.
(b) implies (c). Given F 2 Pf .D/ \U one has D n F … U.
(c) implies (d). Pick A � D such that D n A is finite and A … U. Let F D D n A.

Then F 2 U and F D
S
¹¹xº W x 2 F º so by Theorem 3.6, we may pick x 2 F such

that ¹xº 2 U. Then for each B 2 U , B \ ¹xº ¤ ; so x 2
T

U.
(d) implies (e). Assume that

T
U ¤ ; and pick x 2

T
U. Then D n ¹xº … U so

¹xº 2 U so
T

U � ¹xº.
(e) implies (a). Pick x 2 D such that

T
U D ¹xº. Then U and ¹A � D W

x 2 Aº are both ultrafilters so by Remark 3.4 it suffices to note that U � ¹A � D W

x 2 Aº.

It is a fact that principal ultrafilters are the only ones whose members can be ex-
plicitly defined. There are no others which can be defined within Zermelo-Fraenkel
set theory. (See the notes to this chapter.) However, the axiom of choice produces a
rich set of nonprincipal ultrafilters on any infinite set.

Theorem 3.8. Let D be a set and let A be a subset of P .D/ which has the finite
intersection property. Then there is an ultrafilter U on D such that A � U.

Proof. Let � D ¹B � P .D/ W A � B and B has the finite intersection propertyº.
Then A 2 � so � ¤ ;. Given a chain C in � one has immediately that A �

S
C .

Given F 2 Pf .
S

C/ there is some B 2 C with F � B so
T

F ¤ ;. Thus
by Zorn’s Lemma we may pick a maximal member U of � . Trivially U is not only
maximal in � , but in fact U is maximal with respect to the finite intersection property.
By Theorem 3.6, U is an ultrafilter on D.
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Corollary 3.9. Let D be a set, let A be a filter on D, and let A � D. Then A … A if
and only if there is some ultrafilter U with A [ ¹D n Aº � U.

Proof. Since one cannot have a filter U with A 2 U and D n A 2 U, the sufficiency
is trivial.

For the necessity it suffices by Theorem 3.8 to show that A[¹D nAº has the finite
intersection property. So suppose instead that there is some finite nonempty F � A

such that .D n A/ \
T

F D ;. Then
T

F � A so A 2 A.

The following concept will be important in the combinatorial applications of ultra-
filters.

Definition 3.10. Let R be a nonempty set of sets. We say that R is partition regular
if and only if whenever F is a finite set of sets and

S
F 2 R, there exist A 2 F and

B 2 R such that B � A.

We do not require that ; … R, but any family with ; as a member is trivially
partition regular.

Given a property‰ of subsets of some setD, (i.e. a statement about these sets), we
say the property is partition regular provided ¹A � D W ‰.A/º is partition regular.

Notice that we do not require that a partition regular family be closed under su-
persets (in some set D). (The reason is that there are combinatorial families, such as
the sets of finite products from infinite sequences, that are partition regular under our
requirement (by Corollary 5.15) but not under the stronger requirement.) See however
Exercise 3.1.6

Definition 3.10.1. Let R be a set of sets. Then R is weakly partition regular if and
only if, given any finite partition of

S
R, there is a set in the partition which contains

a member of R.

Notice the difference between R being partition regular and being weakly partition
regular. For example ¹A 2 Pf .N/ W jAj > 1º is not partition regular but is weakly
partition regular. Notice also, that if S is a set and

S
R � S , then R is weakly

partition regular if and only if, given any finite partition of S , there is a set in the
partition which contains a member of R.

Theorem 3.11. Let D be a set and let R � P .D/ be nonempty and assume that
; … R. Let R" D ¹B 2 P .D/ W A � B for some A 2 Rº. The following statements
are equivalent:

(a) R is partition regular.

(b) Whenever A � P .D/ has the property that every finite nonempty subfamily of
A has an intersection which is in R", there is an ultrafilter U on D such that
A � U � R".

(c) Whenever A 2 R, there is some ultrafilter U on D such that A 2 U � R".
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Proof. (a) implies (b). Let B D ¹A � D W for all B 2 R, A \ B ¤ ;º and note that
B ¤ ; since D 2 B. Note also that we may assume that A ¤ ;, since ¹Dº has the
hypothesized property. Let C D A [B. We claim that C has the finite intersection
property. To see this it suffices (since A and B are nonempty) to let F 2 Pf .A/ and
G 2 Pf .B/ and show that

T
F \

T
G ¤ ;. So suppose instead that we have such F

and G with
T

F \
T

G D ;. Pick B 2 R such that B �
T

F . Then B \
T

G D ;

and so B D
S
A2G .B n A/. Pick A 2 G and C 2 R such that C � B n A. Then

A \ C D ;, contradicting the fact that A 2 B.
By Theorem 3.8 there is an ultrafilter U on D such that C � U. Given C 2 U,

D n C … B (since C \ .D n C/ D ; … U). So pick some B 2 R such that
B \ .D n C/ D ;. That is, B � C .

(b) implies (c). Let A D ¹Aº.
(c) implies (a). Let F be a finite set of sets with

S
F 2 R and let U be an

ultrafilter on D such that
S

F 2 U and for each C 2 U there is some B 2 R such
that B � C . Pick by Theorem 3.6 some A 2 F \U.

Definition 3.12. Let D be a set and let U be an ultrafilter on D. The norm of U is
kUk D min¹jAj W A 2 Uº.

Note that, by Theorem 3.7, if U is an ultrafilter, then kUk is either 1 or infinite.

Definition 3.13. Let D be a set and let � be an infinite cardinal. A �-uniform ultra-
filter on D is an ultrafilter U on D such that kUk � �. The set U�.D/ D ¹U W U

is a �-uniform ultrafilter on Dº. A uniform ultrafilter on D is a �-uniform ultrafilter
on D, where � D jDj.

Corollary 3.14. Let D be any set and let A be a family of subsets of D. If the inter-
section of every finite subfamily of A is infinite, then A is contained in an ultrafilter
on D all of whose members are infinite. More generally, if � is an infinite cardinal
and if the intersection of every finite subfamily of A has cardinality at least �, then A

is contained in a �-uniform ultrafilter on D.

Proof. The property of being infinite is partition regular, and so is the property of
having cardinality at least �.

If the intersection of every finite subfamily of A is infinite, A is said to have the
infinite finite intersection property. Thus, Corollary 3.14 says that if A has the infi-
nite finite intersection property, then there is a nonprincipal ultrafilter U on D with
A � U.

Exercise 3.1.1. Let A be a set of sets. Prove that there is some filter U onD D
S

A

such that A is a filter base for U if and only if A ¤ ;, ; … A, and for every finite
nonempty subset F of A, there is some A 2 A such that A �

T
F .
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Exercise 3.1.2. Let D be any set. Show that the ultrafilters on D are in one-to-
one correspondence with the finitely additive measures defined on P .D/ which take
values in ¹0; 1º and are not identically zero.

Exercise 3.1.3. Prove Lemma 3.5.

Exercise 3.1.4. Let D be any set. Show that the ultrafilters on D are in one-to-one
correspondence with the Boolean algebra homomorphisms mapping .P .D/;[;\/
onto the Boolean algebra .¹0; 1º;_;^/.

Exercise 3.1.5. Let D be a set with cardinality c. Show that there is no nonprincipal
ultrafilter U on D with the property that every countable subfamily of U has an
intersection which belongs to U. (Hint: D can be taken to be the interval Œ0; 1�
in R. If an ultrafilter U with these properties did exist, every a 2 Œ0; 1� would have a
neighborhood which did not belong to U.)

Exercise 3.1.6. Let R be a set of sets and let D be a set such that
S

R � D. Let
R" D ¹B � D W there is some A 2 R with A � Bº. Prove that the following
statements are equivalent:

(a) R is partition regular.

(b) If F is a finite set of sets and there is some C 2 R with C �
S

F , then there
exist A 2 F and B 2 R with B � A.

(c) R" is partition regular.

(d) If F is a finite set of sets and
S

F 2 R", then F \R" ¤ ;.

3.2 The Topological Space ˇD

In this section we define a topology on the set of all ultrafilters on a set D, and estab-
lish some of the properties of the resulting space.

Definition 3.15. Let D be a discrete topological space.

(a) ˇD D ¹p W p is an ultrafilter on Dº.

(b) Given A � D, bA D ¹p 2 ˇD W A 2 pº.
The reason for the notation ˇD will become clear in the next section. We shall

hence forward use lower case letters to denote ultrafilters on D, since we shall be
thinking of ultrafilters as points in a topological space.

Definition 3.16. Let D be a set and let a 2 D. Then e.a/ D ¹A � D W a 2 Aº.

Thus for each a 2 D, e.a/ is the principal ultrafilter corresponding to a.
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Lemma 3.17. Let D be a set and let A;B � D.

(a) 3.A \ B/ D bA \ bB;

(b) 3.A [ B/ D bA [ bB;

(c) 2.D n A/ D ˇD nbA;

(d) bA D ; if and only if A D ;;

(e) bA D ˇD if and only if A D D;

(f) bA D bB if and only if A D B .

Proof. This is Exercise 3.2.1.

We observe that the sets of the formbA are closed under finite intersections, becausebA \ bB D 1A \ B . Consequently, ¹bA W A � Dº forms a basis for a topology on ˇD.
We define the topology of ˇD to be the topology which has these sets as a basis.

The following theorem describes some of the basic topological properties of ˇD.

Theorem 3.18. Let D be any set.

(a) ˇD is a compact Hausdorff space.

(b) The sets of the form bA are the clopen subsets of ˇD.

(c) For every A � D, bA D c`ˇD eŒA�.

(d) For any A � D and any p 2 ˇD, p 2 c`ˇD eŒA� if and only if A 2 p.

(e) The mapping e is injective and eŒD� is a dense subset of ˇD whose points are
precisely the isolated points of ˇD.

(f) If U is an open subset of ˇD, c`ˇD U is also open.

Proof. (a) Suppose that p and q are distinct elements of ˇD. If A 2 p n q, then
D n A 2 q. So bA and 1D n A are disjoint open subsets of ˇD containing p and q
respectively. Thus ˇD is Hausdorff.

We observe that the sets of the form bA are also a base for the closed sets, because
ˇD n bA D 1D n A. Thus, to show that ˇD is compact, we shall consider a family
A of sets of the form bA with the finite intersection property and show that A has a
nonempty intersection. Let B D ¹A � D W bA 2 Aº. If F 2 Pf .B/, then there is

some p 2
T
A2F

bA and so
T

F 2 p and thus
T

F ¤ ;. That is, B has the finite
intersection property, so by Theorem 3.8 pick q 2 ˇD with B � q. Then q 2

T
A.

(b) We pointed out in the proof of (a) that each set bA was closed as well as open.
Suppose that C is any clopen subset of ˇD. Let A D ¹bA W A � D and bA � C º.
Since C is open, A is an open cover of C . Since C is closed, it is compact by (a)
so pick a finite subfamily F of P .D/ such that C D

S
A2F

bA. Then by Lemma

3.17 (b), C D b

S
F .



Section 3.2 The Topological Space ˇD 63

(c) Clearly, for each a 2 A, e.a/ 2 bA and therefore c`ˇD eŒA� � bA. To prove the

reverse inclusion, let p 2 bA. If bB denotes a basic neighborhood of p, then A 2 p
and B 2 p and so A \ B ¤ ;. Choose any a 2 A \ B . Since e.a/ 2 eŒA� \ bB ,
eŒA� \ bB ¤ ; and thus p 2 c`ˇD eŒA�.

(d) By (c) and the definition of bA,

p 2 c`ˇD eŒA� , p 2 bA
, A 2 p:

(e) If a; b 2 D are distinct, D n ¹aº 2 e.b/ n e.a/ and so e.a/ ¤ e.b/.
If bA is a nonempty basic open subset of ˇD, then A ¤ ;. Any a 2 A satisfies

e.a/ 2 eŒD� \bA and so eŒD� \bA ¤ ;. Thus eŒD� is dense in ˇD.
For any a 2 D, e.a/ is isolated in ˇD because c¹aº is an open subset of ˇD whose

only member is e.a/. Conversely if p is an isolated point of ˇD, then ¹pº\eŒD� ¤ ;
and so p 2 eŒD�.

(f) If U D ;, the conclusion is trivial and so we assume that U ¤ ;. Put A D
e�1ŒU �. We claim first that U � c`ˇD eŒA�. So let p 2 U and let bB be a basic

neighborhood of p. ThenU\bB is a nonempty open set and so by (e), U\bB\eŒD� ¤
;. So pick b 2 B with e.b/ 2 U . Then e.b/ 2 bB \ eŒA� and so bB \ eŒA� ¤ ;.

Also eŒA� � U and henceU � c`ˇD eŒA�� c`ˇD U . Thus c`ˇD U D c`ˇD eŒA�DbA (by (c)), and so c`ˇD U is open in ˇD.

We next establish a characterization of the closed subsets of ˇD which will be
useful later.

Definition 3.19. Let D be a set and let A be a filter on D. Then bA D ¹p 2 ˇD W
A � pº.

Theorem 3.20. Let D be a set.

(a) If A is a filter on D, then bA is a closed subset of ˇD.

(b) If ; ¤ A � ˇD and A D
T
A, then A is a filter on D and bA D c`A.

Proof. (a) Let p 2 ˇD n bA. Pick B 2 A n p. Then 1D n B is a neighborhood of p
which misses bA.

(b) A is the intersection of a set of filters, so A is a filter. Further, for each p 2 A,
A � p so A � bA and thus by (a), c`A � bA. To see that bA � c`A, let p 2 bA and let
B 2 p. Suppose bB \ A D ;. Then for each q 2 A, D n B 2 q so D n B 2 A � p,
a contradiction.

It is customary to identify a principal ultrafilter e.x/ with the point x, and we
shall adopt that practice ourselves after we have provedthat ˇD is the Stone–Čech
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compactification of the discrete space D in Section 3.3. Once this is done, we can
write the following definition as A� D bA n A. For the moment, we shall continue to
maintain the distinction between x and e.x/.

Definition 3.21. Let D be a set and let A � D. Then A� D bA n eŒA�.
The following theorem is simple but useful. Once e.x/ is identified with x the

conclusion becomes “U \D 2 p”.

Theorem 3.22. Let p 2 ˇD and let U be a subset of ˇD. If U is a neighborhood of
p in ˇD, then e�1ŒU � 2 p.

Proof. If U is a neighborhood of p, there is a basic open subset bA of ˇD for which
p 2 bA � U . This implies that A 2 p and so e�1ŒU � 2 p, because A � e�1ŒU �.

Recall that a space is zero dimensional if and only if it has a basis of clopen sets.

Theorem 3.23. Let X be a zero dimensional space and let Y be a compact subset
of X . The clopen subsets of Y are the sets of the form C \Y where C is clopen in X .
In particular, if D is an infinite set, then the nonempty clopen subsets of D� are the
sets of the form A� where A is an infinite subset of D.

Proof. Trivially, if C is clopen in X , then C \ Y is clopen in Y . For the converse, let
B be clopen in Y and let A D ¹A \ Y W A is clopen in X and A \ Y � Bº. Since
X is zero dimensional, A is an open cover of B . Since Y is compact and hence B is
compact, pick a finite set F of clopen subsets of X such that B D

S
A2F .A \ Y /

and let C D
S

F .
The “in particular” conclusion follows from Corollary 3.14 and Theorem 3.18 (b).

Corollary 3.23.1. Let S be an infinite discrete space. Then

¹A� W A is an infinite subset of Sº

is a basis for the topology of S�.

Proof. By Theorem 3.18 (b), ˇS is zero dimensional and any subspace of a zero di-
mensional space is zero dimensional so the set of all clopen subsets of S� is a basis
for S�.

Exercise 3.2.1. Prove Lemma 3.17.
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3.3 Stone–Čech Compactification

In this section we show that ˇD is the Stone–Čech compactification of the discrete
space D.

Recall that by an embedding of a topological space X into a topological space Z,
one means a function ' W X ! Z which defines a homeomorphism from X onto
'ŒX�.

We remind the reader that we are assuming that all hypothesized topological spaces
are Hausdorff.

Definition 3.24. Let X be a topological space. A compactification of X is a pair
.'; C / such that C is a compact space, ' is an embedding of X into C , and 'ŒX� is
dense in C .

Any completely regular space X has a largest compactification called its Stone–
Čech compactification.

Definition 3.25. Let X be a completely regular topological space. A Stone–Čech
compactification of X is a pair .';Z/ such that

(a) Z is a compact space,

(b) ' is an embedding of X into Z,

(c) 'ŒX� is dense in Z, and

(d) given any compact space Y and any continuous function f W X ! Y there
exists a continuous function g W Z ! Y such that g ı ' D f . (That is the
diagram

X

Z

Y

' g

f�
�
��

�

�
�
��

commutes.)

One customarily refers to the Stone–Čech compactification of a space X rather
than a Stone–Čech compactification of X . The reason is made clear by the following
remark. If one views ' as an inclusion map, then Remark 3.26 may be viewed as
saying: “The Stone–Čech compactification of X is unique up to a homeomorphism
leaving X pointwise fixed.”

Remark 3.26. Let X be a completely regular space and let .';Z/ and .	;W / be
Stone–Čech compactifications of X . Then there is a homeomorphism � W Z ! W

such that � ı ' D 	 .
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Theorem 3.27. Let D be a discrete space. Then .e; ˇD/ is a Stone–Čech compacti-
fication of D.

Proof. Conditions (a), (b), and (c) of Definition 3.25 hold by Theorem 3.18. It re-
mains for us to verify condition (d).

Let Y be a compact space and let f W D ! Y . For each p 2 ˇD let Ap D

¹c`Y f ŒA� W A 2 pº. Then for each p 2 ˇD, Ap has the finite intersection property
(Exercise 3.3.1) and so has a nonempty intersection. Choose g.p/ 2

T
Ap . Then we

have the following diagram.

D

ˇD

Y

e g

f�
�
��

�

�
�
��

We need to show that the diagram commutes and that g is continuous.
For the first assertion, let x 2 D. Then ¹xº 2 e.x/ so g.e.x// 2 c`Y f Œ¹xº� D

c`Y Œ¹f .x/º� D ¹f .x/º so g ı e D f as required.
To see that g is continuous, let p 2 ˇD and let U be a neighborhood of g.p/

in Y . Since Y is regular, pick a neighborhood V of g.p/ with c`Y V � U and let
A D f �1ŒV �. We claim that A 2 p so suppose instead that D n A 2 p. Then
g.p/ 2 c`Y f ŒD n A� and V is a neighborhood of g.p/ so V \ f ŒD n A� ¤ ;,
contradicting the fact that A D f �1ŒV �. Thus bA is a neighborhood of p. We claim
that gŒbA� � U , so let q 2 bA and suppose that g.q/ … U . Then Y n c`Y V is a
neighborhood of g.q/ and g.q/ 2 c`Y f ŒA� so .Y n c`Y V / \ f ŒA� ¤ ;, again
contradicting the fact that A D f �1ŒV �.

Although we have not used that fact, each of the sets
T

Ap is a singleton. (See
Exercise 3.3.2.)

We have shown in Theorem 3.27 that ˇD is the Stone–Čech compactification ofD.
This explains the reason for using the notation ˇD for this space: if X is any com-
pletely regular space, ˇX is the standard notation for its Stone–Čech compactification.
X is usually regarded as being a subspace of ˇX .

3.3.1 IdentifyingD with eŒD�

It is common practice in dealing with ˇD to identify the points ofD with the principal
ultrafilters generated by those points, and we shall adopt this practice from this point
on. Only rarely will it be necessary to remind the reader that when we write s we
sometimes mean e.s/.

Once we have identified s 2 D with e.s/ 2 ˇD, we shall suppose that D � ˇD

and shall write D� D ˇD n D, rather than D� D ˇD n eŒD�. Further, with this
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identification, bA D c`ˇD A for every A 2 P .D/, by Theorem 3.18. So the notationsbA and A become interchangeable.
We illustrate the conversion process by restating Theorem 3.27.

Theorem 3.28 (Stone–Čech Compactification–restated). LetD be an infinite discrete
space. Then

(a) ˇD is a compact space,

(b) D � ˇD,

(c) D is dense in ˇD, and

(d) given any compact space Y and any function f W D ! Y there exists a contin-
uous function g W ˇD ! Y such that gjD D f .

3.3.2 Identifying ˇT with bT for T � S

In a similar fashion, if T � S , we shall identify p 2 bT (which is an ultrafilter on S )
with the ultrafilter ¹A \ T W A 2 pº (which is an ultrafilter on T ) and thus we shall
pretend that ˇT � ˇS .

Exercise 3.3.1. LetD be a discrete space, let Y be a compact space, and let f W D !
Y . For each p 2 ˇD let Ap D ¹c`Y f ŒA� W A 2 pº. Prove that for each p 2 ˇD, Ap
has the finite intersection property.

Exercise 3.3.2. Let the sets Ap be as defined in the proof of Theorem 3.27. Prove that
for each p 2 ˇD,

T
Ap is a singleton. (Hint: Consider the fact that two continuous

functions agreeing on eŒD� must be equal.)

Exercise 3.3.3. Let D be any discrete space and let A � D. Prove that c`ˇD A can
be identified with ˇA.

Exercise 3.3.4. Let D be a discrete space and let M be the set of finitely additive
measures defined on P .D/ which take values in ¹0; 1º and are not identically zero.
According to Exercise 3.1.2, there is a natural function � W ˇD ���!1-1

onto M . Give
P .D/¹0; 1º the product topology and let M have the relative topology. Prove that
� is a homeomorphism.

3.4 More Topology of ˇD

If f is a continuous mapping from a completely regular space X into a compact
space Y , we shall often use ef to denote the continuous mapping from ˇX to Y which
extends f , although in some cases we may use the same notation for a function and
its extension. (Notice that there can be only one continuous extension, since any two
extensions agree on a dense subspace.)
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Definition 3.29. Let D be a discrete space, let Y be a compact space, and let f W
D ! Y . Then ef is the continuous function from ˇD to Y such that ef jD D f .

If f W X ! Y is a continuous function between completely regular spaces, it has
a continuous extension f ˇ W ˇX ! ˇY . The reader with an interest in category
theory might like to know that this defines a functor from the category of completely
regular spaces to that of compact Hausdorff spaces, and that this is a left adjoint to the
inclusion functor embedding the second category in the first.

Lemma 3.30. Let D and E be discrete spaces and let f W D ! E � ˇE. For
each p 2 ˇD, ef .p/ D ¹A � E W f �1ŒA� 2 pº. In particular, if A 2 p, then
f ŒA� 2 ef .p/; and if B 2 ef .p/, then f �1ŒB� 2 p.

Proof. It is routine to verify that ¹A � E W f �1ŒA� 2 pº is an ultrafilter on E. For
each p 2 ˇD, let g.p/ D ¹A � E W f �1ŒA� 2 pº. Now, given x 2 D we have
g.x/ D ¹A � E W f .x/ 2 Aº. Recalling that we are identifying x with e.x/ and
f .x/ with e.f .x// we have g.x/ D f .x/. To see that g is continuous, let bA be a

basic open set in ˇE. Then g�1ŒbA� D 2f �1ŒA�. Since g is a continuous extension
of f , we have ef D g.

Lemma 3.31. Let D and E be discrete spaces, let f; g W D ! E, and let p 2 ˇD
satisfy ef .p/ Deg.p/. Then for each A 2 p, ¹x 2 D W f .x/ 2 gŒA�º 2 p.

Proof. By Lemma 3.30, gŒA� 2 eg.p/ D ef .p/ so, again applying Lemma 3.30,
f �1ŒgŒA�� 2 p.

Lemma 3.32. Suppose that D is any discrete space and that f is a mapping from
D to itself. The mapping ef W ˇD ! ˇD has a fixed point if and only if every finite
partition of D has a cell C for which C \ f ŒC � ¤ ;.

Proof. Suppose first that D has a finite partition in which every cell C satisfies C \
f ŒC � D ;. Let p 2 ˇD and pick a cell C satisfying C 2 p. This implies by Lemma
3.30 that f ŒC � 2 ef .p/ and hence that ef .p/ ¤ p.

Conversely, suppose that ef has no fixed points. For each p 2 ˇD pick Ap 2
p n ef .p/, pick Bp 2 p such that ef ŒcBp� \ cAp D ;, and let Cp D Ap \ Bp. Then
¹cCp W p 2 ˇDº is an open cover of ˇD so pick finite F � ˇD such that ¹cCp W p 2 F º
covers ˇD. Then ¹Cp W p 2 F º covers D and can thus be refined to a finite partition
F of D such that each C 2 F satisfies C \ f ŒC � D ;.

Lemma 3.33. Suppose thatD is a set and that f W D ! D is a function with no fixed
points. Then D can be partitioned into three sets A0, A1, and A2 with the property
that Ai \ f ŒAi � D ; for each i 2 ¹0; 1; 2º.
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Proof. We consider the set

G D ¹g W (i) g is a function,

(ii) dom.g/ � D;

(iii) ran.g/ � ¹0; 1; 2º;

(iv) f Œdom.g/� � dom.g/, and

(v) for each a 2 dom.g/; g.a/ ¤ g.f .a//º:

We observe that G is nonempty, because the function ; is a member of G .
Then G is partially ordered by set inclusion and, if C is a chain in G , then

S
C 2 G ,

so Zorn’s Lemma implies that G has a maximal element g. We shall show that
dom.g/ D D.

We assume the contrary and suppose that b 2 D n dom.g/. We then define a
function h extending g. To do so, we put h.a/ D g.a/ for every a 2 dom.g/. We
choose h.b/ to be a value in ¹0; 1; 2º, choosing it so that h.b/ ¤ h.f .b// if h.f .b//
has already been defined. Now suppose that h.f m.b// has been defined for eachm 2
¹0; 1; 2; : : : ; nº. (Where f 0.b/ D b and f tC1.b/ D f .f t .b//.) If h.f nC1.b// has
not yet been defined, we choose h.f nC1.b// to be a value in ¹0; 1; 2º different from
h.f n.b// and from h.f nC2.b//, if the latter has already been defined. In this way, we
can inductively define a function h 2 G with dom.h/ D dom.g/ [ ¹f n.b/ W n 2 !º.
Since g ¨ h, we have contradicted our choice of g as being maximal in G . Thus
dom.g/ D D.

We now define the sets Ai by putting Ai D g�1Œ¹iº� for each i 2 ¹0; 1; 2º.

Theorem 3.34. Let D be a discrete space and let f W D ! D. If f has no fixed
points, neither does ef W ˇD ! ˇD.

Proof. This follows from Lemmas 3.32 and 3.33.

Theorem 3.35. Let D be a set, let f W D ! D, let ef W ˇD ! ˇD be its continuous
extension, and let p 2 ˇD. Then ef .p/ D p if and only if ¹a 2 D W f .a/ D aº 2 p.

Proof. Let E D ¹a 2 D W f .a/ D aº. We first assume that ef .p/ D p. We want to
show that E 2 p so suppose instead that D nE 2 p. We choose any b 2 D nE, and
define g W D ! D by stating that g.a/ D f .a/ if a 2 D nE and g.a/ D b if a 2 E.
Then g has no fixed points. However, f D g on D nE and so ef Deg on c`.D nE/.
Since p 2 c`.D n E/,eg.p/ D ef .p/ D p. This contradicts Theorem 3.34 and hence
E 2 p.

Conversely, suppose that E 2 p. Let � W D ! D be the identity function. Since
f D � on E, ef De� on c`E. Since p 2 c`E, ef .p/ De�.p/ D p.

We shall see in Theorem 11.1.1 that for any infinite set S there exist functions
f and g from S to S whose continuous extensions agree at a point p 2 S�, but
¹x 2 S W f .x/ D g.x/º D ;.



70 Chapter 3 ˇD-Ultrafilters and The Stone–Čech Compactification of a Discrete Space

Theorem 3.36. If D is any infinite set, every nonempty Gı -subset of D� has a
nonempty interior in D�.

Proof. Suppose that, for each n 2 N,Un is an open subset of ˇD and that
T1
nD1.Un\

D�/ ¤ ;. Choose any p 2
T1
nD1.Un\D

�/. For each n 2 N, we can choose a subset
An of D for which p 2 A�n � Un. We may assume that these sets are decreasing,
because we can replace each An by

Tn
iD1Ai . Observe that each An is infinite, for

otherwise we would have A�n D ;. We can thus choose an infinite sequence hani1nD1
of distinct points of D for which an 2 An for each n 2 N. Put A D ¹an W n 2 Nº. If
q 2 A�, then q 2 cAn for every n 2 N, because A n An is finite. Thus the nonempty
open subset A� of D� is contained in

T1
nD1.Un \D

�/.

Corollary 3.37. Let D be any set. Any countable union of nowhere dense subsets of
D� is again nowhere dense in D�.

Proof. For each n 2 N, let An be a nowhere dense subset of D�. To see thatS1
nD1An is nowhere dense, it suffices to show that B D

S1
nD1 c`An is nowhere

dense. Suppose instead one has U D intD� c`B ¤ ;. By the Baire Category Theo-
rem D� n B is dense in D� so U n B ¤ ;. Thus U n B D

T1
nD1.U n c`An/ is a

nonempty Gı which thus, by Theorem 3.36, has nonempty interior, say V . But then
V \ c`B D ; while V � U , a contradiction.

A point p in a topological space is said to be a P-point if the intersection of any
countable family of neighborhoods of p is also a neighborhood of p. Thus an ultra-
filter p 2 N� is a P-point of N� if and only if whenever hAni1nD1 is a sequence of
members of p, there is some B 2 p such that jB n Anj < ! for all n 2 N.

We see now that the Continuum Hypothesis implies that P-points exist in N�. And
the reader will be asked to show in Exercise 12.1.3 that Martin’s Axiom implies that
P-points exist in N�. It is a fact that their existence cannot be proved in ZFC . (See
the notes to this chapter.)

Theorem 3.38. The Continuum Hypothesis implies that P-points exist in N�.

Proof. Assume the Continuum Hypothesis and enumerate P .N/ as hC˛i˛<!1 with
C0 D N. Let A0 D ¹C0º. Inductively let 0 < � < !1 and assume that we have
chosen A˛ for all ˛ < � such that

(1) A˛ has the infinite finite intersection property,

(2) either C˛ 2 A˛ or N n C˛ 2 A˛,

(3) if ı < ˛, then Aı � A˛,

(4) jA˛j 
 !, and

(5) there exists A 2 A˛ such that for each F 2 Pf .A˛/, jA n
T

F j < !.
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Let hBni1nD1 list the elements of
S
˛<� A˛ (with repetition if necessary). If there

is some n such that jC� \
Tn
mD1Bmj < !, let D D N n C� and otherwise let

D D C� . Then for each n 2 N, jD \
Tn
mD1Bmj D ! so we may choose a one-to-

one sequence hxni1nD1 with each xn 2 D \
Tn
mD1Bm. Let A D ¹xn W n 2 Nº and

let A� D ¹A;Dº [
S
˛<� A˛. Then the induction hypotheses are satisfied.

Let p D
S
�<!1

A� . Then by hypotheses (1) and (2), p 2 N�. Given a sequence
hEni

1
nD1 of members of p, pick � < !1 such that ¹En W n 2 Nº � ¹C˛ W ˛ < �º. By

hypothesis (5), there is someA 2 A� � p such that jAnEnj < ! for each n 2 N.

Definition 3.39. A topological space is said to be extremally disconnected if the clo-
sure of every open subset is open.

We showed in Theorem 3.18 (f) that ˇD is an extremally disconnected space. Since
we often work with D�, the reader should be cautioned that D� is not extremally
disconnected [167, Exercise 6W].

The following theorem will be very useful in our algebraic investigations of count-
able semigroups.

Theorem 3.40. Let D be a discrete space and let A and B be � -compact subsets
of ˇD. If A \ c`B D c`A \ B D ;, then c`A \ c`B D ;.

Proof. Write A D
S1
nD1An and B D

S1
nD1Bn where An and Bn are compact for

each n. Since ˇD is a compact (Hausdorff) space, it is normal. For each n 2 N, An
and c`B are disjoint closed sets and c`A and Bn are disjoint closed sets so pick open
sets Tn, Un, Vn, and Wn such that Tn \ Un D Vn \Wn D ;, An � Tn, c`B � Un,
c`A � Vn, and Bn � Wn. For each n 2 N, let Gn D Tn \

Tn
kD1 Vk and let

Hn D Wn \
Tn
kD1Uk . Then for each n, one has An � Gn and Bn � Hn. Further,

given any n;m 2 N, Gn \Hm D ;.
Let C D

S1
nD1Gn and let D D

S1
nD1Hn. Then C and D are disjoint open sets

(so D \ c`C D ;), A � C , and B � D. By Theorem 3.18 (f) c`C is open, so
c`B \ c`C D ;. Since c`A � c`C we have c`A \ c`B D ; as required.

The following equivalent (see Exercise 3.4.2) version of Theorem 3.40 is also use-
ful.

Corollary 3.41. Let D be a discrete space and let A and B be � -compact subsets of
ˇD. Then c`A \ c`B � c`.A \ c`B/ [ c`.B \ c`A/.

Proof. Let p 2 c`A\ c`B and suppose that p … c`.A\ c`B/[ c`.B \ c`A/. Pick
H 2 p such that bH \ .A\ c`B/ D ; and bH \ .B \ c`A/ D ;. Let A0 D bH \A and
B 0 D bH \ B . Then A0 and B 0 are � -compact subsets of ˇD and p 2 c`A0 \ c`B 0

so by Theorem 3.40 we may assume without loss of generality that A0\ c`B 0 ¤ ; so
pick q 2 A0 \ c`B 0. Then q 2 bH \ .A \ c`B/, a contradiction.
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We isolate some specific instances of Theorem 3.40 that we shall often use.

Corollary 3.42. Let D be a discrete space.

(a) Let A and B be � -compact subsets of D�. If A \ c`B D c`A \ B D ;, then
c`A \ c`B D ;.

(b) Let A and B be countable subsets of ˇD. If A \ c`B D c`A \ B D ;, then
c`A \ c`B D ;.

(c) Let A and B be countable subsets of D�. If A \ c`B D c`A \ B D ;, then
c`A \ c`B D ;.

Proof. Countable sets are � -compact. By Theorem 3.18 (e) D� D ˇD n eŒD� is a
closed subset of ˇD so � -compact subsets of D� are � -compact in ˇD.

Corollary 3.42.1. Let D be a discrete space. Every convergent sequence contained
in ˇD is eventually constant.

Proof. Suppose that hani1nD1 is a sequence in ˇD which converges to an element
a 2 ˇD and is not eventually constant. We may suppose that the sequence is injective
and for every n 2 N, an ¤ a, because we could replace hani1nD1 by a subsequence
with this property. Then a 2 c`.¹a2n�1 W n 2 Nº/ \ c`.¹a2n W n 2 Nº/. However,
given k 2 N, pick disjoint neighborhoods U of a2k�1 and V of a. Since ha2ni1nD1
is eventually in V we have that a2k�1 … c`.¹a2n W n 2 Nº/. Similarly, a2k …
c`.¹a2n�1 W n 2 Nº/. This contradicts Corollary 3.42 (b).

Lemma 3.42.2. Let D be a discrete space. Let hani1nD1 and hbni1nD1 be two se-
quences in ˇD with the property that an ¤ bn for every n 2 N. Then there is an
infinite subset M of N such that c`.¹an W n 2M º/ \ c`.¹bn W n 2M º/ D ;.

Proof. We first consider the case in which hani1nD1 takes on one value infinitely often.
So for some infinite L � N and some a 2 ˇD, an D a whenever n 2 L. Then
bn ¤ a if n 2 L. Since hbnin2L does not converge to a, pick a neighborhood U
of a such that hbnin2L is not eventually in U . Choose an infinite subset M of L
such that bn … U for each n 2 M . Then a … c`.¹bn W n 2 M º/. So c`.¹an W
n 2M º/\ c`.¹bn W n 2M º/ D ; and our claim holds in this case. We may therefore
suppose that hani1nD1 does not take on the same value infinitely often and therefore,
by Corollary 3.42.1, has no convergent subsequences. By symmetry we may assume
that hbni1nD1 has no convergent subsequences.

Since hbni1nD1 does not converge to a1, we can choose an infinite subset L1 of N
such that a1 … c`.¹bn W n 2 L1º/. Since hanin2L1 does not converge to b1, we
can choose an infinite subset M1 of L1 such that b1 … c`.¹an W n 2 M1º/. We put
n1 D 1.
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We now make the inductive assumption that k � 1 and that we have chosen
n1; n2; : : : ; nk in N and infinite subsets M1;M2; : : : ;Mk of N with the following
properties:

(1) M1 �M2 � : : : �Mk ;

(2) for each i 2 ¹1; 2; : : : ; kº, ani … c`.¹bn W n 2 Miº/ and bni … c`.¹an W n 2
Miº/; and

(3) for each i 2 ¹2; 3; : : : ; kº, ni 2Mi�1.

We choose nkC1 2 Mk . We then choose an infinite subset LkC1 of Mk such that
ankC1 … c`.¹bn W n 2 LkC1º/, and then an infinite subset MkC1 of LkC1 such that
bnkC1 … c`.¹an W n 2MkC1º/.

We claim that, for each k 2 N, ank … c`.¹bni W i 2 Nº/. Firstly, ank … c`.¹bni W
i > kº/ because ¹ni W i > kº � Mk . Also ank ¤ bnk and ank ¤ bnl if l < k,
because nk 2Ml . So ank … c`.¹bni W i 2 Nº/. Similarly, bnk … c`.¹ani W i 2 Nº/.

Our claim now follows from Corollary 3.42 (b).

Theorem 3.42.3. Let D be a discrete space and let E be a compact Gı -subset of a
compact space X . If � and  are continuous functions from X to ˇD which coincide
on E, then they coincide on a neighborhood of E.

Proof. Since X is normal, we may choose a decreasing sequence hWni1nD1 of closed
neighborhoods of E such that E D

T
n2N Wn. Suppose that, for each n 2 N, there

exists xn 2 Wn such that �.xn/ ¤  .xn/. Let an D �.xn/ and bn D  .xn/

for each n 2 N. By Lemma 3.42.2, there is an infinite subset M of N such that
c`.¹an W n 2 M º/ \ c`.¹bn W n 2 M º/ D ;. However, if x is a cluster point
of hxnin2M , then x 2 E and so �.x/ D  .x/. This is a contradiction, because
�.x/ 2 c`.¹an W n 2M º/ and  .x/ 2 c`.¹bn W n 2M º/.

The following notion will be used in the exercises and later.

Definition 3.43. Let X be a topological space and let A � X . Then A is strongly
discrete if and only if there is a family hUxix2A of open subsets ofX such that x 2 Ux
for each x 2 A and Ux \ Uy D ; whenever x and y are distinct members of A.

Exercise 3.4.1. Suppose that f W D ! E is a mapping from a discrete space D to a
discrete space E. Prove that ef W ˇD ! ˇE is injective if f is injective, surjective if
f is surjective and a homeomorphism if f is bijective.

Exercise 3.4.2. Derive Theorem 3.40 from Corollary 3.41.

Exercise 3.4.3. Recall that all hypothesized topological spaces are Hausdorff.

(a) Prove that any infinite topological space has two disjoint nonempty open sets,
at least one of which is infinite.



74 Chapter 3 ˇD-Ultrafilters and The Stone–Čech Compactification of a Discrete Space

(b) Prove that any infinite topological space has an infinite strongly discrete subset.

(c) Prove that any countably infinite discrete subset of a regular space is strongly
discrete.

Exercise 3.4.4. Let X be an extremally disconnected regular space. Prove that no
sequence can converge in X unless it is eventually constant.

Exercise 3.4.5. LetD be any set. Prove that no proper F� -subset ofD� can be dense
in D�.

Exercise 3.4.6. LetD be any set. Prove that no zero set inD� can be a singleton. (A
subset Z of a topological space X is said to be a zero set if Z D f �1Œ¹0º� for some
continuous function f W X ! Œ0; 1�.) (Hint: Use Theorem 3.36.)

Exercise 3.4.7. Let D be any discrete space. Prove that every separable subspace of
ˇD is extremally disconnected. (Hint: Use Theorem 3.40.)

Exercise 3.4.8. LetD andE be discrete spaces. Let � and be continuous functions
from ˇD to ˇE which coincide on D�. Prove that ¹x 2 ˇD W �.x/ ¤  .x/º is finite.
(Hint: The proof is essentially the same as that of Theorem 3.42.3.)

3.5 Uniform Limits via Ultrafilters

We now introduce the notion of p-limit. The definition of p-limit is very natural to
anyone familiar with nets. We would like p-lim

s2D

xs D y to mean that xs is “often”

“close to” y. Closeness is of course determined by neighborhoods of y while “often”
is determined by members of p. (Recall that an ultrafilter can be thought of as a
¹0; 1º-valued measure.)

As we shall see, the notion is as versatile as the notion of nets, and has two signifi-
cant advantages: (1) in a compact space a p-limit always converges and (2) it provides
a “uniform” way of taking limits, as opposed to randomly choosing from among many
possible limit points of a net.

Definition 3.44. Let D be a discrete space, let p 2 ˇD, let hxsis2D be an indexed
family in a topological space X , and let y 2 X . Then p-lim

s2D

xs D y if and only if for
every neighborhood U of y, ¹s 2 D W xs 2 U º 2 p.

Recall that we have identified bA with ˇA for A � D. Consequently, if A 2 p and
xs is defined for s 2 A we write p-lim

s2A

xs without worrying about possible values of
xs for s 2 D n A.

There is a more general concept of limit in a topological space, which may well be
familiar to the reader. We shall show that p-limits and limits coincide for functions
defined on ˇD.
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Definition 3.45. Suppose that X and Y are topological spaces, that A � X and that
f W A ! Y . Let x 2 c`X A and y 2 Y . We shall write lim

a!x
f .a/ D y if and

only if , for every neighborhood V of y, there is a neighborhood U of x such that
f ŒA \ U � � V .

We observe that lim
a!x

f .a/, if it exists, is obviously unique.

Theorem 3.46. Let D be a discrete space, let Y be a topological space, and let
p 2 ˇD and y 2 Y . If A 2 p and f W A ! Y , then p-lim

a2A

f .a/ D y if and only if
lim
a!p

f .a/ D y.

Proof. Suppose that p-lim
a2A

f .a/D y. Then, if V is a neighborhood of y, f �1ŒV � 2 p.

Let B D f �1ŒV �. Then bB is a neighborhood of p by Theorem 3.18 and f ŒbB \A� D
f ŒB� � V .

Conversely, suppose that lim
a!p

f .a/ D y. Then, if V is a neighborhood of y, there

is a neighborhood U of p in ˇD for which f ŒA \ U � � V . Now U \ A 2 p and so,
since U \A� f �1ŒV �, it follows that f �1ŒV �2p. Thus p-lim

a2A

f .a/D y.

Remark 3.47. Let D be a discrete space and let p 2 ˇD. Viewing hsis2D as an
indexed family in ˇD one has p-lim

s2D

s D p.

Theorem 3.48. LetD be a discrete space, let p 2 ˇD, and let hxsis2D be an indexed
family in a topological space X .

(a) If p-lim
s2D

xs exists, then it is unique.

(b) If X is a compact space, then p-lim
s2D

xs exists.

Proof. Statement (a) is obvious.
(b) Suppose that p-limhxsis2D does not exist and for each y 2 X , pick an open

neighborhood Uy of y such that ¹s 2 D W xs 2 Uyº … p. Then ¹Uy W y 2 Xº is
an open cover of X so pick finite F � X such that X D

S
y2F Uy . Then D DS

y2F ¹s 2 D W xs 2 Uyº so pick y 2 F such that ¹s 2 D W xs 2 Uyº 2 p. This
contradiction completes the proof.

Theorem 3.49. Let D be a discrete space, let p 2 ˇD, let X and Y be topological
spaces, let hxsis2D be an indexed family inX , and let f W X ! Y . If f is continuous
and p-lim

s2D

xs exists, then p-lim
s2D

f .xs/ D f .p-lim
s2D

xs/.

Proof. LetU be a neighborhood of f .p-lim
s2D

xs/ and pick a neighborhood V of p-lim
s2D

xs

such that f ŒV � � U . Let A D ¹s 2 D W xs 2 V º. Then A 2 p and A � ¹s 2 D W
f .xs/ 2 U º.
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Corollary 3.49.1. Let D be a discrete space, let X be a compact space, let f W
D ! X , and let ef W ˇD ! X be its continuous extension. Then for all p 2 ˇD,ef .p/ D p-lim

s2D

f .s/.

Proof. This follows immediately from Remark 3.47 and Theorem 3.49.

We pause to verify that Theorems 3.48 and 3.49 in fact provide a characterization
of ultrafilters.

Definition 3.50. Let D be a discrete space. A uniform operator on functions from
D to compact spaces is an operator O which assigns to each function f from D to
a compact space Y some point O.f / of Y such that whenever Y and Z are compact
spaces, g is a function fromD to Y , and f is a continuous function from Y to Z, one
has f .O.g// D O.f ı g/.

Theorems 3.48 and 3.49 tell us that given a discrete space D and p 2 ˇD, “p-lim”
is a uniform operator on functions fromD to compact spaces. The following theorem
provides the converse.

Theorem 3.51. Let D be a discrete space and let O be a uniform operator on func-
tions from D to compact spaces. There is a unique p 2 ˇD such that for every
compact space Y and every function f W D ! Y , O.f / D p-lim

s2D

f .s/.

Proof. Let � W D ! D � ˇD be the inclusion map. (Before we had identified the
points of D with principal ultrafilters, we would have said � D e.) Now the choice of
p 2 ˇD is forced, since we must have O.�/ D p-lim

s2D

s D p, so let p D O.�/. Now

let Y be a compact space and let f W D ! Y . Let ef W ˇD ! Y be the continuous
extension of f .

Then

p-lim
s2D

f .s/ D p-lim
s2D

ef .s/
D ef .p-lim

s2D

s/

D ef .p/
D ef .O.�//
D O.ef ı �/
D O.f /:

We now verify the assertion that the notion of p-limit is as versatile as the notion of
nets by proving some of the standard theorems about nets in the context of p-limits.
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Theorem 3.52. Let X be a topological space. Then X is compact if and only if
whenever hxsis2D is an indexed family in X and p is an ultrafilter on D, p-lim

s2D

xs
exists.

Proof. The necessity is Theorem 3.48 (b).
Sufficiency. Let A be a collection of closed subsets ofX with the finite intersection

property. Let D D ¹
T

F W F is a finite nonempty subset of Aº. For each A 2 D let
BA D ¹B 2 D W B � Aº. Then ¹BA W A 2 Dº has the finite intersection property.
(The proof of this assertion is Exercise 3.5.1.) So by Theorem 3.8, pick an ultrafilter p
onD such that ¹BA W A 2 Dº � p. For eachA 2 D, pick xA 2 A. Let y D p-lim

A2D

xA.

We claim that y 2
T

A. To see this let A 2 A and suppose that y … A. Then X n A
is a neighborhood of y so ¹B 2 D W xB 2 X nAº 2 p. Also BA 2 p so pick B 2 BA
such that xB 2 X n A. Then .X n A/ \ B ¤ ; while B � A, a contradiction.

Theorem 3.53. Let X be a topological space, let A � X and let y 2 X . Then
y 2 c`A if and only if there exists an indexed family hxsis2D in A such that
p-lim
s2D

xs D y.

Proof. Sufficiency. Let U be a neighborhood of y. Then ¹s 2 D W xs 2 U º 2 p, so
¹s 2 D W xs 2 U º ¤ ;.

Necessity. Let D be the set of neighborhoods of y. For each U 2 D pick xU 2
U \ A and let BU D ¹V 2 D W V � U º. Then ¹BU W U 2 Dº has the finite
intersection property so pick an ultrafilter p on D with ¹BU W U 2 Dº � p. To see
that p-lim

U2D

xU D y, let U be a neighborhood of y. Then BU � ¹V 2 D W xV 2 U º

so ¹V 2 D W xV 2 U º 2 p.

Theorem 3.54. Let X and Y be topological spaces and let f W X ! Y . Then f is
continuous if and only if whenever hxsis2D is an indexed family in X , p 2 ˇD, and
p-lim
s2D

xs exists, one has f .p-lim
s2D

xs/ D p-lim
s2D

f .xs/.

Proof. The necessity is Theorem 3.49
For the sufficiency, let a 2 X and let W be a neighborhood of f .a/. Suppose

that no neighborhood U of a has f ŒU � � W . Then a 2 c`f �1ŒY n W � so pick by
Theorem 3.53 an indexed family hxsis2D in f �1ŒY n W � such that p-lim

s2D

xs D a.

Then p-lim
s2D

f .xs/ D f .a/ so ¹s 2 D W f .xs/ 2 W º is in p and is hence nonempty, a

contradiction.

Comment 3.55. The concept of limit is closely related to that of continuity. Suppose
that X; Y are topological spaces, that A � X and that x 2 A. If f W A ! Y ,
then f is continuous at x if and only if for every neighborhood V of f .x/, there is
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a neighborhood U of x for which f ŒU � � V . So f is continuous at x if and only if
lim
a!x

f .a/ D f .x/. Also, if x 2 c`A, then f has a continuous extension to A [ ¹xº

if and only if lim
a!x

f .a/ exists.

Exercise 3.5.1. Let A be a collection of closed subsets of the topological space X
with the finite intersection property. Let D D ¹

T
F W F is a finite nonempty subset

of Aº. For each A 2 D let BA D ¹B 2 D W B � Aº. Prove that ¹BA W A 2 Dº has
the finite intersection property.

Exercise 3.5.2. Let hxni1nD1 be a sequence in a topological space X and assume that
lim
n!1

xn D a. Prove that for each p 2 ˇN nN, p-lim
n2N

xn D a.

3.6 The Cardinality of ˇD

We show here that for any infinite discrete space D, jˇDj D 22
jDj

. We do the proof
for the case in which D is countable first. The proof uses the following surprising
theorem which is of significant interest in its own right.

Recall that c is the cardinality of the continuum. That is c D 2! D jRj D jP .N/j.

Theorem 3.56. LetD be a countably infinite set. There is a c�c matrix hhA�;ıi�<ciı<c
of subsets of D satisfying the following two statements.

(a) Given �; ı; 	 < c with ı ¤ 	 , jA�;ı \ A�;� j < !.

(b) Given any F 2 Pf .c/ and any g W F ! c, j
T
�2F A�;g.�/j D !.

Proof. Let

S D ¹.k; f / W k 2 N andf W P .¹1; 2; : : : ; kº/! P .¹1; 2; : : : ; kº/º:

Then S is countable so it suffices to produce a c � c matrix of subsets of S satisfying
statements (a) and (b).

Enumerate P .N/ as hX�i�<c. Given .�; ı/ 2 c � c , let

A�;ı D ¹.k; f / 2 S W f .X� \ ¹1; 2; : : : ; kº/ D Xı \ ¹1; 2; : : : ; kºº:

To verify statement (a), let �; ı; 	 < c with ı ¤ 	 . Pick m 2 N such that Xı \
¹1; 2; : : : ; mº ¤ X� \ ¹1; 2; : : : ; mº. Then X�;ı \ X�;� � ¹.k; f / 2 S W k < mº, a
finite set.

To verify statement (b), let F 2 Pf .c/ and g W F ! c be given. Pick m 2 N such
that given any � ¤ 	 in F , X� \ ¹1; 2; : : : ; mº ¤ X� \ ¹1; 2; : : : ; mº. Then given
any k > m, there exists

f W P .¹1; 2; : : : ; kº/! P .¹1; 2; : : : ; kº/

such that .k; f / 2
T
�2F A�;g.�/. Consequently

T
�2F A�;g.�/ is infinite.
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Corollary 3.57. Let D be a countably infinite discrete space. Then jˇDj D 2c.

Proof. Since ˇD � P .P .D//, one has that jˇDj 
 2c. Let hhA�;ıi�<ciı<c be as
in Theorem 3.56. For each f W c ! ¹0; 1º, let Af D ¹A�;f .�/ W � < cº. Then
by Theorem 3.56 (b), for each f , Af has the property that all finite intersections
are infinite, so pick by Corollary 3.14 a nonprincipal ultrafilter pf on D such that
Af � pf . If f and g are distinct functions from c to ¹0; 1º, then since pf and pg are
nonprincipal, one has by Theorem 3.56 (a) that pf ¤ pg .

We now prove the general result, using a modification of the construction in Theo-
rem 3.56.

Theorem 3.58. Let D be an infinite set with cardinality �. Then jU�.D/j D jˇDj D
22
�

.

Proof. Again we note that ˇD � P .P .D// and so jU�.D/j 
 jˇDj 
 22
�

.
We define S D ¹.F; f / W F 2 Pf .D/ and f W P .F / ! P .F /º. Note that
jS j D �, and so it will be sufficient to prove that jU�.S/j � 22

�

.
For each X � D, we put AX;0 D ¹.F; f / 2 S W f .F \ X/ D F \ Xº and

AX;1 D ¹.F; f / 2 S W f .F \X/ D F nXº.
Then AX;0 \ AX;1 D ; for every X . Let g W P .D/! ¹0; 1º. We shall show that,

for every finite subset C of P .D/, j
T
X2C AX;g.X/j D �.

We can choose B 2 Pf .D/ for which the sets of the form X \ B with X 2 C ,
are all distinct. (For each pair .X; Y / of distinct elements of C , pick a point b.X; Y /
in the symmetric difference X 4 Y . Let B D ¹b.X; Y / W X; Y 2 C and X ¤ Y º.)
Then, whenever F 2 Pf .D/ and B � F , the sets X \ F for X 2 C are all distinct.
For each F 2 Pf .D/ such that B � F , we can define f W P .F / ! P .F / such
that, for each X 2 C , f .X \ F / D X \ F if g.X/ D 0 and f .X \ F / D F n X

if g.X/ D 1. Then .F; f / 2 AX;g.X/ for every X 2 C . Since there are � possible
choices for F , j

T
X2C AX;g.X/j D �.

It follows from Corollary 3.14 that, for every function g W P .D/ ! ¹0; 1º, there
is an ultrafilter p 2 U�.D/ such that AX;g.X/ 2 p for every X 2 P .D/. Since
AX;0 \ AX;1 D ; for every X , different functions correspond to different ultrafil-
ters in U�.D/. Since there are 22

�

functions g W P .D/ ! ¹0; 1º, it follows that
jU�.D/j � 2

2� .

Theorem 3.58.1. Let D be an infinite discrete space and let ¹pn W n 2 Nº be a
discrete subset of ˇD for which pm ¤ pn if m ¤ n. Then c`ˇD.¹pn W n 2 Nº/ is
homeomorphic to ˇN.

Proof. The map f W N ! ˇD for which f .n/ D pn for every n 2 N, extends to a
continuous map ef W ˇN ! ˇD. Clearly, ef ŒˇN� D c`ˇD.¹pn W n 2 Nº/. It follows
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from Theorem 3.40 that ef is one-to-one. (The proof of this last assertion is Exercise
3.6.1.)

We now see that infinite closed subsets of ˇD must be reasonably large.

Theorem 3.59. Let D be an infinite discrete space and let A be an infinite closed
subset of ˇD. Then A contains a topological copy of ˇN. In particular jAj � 2c.

Proof. This follows from Theorem 3.58.1 and the observation thatA contains a count-
ably infinite discrete subset.

We conclude by showing in Theorem 3.62 that sets which are not too large, but
have finite intersections that are large, extend to many �-uniform ultrafilters.

Definition 3.60. Let A be a set of sets and let � be an infinite cardinal. Then A has
the �-uniform finite intersection property if and only if whenever F 2 Pf .A/, one
has j

T
F j � �.

Thus the “infinite finite intersection property” is the same as the “!-uniform finite
intersection property”.

Lemma 3.61. LetD be an infinite set with cardinality � and let A be a set of at most
� subsets of D with the �-uniform finite intersection property. There is a set B of �
pairwise disjoint subsets of D such that for each B 2 B, A [ ¹Bº has the �-uniform
finite intersection property.

Proof. Since jPf .A/j 
 � we may presume that A is closed under finite intersec-
tions. Since � � jAj D �, we may choose a �-sequence hA� i�<� of members of A

such that, for each C 2 A,

j¹� < � W A� D C ºj D �:

Let Y0 D ; and inductively let 	 < � and assume that we have chosen hY� i�<�
such that:

(1) for all � < 	 , jY� j D j� j,

(2) for all � < 	 , Y� � A� , and

(3) for all � < � < 	 , Y� \ Y� D ;.

Now jA� j D � and j
S
�<� Y� j D

P
�<� j� j < �. Thus we may pick Y� � A�

such that jY� j D j	 j and Y� \ .
S
�<� Y� / D ;.

Having chosen hY� i�<� , enumerate each Y� as hy�;�i�<� . For each � < �, let
B� D ¹y�;� W � < � < �º. Since Y� \ Y� D ; whenever � < � < �, we have that
each jB�j D �. Further, if ı < � < �, then Bı \ B� D ;. (Since hy�;�i�<� is an
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enumeration of Y� we can’t have y�;ı D y�;� and since Y� \ Y� D ; for � ¤ � , we
can’t have y�;� D y�;ı .)

Finally, let � < � and F 2 Pf .A/ be given. Let

C D ¹� W � < � < � and A� D
T

F º:

By assumption jC j D � and ¹y�;� W � 2 C º � B� \
T

F .

Theorem 3.62. Let D be an infinite set with cardinality � and let A be a set of at
most � subsets of D with the �-uniform finite intersection property. Then

j¹p 2 U�.D/ W A � pºj D 2
2� :

Proof. Choose by Lemma 3.61 a family B of � pairwise disjoint subsets of D such
that for each B 2 B, A [ ¹Bº has the �-uniform finite intersection property.

Choose a one-to-one function � W D ! B and for each x 2 D, pick by Corollary
3.14 some f .x/ 2 U�.D/ such that A [ ¹�.x/º � f .x/.

Notice that U�.D/ is a closed, hence compact, subset of ˇD. Thus, by Theorem
3.28, there is a continuous extension ef W ˇD ! U�.D/. Since for each x 2 D,
A � f .x/, we have for each q 2 ˇD that A � ef .q/.

To complete the proof, it suffices to show by Theorem 3.58 that ef is one-to-one.
For this it in turn suffices to show that for each q 2 ˇD and eachA 2 q,

S
x2A �.x/ 2ef .q/. (For then, given q ¤ r and A 2 q and C 2 r with A \ C D ; one has that

.
S
x2A �.x// \ .

S
x2C �.x// D ;.) The proof of this assertion is Exercise 3.6.2.

Exercise 3.6.1. Prove that the function ef in the proof of Theorem 3.58.1 is one-to-
one. (Hint: If r 2 ˇN and A 2 r , then ef .r/ 2 c`¹pn W n 2 Aº.)

Exercise 3.6.2. Let D and E be discrete spaces, let

� W D ! P .E/ and f W D ! ˇE

be functions such that for each x 2 D, �.x/ 2 f .x/, and let ef W ˇD ! ˇE

be the continuous extension of f . Prove that for each q 2 ˇD and each A 2 q,S
x2A �.x/ 2

ef .q/.
Exercise 3.6.3. Prove that N� contains a collection of c pairwise disjoint clopen sets.

Exercise 3.6.4. Prove that N� contains exactly c clopen subsets.

Exercise 3.6.5. Prove that every clopen subset of N� is homeomorphic to N�.
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3.7 Notes

The standard reference for detailed information about ultrafilters is [109].
We used the Axiom of Choice (or to be precise, Zorn’s Lemma) in our proof of

Theorem 3.8, which we used to deduce that nonprincipal ultrafilters exist. Such an
appeal is unavoidable as there are models of set theory (without choice) in which no
nonprincipal ultrafilters on N exist. (See the discussion of this point in [109, p. 162].)

The Stone–Čech compactification was produced independently by M. Stone[368]
and E. Čech [97]. The approach used by Čech was to embed a space X in a product
of lines. A method that is close to the one that we chose in defining ˇD, is due
to H. Wallman [388]. Suppose that X is a normal space. Let Z denote the set of
closed subsets of X . The points of ˇX are defined to be the ultrafilters in the lattice
of closed subsets of X , and the topology of ˇX is defined by taking the sets of the
form ¹p 2 ˇX W Z 2 pº, where Z 2 Z, as a base for the closed sets. The space
X is embedded in ˇX by mapping each x 2 X to ¹Z 2 Z W x 2 Zº, this being an
ultrafilter in the lattice of closed sets. The approach used here for discrete spaces is
based on the treatment in [167]. See the notes in [167, p. 269] for a more detailed
discussion of the development of this approach.

Lemma 3.33 is due to M. Katětov [280].
P-points were invented by L. Gillman and M. Henriksen in [166]. They were shown

to exist in N� under the assumption of the continuum hypothesis by W. Rudin [352]
who used them to show that N� is not homogeneous. It is a result of S. Shelah [360,
VI, §4] that it is consistent relative to ZFC that there are no P-points in N�.

Lemma 3.42.2 and Theorem 3.42.3, as well as Exercise 3.4.8, appeared in [338],
a result of collaboration with J. Pym and I. Protasov, where they were proved in the
more general setting of F-spaces.

The reader may be interested to know that extremally disconnected spaces have
remarkable properties. For example, any continuous function mapping a dense sub-
space of an extremally disconnected space into a compact space, has a continuous
extension to the entire space [167, Exercise 6M2].

Extremally disconnected spaces can be characterized among completely regular
spaces by the following property: suppose that X is a completely regular space and
thatCR.X/ denotes the set of bounded continuous real-valued functions defined onX .
Then X is extremally disconnected if and only if every bounded subset of CR.X/ has
a least upper bound in CR.X/ [167, Exercise 3N6].

For the reader with some acquaintance with category theory, we might mention that
it is the extremally disconnected compact Hausdorff spaces which are the projective
objects in the category of compact Hausdorff spaces [171].

The notion of p-limit is apparently due originally to Z. Frolík. [153]
Theorem 3.56 is due to K. Kunen [285], and answered a question of F. Galvin. The

proof given here is a simplification of Kunen’s original proof due to P. Simon.
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3.8 Closing Remarks

More general constructions of compact spaces. Our construction of ˇD is a spe-
cial case of more general constructions in which compact Hausdorff spaces are ob-
tained by using sets which are maximal subject to having certain algebraic properties.
We shall briefly mention two of these constructions, because they are relevant to the
Stone–Čech compactification.

(i) Any unital commutative C*-algebra is associated with a compact Hausdorff
space, called its spectrum, whose points could be described as maximal ideals of the
algebra or, alternatively, as homomorphisms from the algebra to the complex num-
bers.

Let X be a completely regular space and let C.X/ denote the C*-algebra formed
by the continuous bounded complex-valued functions defined on X , with each f 2
C.X/ having the uniform norm kf k D sup¹jf .X/j W x 2 Xº. Then ˇX can be
identified with the spectrum of C.X/.

In this framework, ifD denotes a discrete space, ˇD is the spectrum of the Banach
algebra l1.D/ ' C.D/. See [279].

(ii) Any Boolean algebraB is associated with a totally disconnected compact Haus-
dorff space, called its Stone space, whose points could be described as the ultrafilters
of B . All totally disconnected compact Hausdorff spaces arise in this way, as any
such space can be identified with the Stone space associated with the Boolean algebra
formed by its clopen subsets. This theory displays the category of totally disconnected
compact Hausdorff spaces as being the dual of the category of Boolean algebras. The
extremally disconnected compact spaces are those corresponding to complete Boolean
algebras. If D is a discrete space, ˇD could be described as the Stone space of the
Boolean algebra P .D/, while D� could be described as the Stone space of the quo-
tient of P .D/ by the ideal of finite subsets of D. See [278].

Compactifications and subalgebras of CR.X/. Suppose that X is a completely
regular space and that CR.X/ denotes the subspace of C.X/ which consists of the
real-valued functions. A subalgebra A of CR.X/ is said to separate points and closed
sets if, for each closed subset C of X and each x 2 X n C , there is a function f 2 A
for which f .x/ … c`f ŒC �. The compact spaces in whichX can be densely embedded
correspond to the closed subalgebras of CR.X/ which contain the constant functions
and separate points and closed sets. For any such algebra A, there is a compactifi-
cation .Y; '/ of X which has the following property: a function f 2 CR.X/ can
be expressed as f D g ı ' for some g 2 CR.Y / if and only if f 2 A. Y could
be defined as the spectrum of A, and, for each x 2 X , '.x/ could be defined as the
homomorphism from A to the complex numbers for which '.x/.f / D f .x/.

Conversely, if .Y; '/ is a compactification of X , it can be identified with the com-
pactification arising in this way from the subalgebra A D ¹g ı ' W g 2 CR.Y /º of
CR.X/.
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The Stone–Čech compactification of X corresponds to the largest possible subal-
gebra, namely CR.X/ itself. Any other compactification is a quotient of ˇX . If Y
is such a compactification, corresponding to the subalgebra A of CR.X/, Y can be
identified with the quotient of ˇX by the equivalence relation p ' q if and only ifef .p/ D ef .q/ for every f 2 A.

We shall address this issue again in Chapter 21.

F-Spaces. Extremally disconnected spaces are examples of spaces called F-spaces.
A completely regular space X is said to be an F-space if any two disjoint cozero
subsets A and B ofX are completely separated. This means that there is a continuous
function f W X ! Œ0; 1� for which f ŒA� D ¹0º and f ŒB� D ¹1º. These spaces are
significant in the theory of the Stone–Čech compactification, because, if X is locally
compact, ˇX nX is an F-space (see [167]).

It is quite easy to see that a compact Hausdorff space X satisfies Theorem 3.40 if
and only if it is an F-space. (See for example [247, Lemma 1.1].) In particular, ifD is
a discrete space, every compact subset of ˇD is an F-space. Thus D� is an F-space,
although – unlike ˇD – it need not be extremally disconnected.



Chapter 4

ˇS – The Stone–Čech Compactification
of a Discrete Semigroup

4.1 Extending the Operation to ˇS

We shall see in this chapter that we can extend the operation of a discrete semigroup
to its Stone–Čech compactification. When we say that .S; � / is a semigroup we intend
also that it have the discrete topology.

We remind the reader that we are pretending that S � ˇS . Without the identifica-
tion of the point s of S with the principal ultrafilter e.s/, conclusions (a) and (c) of
Theorem 4.1 would read as follows:

(a) The embedding e is a homomorphism.

(c) For all s 2 S , �e.s/ is continuous.

Theorem 4.1. Let S be a discrete space and let � be a binary operation defined on S .
There is a unique binary operation � W ˇS � ˇS ! ˇS satisfying the following three
conditions:

(a) For every s; t 2 S , s � t D s � t .

(b) For each q 2 ˇS , the function �q W ˇS ! ˇS is continuous, where �q.p/ D
p � q.

(c) For each s 2 S , the function �s W ˇS ! ˇS is continuous, where �s.q/ D s�q.

Proof. We establish uniqueness and existence at the same time, defining � as we
are forced to define it. We first define � on S � ˇS . Given any s 2 S , define
`s W S ! S � ˇS by `s.t/ D s � t . Then by Theorem 3.28, there is a continuous
function �s W ˇS ! ˇS such that �sjS D `s . If s 2 S and q 2 ˇS , we define
s�q D �s.q/. Then (c) holds and so does (a), because �s extends `s . Furthermore, the
extension �s is unique (because continuous functions agreeing on a dense subspace
are equal), and so this is the only possible definition of � satisfying (a) and (c).

Now we extend � to the rest of ˇS � ˇS . Given q 2 ˇS , define rq W S ! ˇS

by rq.s/ D s � q. Then there is a continuous function �q W ˇS ! ˇS such that
�qjS D rq . For p 2 ˇS n S , we define p � q D �q.p/ and note that if s 2 S ,
�q.s/ D rq.s/ D s � q. So for all p 2 ˇS , �q.p/ D p � q. We observe that (b) holds.
Again, by the uniqueness of continuous extensions, this is the only possible definition
which satisfies the required conditions.
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It is customary to denote the operation on ˇS by the same symbol as that used for
the operation on S and we shall adopt that practice. Thus if the operation on S is
denoted by �, we shall talk about the operation � on ˇS . If the operation is denoted
by C, we shall talk about the operation C on ˇS . (There will be exceptions. If we
are working with the semigroup .Pf .N/;[/ we shall not talk about the semigroup
.ˇPf .N/;[/, since the union of two ultrafilters already means something else, be-
cause ultrafilters are sets.)

We do not yet know that .ˇS; � / is a semigroup if .S; � / is a semigroup, as we
have not yet verified associativity. We shall do this shortly, but first we want to get
a handle on the operations. The operation on ˇS has a characterization in terms of
limits. The statements in the following remark follow immediately from the fact that
�s is continuous for every s 2 S and �q is continuous for every q 2 ˇS . (Here s and
t represent members of S .)

Remark 4.2. Let � be a binary operation on a discrete space S .

(a) If s 2 S and q 2 ˇS , then s � q D lim
t!q

s � t .

(b) If p; q 2 ˇS , then p � q D lim
s!p

. lim
t!q

s � t /.

The following version of Remark 4.2 (b) will often be useful.

Remark 4.3. Let � be a binary operation on a discrete space S , let p; q 2 ˇS , let
P 2 p, and let Q 2 q. Then p � q D p-lim

s2P

.q-lim
t2Q

s � t /.

We remind the reader that if f W X ! Y is a continuous function and lim
s!p

f .xs/

and lim
s!p

xs exist, then lim
s!p

f .xs/ D f . lim
s!p

xs/, by Theorem 3.49. We shall regularly

use this fact without mentioning it explicitly.

Theorem 4.4. Let .S; � / be a semigroup. Then the extended operation on ˇS is as-
sociative.

Proof. Let p; q; r 2 ˇS . We consider lim
a!p

lim
b!q

lim
c!r

.a � b/ � c, where a; b and c de-
note elements of S . We have:

lim
a!p

lim
b!q

lim
c!r

.a � b/ � c D lim
a!p

lim
b!q

.a � b/ � r (because �a�b is continuous)

D lim
a!p

.a � q/ � r (because �r ı �a is continuous)

D .p � q/ � r (because �r ı �q is continuous).
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Also:

lim
a!p

lim
b!q

lim
c!r

a � .b � c/ D lim
a!p

lim
b!q

a � .b � r/ (because �a ı �b is continuous)

D lim
a!p

a � .q � r/ (because �a ı �r is continuous)

D p � .q � r/ (because �q�r is continuous).

So .p � q/ � r D p � .q � r/.

The following theorem illustrates again the virtue of the uniformity of the process
of passing to limits using p-limit.

Theorem 4.5. Let .S; � / be a semigroup, let X be a topological space, let hxsis2S
be an indexed family in X , and let p; q 2 ˇS . If all limits involved exist, then
.p � q/-lim

v2S

xv D p-lim
s2S

q-lim
t2S

xst .

Proof. Let z D .p � q/-lim
v2S

xv and, for each s 2 S , let ys D q-lim
t2S

xst . Suppose

that p-lim
s2S

ys ¤ z and pick disjoint open neighborhoods U and V of p-lim
s2S

ys and z

respectively. Let A D ¹v 2 S W xv 2 V º and let B D ¹s 2 S W ys 2 U º. Then
A 2 p � q and B 2 p. Since bA is a neighborhood of �q.p/, pick C 2 p (so that bC is a
basic neighborhood of p) such that �qŒbC � � bA. Then B \C 2 p so pick s 2 B \C .
Since s 2 B , q-lim

t2S

xst 2 U . Let D D ¹t 2 S W xst 2 U º. Then D 2 q. Since s 2 C ,

s � q 2 bA so bA is a neighborhood of �s.q/. Pick E 2 q such that �sŒbE� � bA. Then
D \ E 2 q so pick t 2 D \ E. Since t 2 D, xst 2 U . Since t 2 E, st 2 A so
xst 2 V and hence U \ V ¤ ;, a contradiction.

Observe that the hypotheses in Theorem 4.5 regarding the existence of limits can be
dispensed with if X is compact by Theorem 3.48. Observe also, that if X is contained
in a compact space Y (i.e. if X is a completely regular space) the proof is much
shorter. For then let f W S ! X be defined by f .s/ D xs and let ef be the continuous
extension of f to ˇS . Then one has

.p � q/-lim
v2S

xv D .p � q/-lim
v2S

ef .v/
D ef ..p � q/-lim

v2S

v/

D ef .p � q/
D ef .p-lim

s2S

q-lim
t2S

st/

D p-lim
s2S

q-lim
t2S

ef .st/
D p-lim

s2S

q-lim
t2S

xst :
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In the case in which .S; � / is a semigroup, conclusion (c) of Theorem 4.1 may seem
extraneous. Indeed it would appear more natural to replace (c) by the requirement that
the extended operation be associative. We see in fact that we lose the uniqueness of
the extension by such a replacement.

Example 4.6. LetC be the extension of addition on N to ˇN satisfying (a), (b), and
(c) of Theorem 4.1. Define an operation � on ˇN by

p � q D

´
q if q 2 ˇN nN

p C q if q 2 N .

Then � is associative and satisfies statements (a) and (b) of Theorem 4.1, but if q 2
ˇN nN, then 1 � q ¤ 1C q.

The verification of the assertions in Example 4.6 is Exercise 4.1.1.
As a consequence of Theorems 4.1 and 4.4 we see that .ˇS; � / is a compact right

topological semigroup, so that all of the results of Chapter 2 apply. In addition, we
shall see that .ˇS; � / is maximal among semigroup compactifications of S in a sense
similar to that in which ˇS is maximal among topological compactifications.

Recall that, given a right topological semigroup T , ƒ.T / D ¹x 2 T W �x is
continuousº.

Definition 4.7. Let S be a semigroup which is also a topological space. A semigroup
compactification of S is a pair .'; T / where T is a compact right topological semi-
group, ' W S ! T is a continuous homomorphism, 'ŒS� � ƒ.T /, and 'ŒS� is dense
in T .

It is customary to assume in the definition of a semigroup compactification that S is
a semitopological semigroup. However, as we shall see in Chapter 21, this restriction
is not essential.

Note that a semigroup compactification need not be a (topological) compactifica-
tion because the homomorphism ' need not be one-to-one.

Theorem 4.8. Let .S; � / be a discrete semigroup, and let � W S ! ˇS be the inclusion
map.

(a) .�; ˇS/ is a semigroup compactification of S .
(b) If T is a compact right topological semigroup and ' W S ! T is a continuous

homomorphism with 'ŒS� � ƒ.T / (in particular, if .'; T / is a semigroup com-
pactification of S ), then there is a continuous homomorphism � W ˇS ! T such
that �jS D '. (That is the diagram

S

ˇS

T

� �

'�
�
��

�

�
�
��

commutes.)
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Proof. Conclusion (a) follows from Theorems 3.28, 4.1, and 4.4.
(b) Denote the operation of T by �. By Theorem 3.28 choose a continuous function

� W ˇS ! T such that �jS D '. We need only show that � is a homomorphism. By
Theorems 3.28 and 4.1, S is dense in ˇS and S � ƒ.ˇS/, so Lemma 2.14 applies.

Comment 4.9. We remark that the characterization of the semigroup operation in ˇS
in terms of limits is valid in all semigroup compactifications. Let S be any semigroup
with topology and let .'; T / be any semigroup compactification of S . For every
p; q 2 T , we have:

pq D lim
'.s/!p

lim
'.t/!q

'.s/'.t/

where s and t denote elements of S . (The notation lim
'.s/!p

xs D y means that for any

neighborhood U of y, there is a neighborhood V of p such that whenever s 2 S and
'.s/ 2 V , one has xs 2 U .)

Since the points of ˇS are ultrafilters, we want to know which subsets of S are
members of p � q.

Definition 4.10. Let .S; � / be a semigroup, let A � S , and let s 2 S .

(a) s�1A D ¹t 2 S W st 2 Aº.

(b) As�1 D ¹t 2 S W ts 2 Aº.

Note that s�1A is simply an alternative notation for ��1s ŒA�, and its use does not
imply that s has an inverse in A. If t 2 S; we may use tA to denote ¹ta W a 2 Aº.
This does not introduce any conflict, because, if s does have an inverse s�1 in A, then
��1s ŒA� D ¹s�1a W a 2 Aº. However, even if S can be embedded in a group G (so
that s�1 is defined in G), s�1A need not equal ¹s�1a W a 2 Aº. For example, in
.N; � /, let A D N2C 1 D ¹2nC 1 W n 2 Nº. Then 2�1A D ¹t 2 N W 2t 2 Aº D ;.

We shall often deal with semigroups where the operation is denoted by C, and so
we introduce the appropriate notation.

Definition 4.11. Let .S;C/ be a semigroup, let A � S , and let s 2 S .

(a) �s C A D ¹t 2 S W s C t 2 Aº.

(b) A � s D ¹t 2 S W t C s 2 Aº.

Theorem 4.12. Let .S; � / be a semigroup and let A � S .

(a) For any s 2 S and q 2 ˇS , A 2 s � q if and only if s�1A 2 q.

(b) For any p; q 2 ˇS , A 2 p � q if and only if ¹s 2 S W s�1A 2 qº 2 p.



90 Chapter 4 ˇS – The Stone–Čech Compactification of a Discrete Semigroup

Proof. (a) Necessity. Let A 2 s �q. ThenbA is a neighborhood of �s.q/ so pick B 2 q
such that �sŒbB� � bA. Since B � s�1A, we are done.

Sufficiency. Assume s�1A 2 q and suppose that A … s � q. Then S n A 2 s � q
so, by the already established necessity, s�1.S nA/ 2 q. This is a contradiction since
s�1A \ s�1.S n A/ D ;.

(b) This is Exercise 4.1.3.

The following notion will be of significant interest to us in applications involving
idempotents in ˇS .

Definition 4.13. Let .S; � / be a semigroup, let A � S , and let p 2 ˇS . Then
A?.p/ D ¹s 2 A W s�1A 2 pº.

We shall frequently write A? rather than A?.p/.
As an immediate consequence of Theorem 4.12 (b), one has that a point p of ˇS is

an idempotent if and only if for every A � S , A?.p/ 2 p. And, of course, if A 2 p
and s 2 A?.p/, then s�1A 2 p. In fact, one has the following stronger result.

Lemma 4.14. Let .S; � / be a semigroup, let p � p D p 2 ˇS , and let A 2 p. For
each s 2 A?.p/, s�1.A?.p// 2 p.

Proof. Let s 2 A?.p/, and letB D s�1A. ThenB 2 p and, since p is an idempotent,
B?.p/ 2 p. We claim that B?.p/ � s�1.A?.p//. So let t 2 B?.p/. Then t 2 B so
st 2 A. Also t�1B 2 p. That is, .st/�1A 2 p. (See Exercise 4.1.4.) Since st 2 A
and .st/�1A 2 p, one has that st 2 A?.p/ as required.

Theorem 4.15. Let .S; � / be a semigroup, let p; q 2 ˇS , and let A � S . Then
A 2 p � q if and only if there exists B 2 p and an indexed family hCsis2B in q such
that

S
s2B sCs � A.

Proof. This is Exercise 4.1.5.

Lemma 4.16. Let .S; � / be a semigroup, let s 2 S , let q 2 ˇS and let A � S .

(a) If A 2 q, then sA 2 s � q.

(b) If S is left cancellative and sA 2 s � q then A 2 q.

Proof. (a) We have A � s�1.sA/ so Theorem 4.12 (a) applies.
(b) Since S is left cancellative, s�1.sA/ D A.

The following results will frequently be useful to us later.

Theorem 4.17. Let S be a discrete semigroup, let .'; T / be a semigroup compactifi-
cation of S , and let A � B � S . Suppose that B is a subsemigroup of S .

(a) c`.'ŒB�/ is a subsemigroup of T .
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(b) If A is a left ideal of B , then c`.'ŒA�/ is a left ideal of c`.'ŒB�/.

(c) If A is a right ideal of B , then c`.'ŒA�/ is a right ideal of c`.'ŒB�/.

Proof. (a) This is a consequence of Exercise 2.3.2.
(b) Suppose that A is a left ideal of B . Let x 2 c`.'ŒB�/ and y 2 c`.'ŒA�/. Then

xy D lim'.s/!x lim'.t/!y '.s/'.t/, where s denotes an element of B and t denotes
an element of A. If s 2 B and t 2 A, we have '.s/'.t/ D '.st/ 2 'ŒA� and so
xy 2 c` 'ŒA�.

(c) The proof of (c) is similar to that of (b).

Corollary 4.18. Let S be a subsemigroup of the discrete semigroup T . Then c`S is a
subsemigroup of ˇT . If S is a right or left ideal of T , then c`S is respectively a right
or left ideal of ˇT .

Proof. By Theorem 4.8, .�; ˇT / is a semigroup compactification of T , so Theorem
4.17 applies.

Remark 4.19. Suppose that S is a subsemigroup of a discrete semigroup T . In the
light of Exercise 4.1.10 (below), we can regard ˇS as being a subsemigroup of ˇT .
In particular, it will often be convenient to regard ˇN as embedded in ˇZ.

Theorem 4.20. Let .S; � / be a semigroup and let A � P .S/ have the finite inter-
section property. If for each A 2 A and each x 2 A, there exists B 2 A such that
xB � A, then

T
A2A

bA is a subsemigroup of ˇS .

Proof. Let T D
T
A2A

bA. Since A has the finite intersection property, T ¤ ;. Let
p; q 2 T and let A 2 A. Given x 2 A, there is some B 2 A such that xB � A and
hence x�1A 2 q. Thus A � ¹x 2 S W x�1A 2 qº so ¹x 2 S W x�1A 2 qº 2 p. By
Theorem 4.12 (b), A 2 p � q.

Theorem 4.21. Let .S; � / be a semigroup and let A � P .S/ have the finite intersec-
tion property. Let .T; � / be a compact right topological semigroup and let ' W S ! T

satisfy 'ŒS� � ƒ.T /. Assume that there is some A 2 A such that for each x 2 A,
there exists B 2 A for which '.x � y/ D '.x/ � '.y/ for every y 2 B . Then for all
p; q 2

T
A2A

bA,e'.p � q/ De'.p/ �e'.q/.
Proof. Let p; q 2

T
A2A

bA. For each x 2 A, one hase'.x � q/ De'.x � lim
y!q

y/

D lim
y!q

'.x � y/ becausee' ı �x is continuous

D lim
y!q

'.x/ � '.y/ because '.x � y/ D '.x/ � '.y/ on a member of q

D '.x/ � lim
y!q

'.y/ because '.x/ 2 ƒ.T /

D '.x/ �e'.q/:
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Since A 2 p one then has

e'.p � q/ De'.. lim
x!p

x/ � q/

D lim
x!p

e'.x � q/ becausee' ı �q is continuous

D lim
x!p

.'.x/ �e'.q//
D . lim

x!p
'.x// �e'.q/ by the continuity of �e'.q/

De'.p/ �e'.q/:
Corollary 4.22. Let .S; � / be a semigroup and let ' W S ! T be a homomorphism
to a compact right topological semigroup .T; � / such that 'ŒS� � ƒ.T /. Thene' is a
homomorphism from ˇS to T .

Proof. Let A D ¹Sº.

We now see that adequate partial semigroups induce a full semigroup structure on
a portion of ˇS .

Definition 4.22.1. Let .S;�/ be a partial semigroup.

(a) ıS D
T
F 2Pf .S/

�.F /.

(b) For s 2 S and A � S define s�1� A D ¹x 2 S W s � x is defined and s � x 2 Aº.

Theorem 4.22.2. Let .S;�/ be a partial semigroup Then ıS ¤ ; if and only if S is
adequate, in which case .ıS;�/ is a compact semigroup where, for p; q 2 ıS and
A � S , A 2 p � q if and only if ¹s 2 S W s�1� A 2 qº 2 p.

Proof. Given F;H 2 Pf .S/, one has �.F [ H/ � �.F / \ �.H/, so the first
conclusion is immediate. Pick an element 1 … S and let M D S [ ¹1º. Define
for x; y 2 M , x � y D x � y if x � y is defined and x � y D 1 otherwise. It is
routine to verify that the operation � on M is associative. We claim that .ıS; � / is a
subsemigroup of .ˇM; � / and that for p; q 2 ıS , p � q D p � q. To see that .ıS; � / is
a subsemigroup, we apply Theorem 4.20. So let F 2 Pf .S/ and let x 2 �.F /. We
claim that x � �.F � x/ � �.F /. So let y 2 �.F � x/. To see that x � y 2 �.F /, let
z 2 F . Then .z � x/ � y is defined so z � .x � y/ is defined so z � .x � y/ is defined.
That is x � y 2 �.F /.

Now let p; q 2 ıS and let A � S . Then for any s 2 S , s�1� A D s�1A \ �.¹sº/,
�.¹sº/ 2 q, and1�1A D ; so ¹x 2 S W x�1A 2 qº D ¹x 2M W x�1A 2 qº.

Theorem 4.22.3. Let .S;�/ and .T;�/ be adequate partial semigroups, let f W S!T

be a surjective partial semigroup homomorphism, and let ef W ˇS ! ˇT be the con-
tinuous extension of f . Then the restriction of ef to ıS is a homomorphism into ıT .
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Proof. To see that ef ŒıS� � ıT , let p 2 ıS and let F 2 Pf .T /. Pick H 2 Pf .S/

such that f ŒH� D F . We claim that f Œ�.H/� � �.F / so that �.F / 2 ef .p/. So let
x 2 �.H/ and let y 2 F . Pick z 2 H such that f .z/ D y. Then z � x is defined so
f .z/ � f .x/ is defined and y � f .x/ D f .z/ � f .x/ D f .z � x/. Thus f .x/ 2 �.F /
as required.

To see that the restriction of ef to ıS is a homomorphism, let .M; � / be as in the
proof of Theorem 4.22.2. Since p � q D p � q for p; q 2 ıS , it suffices by Theorem
4.21 to note that for each x 2 S and each y 2 �.¹xº/, f .x � y/ D f .x/ � f .y/.

The requirement in Theorem 4.22.2 that f be surjective might seem to be irrelevant.
But some such requirement is needed.

Example 4.22.4. Let S D Pf .!/ and let T D Pf .! C !/, where ! C ! is the
ordinal sum, and let f W S ! T be the inclusion map. In each case define the
operation F � G D F [ G provided maxF < minG. Then f is an injective partial
semigroup homomorphism and ef ŒıS� D ıS but ıS \ ıT D ;. (If p 2 ıS and
�.¹!º/ D ¹x 2 T W ¹!º � x is definedº D ¹x 2 T W min x > !º, then �.¹!º/ … p.)

Exercise 4.1.1. (a) Prove that if q 2 ˇN nN and r 2 N, then q C r 2 ˇN nN.

(b) Verify that the operation � in Example 4.6 is associative.

(c) Verify that the operation � in Example 4.6 satisfies conclusions (a) and (b) of
Theorem 4.1.

(d) Let q 2 ˇN nN and let A D N2 D ¹2n W n 2 Nº. Prove that A 2 q D 1 � q if
and only if A … 1C q.

Exercise 4.1.2. Show that one cannot dispense with the assumption that 'ŒS� �
ƒ.T / in Theorem 4.8. (Hint: consider Example 4.6.)

Exercise 4.1.3. Prove Theorem 4.12 (b).

Exercise 4.1.4. Let S be a semigroup, let s; t 2 S , and let A � S . Prove that
s�1.t�1A/ D .ts/�1A. (Caution: This is very easy, but the reason is not that
s�1t�1 D .ts/�1, for no such objects need exist.)

Exercise 4.1.5. Prove Theorem 4.15.

We can generalize Theorem 4.15 to the product of any finite number of ultrafilters.
The following exercise shows that we obtain a set in p1 � p2 � : : : � pk by choosing all
products of the form a1 � a2 � : : : � ak , where each ai is chosen to lie in a member of
pi which depends on a1; a2; : : : ; ai�1.
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Exercise 4.1.6. Let .S; � / be a semigroup, let k 2 N n ¹1º, and let p1; p2; : : : ; pk 2
ˇS . Suppose that D � ¹;º [

Sk�1
iD1 S

i , with ; 2 D. Suppose also that, for each
� 2 D, there is a subset A� of S such that the following conditions hold:

(1) A; 2 p1,

(2) A; � D,

(3) A� 2 piC1 if � 2 D \ S i , and

(4) if k > 2, then for every i 2 ¹1; 2; : : : ; k � 2º and every � D .a1; a2; : : : ; ai/ 2
D, a 2 A� implies that .a1; a2; : : : ; ai ; a/ 2 D.

Let P D ¹a1 � a2 � : : : � ak W a1 2 A; and .a1; a2; : : : ; ai�1/ 2 D and ai 2
A.a1;a2;:::;ai�1/ for every i 2 ¹2; 3; : : : ; kºº. Prove that P 2 p1 � p2 � : : : � pk . (Hint:
This can be done by induction on k, using Theorem 4.12 or 4.15.)

Exercise 4.1.7. Let p 2 N� CN� and let A 2 p: Prove that there exists k 2 N such
that ¹a 2 A W aC k 2 Aº is infinite. Deduce that A cannot be arranged as a sequence
hxni

1
nD1 for which xnC1 � xn !1 as n!1.

Exercise 4.1.8. Let .S; � / be a semigroup, let A � S , let s 2 S and let q 2 ˇS .

(a) Prove that A 2 q � s if and only if As�1 2 q.

(b) Prove that if A 2 q, then As 2 q � s.

(c) Prove that if As 2 q � s and S is right cancellative, then A 2 q.

Exercise 4.1.9. Let .S; � / be a semigroup and let s 2 S . Prove that the following
statements are equivalent.

(a) For every p 2 ˇS , s � p D ¹sA W A 2 pº.

(b) There is some p 2 ˇS such that s � p D ¹sA W A 2 pº.

(c) The function �s W S ! S is surjective.

Exercise 4.1.10. Recall that if S � T , we have identified ˇS with the subset bS
of ˇT . Show that if .S; � / is a subsemigroup of .T; � / and p; q 2 ˇS , then the
product p � q is the same whether it is computed in ˇS or in ˇT . That is, if r D
¹A � S W ¹x 2 S W x�1A 2 qº 2 pº (the product p � q computed in ˇS ), then
¹B � T W B \ S 2 rº D ¹A � T W ¹x 2 T W x�1A 2 qº 2 pº (the product p � q
computed in ˇT ). (The notation x�1A is ambiguous. In the first case it should be
¹y 2 S W xy 2 Aº and in the second case it should be ¹y 2 T W xy 2 Aº.)

Exercise 4.1.11. We recall that the semigroup operations _ and ^ are defined on N
by n _ m D max¹n;mº and n ^ m D min¹n;mº. As customary, we use the same
notation for the extensions of these operations to ˇN.
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(a) Prove that for p; q 2 ˇN,

p _ q D

´
q if q 2 ˇN nN

p if q 2 N and p 2 ˇN nN .

(b) Derive and verify a similar characterization of p ^ q.

4.2 Commutativity in ˇS

We provide some elementary results about commutativity in ˇS here. We shall study
this subject more deeply in Chapter 6.

Theorem 4.23. If .S; � / is a commutative semigroup, then S is contained in the center
of .ˇS; � /.

Proof. Let s 2 S and p 2 ˇS . Then

s � q D lim
t!q

st by Remark 4.2 (a)

D lim
t!q

ts

D . lim
t!q

t / � s since �s is continuous

D q � s:

Theorem 4.24. Let S be a discrete commutative semigroup. Then the topological
center of ˇS coincides with its algebraic center.

Proof. Suppose that p 2 ƒ.ˇS/ and that q 2 ˇS . Since �p is continuous, it follows
that

p � q D q-lim
t2S

.p � t /

D q-lim
t2S

.t � p/ (by Theorem 4.23)

D q � p:

Thus p is also in the algebraic center of ˇS .
Conversely, if p is in the algebraic center of ˇS , �p is continuous because �p D �p.

Thus p 2 ƒ.ˇS/.

We have defined the operation on ˇS in such a way as to make ˇS right topological.
It is not clear whether this somehow forces it to be semitopological. In the case in
which S is commutative, we see that this question is equivalent to asking whether ˇS
is commutative.
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Theorem 4.25. Let .S; � / be a commutative semigroup. The following statements are
equivalent:

(a) .ˇS; � / is commutative.

(b) .ˇS; � / is a left topological semigroup.

(c) .ˇS; � / is a semitopological semigroup.

Proof. The fact that (a) implies (b) is trivial as is the fact that (b) implies (c). It follows
from Theorem 4.24 that (c) implies (a).

Lemma 4.26. Let .S; � / be a semigroup, let hxni1nD1 and hyni1nD1 be sequences in
S , and let p; q 2 ˇS . If ¹¹xn W n > kº W k 2 Nº � q and ¹yk W k 2 Nº 2 p, then
¹yk � xn W k; n 2 N and k < nº 2 p � q.

Proof. This follows from Theorem 4.15.

We are now able to characterize when ˇS is commutative. (A moment’s thought
will tell you that this characterization says “hardly ever”.)

Theorem 4.27. Let .S; � / be a semigroup. Then .ˇS; � / is not commutative if and
only if there exist sequences hxni1nD1 and hyni1nD1 such that

¹yk � xn W k; n 2 N and k < nº \ ¹xk � yn W k; n 2 N and k < nº D ;:

Proof. Necessity. Pick p and q in ˇS such that p � q ¤ q � p. Pick A � S such that
A 2 p � q and S n A 2 q � p. Let B D ¹s 2 S W s�1A 2 qº and let C D ¹s 2 S W
s�1.S n A/ 2 pº. Then B 2 p and C 2 q. Choose x1 2 B and y1 2 C . Inductively
given x1; x2; : : : ; xn and y1; y2; : : : ; yn, choose xnC1 2 B \

Tn
kD1 yk

�1.S nA/ and
ynC1 2 C \

Tn
kD1 xk

�1A. Then ¹yk � xn W k; n 2 N and k < nº � S n A and
¹xk � yn W k; n 2 N and k < nº � A.

Sufficiency. Now ¹¹xn W n > kº W k 2 Nº has the finite intersection property so
choose p 2 ˇS such that ¹¹xn W n > kº W k 2 Nº � p. Similarly, choose q 2 ˇS
such that ¹¹yn W n > kº W k 2 Nº � q. Then by Lemma 4.26 ¹yk � xn W k; n 2 N and
k < nº 2 q � p and ¹xk � yn W k; n 2 N and k < nº 2 p � q.

As a consequence of Theorem 4.27, we see that neither .ˇN;C/ nor .ˇN; � / is
commutative, and hence by Theorem 4.25 neither is a left topological semigroup. (As
we shall see in Chapter 6, in fact the center of each is N.)

Exercise 4.2.1. Prove that if S is a left zero semigroup, so is ˇS . In this case show
that ˇS is not only a semitopological semigroup, but in fact a topological semigroup.

Exercise 4.2.2. Prove that if S is a right zero semigroup, so is ˇS . In this case show
that ˇS is not only a semitopological semigroup, but in fact a topological semigroup.
(Note that because of our lack of symmetry in the definition of the operation on ˇS
this is not a “dual” of Exercise 4.2.1.)
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4.3 S �

For many reasons we are interested in the semigroup S� D ˇS n S . In the first place,
it is the algebra of S� that is the “new” material to study. In the second place it turns
out that the structure of S� provides most of the combinatorial applications that are a
large part of our motivation for studying this subject.

One of the first things we want to know about the “semigroup S�” is whether it is
a semigroup.

Theorem 4.28. Let S be a semigroup. Then S� is a subsemigroup of ˇS if and only
if for any A 2 Pf .S/ and for any infinite subset B of S there exists F 2 Pf .B/ such
that

T
x2F x

�1A is finite.

Proof. Necessity. Let a finite nonempty subset A and an infinite subset B of S be
given. Suppose that for each F 2 Pf .B/,

T
x2F x

�1A is infinite. Then ¹x�1A W x 2
Bº has the property that all of its finite intersections are infinite so by Corollary 3.14
we may pick p 2 S� such that ¹x�1A W x 2 Bº � p. Pick q 2 S� such that B 2 q.
Then A 2 q � p and A is finite so by Theorem 3.7, q � p 2 S , a contradiction. (Recall
once again that we have identified the principal ultrafilters with the points of S .)

Sufficiency. Let p; q 2 S� be given and suppose that q � p D y 2 S , (that is,
precisely, that q � p is the principal ultrafilter generated by y). Let A D ¹yº and let
B D ¹x 2 S W x�1A 2 pº. Then B 2 q while for each F 2 Pf .B/, one hasT
x2F x

�1A 2 p so that
T
x2F x

�1A is infinite, a contradiction.

Corollary 4.29. Let S be a semigroup. If S is either right or left cancellative then
S� is a subsemigroup of ˇS .

Proof. This is Exercise 4.3.1.

We can give simple conditions characterizing when S� is a left ideal of ˇS .

Definition 4.30. Let S be a semigroup and let A � S .

(a) A is a left solution set if and only if there exist u and v in S such that A D ¹x 2
S W ux D vº.

(b) A is a right solution set if and only if there exist u and v in S such that A D
¹x 2 S W xu D vº.

(c) S is weakly left cancellative if and only if every left solution set in S is finite.

(d) S is weakly right cancellative if and only if every right solution set in S is finite.

(e) S is weakly cancellative if and only if S is both weakly left cancellative and
weakly right cancellative.
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Of course a left cancellative semigroup is weakly left cancellative. On the other
hand the semigroup .N;_/ is weakly left (and right) cancellative but is far from being
cancellative.

When we say that a function f is finite-to-one, we mean that for each x in the range
of f , f �1Œ¹xº� is finite. Thus a semigroup S is weakly left cancellative if and only if
for each x 2 S , �x is finite-to-one.

Theorem 4.31. Let S be an infinite semigroup. Then S� is a left ideal of ˇS if and
only if S is weakly left cancellative.

Proof. Necessity. Let x; y 2 S be given, let A D �y
�1Œ¹xº� and suppose that A is

infinite. Pick p 2 S� \bA. Then y � p D x, a contradiction.
Sufficiency. Since S is infinite, S� ¤ ;. Let p 2 S�, let q 2 ˇS and suppose

that q � p D x 2 S . Then ¹xº 2 q � p so ¹y 2 S W y�1¹xº 2 pº 2 q and is
hence nonempty. So pick y 2 S such that y�1¹xº 2 p. But y�1¹xº D �y

�1Œ¹xº� so
�y
�1Œ¹xº� is infinite, a contradiction.

The characterization of S� as a right ideal is considerably more complicated. (In
Exercise 4.3.7, the reader is asked to show that weakly right cancellativity of S is not
sufficient for S� to be a right ideal of ˇS .)

Theorem 4.32. Let S be an infinite semigroup. The following statements are equiva-
lent:

(a) S� is a right ideal of ˇS .

(b) Given any finite subset A of S , any sequence hzni1nD1 in S , and any one-to-one
sequence hxni1nD1 in S , there exist n < m in N such that xn � zm … A.

(c) Given any a 2 S , any sequence hzni1nD1 in S , and any one-to-one sequence
hxni

1
nD1 in S , there exist n < m in N such that xn � zm ¤ a.

Proof. (a) implies (b). Suppose ¹xn � zm W n;m 2 N and n < mº � A. Pick p 2 ˇS
such that ¹¹zm W m > nº W n 2 Nº � p and pick q 2 S� such that ¹xn W n 2 Nº 2 q,
which one can do, since ¹xn W n 2 Nº is infinite. Then by Lemma 4.26, A 2 q � p so
by Theorem 3.7, q � p 2 S , a contradiction.

The fact that (b) implies (c) is trivial.
(c) implies (a). Since S is infinite, S� ¤ ;. Let p 2 ˇS , let q 2 S�, and suppose

that q � p D a 2 S . Then ¹s 2 S W s�1¹aº 2 pº 2 q so choose a one-to-one sequence
hxni

1
nD1 such that ¹xn W n 2 Nº � ¹s 2 S W s�1¹aº 2 pº. Inductively choose

a sequence hzni1nD1 in S such that for each m 2 N, zm 2
Tm
nD1 xn

�1¹aº (which
one can do since

Tm
nD1 xn

�1¹aº 2 p). Then for each n < m in N, xn � zm D a,
a contradiction.

We see that cancellation on the appropriate side guarantees that S� is a left or right
ideal of ˇS . In particular, if S is cancellative, then S� is a (two sided) ideal of ˇS .
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Corollary 4.33. Let S be an infinite semigroup.

(a) If S is left cancellative, then S� is a left ideal of ˇS .

(b) If S is right cancellative, then S� is a right ideal of ˇS .

Proof. This is Exercise 4.3.2.

Corollary 4.34. Let S be an infinite semigroup. If S� is a right ideal of ˇS , then S
is weakly right cancellative.

Proof. Let a; y 2 S and suppose that �y�1Œ¹aº� is infinite. Choose a one-to-one
sequence hxni1nD1 in �y�1Œ¹aº� and for each m 2 N let zm D y.

Corollary 4.35. Let S be an infinite semigroup. If S is weakly right cancellative and
for all but finitely many y 2 S , �y is finite-to-one, then S� is a right ideal of ˇS .

Proof. Suppose S� is not a right ideal of ˇS and pick by Theorem 4.32 (c) some
a 2 S , a one-to-one sequence hxni1nD1 in S , and a sequence hzni1nD1 in S such that
xn � zm D a for all n < m in N. Now if ¹zm W m 2 Nº is infinite, then for all n 2 N,
�xn
�1Œ¹aº� is infinite, a contradiction. Thus ¹zm W m 2 Nº is finite so we may pick

b such that ¹m 2 N W zm D bº is infinite. Then, given n 2 N one may pick m > n

such that zm D b and conclude that xn � b D a. Consequently, �b�1Œ¹aº� is infinite, a
contradiction.

Somewhat surprisingly, the situation with respect to S� as a two sided ideal is
considerably simpler than the situation with respect to S� as a right ideal.

Theorem 4.36. Let S be an infinite semigroup. Then S� is an ideal of ˇS if and only
if S is both weakly left cancellative and weakly right cancellative.

Proof. Necessity. Theorem 4.31 and Corollary 4.34.
Sufficiency. Theorem 4.31 and Corollary 4.35.

The following simple fact is of considerable importance, since it is frequently easier
to work with S� than with ˇS .

Theorem 4.37. Let S be an infinite semigroup. If S� is an ideal of ˇS , then the
minimal left ideals, the minimal right ideals, and the smallest ideal of S� and of ˇS
are the same.

Proof. For this it suffices to establish the assertions about minimal left ideals and
minimal right ideals, since the smallest ideal is the union of all minimal left ideals
(and of all minimal right ideals). Further, the proofs are completely algebraic, so it
suffices to establish the result for minimal left ideals.
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First assume L is a minimal left ideal of ˇS . Since S� is an ideal of ˇS we have
L � S� and hence L is a left ideal of S�. To see that L is a minimal left ideal of S�,
let L0 be a left ideal of S� with L0 � L. Then by Lemma 1.43 (b), L0 D L.

Now assume L is a minimal left ideal of S�. Then by Lemma 1.43 (c), L is a left
ideal of ˇS . If L0 is a left ideal of ˇS with L0 � L, then L0 is a left ideal of S� and
consequently L0 D L.

Exercise 4.3.1. Prove Corollary 4.29.

Exercise 4.3.2. Prove Corollary 4.33.

Exercise 4.3.3. Give an example of a semigroup S which is not left cancellative such
that S� is a left ideal of ˇS .

Exercise 4.3.4. Give an example of a semigroup S which is not right cancellative
such that S� is a right ideal of ˇS .

Exercise 4.3.5. Prove that .N�;C/ and .�N�;C/ are both left ideals of .ˇZ;C/.
(Here �N� D ¹�p W p 2 N�º and �p is the ultrafilter on Z generated by ¹�A W
A 2 pº.)

Exercise 4.3.6. Let T D
T
n2N c`ˇZ nZ.

(a) Prove that T is a subsemigroup of .ˇZ;C/ which contains all of the idempo-
tents. (Hint: Use the canonical homomorphisms from Z onto Zn.)

(b) Prove that T is an ideal of .ˇZ; � /.

Exercise 4.3.7. Let L D ¹xn W n 2 Nº [ ¹zn W n 2 Nº [ ¹yº be an alphabet of
distinct letters. Let

S D ¹a1a2 � � � at W each ai 2 L and if i 2 ¹1; 2; : : : ; t � 1º;

ai D xn, and aiC1 D zm, then n � mº:

For w1 D a1a2 � � � at 2 S and w2 D b1b2 � � � bs 2 S (where each ai and each bi is
inL) definew1�w2 to be the usual concatenation of words unless at D xn, b1 D zm,
and n < m, in which case w1 �w2 D a1a2 � � � at�1yb2b3 � � � bs (where, for example,
if t D 1, then a1a2 � � � at�1 is the empty word). Prove that .S;�/ is a weakly right
cancellative semigroup, but S� is not a right ideal of ˇS . (Hint: Use Theorem 4.32.)

Exercise 4.3.8. Let L � ˇZ. Prove that L is a minimal left ideal of ˇZ if and
only if either L is a minimal left ideal of ˇN or �L is a minimal left ideal of ˇN.
Consequently, K.ˇZ/ D K.ˇN/ [ �K.ˇN/.
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4.4 K.ˇS/ and its Closure

In this section we determine precisely which ultrafilters are in the smallest ideal
K.ˇS/ of ˇS and which are in its closure.

We borrow some terminology from topological dynamics. The terms syndetic and
piecewise syndetic originated in the context of .N;C/. In .N;C/, a set A is syndetic
if and only if it has bounded gaps and a set is piecewise syndetic if and only if there
exist a fixed bound b and arbitrarily long intervals in which the gaps of A are bounded
by b.

Definition 4.38. Let S be a semigroup.
(a) A set A � S is syndetic if and only if there exists some G 2 Pf .S/ such that

S D
S
t2G t

�1A.
(b) A set A � S is piecewise syndetic if and only if there is some G 2 Pf .S/ such

that ¹a�1.
S
t2G t

�1A/ W a 2 Sº has the finite intersection property.

Equivalently, a set A � S is piecewise syndetic if and only if there is some G 2
Pf .S/ such that for every F 2 Pf .S/ there is some x 2 S with F �x �

S
t2G t

�1A.
We should really call the notions defined above right syndetic and right piece-

wise syndetic. If we were taking ˇS to be left topological we would have replaced
“S D

S
t2G t

�1A” in the definition of syndetic by “S D
S
t2G At

�1”. We also
would have replaced “a�1.

S
t2G t

�1A/” in the definition of piecewise syndetic by
“.
S
t2G At

�1/a�1”. We shall see in Lemma 13.39 that the notions of left and right
piecewise syndetic are different.

The equivalence of statements (a) and (c) in the following theorem follows from
Theorem 2.10. However, it requires no extra effort to provide a complete proof here,
so we do.

Theorem 4.39. Let S be a semigroup and let p 2 ˇS . The following statements are
equivalent:

(a) p 2 K.ˇS/.

(b) For all A 2 p, ¹x 2 S W x�1A 2 pº is syndetic.

(c) For all q 2 ˇS , p 2 ˇS � q � p.

Proof. (a) implies (b). Let A 2 p and let B D ¹x 2 S W x�1A 2 pº. Let L be the
minimal left ideal of ˇS for which p 2 L. For every q 2 L, we have p 2 ˇS � q D
c`ˇS .S � q/. Since A is a neighbourhood of p in ˇS , t � q 2 A for some t 2 S and

so q 2 t�1A. Thus the sets of the form t�1A cover the compact set L and hence
L �

S
t2G t

�1A for some finite subset G of S .
To see that S �

S
t2G t

�1B , let a 2 S . Then a � p 2 L so pick t 2 G such that
a � p 2 t�1A. Then t�1A 2 a � p so that .ta/�1A D a�1.t�1A/ 2 p and so ta 2 B
and thus a 2 t�1B .
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(b) implies (c). Let q 2 ˇS and suppose that p … ˇS � q � p. Pick A 2 p such
that A \ ˇS � q � p D ;. Let B D ¹x 2 S W x�1A 2 pº and pick G 2 Pf .S/

such that S D
S
t2G t

�1B . Pick t 2 G such that t�1B 2 q. Then B 2 tq. That is,
¹x 2 S W x�1A 2 pº 2 tq so A 2 tqp, a contradiction.

(c) implies (a). Pick q 2 K.ˇS/.

Theorem 4.40. Let S be a semigroup and let A � S . Then A \ K.ˇS/ ¤ ; if and
only if A is piecewise syndetic.

Proof. Necessity. Let p 2 K.ˇS/ \ A and let B D ¹x 2 S W x�1A 2 pº. Then
by Theorem 4.39, B is syndetic and so S D

S
t2G t

�1B for some G 2 Pf .S/. For
each a 2 S , a 2 t�1B for some t 2 G and so a�1.t�1A/ D .ta/�1A 2 p. It follows
that a�1.

S
t2G t

�1A/ 2 p and hence that ¹a�1.
S
t2G t

�1A/ W a 2 Sº has the finite
intersection property.

Sufficiency. Assume that A is piecewise syndetic and pick G 2 Pf .S/ such that
¹a�1.

S
t2G t

�1A/ W a 2 Sº has the finite intersection property. Pick q 2 ˇS such

that ¹a�1.
S
t2G t

�1A/ W a 2 Sº � q. Then S � q �
S
t2G t

�1A. This implies

that .ˇS/ � q �
S
t2G t

�1A. We can choose y 2 K.ˇS/ \ .ˇS � q/. We then have
y 2 t�1A for some t 2 G and so t � y 2 A \K.ˇS/.

Corollary 4.41. Let S be a semigroup and let p 2 ˇS . Then p 2 c`K.ˇS/ if and
only if every A 2 p is piecewise syndetic.

Proof. This is an immediate consequence of Theorem 4.40.

The members of idempotents in K.ˇS/ are of particular combinatorial interest.
(See Chapter 14.)

Definition 4.42. Let S be a semigroup and let A � S . Then A is central in S if and
only if there is some idempotent p 2 K.ˇS/ such that A 2 p.

Theorem 4.43. Let S be an infinite semigroup and let A � S . The following state-
ments are equivalent:

(a) A is piecewise syndetic.

(b) The set ¹x 2 S W x�1A is centralº is syndetic.

(c) There is some x 2 S such that x�1A is central.

Proof. (a) implies (b). Pick by Theorem 4.40 some p 2 K.ˇS/ with A 2 p. Now
K.ˇS/ is the union of all minimal left ideals of ˇS by Theorem 2.8. So pick a minimal
left ideal L of ˇS with p 2 L and pick an idempotent e 2 L. Then p D p � e so pick
y 2 S such that y�1A 2 e.
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Now by Theorem 4.39, B D ¹z 2 S W z�1.y�1A/ 2 eº is syndetic, so pick
finite G � S such that S D

S
t2G t

�1B . Let D D ¹x 2 S W x�1A is centralº.
We claim that S D

S
t2.y�G/ t

�1D. Indeed, let x 2 S be given and pick t 2 G
such that t � x 2 B . Then .t � x/�1.y�1A/ 2 e so .t � x/�1.y�1A/ is central. But
.t � x/�1.y�1A/ D .y � t � x/�1A. Thus y � t � x 2 D so x 2 .y � t /�1D as required.

(b) implies (c). This is trivial.
(c) implies (a). Pick x 2 S such that x�1A is central and pick an idempotent

p 2 K.ˇS/ such that x�1A 2 p. Then A 2 x � p and x � p 2 K.ˇS/ so by Theorem
4.40, A is piecewise syndetic.

Lemma 4.43.1. Let S and T be infinite discrete semigroups. Let p �p D p 2 K.ˇS/
and let q �q D q 2 K.ˇT /. Lete� W ˇ.S �T /! ˇS �ˇT be the continuous extension
of the identity function on S � T and let M De��1Œ¹.p; q/º�. Then M is a compact
subsemigroup of ˇ.S � T / and K.M/ D K.ˇ.S � T // \M .

Proof. We have thate� is surjective and by Corollary 4.22,e� is a homomorphism.
Consequently M is a compact subsemigroup of ˇ.S � T /. By Exercise 1.7.3,e�ŒK.ˇ.S � T //� D K.ˇS � ˇT /. Also, by Theorem 2.23, K.ˇS � ˇT / D K.ˇS/ �
K.ˇT / and so .p; q/ 2 K.ˇS � ˇT /. Consequently K.ˇ.S � T // \M ¤ ; and so
K.M/ D K.ˇ.S � T // \M by Theorem 1.65.

Theorem 4.43.2. Let S and T be infinite discrete semigroups, let A be a central
subset of S and let B be a central subset of T . Then A � B is a central subset of
S � T .

Proof. Pick p D p �p 2 K.ˇS/ and q D q � q 2 K.ˇT / such that A 2 p and B 2 q.
Let M be as in Lemma 4.43.1 and pick r D r � r 2 K.M/. Thene�.r/ D .p; q/ and
so A � B 2 r . Since r 2 K.ˇ.S � T // we have that A � B is central.

Recall from Theorem 2.15 and Example 2.16 that the closure of any right ideal in
a right topological semigroup is again a right ideal but the closure of a left ideal need
not be a left ideal.

Theorem 4.44. Let S be a semigroup. Then c`K.ˇS/ is an ideal of ˇS .

Proof. This is an immediate consequence of Theorems 2.15, 2.17, and 4.1.

Exercise 4.4.1. Let S be a discrete semigroup and let A � S . Show that A is piece-
wise syndetic if and only if there is a finite subsetF of S for which c`ˇS .

S
t2F t

�1A/

contains a left ideal of ˇS .

Exercise 4.4.2. Let A � N. Show that A is piecewise syndetic in .N;C/ if and only
if there exists k 2 N such that, for every n 2 N, there is a set J of n consecutive
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positive integers with the property that A intersects every subset of J containing k
consecutive integers.

Exercise 4.4.3. Prove that ¹
P
n2F 2

2n W F 2 Pf .!/º is not piecewise syndetic in
.N;C/.

Exercise 4.4.4. Let A � N. Show that K.ˇN;C/ � A if and only if, for every
k 2 N, there exists nk 2 N such that every subset of N which contains nk consecutive
integers must contain k consecutive integers belonging to A.

Exercise 4.4.5. Let G be a group and let H be a subgroup of G. Prove that H
is syndetic if and only if H is piecewise syndetic. (Hint: By Theorem 4.40, pick
p 2 K.ˇG/ such that H 2 p and consider ¹x 2 G W x�1H 2 pº.)

Exercise 4.4.6. Let G be a group and let H be a subgroup of G. Show that the index
of H is finite if and only if c`ˇG.H/ \ K.ˇG/ ¤ ;: (By the index of H , we mean
the number of left cosets of the form aH ).

Exercise 4.4.7. Let G be a group. Suppose that G can be expressed as the union of a
finite number of subgroups, H1;H2; : : : ;Hn. Show that, for some i 2 ¹1; 2; : : : ; nº,
Hi has finite index.

Exercise 4.4.8. Let S be a discrete semigroup and let T be a subsemigroup of S .
Show that T is central if .c`ˇS T / \ K.ˇS/ ¤ ;. (Apply Corollary 4.18 and Theo-
rem 1.65.)

Exercise 4.4.9. Show that if S is commutative, then the closure of any right ideal of
ˇS is a two sided ideal of ˇS . (Hint: See Theorems 2.19 and 4.23.)

4.5 Notions of Size

In the previous section we introduced the notions of syndetic and piecewise syndetic,
both of which can be viewed as a way of saying that a subset of a semigroup is large.
We introduce in this section the notion of thick and establish some relations among
these notions. As with syndetic and piecewise syndetic, the notion of thick comes
from topological dynamics and originated in the context of .N;C/. A subset of N is
thick if and only if it contains arbitrarily long blocks of integers.

Definition 4.45. Let S be a semigroup and let A � S . Then A is thick if and only if
for every F 2 Pf .S/ there exists x 2 S such that Fx � A.

As with the notions of syndetic and piecewise syndetic, the notion of thick is a one
sided notion.
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Remark 4.46. Let S be a semigroup and let A � S .

(a) A is thick if and only if S n A is not syndetic.

(b) A is syndetic if and only if S n A is not thick.

(c) A is piecewise syndetic if and only if there is some H 2 Pf .S/ such thatS
t2H t

�1A is thick.

We see that the property of being thick is equivalent to an apparently stronger prop-
erty. That is the translate x can be guaranteed to come from A.

Theorem 4.47. Let S be a semigroup and let A � S . A is thick if and only if for
every F 2 Pf .S/ there exists x 2 A such that Fx � A.

Proof. The sufficiency is trivial. For the necessity, let F 2 Pf .S/ be given. Pick any
y 2 S . Then Fy [ ¹yº 2 Pf .S/ so pick x 2 S such that .Fy [ ¹yº/x � A. Then
yx 2 A and Fyx � A.

Recall from Theorem 4.40 thatA is piecewise syndetic if and only ifA\K.ˇS/¤;.

Theorem 4.48. Let S be a semigroup and let A � S .

(a) A is thick if and only if there is a left ideal L of ˇS with L � A.

(b) A is syndetic if and only if for every left ideal L of ˇS , A \ L ¤ ;.

Proof. (a) Necessity. Since A is thick, ¹t�1A W t 2 Sº has the finite intersection
property so pick by Theorem 3.8, p 2 ˇS such that ¹t�1A W t 2 Sº � p. Then
Sp � A so ˇSp D c`.Sp/ � A.

Sufficiency. Let L be a left ideal contained in A and pick p 2 L. Then Sp � A so,
given F 2 Pf .S/,

T
t2F t

�1A 2 p and we can pick x 2
T
t2F t

�1A.
(b) This follows from (a) and Remark 4.46.

We see now that there is a strong relationship among the three notions of largeness
that we are studying in this section.

Theorem 4.49. Let S be a semigroup and let A � S . A is piecewise syndetic if and
only if there exist a syndetic set B and a thick set C such that A D B \ C .

Proof. Sufficiency. Pick a syndetic set B and a thick set C such that A D B \ C .
Pick H 2 Pf .S/ such that S D

S
t2H t

�1B . We claim that
S
t2H t

�1A is thick so
that, by Remark 4.46, A is piecewise syndetic. To this end, let F 2 Pf .S/ be given
and pick x 2 S such that HFx � C . To see that Fx �

S
t2H t

�1A, let y 2 F be
given. Pick t 2 H such that yx 2 t�1B . Then ty 2 HF so tyx 2 B \ C D A.

Necessity. By Remark 4.46, pick H 2 Pf .S/ such that
S
t2H t

�1A is thick. Let
C D A [

S
t2H t

�1A and let B D A [ .S n C/. Trivially C is thick and A D
B \ C so it suffices to show that B is syndetic. Suppose not. Then by Remark 4.46,
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S n B is thick so by Theorem 4.47 pick x 2 S n B such that Hx � S n B . Now
S n B D C n A �

S
t2H t

�1A so pick t 2 H such that tx 2 A. Then tx 2 B ,
a contradiction.

Corollary 4.50. Let S be a semigroup and let A � S . The following statements are
equivalent:

(a) A is thick.

(b) For every syndetic set B , A \ B is piecewise syndetic.

(c) For every syndetic set B , A \ B ¤ ;.

Proof. This is Exercise 4.5.1.

Corollary 4.51. Let S be a semigroup and let A � S . The following statements are
equivalent:

(a) A is syndetic.

(b) For every thick set B , A \ B is piecewise syndetic.

(c) For every thick set B , A \ B ¤ ;.

Proof. This is Exercise 4.5.2.

Exercise 4.5.1. Prove Corollary 4.50.

Exercise 4.5.2. Prove Corollary 4.51.

4.6 Notes

We have chosen to extend the operation in such a way as to make .ˇS; � / a right topo-
logical semigroup. One can equally well extend the operation so as to make .ˇS; � /
a left topological semigroup and in fact this choice is often made in the literature. (It
used to be the customary choice of the first author of this book.) It would seem then
that one could find two situations in the literature. But no, one instead finds four! The
reader will recall that in Section 2.1 we remarked that what we refer to as “right topo-
logical” is called by some authors “left topological” and vice versa. In the following
table we include one citation from our Bibliography, where the particular combination
of choices is made. Obviously, when referring to the literature one must be careful to
determine what the author means.

Called Right Called Left
Topological Topological

�p Continuous [318] [69]

�p Continuous [353] [296]
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Example 4.6 is due to J. Baker and R. Butcher [14]. The existence of a compactifi-
cation with the properties of ˇS given by Theorem 4.8 is [64, Theorem 4.5.3], where
it is called the LMC -compactification of S . The fact that an operation on a discrete
semigroup S can be extended to ˇS was first implicitly established by M. Day in
[118] using methods of R. Arens [9]. The first explicit statement seems to have been
made by P. Civin and B. Yood [102]. These mathematicians tended to view ˇS as a
subspace of the dual of the real or complex valued functions on S . The extension to
ˇS as a space of ultrafilters is done by R. Ellis [134, Chapter 8] in the case that S is a
group.

Corollary 4.22 is due to P. Milnes [307].
Theorem 4.22.2 is from [34], a result of collaboration with V. Bergelson and

A. Blass. Example 4.22.4 is due to J. McLeod [303].
The results in Section 4.3 are special cases of results from [199] which are in turn

special cases of results due to D. Davenport in [113].
The notion of “central” has its origins in topological dynamics. See Chapter 19 for

the dynamical definition and a proof of the equivalence of the notions.
Theorem 4.43.2 is from [268].
Exercise 4.4.7 was suggested by I. Protasov. This result is due to B. Neumann

[312], who proved something stronger: if the union of the subgroups Hi is irredun-
dant, then every Hi has finite index.

Most of the results of Section 4.5 are from [53], a result of collaboration with
V. Bergelson and R. McCutcheon.



Chapter 5

ˇS and Ramsey Theory – Some Easy Applications

We describe in this chapter some easy applications of the algebraic structure of ˇS to
the branch of combinatorics known as “Ramsey Theory”.

5.1 Ramsey Theory

We begin our discussion of the area of mathematics known as Ramsey Theory by
illustrating the subject area by example. We cite here several of the classic theorems
of the field. They will all be proved in this book. The oldest is the 1892 result of
Hilbert. It involves the notion of finite sums, which will be of continuing interest to us
in this book, so we pause to introduce some notation. Recall that in a noncommutative
semigroup we have defined

Qn
iD1 xi to be the product in increasing order of indices.

Similarly, we take
Q
n2F xn to be the product in increasing order of indices. So, for

example, if F D ¹2; 5; 6; 9º, then
Q
n2F xn D x2 � x5 � x6 � x9.

We introduce separate notation (“FP” for “finite products” and “FS” for “finite
sums”) depending on whether the operation of the semigroup is denoted by � or C.

Definition 5.1. (a) Let .S; � / be a semigroup. Given an infinite sequence hxni1nD1
in S ,

FP.hxni
1
nD1/ D

°Y
n2F

xn W F 2 Pf .N/
±
:

Given a finite sequence hxnimnD1 in S ,

FP.hxni
m
nD1/ D

°Y
n2F

xn W F 2 Pf .¹1; 2; : : : ; mº/
±
:

(b) Let .S;C/ be a semigroup. Given an infinite sequence hxni1nD1 in S ,

FS.hxni
1
nD1/ D

°X
n2F

xn W F 2 Pf .N/
±
:

Given a finite sequence hxnimnD1 in S ,

FS.hxni
m
nD1/ D

°X
n2F

xn W F 2 Pf .¹1; 2; : : : ; mº/
±
:
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Theorem 5.2 (Hilbert [185]). Let r 2 N and let N D
Sr
iD1Ai . For each m 2 N

there exist i 2 ¹1; 2; : : : ; rº, a sequence hxnimnD1 in N, and an infinite set B � N
such that for each a 2 B , aC FS.hxnimnD1/ � Ai .

Proof. This is a consequence of Corollary 5.10.

The next classical result is the 1916 result of Schur, which allows one to omit the
translates on the finite sums when m D 2.

Theorem 5.3 (Schur [359]). Let r 2 N and let N D
Sr
iD1Ai . There exist i 2

¹1; 2; : : : ; rº and x and y in N with ¹x; y; x C yº � Ai .

Proof. This is a consequence of Corollary 5.10.

One of the most famous results of the field is the 1927 result of van der Waerden
guaranteeing “monochrome” arithmetic progressions. (The statement “let r 2 N and
let N D

Sr
iD1Ai” is often replaced by “let r 2 N and let N be r-colored”, in which

case the conclusion “: : : � Ai” is replaced by “: : : is monochrome”.)

Theorem 5.4 (van der Waerden [382]). Let r 2 N and let N D
Sr
iD1Ai . For each

`2N there exist i 2 ¹1; 2; : : : ; rº and a; d 2N such that ¹a; aCd; : : : ; aC`dº �Ai .

Proof. This is Corollary 14.2.

Since the first of the classical results in this area are due to Hilbert, Schur, and van
der Waerden, one may wonder why it is called “Ramsey Theory”. The reason lies in
the kind of result proved by Ramsey in 1930. It is a more general structural result not
dependent on the arithmetic structure of N.

Definition 5.5. Let A be a set and let � be a cardinal number.

(a) ŒA�� D ¹B � A W jBj D �º.

(b) ŒA�<� D ¹B � A W jBj < �º.

Theorem 5.6 (Ramsey [346]). Let Y be an infinite set and let k; r 2 N. If ŒY �k DSr
iD1Ai , then there exist i 2¹1; 2; : : : ;rº and an infinite subsetB of Y with ŒB�k�Ai .

Proof. This is Theorem 18.2.

Notice that the case k D 1 of Ramsey’s Theorem is the pigeon hole principle.
We mention also that another fundamental early result of Ramsey Theory is Rado’s

Theorem [343]. It involves the introduction of several new notions, so we shall not
state it here. We shall however present and prove Rado’s Theorem in Chapter 15.

Notice that all of these theorems are instances of the following general statement:
One has a set X and a collection of “good” subsets G of X . One then asserts that the
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collection G is weakly partition regular as defined in Definition 3.10.1. (Consider the
following table.)

Theorem X G 2 G

Hilbert N
S
a2B.aC FS.hxnimnD1//

Schur N ¹x; y; x C yº

van der Waerden N ¹a; aC d; : : : ; aC `dº

Ramsey ŒY �k ŒB�k

It would not be entirely accurate, but certainly not far off the mark, to define Ramsey
Theory as the classification of pairs .X;G / for which the above statement is true. We
see now that under this definition, any question in Ramsey Theory is a question about
ultrafilters.

Theorem 5.7. Let X be a set and let G � P .X/. The following statements are
equivalent:

(a) The collection G is weakly partition regular.

(b) There is an ultrafilter p on X such that for every member A of p, there exists
G 2 G with G � A.

Proof. (a) implies (b). If ; 2 G , then any ultrafilter on X will do, so assume ; … G .
Let A D ¹B � X W for every G 2 G , B \G ¤ ;º. Then A has the finite intersection
property. (For suppose one has ¹B1; B2; : : : ; Brº � A with

Tr
iD1Bi D ;. ThenX DSr

iD1.XnBi / so there exist some i 2 ¹1; 2; : : : ; rº and someG 2 G withG\Bi D ;,
a contradiction.) Pick by Theorem 3.8 some ultrafilter p on X with A � p. Then
given any A 2 p, X n A … A so there is some G 2 G with G \ .X n A/ D ;.

(b) implies (a). Let r 2 N and let X D
Sr
iD1Ai . For some i 2 ¹1; 2; : : : ; rº,

Ai 2 p.

Exercise 5.1.1. Prove that Theorem 5.4 implies the following superficially stronger
statement.

Let r 2 N and let N D
Sr
iD1Ai . There exists i 2 ¹1; 2; : : : ; rº such that for each

` 2 N, there exist a; d 2 N such that ¹a; aC d; : : : ; aC `dº � Ai .

5.2 Idempotents and Finite Products

The first application of the algebraic structure of ˇS to Ramsey Theory was the
Galvin-Glazer proof of the Finite Sums Theorem (Corollary 5.10). It established an
intimate relationship between finite sums (or products) in S and idempotents in ˇS .
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We present two proofs. The first of these is the original and is given for historic rea-
sons as well as the fact that variations on this proof will be used later. The second,
simpler, proof is of recent origin.

Theorem 5.8. Let S be a semigroup, let p be an idempotent in ˇS , and let A 2 p.
There is a sequence hxni1nD1 in S such that FP.hxni1nD1/ � A.

First Proof. Let A1 D A and let B1 D ¹x 2 S W x�1A1 2 pº. Since A1 2 p D p �p,
B1 2 p. Pick x1 2 B1 \ A1, let A2 D A1 \ .x1

�1A1/, and note that A2 2 p.
Inductively given An 2 p, let Bn D ¹x 2 S W x�1An 2 pº. Since An 2 p D p � p,
Bn 2 p. Pick xn 2 Bn \ An and let AnC1 D An \ .xn�1An/.

To see for example why x2 � x4 � x5 � x7 2 A, note that x7 2 A7 � A6 � x5�1A5
so that x5 � x7 2 A5 � x4

�1A4. Thus x4 � x5 � x7 2 A4 � A3 � x2
�1A2 so that

x2 � x4 � x5 � x7 2 A2 � A1 D A.
More formally, we show by induction on jF j that if F 2 Pf .N/ and m D minF

then
Q
n2F xn 2 Am. If jF j D 1, then

Q
n2F xn D xm 2 Am. Assume jF j > 1,

let G D F n ¹mº, and let k D minG. Note that since k > m, Ak � AmC1. Then
by the induction hypothesis,

Q
n2G xn 2 Ak � AmC1 � xm

�1Am so
Q
n2F xn D

xm �
Q
n2G xn 2 Am.

Second proof. Recall that A?.p/ D ¹x 2 A W x�1A 2 pº and write A? for
A?.p/. Pick x1 2 A?. Let n 2 N and assume we have chosen hxt intD1 such that
FP.hxt intD1/ � A?. Let E D FP.hxt intD1/. Then E is finite and for each a 2 E
we have by Lemma 4.14 that a�1A? 2 p and hence

T
a2E a

�1A? 2 p. Pick
xnC1 2 A

? \
T
a2E a

�1A?. Then xnC1 2 A? and given a 2 E, a � xnC1 2 A?

and hence FP.hxt i
nC1
tD1 / � A

?.

Corollary 5.9. Let S be a semigroup, let r 2 N and let S D
Sr
iD1Ai . There exist

i 2 ¹1; 2; : : : ; rº and a sequence hxni1nD1 in S such that FP.hxni1nD1/ � Ai .

Proof. Pick by Theorem 2.5 an idempotent p 2 ˇS and pick i 2 ¹1; 2; : : : ; rº such
that Ai 2 p. Apply Theorem 5.8.

Note that in the proof of Theorem 5.8, the fact that we have chosen to take our
products in increasing order of indices is important. However, the corresponding
version of Corollary 5.9 taking products in decreasing order of indices remains true.

The hard way to see this is to redefine the operation on ˇS so that it is a left
topological semigroup. In this case one gets that A 2 p � q if and only if ¹x 2 S W
Ax�1 2 pº 2 q, and mimicking the proof of Theorem 5.8 produces sequences with
products in decreasing order of indices contained in any member of any idempotent.

The easy way to see this is to consider the semigroup .S;�/ where x � y D y � x.
We isolate the following corollary for historical reasons. We also point out that this

corollary is strong enough to derive all of the combinatorial results of this section.
(See the exercises at the end of this section.)
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Corollary 5.10 (Finite Sums Theorem). Let r 2 N and let N D
Sr
iD1Ai . There

exist i 2 ¹1; 2; : : : ; rº and a sequence hxni1nD1 in N such that FS.hxni1nD1/ � Ai .

Proof. This is a special case of Corollary 5.9.

It turns out that the relationship between idempotents and finite products is even
more intimate than indicated by Theorem 5.8.

Lemma 5.11. Let S be a semigroup and let hxni1nD1 be a sequence in S . ThenT1
mD1 FP.hxni1nDm/ is a subsemigroup of ˇS . In particular, there is an idempotent

p in ˇS such that for each m 2 N, FP.hxni1nDm/ 2 p.

Proof. Let T D
T1
mD1 FP.hxni1nDm/. To see that T is a semigroup, we use Theorem

4.20. Trivially, ¹FP.hxni1nDm/ W m 2 Nº has the finite intersection property. Let
m 2 N and let s 2 FP.hxni1nDm/ be given. Pick F 2 Pf .N/ with minF � m such
that s D

Q
n2F xn. Let k D maxF C1. To see that s �FP.hxni1nDk/ � FP.hxni1nDm/,

let t 2 FP.hxni1nDk/ be given and pick G 2 Pf .N/ with minG � k such that
t D

Q
n2G xt . Then maxF < minG so st D

Q
n2F[G xn 2 FP.hxni1nDm/.

For the “in particular” conclusion note that by Theorem 2.5, E.T / ¤ ;.

Theorem 5.12. Let S be a semigroup and let A � S . There exists an idempo-
tent p of ˇS with A 2 p if and only if there exists a sequence hxni1nD1 in S with
FP.hxni1nD1/ � A.

Proof. The necessity is Theorem 5.8 and the sufficiency follows from Lemma 5.11.

One should note what is not guaranteed by Theorem 5.8 and Lemma 5.11. That
is, given an idempotent p and A 2 p one can obtain a sequence hxni1nD1 with
FP.hxni1nD1/�A. One can then in turn obtain an idempotent q with FP.hxni1nD1/2q,
but one is not guaranteed that p D q or even that FP.hxni1nD1/ 2 p. (See Chapter 12
for more information on this point.)

We now show that sets of finite products are themselves partition regular.

Definition 5.13. (a) Let .S; � / be a semigroup and let hxni1nD1 be a sequence in S .
The sequence hyni1nD1 is a product subsystem of hxni1nD1 if and only if there is a
sequence hHni1nD1 in Pf .N/ such that for every n 2 N, maxHn < minHnC1
and yn D

Q
t2Hn

xt .

(b) Let .S;C/ be a semigroup and let hxni1nD1 be a sequence in S . The sequence
hyni

1
nD1 is a sum subsystem of hxni1nD1 if and only if there is a sequence

hHni
1
nD1 in Pf .N/ such that for every n 2 N, maxHn < minHnC1 and

yn D
P
t2Hn

xt .
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Theorem 5.14. Let S be a semigroup, let hxni1nD1 be a sequence in S and let p be an
idempotent in ˇS such that for every m 2 N, FP.hxni1nDm/ 2 p. Let A 2 p. There is
a product subsystem hyni1nD1 of hxni1nD1 such that FP.hyni1nD1/ � A.

Proof. Let A? D A?.p/ and pick y1 2 A� \ FP.hxni1nD1/. Pick H1 2 Pf .N/ such
that y1 D

Q
t2H1

xt .
Inductively, let n 2 N and assume that we have chosen hyi iniD1 and hHi iniD1 such

that:

(1) each yi D
Q
t2Hi

xt ,

(2) if i < n, then maxHi < minHiC1, and

(3) FP.hyi iniD1/ � A
?.

Let E D FP.hyi iniD1/ and let k D maxHn C 1. Let

B D FP.hxi i1iDk/ \ A
? \

T
a2E

a�1A?:

By Lemma 4.14 a�1A? 2 p for each a 2 E so B 2 p. Pick ynC1 2 B and HnC1
with minHnC1 � k such that ynC1 D

Q
t2HnC1

xt .

As in the second proof of Theorem 5.8 we see that FP.hyi i
nC1
iD1 / � A

?.

Corollary 5.15. Let S be a semigroup, let hxni1nD1 be a sequence in S , let r 2 N, and
let FP.hxni1nD1/ D

Sr
iD1Ai . There exist i 2 ¹1; 2; : : : ; rº and a product subsystem

hyni
1
nD1 of hxni1nD1 such that FP.hyni1nD1/ � Ai .

Proof. Pick by Lemma 5.11 an idempotent p 2 ˇS such that for each m 2 N,
FP.hxni1nDm/ 2 p. Then

Sr
iD1Ai 2 p so pick i 2 ¹1; 2; : : : ; rº such that Ai 2 p.

Now Theorem 5.14 applies.

The semigroup .Pf .N/;[/ is of sufficient importance to introduce special notation
for it, and to make special mention of its partition regularity.

Definition 5.16. Let hFni1nD1 be a sequence in Pf .N/.

(a) FU.hFni1nD1/ D ¹
S
n2G Fn W G 2 Pf .N/º.

(b) The sequence hGni1nD1 is a union subsystem of hFni1nD1 if and only if there is a
sequence hHni1nD1 in Pf .N/ such that for every n 2 N, maxHn < minHnC1
and Gn D

S
t2Hn

Ft .

Corollary 5.17. Let hFni1nD1 be a sequence in Pf .N/, let r 2 N, and let
FU.hFni1nD1/ D

Sr
iD1Ai . There exist i 2 ¹1; 2; : : : ; rº and a union subsystem

hGni
1
nD1 of hFni1nD1 such that FU.hGni1nD1/ � Ai . In particular, if r 2 N and

Pf .N/ D
Sr
iD1Ai , then there exist i 2 ¹1; 2; : : : ; rº and a sequence hGni1nD1 in

Pf .N/ such that FU.hGni1nD1/ � Ai and for each n 2 N, maxGn < minGnC1.
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Proof. The first conclusion is an immediate consequence of Corollary 5.15. To see
the “in particular” conclusion, let Fn D ¹nº for each n 2 N, so that FU.hFni1nD1/ D
Pf .N/.

We conclude this section with a sequence of exercises designed to show that the
Finite Sums Theorem (Corollary 5.10) can be used to derive the combinatorial con-
clusions of this section. (That is, Corollaries 5.9, 5.15, and 5.17.) Since Corollary 5.9
is a consequence of Corollary 5.15, it suffices to establish the last two of these results.
The intent in all of these exercises is that one should not use the algebraic structure
of ˇS .

Exercise 5.2.1. Let hxni1nD1 be a sequence in N and let t 2 N. Prove that for each
m 2 N there exists H 2 Pf .¹n 2 N W n > mº/ such that 2t j

P
n2H xn.

Exercise 5.2.2. Let hxni1nD1 be a sequence in N. Prove that there is a sum subsystem
hyni

1
nD1 of hxni1nD1 such that for each n and t in N, if 2t 
 yn, then 2tC1jynC1.

Exercise 5.2.3. Prove, using Corollary 5.10, that if r 2 N and Pf .N/ D
Sr
iD1Ai ,

then there exist i 2 ¹1; 2; : : : ; rº and a sequence hGni1nD1 in Pf .N/ such that
FU.hGni1nD1/ � Ai and for each n 2 N, maxGn < minGnC1. (Hint: Consider
the function 	 W Pf .N/! N defined by 	.F / D

P
n2F 2

n�1.)

Exercise 5.2.4. Prove Corollary 5.15.

Exercise 5.2.5. Prove that the Finite Products Theorem (Corollary 5.9) is valid in any
adequate partial semigroup. That is, let .S; � / be an adequate partial semigroup, let
r 2 N, and let S D

Sr
iD1Ai . There exist i 2 ¹1; 2; : : : ; rº and a sequence hxni1nD1

in S such that
Q
t2F xt is defined for each F 2 Pf .N/ and FP.hxni1nD1/ � Ai .

(Hint: Pick an idempotent in ıS .)

5.3 Sums and Products in N

The results of the previous section are powerful and yet easily proved using the alge-
braic structure of ˇS . But their first proofs were combinatorial. We present in this
section a simple result whose first proof was found using the algebraic structure of ˇN
and for which an elementary proof was only found much later. (In subsequent chap-
ters we shall encounter many examples of combinatorial results whose only known
proofs utilize the algebraic structure of ˇS .)

One knows from the Finite Sums Theorem that whenever r 2N and N D
Sr
iD1Ai ,

there exist i 2¹1; 2; : : : ; rº and a sequence hxni1nD1 in N such that FS.hxni1nD1/�Ai .
It is an easy consequence of this fact that whenever r 2 N and N D

Sr
iD1Ai , there

exist j 2 ¹1; 2; : : : ; rº and a sequence hyni1nD1 in N such that FP.hyni1nD1/ � Aj .
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(Of course the second statement follows from Corollary 5.9. It is also an elementary
consequence of the Finite Sums Theorem in the fashion outlined in the exercises at
the end of the previous section. However, it follows much more quickly from the
Finite Sums Theorem by a consideration of the homomorphism ' W .N;C/! .N; � /
defined by '.n/ D 2n.)

Two questions naturally arise. First can one choose i D j in the above statements?
Second, if so, can one choose hxni1nD1 D hyni

1
nD1? We answer the first of these

questions affirmatively in this section. The negative answer to the second question is
a consequence of Theorem 17.16.

Definition 5.18. � D c`¹p 2 ˇN W p D p C pº.

We have the following simple combinatorial characterization of � .

Lemma 5.19. Let p 2 ˇN. Then p 2 � if and only if for every A 2 p there exists a
sequence hxni1nD1 such that FS.hxni1nD1/ � A.

Proof. Necessity. Let A 2 p be given. Then A is a neighborhood of p so pick
q D q C q in ˇN with q 2 A. Then A 2 q so by Theorem 5.12 there is a sequence
hxni

1
nD1 in N with FS.hxni1nD1/ � A.

Sufficiency. Let a basic neighborhood A of p be given. Then there is a sequence
hxni

1
nD1 in N with FS.hxni1nD1/ � A, so by Theorem 5.12 there is some q D q C q

in ˇN with A 2 q.

We shall see as a consequence of Exercise 6.1.4 that � is not a subsemigroup of
.ˇN;C/. However, we shall see in Theorem 5.20 that � does have significant multi-
plicative structure.

The following simple result will frequently be useful.

Lemma 5.19.1. Let p be an idempotent in Z�. Then for every n 2 Z n ¹0º, nZ 2 p.
If p 2 ˇN and n 2 N, then nN 2 p.

Proof. Let � W Z ! Zn denote the canonical homomorphism. Thene� W ˇZ ! Zn
is also a homomorphism, by Corollary 4.22. Thus e�.p/ D e�.p/ C e�.p/ and soe�.p/ D 0. It follows thate��1Œ¹0º� is a neighborhood of p, and hence thate��1Œ¹0º�\
Z D nZ 2 p.

If p 2 ˇN and n 2 N, then nN D nZ \N.

In the following lemma, ˛ �p refers to multiplication in .ˇQd ; � /, where Qd is the
set of rationals with the discrete topology.

Lemma 5.19.2. Let p be an idempotent in .ˇN;C/ and let ˛ 2 Q with ˛ > 0. Then
˛ �p is also an idempotent in .ˇN;C/. If p is a minimal idempotent, then ˛ �p is also
a minimal idempotent. Consequently, if C is central in .N;C/, then so is .˛C /\N.
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Proof. The function l˛ W N ! Q defined by l˛.x/ D ˛ � x is an injective homo-
morphism and so is its continuous extension el˛ W ˇN ! ˇQd by Corollary 4.22 and
Exercise 3.4.1. So ˛ � p is an idempotent in ˇ.Qd ;C/. Furthermore, if ˛ D m

n
with

m; n 2 N, then the fact that nN 2 p (by Lemma 5.19.1) implies that N 2 ˛ � p and
hence that ˛ � p 2 ˇN.

Now suppose that p is minimal in ˇN and that q is an idempotent in ˇN satisfying
q 
 ˛ �p. Then el˛�1 is a homomorphism so ˛�1 �q is an idempotent in ˇN satisfying
˛�1 � q 
 ˛�1 � ˛ � p D p. So ˛�1 � q D p and thus q D ˛ � p. Thus ˛ � p is minimal
in ˇN.

For the final assertion, let C be central in .N;C/ and pick a minimal idempotent p
with C 2 p. Then ˛C \N 2 ˛ � p.

Theorem 5.20. � and c`.E.K.ˇN;C/// are both left ideals of .ˇN; � /.

Proof. Let p 2 � . We claim that N � p � � , so that c`ˇN.N � p/ D ˇN � p � � .
So let n 2 N and let A 2 n � p. Then n�1A 2 p so pick q 2 E.ˇN;C/ such that
n�1A 2 q. Then A 2 n � q and by Lemma 15.23.2, n � q 2 E.ˇN;C/.

The proof for c`.E.K.ˇN;C/// is identical, using the fact that if n 2 N and
q 2 E.K.ˇN;C//, then n � q 2 E.K.ˇN;C//.

We shall see in Corollary 17.17 that there is no p 2 ˇN with p C p D p � p.
However, we see that there are multiplicative idempotents close to the additive idem-
potents.

Corollary 5.21. E.K.ˇN; � // \ c`.E.K.ˇN;C/// ¤ ;. In particular, K.ˇN; � / \
c`.K.ˇN;C// ¤ ; and there exists p D p � p 2 � .

Proof. By Theorem 5.20, c`.E.K.ˇN;C/// is a left ideal in .ˇN; � /. So it contains
a minimal idempotent of .ˇN; � / by Corollary 2.6.

Corollary 5.21.1. Let r 2 N and let N D
Sr
iD1Ai . There exists i 2 ¹1; 2; : : : ; rº

such that Ai is central in .N;C/ and central in .N; � /.

Proof. Pick p 2 E.K.ˇN; � // \ c`.E.K.ˇN;C/// and pick i 2 ¹1; 2; : : : ; rº such
that Ai 2 p.

Corollary 5.22. Let r 2 N and let N D
Sr
iD1Ai . There exist i 2 ¹1; 2; : : : ; rº and

sequences hxni1nD1 and hyni1nD1 in N with FS.hxni1nD1/ [ FP.hyni1nD1/ � Ai .

Proof. Pick by Corollary 5.21 some p D p � p in � . Pick i 2 ¹1; 2; : : : ; rº such that
Ai 2 p. Since p D p � p there is by Theorem 5.8 a sequence hyni1nD1 in N with
FP.hyni1nD1/ � Ai . Since p 2 � there is by Lemma 5.19 a sequence hxni1nD1 in N
with FS.hxni1nD1/ � Ai .
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5.4 Adjacent Finite Unions

In Corollary 5.17, there is no reason to expect the terms of the sequence hGni1nD1 to
be close to each other. In fact, if as in Corollary 5.17 one has maxGn < minGnC1
for all n, we can absolutely guarantee that they are not.

Theorem 5.23. There is a partition of Pf .N/ into two cells such that, if hGni1nD1
is any sequence in Pf .N/ such that FU.hGni1nD1/ is contained in one cell of the
partition and maxGn < minGnC1 for all n, then ¹minGnC1 � maxGn W n 2 Nº is
unbounded.

Proof. Given a 2 N and F 2 Pf .N/, define

'.a; F / D j¹x 2 F W ¹x C 1; x C 2; : : : ; x C aº \ F ¤ ;ºj:

For i 2 ¹0; 1º, let

Ai D ¹F 2 Pf .N/ W '.minF;F / 	 i .mod 2/º:

Suppose that we have a i 2 ¹0; 1º and a sequence hGni1nD1 such that

(1) maxGn < minGnC1 for all n 2 N,

(2) FU.hGni1nD1/ � Ai , and

(3) ¹minGnC1 �maxGn W n 2 Nº is bounded.

Pick b 2 N such that for all n 2 N, minGnC1 � maxGn 
 b, and pick k 2 N
such that minGk > b. Let a D minGk and pick ` such that minG` � maxGk > a,
noticing that ` > k C 1. Let F D

S`�1
tDkC1Gt . Then each of Gk , Gk [ F , Gk [G`,

and Gk [ F [G` is in Ai and

minGk D min.Gk [ F / D min.Gk [G`/ D min.Gk [ F [G`/ D a

so

'.a;Gk/ 	 '.a;Gk [ F / 	 '.a;Gk [G`/ 	 '.a;Gk [ F [G`/ .mod 2/:

Now

'.a;Gk [ F / D '.a;Gk/C '.a; F /C 1;

'.a;Gk [G`/ D '.a;Gk/C '.a;G`/; and

'.a;Gk [ F [G`/ D '.a;Gk/C '.a; F /C '.a;G`/C 2

so

'.a;Gk/ 	 '.a;Gk/C '.a; F /C 1

	 '.a;Gk/C '.a;G`/

	 '.a;Gk/C '.a; F /C '.a;G`/C 2 .mod 2/;

which is impossible.
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We show in the remainder of this section that, given any finite partition of Pf .N/,
we can get a sequence hHni1nD1 with any specified separation between maxHn and
minHnC1 (including minHnC1 D maxHn C 1) and all finite unions that do not use
adjacent terms in one cell of the partition. In the following definition naFU is intended
to represent “non adjacent finite unions”.

Definition 5.24. Let hHki1kD1 be a sequence in Pf .N/.

(a) naFU.hHki
1
kD1

/ D ¹
S
t2F Ht W F 2 Pf .N/ and for all t 2 F; t C 1 … F º.

(b) If n 2 N, then naFU.hHki
n
kD1

/ D ¹
S
t2F Ht W ; ¤ F � ¹1; 2; : : : ; nº and for

all t 2 F; t C 1 … F º.

(c) naFU.hHki0kD1/ D ;.

We shall be using the semigroup .Pf .N/;[/ and the customary extension of the
operation to ˇ.Pf .N//. However, we cannot follow our usual practice of denoting
the extension of the operation to ˇ.Pf .N// by the same symbol used to denote the
operation in Pf .N/. (If p; q 2 ˇ.Pf .N//, then p[q already means something.) So,
we shall denote the extension of the operation [ to ˇ.Pf .N// by ].

Lemma 5.25. Let f W N ! N be a nondecreasing function. Define M W Pf .N/!
N andm W Pf .N/! N byM.F / D maxF Cf .maxF / andm.F / D minF . Then
M is a homomorphism from .Pf .N/;[/ to .N;_/ and m is a homomorphism from
.Pf .N/;[/ to .N;^/. Consequently, fM is a homomorphism from .ˇ.Pf .N//;]/ to
.ˇN;_/ and em is a homomorphism from .ˇ.Pf .N//;]/ to .ˇN;^/.

Proof. That m is a homomorphism is trivial. Given F;G 2 Pf .N/, one has

f .max.F [G// D f .maxF / _ f .maxG/

since f is a nondecreasing function, so that M.F [ G/ D M.F / _M.G/. The fact
that fM and em are homomorphisms then follows from Corollary 4.22 and Theorem
4.24.

Lemma 5.26. Let f W N ! N be a nondecreasing function, define M and m as in
Lemma 5.25, and let Y D ¹aC f .a/ W a 2 Nº. If x 2 Y nN and

T D ¹p 2 ˇ.Pf .N// WfM.p/ D em.p/ D xº;
then T is a compact subsemigroup of .ˇ.Pf .N//;]/.

Proof. Trivially T is compact. Further, by Exercise 4.1.11, x _ x D x ^ x D x, so
by Lemma 5.25, if p; q 2 T , then p ] q 2 T . Thus it suffices to show that T ¤ ;.

Let A D ¹M�1ŒX�\m�1ŒX� W X 2 xº. We claim that A has the finite intersection
property, for which it suffices to show that M�1ŒX�\m�1ŒX� ¤ ; for every X 2 x.
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So letX 2 x be given, pick a 2 X , and pick c 2 X\Y such that c > aCf .a/. Since
c 2 Y , pick b 2 N such that c D b C f .b/. Let F D ¹a; bº. If one had b < a, then
one would have c D b C f .b/ < a C f .a/, so maxF D b. Then m.F / D a 2 X

and M.F / D b C f .b/ D c 2 X , so F 2M�1ŒX� \m�1ŒX�.
Pick p 2 ˇ.Pf .N// such that A � p. By Lemma 3.30 p 2 T .

We can now prove the promised theorem yielding adjacent sequences with non
adjacent unions in one cell.

Theorem 5.27. Let f W N ! N be a nondecreasing function and let Pf .N/ DSr
iD1Ai . Then there exist some i 2 ¹1; 2; : : : ; rº and a sequence hHni1nD1 in Pf .N/

such that

(i) for each n, minHnC1 D maxHn C f .maxHn/ and

(ii) naFU.hHni1nD1/ � Ai .

Proof. Let M and m be as defined in Lemma 5.25 and let Y D ¹aC f .a/ W a 2 Nº.
Pick x 2 Y n N and by Lemma 5.26 and Theorem 2.5 pick an idempotent p in
.ˇ.Pf .N//;]/ such that fM.p/ D em.p/ D x. We show that for each U 2 p, there
is a sequence hHni1nD1 in Pf .N/ such that

(a) for each n, m.HnC1/ DM.Hn/ and

(b) naFU.hHni1nD1/ � U.

Then choosing i 2 ¹1; 2; : : : ; rº such that Ai 2 p completes the proof.
So let U 2 p be given. For each G 2 Pf .N/ and any V � Pf .N/ let G�1V D
¹F 2 Pf .N/ W G [ F 2 Vº and let U? D ¹G 2 U W G�1U 2 pº. Then by Lemma
4.14, U? 2 p and for each G 2 U?, G�1U? 2 p.

We claim now that, given any H 2 Pf .N/, ¹J 2 Pf .N/ W m.J / > M.H/º 2 p.
Indeed, otherwise we have some t 
M.H/ such that ¹J 2 Pf .N/ W m.J / D tº 2 p
so that em.p/ D t , a contradiction.

Now, by Lemma 3.31, ¹H 2 Pf .N/ W M.H/ 2 mŒU
?�º 2 p so pick H1 2 U?

such that M.H1/ 2 mŒU?�. Inductively, let n 2 N and assume that we have chosen
hHj i

n
jD1 in Pf .N/ such that for each k 2 ¹1; 2; : : : ; nº,

(1) naFU.hHj ikjD1/ � U?,

(2) if k > 1, then M.Hk/ 2 mŒU? \
T
¹G�1U? W G 2 naFU.hHj ik�1jD1/º�, and

(3) if k > 1, then m.Hk/ DM.Hk�1/.

Hypothesis (1) holds at n D 1 and hypotheses (2) and (3) are vacuous there.
If n D 1, pick H 2 U? such that m.H/ D M.H1/. Otherwise, by hypothesis (2),

pick

H 2 U? \
T
¹G�1U? W G 2 naFU.hHj in�1jD1/º
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such that m.H/ DM.Hn/. Let V be the family of sets J 2 Pf .N/ satisfying

(i) m.J / > M.H/,

(ii) H [ J 2 U?,

(iii) G [H [ J 2 U? for all G 2 naFU.hHj in�1jD1/, and

(iv) M.J / 2 mŒU? \
T
¹G�1U? W G 2 naFU.hHj injD1/º�.

We have seen that ¹J 2 Pf .N/ W m.J / > M.H/º 2 p and H�1U? 2 p because
H 2 U?. If n > 1 and G 2 naFU.hHj in�1jD1/, then H 2 G�1U? so G [H 2 U? so

.G [H/�1U? 2 p. Thus the family of sets satisfying (i), (ii), and (iii) is in p.
Finally, if G 2 naFU.hHj injD1/, then G 2 U? by hypothesis (1), so G�1U? 2 p.

Thus U? \
T
¹G�1U? W G 2 naFU.hHj injD1/º 2 p so®

J 2 Pf .N/ WM.J / 2 m
�
U? \

T
¹G�1U? W G 2 naFU.hHj injD1/º

�¯
2 p

by Lemma 3.31. Thus V 2 p and so is nonempty.
Pick J 2 V and let HnC1 D H [ J . Then M.HnC1/ D M.J / and also

m.HnC1/ D m.H/ DM.Hn/ so hypothesis (3) holds.
Further, J 2 V so

M.HnC1/ DM.J / 2 m
�
U? \

T
¹G�1U? W G 2 naFU.hHj injD1/º

�
so hypothesis (2) holds.

To complete the proof, we show that naFU.hHj i
nC1
jD1/ � U?. So let ; ¤ F �

¹1; 2; : : : ; n C 1º such that for each t 2 F , t C 1 … F . If n C 1 … F , thenS
t2F Ht 2 U? by hypothesis (1) at n, so assume that nC 1 2 F .
If F D ¹nC1º, then we haveHnC1DH[J 2U?. Thus, assume that F ¤ ¹nC1º,

letK DF n ¹nC 1º, and let GD
S
t2KHt . Then

S
t2F Ht DG [H [J 2U?.

Exercise 5.4.1. Let f W N ! N be a nondecreasing function and let Z be any
infinite subset of ¹aC f .a/ W a 2 Nº. Show that the conclusion of Theorem 5.27 can
be strengthened to require that minHn 2 Z for each n 2 N. (Hint: In Lemma 5.26,
choose x 2 Z nN.)

5.5 Compactness

Most of the combinatorial results that we shall prove in this book are infinite in nature.
We deal here with a general method used to derive finite analogues from the infinite
versions. This version is commonly referred to as “compactness”. (One will read in
the literature, “by a standard compactness argument one sees . . . ”.) We illustrate two
forms of this method of proof in this section, first deriving a finite version of the Finite
Products Theorem (Corollary 5.9).

For either of the common forms of compactness arguments it is more convenient to
work with the “coloring” method of stating results in Ramsey Theory.
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Definition 5.28. Let X be a set and let r 2 N.
(a) An r-coloring of X is a function ' W X ! ¹1; 2; : : : ; rº.
(b) Given an r-coloring ' of X , a subset B of X is said to be monochrome (with

respect to ') provided ' is constant on B .

Theorem 5.29. Let S be a countable semigroup and enumerate S as hsni1nD1. For
each r and m in N, there exists n 2 N such that whenever ¹st W t 2 ¹1; 2; : : : ; nºº is
r-colored, there is a sequence hxt imtD1 in S such that FP.hxt imtD1/ is monochrome.

Proof. Let r;m 2 N be given and suppose the conclusion fails. For each n 2 N
choose an r-coloring 'n of ¹st W t 2 ¹1; 2; : : : ; nºº such that for no sequence hxt imtD1
in S is FP.hxt imtD1/ monochrome.

Choose by the pigeon hole principle an infinite subset B1 of N and an element
�.1/ 2 ¹1; 2; : : : ; rº such that for all k 2 B1, 'k.s1/ D �.1/. Inductively, given
` 2 N with ` > 1 and an infinite subset B`�1 of N choose an infinite subset B` of
B`�1 and an element �.`/ 2 ¹1; 2; : : : ; rº such that minB` � ` and for all k 2 B`,
'k.s`/ D �.`/.

Define an r-coloring 	 of S by 	.s`/ D �.`/. Then S D
Sr
iD1 	

�1Œ¹iº� so pick
by Corollary 5.9 some i 2 ¹1; 2; : : : ; rº and an infinite sequence hxt i1tD1 in S such
that FP.hxt i1tD1/ � 	

�1Œ¹iº�. Pick k 2 N such that FP.hxt imtD1/ � ¹s1; s2; : : : ; skº
and pick n 2 Bk . We claim that FP.hxt imtD1/ is monochrome with respect to 'n, a
contradiction. To see this, let a 2 FS.hxt imtD1/ be given and pick ` 2 ¹1; 2; : : : ; kº
such that a D s`. Then n 2 Bk � B` so 'n.a/ D �.`/. Since a 2 FP.hxt i1tD1/ �
	�1Œ¹iº�, i D 	.a/ D 	.s`/ D �.`/. Thus 'n is constantly equal to i on FP.hxt imtD1/
as claimed.

The reader may wonder why the term “compactness” is applied to the proof of
Theorem 5.29. One answer is that such results can be proved using the compactness
theorem of logic. Another interpretation is provided by the proof of the following
theorem which utilizes topological compactness.

Theorem 5.30. For each r and m in N there exists n 2 N such that whenever
¹1; 2; : : : ; nº is r-colored, there exist sequences hxt imtD1 and hyt imtD1 in N such that
FS.hxt imtD1/ and FP.hyt imtD1/ are contained in ¹1; 2; : : : ; nº and FS.hxt imtD1/ [
FP.hyt imtD1/ is monochrome.

Proof. Let r;m 2 N be given and suppose the conclusion fails. For each n 2 N
choose an r-coloring 'n of ¹1; 2; : : : ; nº such that there are no sequences hxt imtD1 and
hyt i

m
tD1 in N for which FS.hxt imtD1/ and FP.hyt imtD1/ are contained in ¹1; 2; : : : ; nº

and FS.hxt imtD1/ [ FP.hyt imtD1/ is monochrome.
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Let Y D ⨉1nD1¹1; 2; : : : ; rº, where ¹1; 2; : : : ; rº is viewed as a topological space
with the discrete topology. For each n 2 N define �n 2 Y by

�n.t/ D

´
'n.t/ if t 
 n

1 if t > n:

Then h�ni1nD1 is a sequence in the compact space Y and so we can choose a cluster
point 	 of h�ni1nD1 in Y .

Then N D
Sr
iD1 	

�1Œ¹iº�. So by Corollary 5.22 there exist i 2 ¹1; 2; : : : ; rº
and sequences hxni1nD1 and hyni1nD1 in N such that FS.hxni1nD1/ [ FP.hyni1nD1/ �
	�1Œ¹iº�. Let k D max.FS.hxt imtD1/ [ FP.hyt imtD1// and let U D ¹g 2 Y W for all
t 2 ¹1; 2; : : : ; kº, g.t/ D 	.t/º. Then U is a neighborhood of 	 in Y , so pick n > k

such that �n 2 U . But then �n agrees with 	 on FS.hxt imtD1/ [ FP.hyt imtD1/. Also
�n agrees with 'n on ¹1; 2; : : : ; nº so FS.hxt imtD1/ [ FP.hyt imtD1/ is monochrome
with respect to 'n, a contradiction.

Exercise 5.5.1. Prove, using compactness and Theorem 5.6, the following version of
Ramsey’s Theorem. Let k; r;m 2 N. There exists n 2 N such that whenever Y is a
set with jY j D n and ŒY �k D

Sr
iD1Ai , there exist i 2 ¹1; 2; : : : ; rº and B 2 ŒY �m

with ŒB�k � Ai .

5.6 Notes

The basic reference for Ramsey Theory is the book by that title [176].
Corollary 5.10 was originally proved in [187], with a purely elementary (but very

complicated) combinatorial proof. A simplified combinatorial proof was given by
J. Baumgartner [23], and a proof using tools from Topological Dynamics has been
given by H. Furstenberg and B. Weiss [161].

The first proof of the Finite Sums Theorem given here is due to F. Galvin and
S. Glazer. This proof was never published by the originators, although it has ap-
peared in several surveys, the first of which was [105]. The idea for the construction
occurred to Galvin around 1970. At that time the Finite Sums Theorem was a conjec-
ture of R. Graham and B. Rothschild [175], as yet unproved. Galvin asked whether
an “almost translation invariant ultrafilter” existed. That is, is there an ultrafilter p
on N such that whenever A 2 p, one has ¹x 2 S W A � x 2 pº 2 p? (In terms
of the measure � corresponding to p which was introduced in Exercise 3.1.2, this is
asking that any set of measure 1 should almost always translate to a set of measure 1.)
Galvin had invented the construction used in the first proof of Theorem 5.8, and knew
that an affirmative answer to his question would provide a proof of the conjecture of
Graham and Rothschild. One of the current authors tried to answer this question and
succeeded only in showing that, under the assumption of the continuum hypothesis,
the validity of the conjecture of Graham and Rothschild implied an affirmative answer
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to Galvin’s question. With the subsequent elementary proof of the Finite Sums The-
orem [187], Galvin’s almost translation invariant ultrafilters became a figment of the
continuum hypothesis. Galvin was interested in establishing their existence in ZFC,
and one day in 1975 he asked Glazer whether such ultrafilters existed. When Glazer
quickly answered “yes”, Galvin tried to explain that he must be missing something
because it couldn’t be that easy. In fact it was that easy, because Glazer (1) knew that
ˇN could be made into a right topological semigroup with an operation extending
ordinary addition and (2) knew the characterization of that operation in terms of ul-
trafilters. (Most of the mathematicians who were aware of the algebraic structure of
ˇN did not think of ˇN as a space of ultrafilters.) In terms of that characterization,
it was immediate that Galvin’s almost translation invariant ultrafilters were simply
idempotents.

Theorem 5.12 is a result of F. Galvin (also not published by him).
An elementary proof of Corollary 5.22 can be found in [45], a result of collabora-

tion with V. Bergelson.
Theorem 5.27 is due to A. Blass in [68] where it was proved using Martin’s Axiom,

followed by an absoluteness argument showing that it is a theorem of ZFC.





Part II

Algebra of ˇS





Chapter 6

Ideals and Commutativity in ˇS

A very striking fact about ˇN is how far it is from being commutative. Although
.ˇN;C/ is a natural extension of the semigroup .N;C/, which is the most familiar
of all semigroups, its algebraic structure is amazingly complicated. For example, as
we shall show in Corollary 7.36, it contains many copies of the free group on 2c

generators.
It is a simple observation that a semigroup .S; � / which contains two disjoint left

ideals or two disjoint right ideals cannot be commutative. If L1 and L2, say, are two
disjoint left ideals of S and if s1 2 L1 and s2 2 L2, then s1 � s2 2 L2 and s2 � s1 2 L1.
So s1 � s2 ¤ s2 � s1. We shall show that .ˇN;C/ contains 2c mutually disjoint left
ideals and 2c mutually disjoint right ideals, and that this is a property shared by a large
class of semigroups of the form ˇS .

Using this observation, it is fairly easy to see that ˇZ is not commutative. In fact,
no element of Z� can be in the center of ˇZ. We first observe that N� and .�N/� are
both left ideals of ˇZ, as shown in Exercise 4.3.5. Thus, if p 2 N� and q 2 .�N/�,
q C p 2 N� and p C q 2 .�N/�. So q C p ¤ p C q and neither p nor q is in
the center of ˇZ. (Here, as elsewhere, if we mention “the semigroup ˇZ” or “the
semigroup ˇN” without mention of the operation, we assume that the operation is
addition.)

We shall show in Theorem 6.10 that N is the center of .ˇN;C/ and of .ˇN; � /, and
we shall show in Theorem 6.54 that these facts follow from a more general theorem.

6.1 The Semigroup H

We shall use the binary expansion of positive integers to show how rich the algebraic
structure of .ˇN;C/ is. This tool will yield information, not only about ˇN, but about
all semigroups ˇS which arise from infinite, discrete, cancellative semigroups S .

Definition 6.1. H D
T
n2N c`ˇN.2

nN/.

Recall that each n 2 N can be expressed uniquely as n D
P
i2F 2

i , where F 2
Pf .!/. (Recall that ! D N [ ¹0º.)

Definition 6.2. Given n 2 N, supp.n/ 2 Pf .!/ is defined by n D
P
i2supp.n/ 2

i .

In our study of ˇN it will often be the case that functions which are not homomor-
phisms on N nonetheless extend to functions whose restrictions to H are homo-
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morphisms. We remind the reader that the topological center ƒ.T / of a right topo-
logical semigroup T is the set of elements t 2 T for which �t is continuous.

Lemma 6.3. Let .T; � / be a compact right topological semigroup and let ' W N ! T

with 'ŒN� � ƒ.T /. Assume that there is some k 2 ! such that whenever x; y 2 N
and max supp.x/Ck < min supp.y/ one has '.xCy/ D '.x/ �'.y/. Then for each
p; q 2 H,e'.p C q/ De'.p/ �e'.q/.
Proof. This follows from Theorem 4.21 with A D ¹2nN W n 2 Nº.

The following theorem shows that homomorphic images of H occur very widely.
In this theorem, the possibility of a finite dense topological center can only occur if
T itself is finite, since we are assuming that all hypothesized topological spaces are
Hausdorff.

Theorem 6.4. Let T be a compact right topological semigroup with a countable
dense subset contained in its topological center. Then T is the image of H under
a continuous homomorphism.

Proof. Let E be a countable dense subset of T contained in ƒ.T /. We enumerate
E as ¹ti W i 2 I º, where I is either ! or ¹0; 1; 2; : : : ; kº for some k 2 !. We then
choose a disjoint partition ¹Ai W i 2 I º of ¹2n W n 2 !º, with each Ai being infinite.

We define a mapping 	 W N ! T by first stating that 	.2n/ D ti if 2n 2 Ai . We
then extend 	 to N by putting 	.n/ D

Q
i2supp.n/ 	.2

i /, with the terms in this product
occurring in the order of increasing i .

It follows from Lemma 6.3, that e	 W ˇN ! T is a homomorphism on H. We
must show thate	ŒH� D T . To see this, let i 2 I and let x 2 A�i . Then x 2 H ande	.x/ D ti . Soe	ŒH� � E and thuse	ŒH� � c`.E/ D T .

Corollary 6.5. Every finite (discrete) semigroup is the image of H under a continuous
homomorphism.

Proof. A finite discrete semigroup is a compact right topological semigroup which is
equal to its own topological center.

The following result is Lemma 5.19.1. We repeat it because it occupied this position
in the first edition.

Lemma 6.6. Let p be an idempotent in .ˇN;C/. Then for every n 2 N, nN 2 p.

Proof. Lemma 5.19.1.

Definition 6.7. We define � W N ! ! and � W N ! ! by stating that �.n/ D
max.supp.n// and �.n/ D min.supp.n//. Lete� W ˇN ! ˇ! ande� W ˇN ! ˇ! be
the continuous extensions of � and � respectively.
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Lemma 6.8. The set H is a compact subsemigroup of .ˇN;C/, which contains all the
idempotents of .ˇN;C/. Furthermore, for any p 2 ˇN and any q 2 H,e�.pC q/ De�.q/ ande�.p C q/ De�.p/.
Proof. H is obviously compact. Now, if n 2 2kN and if r > �.n/, nC 2rN � 2kN.
Thus it follows from Theorem 4.20 that H is a semigroup.

By Lemma 6.6, H contains all of the idempotents of .ˇN;C/.
Now suppose that p 2 ˇN and q 2 H. Given anym 2 N, choose r 2 N satisfying

r > �.m/. Then, if n 2 2rN, �.mC n/ D �.n/ and �.mC n/ D �.m/. Hence since
2rN 2 q,

e�.mC q/ D q-lim
n22rN

�.mC n/

D q-lim
n22rN

�.n/

D e�.q/:
It follows thate�.pCq/ D lim

m!p
e�.mCq/ D e�.q/. Similarly,e�.pCq/ De�.p/.

Theorem 6.9. .ˇN;C/ contains 2c minimal left ideals and 2c minimal right ideals.
Each of these contains 2c idempotents.

Proof. Let A D ¹2n W n 2 Nº. Since �.2n/ D �.2n/ D n for each n 2 N,
�jA D �jA W A ! N is bijective and so e�jA D e� jA W A ! ˇN is bijective as
well. Now if q1; q2 2 A� and .ˇN C q1/ \ .ˇN C q2/ ¤ ;, then by Lemma 6.8,
q1 D q2. (For if r C q1 D s C q2, thene�.q1/ D e�.r C q1/ D e�.s C q2/ D e�.q2/.)
By Corollary 3.57 jA�j D 2c, so ˇN has 2c pairwise disjoint left ideals, and each
contains a minimal left ideal, by Corollary 2.6.

Now observe that any idempotent e which is minimal (with respect to the ordering
of idempotents where e 
 f if and only if e D e C f D f C e) in H is in fact
minimal in ˇN. For otherwise there is an idempotent f of ˇN with f < e. But
every idempotent of ˇN is in H and so f 2 H, contradicting the minimality of e
in H.

Given any q 2 A�, q CH contains an idempotent ı.q/ which is minimal in H by
Theorems 2.7 and 2.9, and is hence minimal in ˇN. Thus by Theorem 2.9, ı.q/CˇN
is a minimal right ideal of ˇN. We claim that if q1 ¤ q2 in A�, then ı.q1/C ˇN ¤
ı.q2/ C ˇN. For otherwise, ı.q2/ 2 ı.q1/ C ˇN and so ı.q2/ D ı.q1/ C ı.q2/

by Lemma 1.30. However, e�.ı.q2// 2 e�Œq2 C H� D ¹q2º (by Lemma 6.8), whilee�.ı.q1/C ı.q2// De�.ı.q1// D q1, a contradiction.
If L is any minimal left ideal and R is any minimal right ideal of .ˇN;C/, L \ R

contains an idempotent, by Theorem 1.61. It follows that L and R both contain 2c

idempotents.
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As we shall see in Theorem 6.54, the following theorem is a special case of a
theorem that is far more general. We include it, however, because the special case is
important and has a simpler proof.

Theorem 6.10. N is the center of .ˇN;C/ and of .ˇN; � /.

Proof. By Theorem 4.23 N is contained in the centers of .ˇN;C/ and of .ˇN; � /.
Let A D ¹2n W n 2 Nº. Suppose that p 2 N� and q 2 A�. By Lemma 6.8,e�.p C q/ D e�.q/. On the other hand, suppose that m; n 2 N and that n > m. Then

�.m C n/ D �.n/ or �.m C n/ D �.n/ C 1. For each m, ¹n 2 N W �.m C n/ D
�.n/º 2 p or ¹n 2 N W �.mC n/ D �.n/C 1º 2 p. In the first case,

p 2 c`¹n 2 N W �.mC n/ D �.n/º and so e�.mC p/ D e�.p/:
In the second case,e�.mCp/ D e�.p/C1. Now ¹m 2 N W e�.mCp/ D e�.p/º 2 q or
¹m 2 N W e�.mCp/ D e�.p/C1º 2 q: Soe�.qCp/ D e�.p/ ore�.qCp/ D e�.p/C1.
Since there are 2c different values of e�.q/, we can choose q 2 A� satisfying e�.q/ …
¹e�.p/;e�.p/C 1º. Then q 2 H soe�.pC q/ D e�.q/ ¤ e�.qCp/ so pC q ¤ qCp,
and thus p cannot be in the center of .ˇN;C/.

Now for anym; n 2 N, �.m2n/ D �.m/Cn D �.m/C�.2n/. Now given p 2 N�

and q 2 A�, one has

e�.p � q/ D lim
m!p

lim
2n!q

�.m � 2n/

D lim
m!p

lim
2n!q

.�.m/C �.2n//

D lim
m!p

.�.m/C lim
2n!q

�.2n//

D lim
m!p

.�.m/Ce�.q//
D e�.p/Ce�.q/:

And similarly,e�.q � p/ D e�.q/Ce�.p/.
Now let p 2 N�. We show that p is not in the center of .ˇN; � /. Since � is finite-

to-one,e�.p/ 2 N� so pick r 2 N� such thate�.p/C r ¤ r Ce�.p/. Sincee�jA maps

A bijectively to ˇN, pick q 2 A� such thate�.q/ D r . Thene�.p � q/ D e�.p/C r ¤
r Ce�.p/ D e�.q � p/ so p � q ¤ q � p.

Remark 6.11. It follows from Theorem 4.24 that N is the topological center of
.ˇN;C/ and of .ˇN; � /.

We shall in fact see in Theorems 6.79 and 6.80 that there is a subset  of N� such
that  and N� n are both left ideals of .ˇN;C/ and of .ˇN; � /.
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Theorem 6.12. H contains an infinite decreasing sequence of idempotents.

Proof. Let hAni1nD1 be an infinite increasing sequence of subsets of N such that
AnC1 n An is infinite for every n. Let Sn D ¹m 2 N W supp.m/ � Anº. We
observe that, for every n; r 2 N, we have k C m 2 2rN \ Sn whenever k;m 2
2rN \ Sn and supp.k/ \ supp.m/ D ;. Thus it follows from Theorem 4.20 (with
A D ¹Sn \ 2

rN W r 2 Nº) that Tn D Sn \H is a subsemigroup of ˇN.
We shall inductively construct a sequence heni1nD1 of distinct idempotents in N

satisfying enC1 
 en and en 2 K.Tn/ for every n.
We first choose e1 to be any minimal idempotent in T1. We then assume that ei has

been chosen for each i 2 ¹1; 2; : : : ; mº.
By Theorem 1.60, we can choose an idempotent emC1 2 K.TmC1/ for which

emC1 
 em. We shall show that emC1 ¤ em by showing that em … K.TmC1/.
To see this, we choose any x 2 N� \ ¹2n W n 2 AmC1 n Amº. Let

M D ¹rC 2nC s W r; s 2 N; n 2 AmC1 nAm and max supp.r/ < n < min supp.s/º:

Since M \ Sm D ;, em … M . However, it follows from Exercise 4.1.6, that
y C x C z 2 M for every y; z 2 H. So M contains the ideal TmC1 C x C TmC1 of
TmC1 and therefore contains K.TmC1/. Hence em … K.TmC1/.

We have seen that it is remarkably easy to produce homomorphisms on H. This
is related to the fact that H can be defined in terms of the concept of oids, and the
algebraic structure of an oid is very minimal. Theorem 6.15 shows that the only
algebraic information needed to define H is the knowledge of how to multiply by 1.

Definition 6.13. (a) A set A is called an id if A has a distinguished element 1 and
a multiplication mapping .¹1º � A/ [ .A � ¹1º/ to A with the property that
1a D a1 D a for every a 2 A.

(b) If for each i in some index set I , Ai is an id, thenM
i2I

Ai D ¹x 2 ⨉
i2I

Ai W ¹i 2 I W xi ¤ 1º is finiteº

is an oid.

(c) If S D
L
i2I Ai is an oid and x 2 S , then supp.x/ D ¹i 2 I W xi ¤ 1º.

Notice that we have already defined the notation “supp.x/” when x 2 N. The
correspondence between the two versions will become apparent in the proof of Theo-
rem 6.15 below.

Definition 6.14. Let S D
L
i2I Ai be an oid. If x; y 2 S and supp.x/ \ supp.y/ D

;, then x � y is defined by .x � y/i D xi � yi for all i 2 I .
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Notice that in an oid, x � y is not defined if supp.x/ \ supp.y/ ¤ ;.

Lemma 6.14.1. Let S D
L
i2I Ai be an oid and assume that jAi j � 2 for each

i 2 I . Then .S; � / is a partial semigroup which is adequate if I is infinite.

Proof. Given x; y; z 2 S , .x � y/ � z is defined if and only if supp.x/, supp.y/, and
supp.z/ are pairwise disjoint and the same statement is true for x �.y �z/. Given i 2 I ,
if supp.x/, supp.y/, and supp.z/ are pairwise disjoint, then at most one of xi , yi , and
zi is not 1. If all are equal to 1 then ..x � y/ � z/i D 1 D .x � .y � z//i . If one of xi , yi ,
and zi is not 1, then both ..x � y/ � z/i and .x � .y � z//i are equal to that one.

Now assume that I is infinite and let F 2 Pf .S/. Pick i 2 I n
S
x2F supp.x/ and

pick a 2 Ai n ¹1º. Define y 2 S by, for j 2 I ,

yj D

´
a if j D i

1 if j ¤ i

Then y 2 �.F /. Thus S is adequate.

Theorem 6.15. Let A D ¹a; 1º be an id with two elements and, for each i 2 !, let
Ai D A. Let S D

L
i2! Ai . Then ıS is topologically and algebraically isomorphic

to H.

Proof. Define f W S ! N by f .x/ D
P
t2supp.x/ 2

t . Then f is a bijection. (Given
z 2 N, f �1.z/ 2 S is defined by f �1.z/i D a if a is in the binary support of z and
f �1.z/i D 1 otherwise.) Let ef W ˇS ! ˇN be the continuous extension of f . Then
by Exercise 3.4.1, ef is a bijection. If x; y 2 S and supp.x/ \ supp.y/ D ;, then
f .x � y/ D f .x/C f .y/ so f is a partial semigroup homomorphism. Therefore by
Theorem 4.22.3, the restriction of ef to ıS is a homomorphism into ıN D ˇN. Sinceef is injective, it thus suffices to show that ef ŒıS� D H.

For n 2 N, define x.n/ 2 S by, for i 2 !,

x.n/i D

´
a if i < n

1 if i � n

Then for each n 2 N, �.¹x.n/º/ D ¹y 2 S W min supp.y/ � nº, so f Œ�.¹x.n/º/� D
2nN and thus ef ŒT1nD1 �.¹x.n/º/� D H. Thus it suffices to show that ıS DT1
nD1 �.¹x.n/º/. Trivially ıS �

T1
nD1 �.¹x.n/º/, so let F 2 Pf .S/ be given.

Let n D max
S
y2F supp.y/. Then �.¹x.n/º/ � �.F / so

T1
nD1 �.¹x.n/º/ �T

F 2Pf .S/
�.F / D ıS .

Theorem 6.15.1. Let hqni1nD1 be a sequence of idempotents in ˇN such that ¹e�.qn/ W
n 2 Nº is discrete and e�.m/ ¤ e�.n/ when m ¤ n. If p is any cluster point of
hqni

1
nD1, then p C p … c`.E.ˇN//.
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Proof. Let p be a cluster point of hqni1nD1. By Exercise 3.4.3 (c), ¹e�.qn/ W n 2 Nº is
strongly discrete so choose a sequence hAni1nD1 of subsets of ! such that An 2e�.qn/
for each n and Am \ An D ; when m ¤ n. We may assume that

S1
nD1An D !.

Define 	 W ! ! N by 	.n/ D m if n 2 Am. Define  W N ! Z3 as follows: if
n 2 N and hi1; i2; : : : ; ini is an enumeration of supp.n/ in increasing order, then

 .n/ 	 j¹t 2 ¹1; 2; : : : ; k � 1º W 	.itC1/ < itºj .mod 3/:

Observe that, if �.m/ < �.n/, then

 .mC n/ D

´
 .m/C  .n/ if 	.�.n// � �.m/

 .m/C  .n/C 1 if 	.�.n// < �.m/:

We claim that, if x 2 ˇN and y 2 H, then e .xCy/ D e .x/Ce .y/ ore .xCy/ De .x/Ce .y/C1. To see this, for eachm 2 N, put Bm D ¹n 2 N W �.m/ < �.n/ and
	.�.n// � �.m/º and Cm D ¹n 2 N W �.m/ < �.n/ and 	.�.n// < �.m/º. Given
any m 2 N, ¹n 2 N W �.m/ < �.n/º 2 y so either Bm 2 y or Cm 2 y. If n 2 Bm,
then  .mC n/ D  .m/C  .n/. If n 2 Cm, then  .mC n/ D  .m/C  .n/C 1.
Hence, if Bm 2 y, e .m C y/ D  .m/ C e .y/; and, if Cm 2 y, e .m C y/ D
 .m/C e .y/C 1. Either ¹m 2 N W Bm 2 yº 2 x or ¹m 2 N W Cm 2 yº 2 x. In the
first case, e .xCy/ D e .x/Ce .y/. In the second case, e .xCy/ D e .x/Ce .y/C1.
In particular, for any idempotent e 2 ˇN, e .e/ 2 ¹0; 2º because, if e .e/ D i , then
i D 2i or i D 2i C 1. Consequently, if r 2 c`.E.ˇN//, then e .r/ ¤ 1.

Let k 2 N. Pick B 2 qk such thate�ŒB� � Ak . Then B � ¹n 2 N W 	.�.n// D kº
so ¹n 2 N W 	.�.n// D kº 2 qk . For each m 2 N for which �.m/ > k, we have
Cm 2 qk because ¹n 2 N W �.m/ < �.n/ and 	.�.n// D kº 2 qk . Similarly,
if �.m/ 
 k, then Bm 2 qk . Since ¹m 2 N W �.m/ > kº 2 qk , it follows thate .qk/ D e .qk/C e .qk/C 1, and hence that e .qk/ D 2. So e .p/ D 2.

Now, for each m 2 N, we have Bm 2 p, because Bm 2 qk for every k � �.m/. It
follows that e .p C p/ D e .p/C e .p/ D 1. So p C p … c`.E.ˇN//.

Theorem 6.15.2. Let L be a minimal left ideal of ˇN. Then c`.E.L// is not a sub-
semigroup of ˇN. In particular, E.L/ is not closed.

Proof. The mappinge� W ˇN ! ˇ! is surjective by Exercise 3.4.1. For every x 2 H,e��1Œ¹xº� � H because, for every n 2 N, 2nN 2 x and ��1Œ2nN� � 2nN. It
follows from Lemma 6.8 that e��1Œ¹xº� is a right ideal of H. Let hxni1nD1 be an
injective sequence in H for which ¹xn W n 2 Nº is discrete. By Theorem 2.7, for
each n 2 N, we can choose an idempotent qn 2e��1Œ¹xnº� \ L. By Theorem 6.15.1,
for any accumulation point p of hqni1nD1, p C p … c`.E.L//. So c`.E.L// is not a
semigroup. Given r; s 2 E.L/, we have by Lemma 1.30 that r C s D r so E.L/ is a
semigroup. Thus E.L/ is not closed.
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We now prove a stronger result for the mappinge�.

Theorem 6.15.3. Let hqni1nD1 be a sequence in H for which e�.qm/ ¤ e�.qn/ when
m ¤ n. If p is a point of accumulation of hqni1nD1, then p … N� CN�.

Proof. We observe that, for every m; n 2 N with n > m, �.m C n/ 2 ¹�.n/;

�.n/ C 1º. Given m 2 N and y 2 ˇN, either ¹n 2 N W �.m C n/ D �.n/º 2 y

or ¹n 2 N W �.m C n/ D �.n/ C 1º 2 y. In the first case, e�.m C y/ D e�.y/.
In the second case, e�.m C y/ D e�.y/ C 1. Consequently, for every x; y 2 ˇN,e�.x C y/ 2 ¹e�.y/;e�.y/C 1º.

Now assume that p D uC v for some u; v 2 N�. Let A D ¹n 2 N W nC v 2 Hº
and let B D ¹n 2 N W qn 2 ˇN C vº. We claim that jAj 
 1. Suppose instead we
have n < m such that nC v 2 H and mC v 2 H. Then 2mN 2 .nC v/ \ .mC v/
so that ; D .�mC 2mN/\ .�nC 2mN/ 2 v, a contradiction. Also jBj 
 2 because
qn 2 ˇN C v implies that e�.qn/ 2 ¹e�.v/;e�.v/ C 1º. We have p 2 c`..N n A/ C
v/ \ c`.¹qn W n 2 N n Bº/. It follows from Theorem 3.40, that p0 D nC v for some
p0 2 c`.¹qn W n 2 Nº/ and some n 2 N nA, or else qn 2 ˇNCv for some n 2 N nB .
Both these possibilities are ruled out by the definitions of A and B .

Corollary 6.15.4. If R is a minimal right ideal of ˇN, E.R/ is not closed.

Proof. We claim that for each x 2 !�, there exists y 2 H such that e�.y/ D x.
To see this, let x 2 !� and define � W P .!/ ! P .N/ by �.A/ D ¹2n W n 2 Aº
and note that �Œ�.A/� D A. Now ¹�.A/ W A 2 xº [ ¹2nN W n 2 Nº has the finite
intersection property since each member of x is infinite, so pick y 2 ˇN such that
¹�.A/ W A 2 xº [ ¹2nN W n 2 Nº � y. Then y 2 H ande�.y/ D x.

By Lemma 6.8, for every x 2 H,e��1Œ¹xº� \H is a left ideal of H. Let hxni1nD1
be an injective sequence in H for which ¹xn W n 2 Nº is discrete. By Theorem 2.7,
for each n 2 N, we can choose an idempotent qn 2 .e��1Œ¹xnº� \ H/ \ L. Our
claim follows from Theorem 6.15.3, and the observation that every element of R is in
N� CN�.

Exercise 6.1.1. Show that H has 2c pairwise disjoint closed right ideals. (Hint: Con-
sider ¹e�.p/ W p 2 A�º where A D ¹2n W n 2 Nº.)

Exercise 6.1.2. Show that no two closed right ideals of ˇN can be disjoint. (Hint:
Use Theorem 2.19.)

Exercise 6.1.3. Show that no two closed right ideals of N� can be disjoint. (Hint:
Consider Theorem 4.37 and Exercise 6.1.2.)

Exercise 6.1.4. Show that there are two minimal idempotents in .ˇN;C/ whose sum
is not in � , the closure of the set of idempotents. (Hint: Let S denote the semigroup
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described in Example 2.13. By Corollary 6.5 there is a continuous homomorphism h

mapping H onto S . Show that there are minimal idempotents u and v in H for which
h.u/ D e and h.v/ D f . Observe that idempotents minimal in H are also minimal
in ˇN.)

6.2 Intersecting Left Ideals

In this section we consider left ideals of ˇS of the form ˇS � p

Definition 6.16. Let S be a semigroup and let s 2 S: The left ideal Ss of S is called
the semiprincipal left ideal of S generated by s.

Note that the semiprincipal left ideal generated by s is equal to the principal left
ideal generated by s if and only if s 2 Ss.

Definition 6.17. Let S be a semigroup and let p 2 ˇS . Then C.p/ D ¹A � S W for
all x 2 S , x�1A 2 pº.

Theorem 6.18. Let S be a semigroup and let p 2 ˇS . Then ˇS � p D ¹q 2 ˇS W
C.p/ � qº.

Proof. Let r 2 ˇS . Then given A 2 C.p/ one has S D ¹x 2 S W x�1A 2 pº so
A 2 r � p.

For the other inclusion, let q 2 ˇS such that C.p/ � q. For A 2 q, let B.A/ D
¹x 2 S W x�1A 2 pº. We claim that ¹B.A/ W A 2 qº has the finite intersection
property. To see this observe that ¹B.A/ W A 2 qº is closed under finite intersections
and that if B.A/ D ;, then S n A 2 C.p/ � q. Pick r 2 ˇS such that ¹B.A/ W
A 2 qº � r . Then q D r � p.

Theorem 6.19. Suppose that S is a countable discrete semigroup and that p; q 2 ˇS .
If ˇS � p \ ˇS � q ¤ ;, then sp D xq for some s 2 S and some x 2 ˇS , or yp D tq
for some t 2 S and some y 2 ˇS .

Proof. Since ˇS � p D Sp and ˇS � q D Sq we can apply Corollary 3.42 and deduce
that sp 2 Sq for some s 2 S , or else tq 2 Sp for some t 2 S . In the first case,
sp D xq for some x 2 ˇS . In the second case, tq D yp for some y 2 ˇS .

Corollary 6.20. Let S be a countable group. Suppose that p and q are elements of
ˇS for which ˇS � p \ ˇS � q ¤ ;. Then p 2 ˇS � q or q 2 ˇS � p.

Proof. By Theorem 6.19, sp D xq for some s 2 S and some x 2 ˇS , or tq D yp

for some t 2 S and some y 2 ˇS . In the first case, p D s�1xq. In the second,
q D t�1yp.
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Corollary 6.21. Let p and q be distinct elements of ˇN. If the left ideals ˇN C p
and ˇN C q are not disjoint, p 2 ˇN C q or q 2 ˇN C p.

Proof. Suppose that .ˇNCp/\.ˇNCq/ ¤ ;. It then follows by Theorem 6.19, that
mCp D xC q for somem 2 N and some x 2 ˇN, or else nC q D yCp for some
n 2 N and some y 2 ˇN. Assume without loss of generality thatmCp D xC q for
somem 2 N and some x 2 ˇN. If x 2 N�, then �mCx 2 N�, because N� is a left
ideal of Z�, as shown in Exercise 4.3.5. So p D �mCxCq 2 ˇNCq. Suppose then
that x 2 N. Then x ¤ m, for otherwise we should have p D �mC x C q D q. If
x > m, �mCx 2 N and again p D �mCxCq 2 ˇNCq. If x < m, �xCm 2 N
and so q D �x CmC p 2 ˇN C p.

By Corollaries 6.20 and 6.21, we have the following.

Remark 6.22. If S is a countable group or if S D N, any two semiprincipal left
ideals of ˇS are either disjoint or comparable for the relationship of inclusion.

Recall from Chapter 3 that if T � S we have identified ˇT with the subset c`T
of ˇS .

Corollary 6.23. Let S be a countable semigroup which can be embedded in a group
G, and let e; f 2 E.S/. If ˇS � e \ ˇS � f ¤ ;, ef D e or fe D f .

Proof. By Theorem 6.19, we may assume that se D xf for some s 2 S and some
x 2 ˇS . This implies that e D s�1xf in ˇG, and hence that ef D s�1xff D

s�1xf D e.

We can now show that, for many semigroups S , the study of commutativity for
idempotents in ˇS is equivalent to the study of the order relation 
.

Corollary 6.24. Suppose that S is a countable discrete semigroup which can be em-
bedded in a group, and that e; f 2 E.ˇS/. Then e and f commute if and only if
e 
 f or f 
 e.

Proof. By definition of the relation 
, if say e 
 f , then e D ef D fe.
Conversely, suppose that ef D fe. Then ˇS �e\ˇS �f ¤ ;, and so, by Corollary

6.23, we may suppose that ef D e. Since ef D fe, this implies that e 
 f .

Corollary 6.25. Suppose that S is a countable discrete semigroup which can be em-
bedded in a group, and that C is a subsemigroup of ˇS . If e; f 2 E.C/ satisfy
Ce \ Cf D ;, then ˇS � e \ ˇS � f D ;.

Proof. If ˇS � e \ ˇS � f ¤ ;, we may suppose by Corollary 6.23, that ef D e. But
then e 2 Ce \ Cf , a contradiction.
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Exercise 6.2.1. Let S be a semigroup and let p 2 ˇS . Prove that C.p/ is a filter on
S and C.p/ D

T
.ˇS � p/.

Exercise 6.2.2. Let S be an infinite semigroup and let p 2 S�. Let C!.p/ D ¹A �
S W ¹x 2 S W x�1A … pº is finiteº. Prove that C!.p/ is a filter on S , C!.p/ DT
.S� � p/, and S� � p D ¹q 2 ˇS W C!.p/ � qº.

6.3 Numbers of Idempotents and Ideals – Copies of H

The semigroup H arises in ˇN. We shall see, however, that copies of H can be found
in S� for any infinite cancellative semigroup S .

We introduced the notation FP.hxni1nD1/ in Definition 5.1. We extend it now to
apply to sequences indexed by linearly ordered sets other than N.

Definition 6.26. Let S be a semigroup, let .D;</ be a linearly ordered set, and let
hxsis2D be a D-sequence (i.e., a set indexed by D) in S .

(a) For F 2 Pf .D/,
Q
s2F xs is the product in increasing order of indices.

(b) FP.hxsis2D/ D ¹
Q
s2F xs W F 2 Pf .D/º.

(c) The D-sequence hxsis2D has distinct finite products if and only if whenever
F;G 2 Pf .D/ and

Q
s2F xs D

Q
s2G xs , one has F D G.

Thus, if F D ¹s1; s2; s3; s4º where s1 < s2 < s3 < s4, then
Q
s2F xs D xs1 � xs2 �

xs3 � xs4 .
If additive notation is being used we define

P
s2F xs , FS.hxsis2D/, and “distinct

finite sums” analogously.

Theorem 6.27. Let S be a discrete semigroup and let hxni1nD1 be a sequence in S
with distinct finite products. Let T D

T1
mD1 c`.FP.hxni1nDm//. Then T is a subsemi-

group of ˇS which is algebraically and topologically isomorphic to H.

Proof. It was shown in Lemma 5.11 that T is a subsemigroup of ˇS . We define a
mapping f from FP.hxni1nD1/ to 2N by stating that f .

Q
n2F xn/ D

P
n2F 2

n for
every F 2 Pf .N/. Since f is a bijection (because of the distinct finite products
assumption), ef W c`.FP.hxni1nD1// ! ˇ.2N/ is a homeomorphism. We shall show
that ef jT is a homomorphism from T onto H.

Let Tm D FP.hxni1nDm/. Then f ŒTm� D 2mN and so

ef ŒT � D ef h 1T
mD1

Tm

i
D
1T
mD1

ef ŒTm� D 1T
mD1

f ŒTm� D
1T
mD1

2mN D H:

To see that ef jT is a homomorphism, it suffices by Theorem 4.21 to show that for
each s 2 FP.hxni1nD1/ there is some m 2 N such that f .st/ D f .s/ C f .t/ for
all t 2 FP.hxni1nDm/. So let s 2 FP.hxni1nD1/ and pick F 2 Pf .N/ such that
s D

Q
n2F xn. Let m D maxF C 1.
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We now turn our attention to the effect of certain cancellation assumptions. Much
more will be said on this subject in Chapter 8.

Lemma 6.28. Let S be a discrete semigroup and let s be a cancelable element of S .
For every t 2 S and p 2 ˇS

(i) if S is right cancellative and sp D tp, then s D t , and

(ii) if S is left cancellative and ps D pt , then s D t .

Proof. (i) Suppose that S is right cancellative. Let t 2 S , let p 2 ˇS , and suppose
that s ¤ t . We shall define a function f W S ! S by stating that f .su/ D tu for
every u 2 S and that f .v/ D s2 for every v 2 S n sS . We note that f is well-
defined because every element in sS has a unique expression of the form su, and that
f has no fixed points. We also note that since ef ı �s and �t agree on S , one has thatef .sp/ D tp. Now by Lemma 3.33 we can partition S into three sets A0; A1; A2 such
that Ai \ f ŒAi � D ; for each i 2 ¹0; 1; 2º. Choose i such that sp 2 Ai . Then by
Lemma 3.30, f ŒAi � 2 ef .sp/ D tp, so sp ¤ tp.

(ii) This is proved in essentially the same way.

Recall that a semigroup S is weakly left cancellative if and only if for all u; v 2 S ,
¹x 2 S W ux D vº is finite, and that S is weakly right cancellative if and only if for
all u; v 2 S , ¹x 2 S W xu D vº is finite.

Lemma 6.29. Let S be an infinite weakly left cancellative semigroup and let I denote
the set of right identities of S . Let � be an infinite cardinal with � 
 jS j, and let
hs	i	<� be a one-to-one �-sequence in S . If T is a subset of S with cardinality �,
then there exists a one-to-one �-sequence ht	i	<� in T such that

(a) for every � < �, t
 … FP.ht	i	<
/,

(b) for every � < � < � and every u; v 2 I [ ¹s� W � < �º [ FP.ht�i�<
/, u ¤ vt

and ut	 ¤ vt
, and

(c) I \ FP.ht	i	<�/ D ;.

Proof. For each u; v 2 S , let Au;v D ¹s 2 S W u D vsº. Since S is weakly left
cancellative, Au;v is finite. We note that this implies that I is finite, because I � Au;u
for every u 2 S .

We construct ht	i	<� inductively. We choose t0 to be any element of T n I . We
then assume that � < � and that t� has been chosen for every � < � so that conditions
(a), (b), and (c) hold with � in place of �.

LetG D I [¹s� W � < �º[FP.ht�i�<�/, letH D G[¹ut	 W u 2 G and � < �º, and
let K D

S
¹Au;v W u; v 2 H º. If � < !, then H and K are finite so we can choose

t� 2 T n .H [K/. If � � !, then jH j D j�j < � and jKj 
 j�j < � so we can again
choose t� 2 T n .H [K/.
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Since t� … G, hypothesis (a) holds. To verify hypothesis (b), let � < � and let
u; v 2 I [ ¹s� W � < �º [ FP.ht�i�<�/. Then u; v 2 G � H so t� … Au;v so u ¤ vt� .
Also ut	 2 H so t� … Aut�;v and so ut	 ¤ vt� . To verify hypothesis (c), note that
t� … G so t� … I . Also, given v 2 FP.ht�i�<�/ and u 2 I , t� … Au;v so vt� … I .

Theorem 6.30. Let S be an infinite discrete semigroup which is weakly left cancella-
tive. Let � be an infinite cardinal with � 
 jS j and let R and T be subsets of S of
cardinality �. Then there is a subset V of T with cardinality � such that the set P of
uniform ultrafilters on V has the following properties:

(1) jP j D 22
�

,

(2) for each pair of distinct elements p; q 2 P , c`ˇS .Rp/ and c`ˇS .Rq/ are dis-
joint, and

(3) if S is also right cancellative, then for each p 2 P , ap ¤ bp whenever a ¤ b

in R and Rp is strongly discrete in ˇS .

Proof. We apply Lemma 6.29, taking hs	i	<� to be a one-to-one enumeration of all
the elements of R. We put V D ¹t	 W � < �º, where ht	i	<� is the �-sequence
guaranteed by Lemma 6.29.

We have jP j D 22
�

, by Theorem 3.58, so (1) holds.
Suppose that ˛; ˇ; �; � 2 � satisfy ˛ < � and ˇ < �, and that s˛t	 D sˇ t
. We

claim that � D �. To see this, suppose instead without loss of generality that � < �.
Then the equation s˛t	 D sˇ t
 contradicts condition (b) of Lemma 6.29.

For each � < �, let V
 D ¹t� W � < � < �º. Then V
 2 p for every p 2 P .
Let p and q be distinct elements of P . We can choose disjoint subsets A and B of V
satisfying A 2 p and B 2 q. For any ˛; ˇ 2 �, s˛.V˛ \A/ 2 s˛p and sˇ .Vˇ \B/ 2
sˇq and we have seen that these two sets are disjoint. Thus, ifX D

S
˛<� s˛.V˛\A/

and Y D
S
ˇ<� sˇ .Vˇ \ B/, we have X \ Y D ;, Rp � X and Rq � Y . So

X \ Y D ;, c`ˇS .Rp/ � X and c`ˇS .Rq/ � Y so (2) holds.
Now suppose that S is right cancellative and p 2 P . If ˛ < � < � and ˇ < � < �,

the equation s˛t	 D sˇ t
 implies that � D � and therefore that ˛ D ˇ. For any
˛ 2 �, we have s˛V˛ 2 s˛p. Now s˛V˛ \ sˇVˇ D ; if ˛ ¤ ˇ, and so Rp is strongly
discrete.

Lemma 6.31. Let S be an infinite discrete semigroup, which is right cancellative and
weakly left cancellative. Let T be an infinite subset of S , and let � D jT j. There is a
�-sequence ht	i	<� in T which has distinct finite products.

Proof. Let hs	i	<� be any one-to-one �-sequence in S and choose a one-to-one �-
sequence ht	i	<� in T with the properties guaranteed by Lemma 6.29.

To see that ht	i	<� has distinct finite products, suppose instead that there exist
F ¤ G in Pf .�/ with

Q
	2F t	 D

Q
	2G t	, and choose F and G with jF [ Gj as
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small as possible. We assume without loss of generality that maxF 
 maxG D �.
The assumption that maxF < � contradicts condition (a) of Lemma 6.29 ifG D ¹�º
and contradicts condition (b) of Lemma 6.29 otherwise. So we also have maxF D �.

If jF j > 1 and jGj > 1, we contradict the assumption that jF [ Gj is small
as possible by cancelling t
 from our equation and deducing that

Q
	2F n¹
º t	 DQ

	2Gn¹
º t	. Thus we assume without loss of generality that jF j D 1 and jGj > 1.
Let x D

Q
	2Gn¹
º t	. Then t
 D xt
 and so st
 D sxt
 for every s 2 S . Hence,

by our right cancellative assumption, s D sx for every s 2 S and so x 2 I . This
contradicts condition (c) of Lemma 6.29.

Theorem 6.32. Let S be an infinite discrete right cancellative and weakly left can-
cellative semigroup. Then every Gı subset of S� which contains an idempotent con-
tains a copy of H.

Proof. Let p 2 E.S�/ and let A be a Gı -subset of S� for which p 2 A. We may
suppose thatA D

T1
nD1An, where hAni1nD1 is a decreasing sequence of subsets of S .

We shall inductively construct a sequence hxni1nD1 of elements of S with the prop-
erty that, for every m 2 N, FP.hxni1nDm/ � Am

?.
We first choose x1 to be any element of A1?. We then suppose that k 2 N

and that x1; x2; : : : ; xk have been chosen so that FP.hxniknDi / � Ai
? for every

i 2 ¹1; 2; : : : ; kº.
Now AkC1

? 2 p and, for each i 2 ¹1; 2; : : : ; kº and each y 2 FP.hxniknDi /, we
have y�1Ai ? 2 p (by Lemma 4.14). We can therefore continue the induction by
choosing

xkC1 2 AkC1
? \

T
¹y�1Ai

? W i 2 ¹1; 2; : : : ; kº and

y 2 FP.hxni
k
nDi /º n ¹x1; x2; : : : ; xkº:

By Lemma 6.31, we may suppose that hxni1nD1 has distinct finite products, because
we can replace hxni1nD1 by a subsequence with this property. (Any sequence with
distinct finite products is necessarily one-to-one. A one-to-one sequence in ¹xn W
n 2 Nº can be thinned to be a subsequence of hxni1nD1.) Then, by Theorem 6.27,T1
mD1 c`.FP.hxni1nDm// is a copy of H. Since c`.FPhxni1nDm/ � Am for every

m 2 N,
T1
mD1 c`.FPhxni1nDm/ � A.

Corollary 6.33. Let S be an infinite discrete right cancellative and weakly left can-
cellative semigroup. Then every Gı -subset of S� which contains an idempotent con-
tains 2c nonminimal idempotents.

Proof. Let A be a Gı subset of S�. By Theorem 6.32, A contains a copy of H. So it
suffices to show that H contains 2c nonminimal idempotents.

Let T D
T1
mD1 c`ˇN.FS.h22ni1nDm//. Trivially T � H and by Theorem 6.27 T

is a copy of H. By Exercise 4.4.3 and Theorem 4.40, T \ K.ˇN/ D ;. Thus by
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Lemma 6.8 and Theorem 1.65, T \K.H/ D ;. By Theorem 6.32, T contains a copy
of H so by Lemma 6.8 and Theorem 6.9 T has 2c idempotents.

Corollary 6.34. Let S be an infinite discrete semigroup which is right cancellative
and weakly left cancellative. Then every Gı subset of S� which contains an idempo-
tent, contains an infinite decreasing chain of idempotents.

Proof. This follows immediately from Theorems 6.32 and 6.12.

We now set out to show in Theorem 6.34.4 that any central set in any semigroup
satisfying minimal cancellation assumptions contains many pairwise disjoint central
sets. This is important because, as we will see in Chapter 14 central sets have sig-
nificant combinatorial structure. The minimal cancellation assumptions are that the
semigroup be very weakly left cancellative and very weakly right cancellative.

Recall that a semigroup S is weakly left cancellative if and only if each left solution
set of S is finite and S is weakly right cancellative if and only if each right solution
set of S is finite.

Definition 6.34.1. Let S be an infinite semigroup with jS j D �. Then S is very
weakly left cancellative if and only if any union of fewer than � left solution sets has
cardinality less than � and S is very weakly right cancellative if and only if any union
of fewer than � right solution sets has cardinality less than �. Also S is very weakly
cancellative if and only if it is both very weakly left cancellative and very weakly
right cancellative.

Notice that if � is regular, then S is very weakly left cancellative if and only if every
left solution set has cardinality less than �. If � is singular, then S is very weakly left
cancellative if and only if there is a cardinal less than � which is an upper bound
for the cardinalities of all left solution sets. If � D !, then S is very weakly left
cancellative if and only if S is weakly left cancellative.

Lemma 6.34.2. Let � be an infinite cardinal and let C be a set with jC j D �. There
is a family hC� i�<� of pairwise disjoint subsets of Pf .C /, each of cardinality � such
that for all F 2 Pf .C / and all � < �, there exists G 2 C� such that F � G.

Proof. We shall show that there is a family hB�i�<� of pairwise disjoint subsets of
Pf .�/, each of cardinality � such that for all F 2 Pf .�/ and all � < �, there exists
G 2 B� such that F � G. Having done this let ' W � ���!1-1

onto C and for � < �, let
C� D ¹'ŒF � W F 2 B�º.

Pick a family hB� i�<� of pairwise disjoint subsets of �, each of cardinality �.
Enumerate Pf .�/ as hF� i�<� . For each � < � inductively define an injective
function f� W Pf .�/ ! B� such that for all 	 < �, f� .F� / > maxF� . (Since
j¹� 2 B� W � > maxF� ºj D �, such a choice is always possible.)
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For � < �, let B� D ¹F [ ¹f� .F /º W F 2 Pf .�/º. Since max.F [ ¹f� .F /º/ D
f� .F / and f� is injective, we have jB� j D �. Since for each � < � and each
G 2 B� , maxG 2 B� , we have that B� \B� D ; if � ¤ 	 .

Recall that U�.S/ is the set of �-uniform ultrafilters on S .

Lemma 6.34.3. Let S be an infinite semigroup with jS j D �. If S is very weakly left
cancellative, then U�.S/ is a left ideal of ˇS . If S is very weakly cancellative, then
U�.S/ is an ideal of ˇS .

Proof. Assume first that S is very weakly left cancellative and let p 2 U�.S/. To see
that ˇSp � U�.S/, it suffices to show that Sp � U�.S/ because ˇSp D c`.Sp/ and
U�.S/ is closed. To this end, let s 2 S and let A 2 sp. Then s�1A 2 p so js�1Aj D
�. For each t 2 A, ��1s Œ¹tº� is a left solution set of S and s�1A �

S
t2A �

�1
s Œ¹tº� so

j
S
t2A �

�1
s Œ¹tº�j D � and thus jAj D �.

Now assume that S is very weakly cancellative. To see that U�.S/ is a right ideal
of ˇS , let p 2 U�.S/, let q 2 ˇS , and suppose that pq … U�.S/. Pick X 2 pq such
that jX j < �. Let P D ¹s 2 S W s�1X 2 qº. Then P 2 p, so jP j D �. Since U�.S/
is a left ideal of ˇS , we have that q … U�.S/, so pick Q 2 q such that jQj < �.

For each b 2 Q and x 2 X , let Tb;x D ¹s 2 S W sb D xº and note that Tb;x is
a right solution set. We claim that P �

S
¹Tb;x W .b; x/ 2 Q � Xº, which will be a

contradiction since jQ �X j < �. To this end, let s 2 P , pick b 2 s�1X \Q, and let
x D sb. Then s 2 Tb;x .

Note that by Exercise 4.3.7 for the case � D !, being very weakly right cancellative
is not sufficient for U!.S/ to be a right ideal of ˇS .

Theorem 6.34.4. Let S be an infinite very weakly cancellative semigroup and let
� D jS j. If C is a central subset of S , then C contains � pairwise disjoint central
sets.

Proof. Pick a minimal idempotent p such that C 2 p. By Lemma 6.34.3, p 2 U�.S/.
Let C ? D ¹s 2 C W s�1C 2 pº and recall that by Lemma 4.14, for each s 2 C ?,
s�1C ? 2 p. For each F 2 Pf .C

?/, let SF D C ? \
T
s2F s

�1C ? and note that
SF 2 p.

We claim that for each F 2 Pf .C
?/ and each s 2 SF , if H D ¹sº [ F s, then

sSH � SF . To see this, let t 2 SH . Since s 2 H , st 2 C ?. Also, for every
r 2 F , rs 2 H so rst 2 C ? and thus st 2 r�1C ?. Thus st 2 SF as required.
Let V D

T
F 2Pf .C?/

SF . Then p 2 V and by Theorem 4.20, V is a subsemigroup
of ˇS .

Enumerate Pf .C
?/ as hF�i�<� . (Since C ? 2 p, jC?j D �.) We choose x� 2 SF�

for each � < � so that if 	 < � < �, then x� ¤ x� and F�x� \F�x� D ;. To do this,
let � < � be given and assume that we have chosen hx� i�<� . Let H D

S
�<� F�x�
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and observe that if � is finite, so is H , and if � � !, then jH j 
 j� j. Given w 2 H
and z 2 F� , let Tw;z D ¹s 2 S W w D zsº and note that Tw;z is a left solution set of
S . Since jH � F� j < �, j

S
w2H

S
z2F�

Tw;zj < �. Since SF� 2 p, jSF� j D �, so
pick x� 2 SF� n .¹x� W 	 < �º [

S
w2H

S
z2F�

Tw;z/. Then x� is as required.
Now for each G 2 Pf .C

?/, define yG D x� , where G D F� . Pick by Lemma
6.34.2, a family hC�i�<� of pairwise disjoint subsets of Pf .C

?/, each of cardinality
� such that for all F 2 Pf .C

?/ and all � < �, there exists G 2 C� such that F � G.
For each � < �, letD� D

S
F 2C�

FyF . Then hD�i�<� is a pairwise disjoint family
and each D� � C ?.

To complete the proof, we shall show that each D� is a member of a minimal
idempotent in ˇS . To this end, let � < � be given. Note that for each F 2 Pf .C

?/,
¹H 2 C� W F � H º is a collection of finite sets whose union is C ? and so its
cardinality is �. Therefore, j¹yH W H 2 C� and F � H ºj D � and thus ¹¹yH W
H 2 C� and F � H º W F 2 Pf .C

?/º has the �-uniform finite intersection property.
Therefore, by Theorem 3.62 we may pick q 2 U�.S/ such that

¹¹yH W H 2 C� and F � H º W F 2 Pf .C
?/º � q:

We claim that q 2 V , so let F 2 Pf .C
?/. Since ¹yH W H 2 C� and F � H º 2 q

and ¹yH W H 2 C� and F � H º � SF , we have q 2 SF as required.
We now claim that Vq � D� . We show in fact that C ?q � D� for which it suffices

to show that C ?q � D� . So let s 2 C ?. To see that s�1D� 2 q, it suffices to show
that ¹yH W H 2 C� and s 2 H º � s�1D� . So let H 2 C� such that s 2 H . Then
syH 2 HyH � D� .

Now Vq is a left ideal of V so pick an idempotent r 2 K.V / \ Vq. Also p 2
V \ K.ˇS/ so V \ K.ˇS/ is an ideal of V and thus K.V / � K.ˇS/. Thus r is
minimal in ˇS and D� 2 r .

We now see that, for many familiar semigroups S , S�S� is nowhere dense in S�.

Theorem 6.35. Let S be a countable semigroup which is weakly left cancellative and
right cancellative. Then S�S� is nowhere dense in S�.

Proof. We enumerate S as a sequence hsni1nD1 of distinct elements. Let T denote
any infinite subset of S . We shall produce an infinite subset V of T such that V � \
S�S� D ;. To this end we shall inductively choose a sequence htni1nD1 of distinct
elements of T with the property that the equations smx D tn and sm0x D tn0 have no
simultaneous solution in S if m < n, m0 < n0 and n < n0.

We choose t1 to be any element of T . We then assume that t1; t2; : : : ; tk have been
chosen and and we put X D ¹x 2 S W smx D tn for some m; n 
 kº. Since S is
weakly left cancellative, X is finite. So we can choose tkC1 2 T n .

Sk
mD1 smX [

¹t1; t2; : : : ; tkº/. This shows that the sequence htni1nD1 can be constructed as claimed.
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Let V D ¹tn W n 2 Nº. We claim that, for any p; q 2 S�, pq … V �. Suppose,
on the contrary, that pq 2 V �. Then, if P D ¹s 2 S W sq 2 V º, P 2 p. If s 2 P ,
it follows from Theorem 4.31 that sq 2 V �. Pick m < m0 with sm; sm0 2 P . If
Q D ¹x 2 S W smx and sm0x are in ¹ti W i > m0ºº, then Q 2 q. So we can choose
x 2 Q and will then have smx D tn and sm0x D tn0 for some n > m and some
n0 > m0. Since S is right cancellable, n ¤ n0. But then we have a contradiction to the
choice of the sequence htni1nD1.

Notice that the hypotheses of Corollary 6.34 and Theorem 6.35 cannot be signifi-
cantly weakened. The semigroup .N;_/ is weakly right and weakly left cancellative,
but every member of N� is a minimal idempotent in .ˇN;_/ and N� _N� D N�.

We have need of the following topological fact which it would take us too far afield
to prove.

Theorem 6.36. There is a subset L of N� such that jLj D 2c and for all p ¤ q in L
and all f W N ! N, ef .p/ ¤ q.

Proof. This is a special case of [351].

Lemma 6.37. Let p; q 2 N�. If there is a one-to-one function f W N ! ˇN such
that f ŒN� is discrete and ef .p/ D q, then there is a function g W N ! N such thateg.q/ D p.

Proof. For each n 2 N choose An 2 f .n/ such that An \ f ŒN n ¹nº� D ;. For each
n > 1 in N, letBn D Ann

Sn�1
kD1Ak and letB1 D Nn

S1
nD2Bn. Then ¹Bn W n 2 Nº

is a partition of N and for each n 2 N, Bn 2 f .n/. Define g W N ! N by g.k/ D n
if and only if k 2 Bn. Then for each n 2 N one has g is constantly equal to n on a
member of f .n/ so eg.f .n// D n. Therefore eg ı ef W ˇN ! ˇN is the identity on
ˇN. Thuseg.q/ Deg.ef .p// D p.

Recall that two points x and y in a topological space X have the same homeo-
morphism type if and only if there is a homeomorphism f from X onto X such that
f .x/ D y. See [109, Chapter 9].

Theorem 6.38. Let D be a discrete space and let X be an infinite compact subset of
ˇD. Then X has at least 2c distinct homeomorphism types.

Proof. By Theorem 3.59,X contains a copy of ˇN , so we shall assume that ˇN � X .
Let L � N� be as guaranteed by Theorem 6.36. We claim that the elements of L all
have different homeomorphism types in X .

Suppose instead that some two elements of L have the same homeomorphism type
in X . We claim that in fact

there exist some homeomorphism h from X onto X and
some p ¤ q in L such that h.p/ D q and q 2 c`.hŒN� \ c`N/.

(�)
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To verify (�), pick a homeomorphism h from X onto X and p ¤ q in L such that
h.p/ D q. Now q 2 c`N \ c`hŒN� so by Corollary 3.41, q 2 c`.N \ c`hŒN�/ [
c`.hŒN� \ c`N/. If q 2 c`.hŒN� \ c`N/, then we have that (�) holds directly, so
assume that q 2 c`.N \ c`hŒN�/. Then p D h�1.q/ 2 h�1Œc`.N \ c`hŒN�/� D
c`.h�1ŒN� \ c`N/. Thus (�) holds with p and q interchanged and with h�1 replac-
ing h.

Thus (�) holds and we have q 2 c`.hŒN� \ ˇN/. Let A D hŒN� \ N and let
B D hŒN� \N�. Then q 2 c`A [ c`B .

Assume first that q 2 c`A. Define f W N ! N by

f .n/ D

´
h.n/ if n 2 h�1ŒA�

1 if n 2 N n h�1ŒA�:

Then p D h�1.q/ 2 h�1Œc`A� D c`h�1ŒA� and f and h agree on h�1ŒA� so ef .p/ D
h.p/ D q, contradicting the choice of L.

Thus we must have q 2 c`B . Since hŒN� is discrete, and no countable subset of N�

is dense in N� by Corollary 3.37, we may pick a one-to-one function f W N ! N�

such that f .n/ D h.n/ for all n 2 h�1ŒB� and f ŒN� is discrete. Then p D h�1.q/ 2
h�1Œc`B� D c`h�1ŒB� and f and h agree on h�1ŒB�. So ef .p/ D q. But then by
Lemma 6.37 there is a function g W N ! N such thateg.q/ D p, again contradicting
the choice of L.

Recall from Theorem 2.11 that the minimal left ideals of ˇS are homeomorphic.
Thus the hypothesis of the following theorem is the same as stating that some minimal
left ideal of ˇS is infinite.

Theorem 6.39. Let S be a discrete semigroup. If the minimal left ideals of ˇS are
infinite, ˇS contains at least 2c minimal right ideals.

Proof. Suppose that L is an infinite minimal left ideal of ˇS . Then L is compact.
Now two points x and y of L which belong to the same minimal right ideal R belong
to the same homeomorphism type in L. To see this, observe that R\L is a group, by
Theorem 1.61. Let x�1 and y�1 be the inverses of x and y in R \ L. The mapping
�x�1y is a homeomorphism from L to itself by Theorem 2.11 (c) and �x�1y.x/ D y.

By Theorem 6.38 the points of L belong to at least 2c different homeomorphism
classes. So ˇS contains at least 2c minimal right ideals.

Lemma 6.40. Let S be an infinite discrete cancellative semigroup. Then every mini-
mal left ideal of ˇS is infinite.

Proof. Let L be a left ideal of ˇS and let p 2 L. If s; t are distinct elements of S ,
then sp ¤ tp, by Lemma 6.28.
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Corollary 6.41. Let S be an infinite discrete cancellative semigroup. Then ˇS con-
tains at least 2c minimal right ideals.

Proof. This follows from Theorem 6.39 and Lemma 6.40.

As an immediate consequence of Theorem 6.30 withR D S one has that if jS j D �
and S is weakly left cancellative, then then there are 22

�

pairwise disjoint left ideals
of ˇS . We see now that in fact the same conclusion follows from the assumption that
S is very weakly left cancellative.

Theorem 6.42. Let S be an infinite discrete semigroup which is very weakly left can-
cellative. If jS j D �, then there are 22

�

pairwise disjoint left ideals of ˇS .

Proof. Enumerate the elements of S as hs�i�<� . Inductively construct an injective �-
sequence ht�i�<� so that for all � < � < �, s	t
 … ¹s�t� W � < � < �º. (This is
possible because S is very weakly left cancellative.)

By Theorem 3.58, there are 22
�

uniform ultrafilters on T D ¹t� W � < �º. So it
suffices to show that if p and q are distinct uniform ultrafilters on T , then ˇSp \
ˇSq D ;. So let p and q be distinct uniform ultrafilters on T and pick P 2 p
and Q 2 q such that P \ Q D ;. Let D D ¹s�t� W t� 2 P and � < �º and let
E D ¹s�t� W t� 2 Q and � < �º. Then D \ E D ;. We claim that ˇSp � D,
for which it suffices to show that Sp � D. So let s� 2 S . Then ¹t� W t� 2 P and
� > �º 2 p and ¹t� W t� 2 P and � > �º � s�1� D. Similarly ˇSq � E.

Corollary 6.43. If S is a very weakly left cancellative infinite discrete semigroup with
cardinality �, then ˇS contains 22

�

minimal idempotents.

Proof. Each left ideal of ˇS contains a minimal idempotent.

Theorem 6.44. Let S be an infinite cancellative discrete semigroup. Then ˇS con-
tains at least 2c minimal left ideals and at least 2c minimal right ideals. Each minimal
right ideal and each minimal left ideal contains at least 2c idempotents.

Proof. By Theorem 6.42 and Corollary 6.41, ˇS contains at least 2c minimal left ideal
and at least 2c minimal right ideals. Now each minimal right ideal and each minimal
left ideal have an intersection which contains an idempotent, by Theorem 1.61. So
each minimal right ideal and each minimal left ideal contains at least 2c idempotents.

Since minimal left ideals of ˇS are closed, it is immediate that, if S is very weakly
left cancellative, there are many pairwise disjoint closed left ideals of ˇS . We see that
it is more unusual for S� to be the disjoint union of finitely many closed left ideals
of ˇS .
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Definition 6.45. Let S be a semigroup and letB � S . ThenB is almost left invariant
if and only if for each s 2 S , sB n B is finite.

Theorem 6.46. Let S be a semigroup and let n 2 N. Then S� is the union of n
pairwise disjoint closed left ideals of ˇS if and only if

(a) S is weakly left cancellative and

(b) S is the union of n pairwise disjoint infinite almost left invariant subsets.

Proof. Necessity. Assume that S� D
Sn
iD1Li , where each Li is a closed left ideal

of ˇS and Li \Lj D ; for i ¤ j . Then S� is a left ideal of ˇS so by Theorem 4.31,
S is weakly left cancellative.

Since Li \ Lj D ; when i ¤ j , each Li is clopen so by Theorem 3.23, there is
some Ci � S such that Li D C �i . Let B1 D C1. For i 2 ¹2; 3; 4; : : : ; n � 1º (if any)

let Bi D Ci n
Si�1
jD1 Cj , and let Cn D S n

Sn�1
jD1 Cj . Then for each i , B�i D C

�
i D Li

and Bi \ Bj D ; when i ¤ j .
Finally, let i 2 ¹1; 2; : : : ; nº, let s 2 S , and suppose that sBi n Bi is infinite. Since

sBi n Bi D s � .Bi n s
�1Bi /, it follows that Bi n s�1Bi is infinite and so there exists

p 2 .Bi n s
�1Bi /

�. Then p 2 Li while sp … Li , a contradiction.
Sufficiency. Let S D

Sn
iD1Bi where each Bi is infinite and almost invariant and

Bi \ Bj D ; when i ¤ j . For each i 2 ¹1; 2; : : : ; nº, let Li D B�i . By Theorem
4.31, S� is a left ideal of ˇS , so it suffices to show that for each i 2 ¹1; 2; : : : ; nº,
each p 2 Li , and each s 2 S , Bi 2 sp. To this end, let i 2 ¹1; 2; : : : ; nº, p 2 Li , and
s 2 S be given. Then sBi nBi is finite andBi ns�1Bi �

S
x2sBinBi

¹y 2 S W sy D xº

so, since S is weakly left cancellative, Bi n s�1Bi is finite. Thus s�1Bi 2 p so
Bi 2 sp as required.

We now set out to show in Theorem 6.46.5 without any cancellation assumptions
that, unless K.ˇS/ is a finite subset of S , ˇS must have many minimal left ideals or
many minimal right ideals.

Lemma 6.46.1. Let S be a discrete semigroup. If I D K.ˇS/\ S is nonempty, then
K.ˇI/ D K.ˇS/.

Proof. Since I is an ideal of S , it follows from Corollary 4.18 that ˇI D c`.I / is an
ideal of ˇS . So our claim follows from Theorem 1.65 (4).

Lemma 6.46.2. Let S be an infinite semigroup and assume that I D K.ˇS/\S ¤ ;.

(1) For all a; b 2 I , aSb is a finite group and aSb D aˇSb.

(2) S has a minimal left ideal with an idempotent.

(3) I D K.S/.
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(4) If S has � minimal left ideals, where � is an infinite cardinal, then ˇS has at
least 22

�

minimal left ideals and K.ˇS/ meets S�.

(5) If S has � minimal right ideals, where � is an infinite cardinal, then ˇS has at
least 22

�

minimal right ideals and K.ˇS/ meets S�.

Proof. (1) Let a; b 2 I . Let R D aˇS and L D ˇSb. Then R is a minimal right
ideal of ˇS and L is a minimal left ideal of ˇS . By Theorem 1.61, RL D R \ L

and RL is a group. Then RL D aˇSˇSb � aˇSb � R \ L D RL. So aˇSb is
a group. Further, aˇSb D �aŒ�bŒˇS�� so aˇSb is compact. As a right topological
group aˇSb is homogeneous. Also aˇSb has an isolated point (for example aab) so
all points of aˇSb are isolated. Since aˇSb is compact, we have that aˇSb is finite.
Since aˇSb D c`.aSb/ and aSb is finite, we have aˇSb D aSb.

(2) Pick a 2 I . Then Sa is a left ideal of S and aSa is a group which thus has
an idempotent. So it suffices to show that Sa is a minimal left ideal of S . Let L be
a left ideal of S with L � Sa. By Corollary 4.18, c`.L/ is a left ideal of ˇS and
c`.L/ � c`.Sa/ D ˇSa and ˇSa is a minimal left ideal of ˇS since a 2 K.ˇS/. So
c`.L/ D ˇSa. So Sa � c`.L/ \ S D L.

(3) By (2) and Theorem 1.65, K.S/ D K.ˇS/ \ S .
(4) Assume that S has � minimal left ideals, where � is an infinite cardinal. Let L

denote the set of minimal left ideals of S . We give L the discrete topology and define
a semigroup operation � on L by putting L1 �L2 D L2. So .L;�/ is a discrete right
zero semigroup. Define a homomorphism f W I ! L by f .x/ D L if x 2 L.

By Lemma 6.46.1, K.ˇS/ D K.ˇI/ so it suffices to show that ˇI has at least
22
�

minimal left ideals. Now ef W ˇI ! ˇL is surjective by Exercise 3.4.1 and a
homomorphism by Corollary 4.22. Also ˇL is a right zero semigroup by Exercise
4.2.2 and jˇLj D 22

�

by Theorem 3.58. For each p 2 ˇL, ef �1Œ¹pº� is a left ideal
of ˇI . So there are at least 22

�

pairwise disjoint left ideals of ˇI .
To see that K.ˇS/ meets S�, choose any p 2 L�. Since p 2 K.ˇL/, there exists

x 2 K.ˇI/ for which ef .x/ D p by Exercise 1.7.3. This implies that x 2 I� and
hence that x 2 S�.

(5) Let R denote the set of minimal right ideals of S and define an operation � on
R making .R;�/ a left zero semigroup. Then by Exercise 4.2.1, ˇR is a left zero
semigroup, so the rest of the proof is a right-left switch of the proof of (4).

Lemma 6.46.3. Let S be an infinite semigroup, let L be a left ideal of ˇS , and let p
be an idempotent in L. If L is finite, then there exists B 2 p such that for all a 2 B ,
¹s 2 S W as D sº 2 p.

Proof. Pick A 2 p such that A \ L D ¹pº. Since �p.p/ 2 A, pick B 2 p such that
�pŒB� � A and let a 2 B . Then ap 2 A \ ˇSp � A \ L D ¹pº. So ap D p. Since
�a.p/ D p, we have by Theorem 3.35 that ¹s 2 S W as D sº 2 p.
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Theorem 6.46.4. Let S be an infinite semigroup and assume that K.ˇS/ meets S�.
If ˇS contains a finite left ideal, then any finite minimal left ideal that meets S� is
contained in S� and there are at least 2c minimal left ideals in ˇS .

Proof. Let L be a finite minimal left ideal L of ˇS which meets S�. To see that
L � S�, suppose that there exists x 2 L \ S . Then L D ˇSx D c`.Sx/. But Sx is
finite and so c`.Sx/ D Sx � S .

Pick an idempotent p 2 L. Let � D kpk and note that � � !. Pick C 2 p such
that jC j D �. Pick by Lemma 6.46.3 some B 2 p such that for all a 2 B , ¹s 2 S W
as D sº 2 p. We may presume B � C . For each a 2 B , let Pa D ¹s 2 C W as D sº.
Let A D ¹Pa W a 2 Bº. Then A � p so A has the �-uniform finite intersection
property. So by Theorem 3.62, j¹q 2 U
.C / W A � qºj D 22

�

.
If q 2 U
.C / and A � q, then for all a 2 B , aq D q and therefore pq D q. So
jpˇS j � 22

�

. Since p 2 K.ˇS/, pˇS is a minimal right ideal. Since each minimal
left ideal is finite and pˇS � K.ˇS/ D

S
¹M W M is a minimal left idealº, one has

j¹M WM is a minimal left idealºj � 22
�

.

Theorem 6.46.5. Let S be an infinite semigroup. At least one of the following state-
ments holds:

(1) S has a finite ideal, in which case K.ˇS/ � S and is finite.

(2) ˇS has at least 2c minimal left ideals.

(3) ˇS has at least 2c minimal right ideals.

Proof. If some minimal left ideal of ˇS is infinite we have by Theorem 6.39 that
statement (3) holds. So we assume that the minimal left ideals of S are finite.

If K.ˇS/ � S�, then by Theorem 6.46.4, statement (2) holds. So we may assume
I D K.ˇS/ \ S ¤ ;. If I is finite, then c`.I / is an ideal of ˇS by Corollary 4.18,
so K.ˇS/ � c`.I / D I so statement (1) holds.

Thus we assume I D K.ˇS/ \ S is infinite. By Lemma 6.46.2 (3), I D K.S/

and for any minimal left ideal L of S and any minimal right ideal R of S , L \ R is
finite. Thus there are either infinitely many minimal left ideals of S or infinitely many
minimal right ideals of S . Thus by conclusion (4) or (5) of Lemma 6.46.2, statement
(2) or (3) holds.

Corollary 6.46.6. Let S be an infinite semigroup. If S does not have a finite ideal,
then ˇS has at least 2c minimal idempotents.

Proof. By Theorem 6.46.5, either ˇS has at least 2c minimal left ideals or ˇS has at
least 2c minimal right ideals.

Exercise 6.3.1. Show that, for any discrete semigroup S , the number of minimal right
ideals of ˇS is either finite or at least 2c.
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Exercise 6.3.2. Suppose that S is a commutative discrete semigroup. Show that, for
any minimal right ideal R and any minimal left ideal L of ˇS , R \ L is dense in L.
Deduce that the number of minimal right ideals of ˇS is either one or at least 2c.

Exercise 6.3.3. Several of the results of this section refer to a right cancellative and
weakly left cancellative semigroup. Give an example of an infinite right cancella-
tive and weakly left cancellative semigroup which is not cancellative. (Hint: Such
examples can be found among the subsemigroups of .NN; ı/.)

Exercise 6.3.4. Show that there is a semigroup S which is both weakly left cancella-
tive and weakly right cancellative but ˇS has only one minimal right ideal.

Exercise 6.3.5. Show that N� is not the union of two disjoint closed left ideals of
.ˇN;C/.

Exercise 6.3.6. Show that Z� is the union of two disjoint closed left ideals of .ˇZ;C/
but is not the union of three such left ideals.

6.4 Weakly Left Cancellative Semigroups

We have shown that the center of .ˇN;C/ is disjoint from N�, and so is the center of
.ˇN; � /. In this section, we shall show that this is a property shared by a large class
of semigroups.

We shall use � to denote an infinite cardinal and shall regard � as being a discrete
space.

Lemma 6.47. Let S be an infinite weakly left cancellative semigroup with cardinality
� and let T be a given subset of S with cardinality �. Then there exists a function
f W S ! � such that

(1) f ŒT � D �,

(2) for every � < �, f �1Œ�� is finite if � is finite and jf �1Œ��j 
 j�j if � is infinite,
and

(3) for every s; r 2 S , if f .s/C1 < f .r/, then f .sr/ 2 ¹f .r/�1; f .r/; f .r/C1º
if f .r/ is not a limit ordinal and f .sr/ 2 ¹f .r/; f .r/C 1º otherwise.

Proof. We assume that S has been arranged as a �-sequence hs˛i˛<� . We shall con-
struct an increasing �-sequence hE˛i˛<� of subsets of S satisfying the following
conditions for � < �:

(i) s� 2 E� ;

(ii) T \
S
˛<� E˛ ¨ T \E� ;

(iii) if ˛ < � , then E˛E˛ � E� ;
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(iv) if � D ˛ C 1, s 2 E˛, and sr 2 E˛ , then r 2 E� ;

(v) if � < !, then jE˛j < !; and

(vi) if � � !, then jE� j 
 j� j.

We choose any t 2 T and put E0 D ¹s0; tº. We then assume that 0 < � < � and
that we have defined E˛ for every ˛ < � .

Let U D
S
˛<� E˛ and notice that jU j < ! if � < ! and that jU j 
 j� j if � � !.

If � is a limit ordinal let V D ;. If � D ˛C1, let V D E˛E˛[¹t 2 S W E˛t \E˛ ¤
;º and note that, since S is weakly left cancellative, jV j < ! if � < ! and jV j 
 j� j
if � � !. Pick t 2 T n U and let E� D U [ V [ ¹s� ; tº. It is easy to verify that the
induction hypotheses are satisfied.

We now define f W S ! � by putting f .s/ D min¹˛ < � W s 2 E˛º.
For every ˇ < � there exists t 2 T \ Eˇ n

S
˛<ˇ E˛. Since f .t/ D ˇ, it follows

that f ŒT � D �. For every � < �, f �1Œ�� � E	. So f �1Œ�� is finite if � is finite and
jf �1Œ��j 
 j�j if � is infinite.

Finally, suppose that f .s/ D ˛; f .r/ D ˇ and ˛ C 1 < ˇ. Let � D f .sr/. Since
s; r 2 Eˇ , we have sr 2 EˇC1 and so � 
 ˇ C 1. We now claim that � C 1 � ˇ.
So suppose instead that � C 1 < ˇ and let � D max¹˛; �º. Then s; sr 2 E
 and so
r 2 E
C1. Thus ˇ 
 �C 1 < ˇ, a contradiction.

Definition 6.48. Let S be a discrete semigroup. We define a binary relation R on
U�.S/ by stating that pRq if .ˇS/p \ .ˇS/q ¤ ;. We extend this to an equivalence
relation  on U�.S/ by stating that p  q if pRnq for some n 2 N.

By Rn we mean the composition of R with itself n times. Thus, given p; q 2
U�.S/, p  q if and only if there exist elements x0; x1; x2; : : : ; xn 2 U�.S/ such
that p D x0, q D xn and xiRxiC1 for every i 2 ¹0; 1; 2; : : : ; n � 1º.

Lemma 6.49. Let S be a discrete infinite weakly left cancellative semigroup with
cardinality � and let T be any subset of S with cardinality �. Let f be the function
guaranteed by Lemma 6.47 and let ef W ˇS ! ˇ� be its continuous extension.

(i) If � D !, we put A D ¹2m W m 2 Nº.

(ii) If � > !, we put A equal to the set of limit ordinals in �.

If B and C are disjoint subsets of A with cardinality � and if B 2 ef .p/ and
C 2 ef .q/ for some p; q 2 U�.S/, then p 6 q.

Proof. (i) We first suppose that � D ! and that A D ¹2m W m 2 Nº. We shall show
by induction that, for every n 2 N, every x; y 2 S� and every X � N, if X 2 ef .x/
and xRny, then

S2n
iD�2n.i CX/ 2

ef .y/.
Suppose first that n D 1. If xRy then ux D vy for some u; v 2 ˇS . Let U D
¹sr W s; r 2 S; f .s/ C 1 < f .r/, and f .r/ 2 Xº. Then U 2 ux by Theorem
4.15, and f ŒU � � .X � 1/ [ X [ .X C 1/ by condition (3) of Lemma 6.47. So
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.X�1/[X[.XC1/ 2 ef .ux/. Similarly, if Y 2 ef .y/, then .Y �1/[Y [.Y C1/ 2ef .vy/. So Y \
S2
iD�2.i CX/ ¤ ;. Thus

S2
iD�2.i CX/ 2

ef .y/.
Now assume that our claim holds for n 2 N. Suppose that xRnC1y. Then xRnz

and zRy for some z 2 S�. Let Z D
S2n
iD�2n.i C X/. By our inductive assump-

tion, Z 2 ef .z/. By what we have just proved with n D 1,
S2
iD�2.i C Z/ DS2.nC1/

iD�2.nC1/
.i CX/ 2 ef .y/. So we have established our claim.

We now observe that, for every n 2 N, B \ .
S2n
iD�2n.i C C// is finite and soS2n

iD�2n.i C C/ …
ef .p/. Thus we cannot have pRnq.

(ii) Suppose that � > ! and that A is the set of limit ordinals in �.
Let B 0 D ¹� C n W � 2 B and n 2 !º. We shall show that, if x; y 2 U�.S/,

B 0 2 ef .x/, and xRny, then B 0 2 ef .y/.
Suppose first that xRy. Then ux D vy for some u; v 2 ˇS . Now, if U D ¹sr W

s; r 2 S; f .s/ C 1 < f .r/, and f .r/ 2 B 0º, then U 2 ux (by Theorem 4.15). We
also have f ŒU � � B 0, by condition (3) of Lemma 6.47. So B 0 2 ef .ux/. Similarly, if
� n B 0 2 ef .y/, then � n B 0 2 ef .vy/. This contradicts our assumption that ux D vy
and so B 0 2 ef .y/.

It follows immediately, by induction, that xRny implies that B 0 2 ef .y/.
Since B 0 2 ef .p/ and B 0 … ef .q/, it follows that p 6 q.

Lemma 6.50. Let S be a discrete infinite weakly left cancellative semigroup with
cardinality �. For every p 2 U�.S/, ¹q 2 U�.S/ W q  pº is a nowhere dense subset
of U�.S/.

Proof. Suppose instead that we have some subset T of cardinality � such thatU�.T /�
c`¹q 2 U�.S/ W q  pº. Let f be the function guaranteed by Lemma 6.47.

If � D !, we put A D ¹2m W m 2 Nº. If � > !, we put A equal to the set of limit
ordinals in �.

Let B and C be disjoint subsets of A with cardinality �. It follows from Lemma
6.49 that ¹q 2 U�.S/ W q  pº is disjoint from c`.f �1ŒB�/ \ U�.S/ or from
c`.f �1ŒC �/ \ U�.S/. So either c`.f �1ŒB�/ \ U�.T / or c`.f �1ŒC �/ \ U�.T / is a
nonempty open subset of U�.T / disjoint from ¹q 2 S� W q  pº, a contradiction.

Corollary 6.51. Let S be a discrete infinite weakly left cancellative semigroup with
cardinality �. For every p 2 U�.S/, ¹q 2 U�.S/ W qp D pqº is nowhere dense
in U�.S/.

Proof. If qp D pq, .ˇS/p \ .ˇS/q ¤ ; and so qRp.

Corollary 6.52. Let S be a discrete infinite weakly left cancellative semigroup with
cardinality �. Then the center of U�.S/ is empty.

Proof. This follows immediately from Corollary 6.51.
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Theorem 6.53. Let S be a discrete infinite weakly left cancellative semigroup with
cardinality �. Then there exists a decomposition I of U�.S/ with the following prop-
erties:

(1) Each I 2 I is a left ideal of ˇS .

(2) Each I 2 I is nowhere dense in U�.S/.

(3) jIj D 22
�

.

Proof. We use the equivalence relation described in Definition 6.48 and denote the
equivalence class of an element p 2 U�.S/ by Œp�. We put I D ¹Œp� W p 2 U�.S/º.

(1) By Exercise 6.4.1, U�.S/ is a left ideal of ˇS . So, for each p 2 U�.S/ and
each x 2 ˇS , pRxp. Thus Œp� is a left ideal of ˇS .

(2) This is Lemma 6.50.
(3) Let f denote the function guaranteed by Lemma 6.47, with T D S , and letef W ˇS ! ˇ� denote its continuous extension. We note that ef is surjective because

f is surjective. Furthermore, ef �1ŒU�.�/� � U�.S/.
If � D !, we put A D ¹2m W m 2 Nº. If � > !, we put A equal to the set

of limit ordinals in �. For each u 2 U�.A/, we can choose pu 2 U�.S/ for whichef .pu/ D u. If u and v are distinct elements of U�.A/, there exist disjoint subsets
B and C of A for which B 2 u and C 2 v. Since B 2 ef .pu/ and C 2 ef .pv/, it
follows from Lemma 6.49 that Œpu� ¤ Œpv�. Now jAj D � and so jU�.A/j D 22

�

(by
Theorem 3.58), and so jIj D 22

�

.

Theorem 6.54. Let S be a weakly left cancellative semigroup. Then the center of ˇS
is equal to the center of S . The center of S� is empty.

Proof. First, if s is in the center of S , then s is also in the center of ˇS . Indeed, for
every p 2 ˇS , we have sp D p-lim

t2S

st D p-lim
t2S

ts D ps.

To see the reverse inclusion, let p be in the center of ˇS and suppose p … S . (Of
course, if p 2 S , then p is in the center of S .) Let � D kpk. We choose any B 2 p
with jBj D � and let T denote the subsemigroup of S generated by B . Since jT j D �
and since we can regard p as being in U�.T /, it follows from Corollary 6.52 that p is
not in the center of ˇT . So p is not in the center of ˇS .

It is easy to see that the closure of the set of minimal idempotents in ˇN contains
elements which are not in K.ˇN/.

Theorem 6.54.1. Let heni1nD1 be a sequence of elements in K.H/ with the property
that any two belong to distinct minimal left ideals. Then no limit point of the sequence
can be in K.ˇN/.

Proof. Let e be a limit point of the sequence heni1nD1. Assume that e 2 K.ˇN/. Let
M D ¹n 2 N W en … ˇN C eº. Then jN nM j 
 1 and so e 2 c`.¹en W n 2 M º/.
Also, since e D qC e for some minimal idempotent q, e 2 c`.NC e/. Therefore, by
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Theorem 3.40, either ¹en W n 2M º\c`.NCe/ ¤ ; or .NCe/\c`¹en W n 2M º ¤ ;.
However, if n 2M , en … ˇNCe D c`.NCe/. If n 2 N, nCe … c`.¹en W n 2M º/,
because nC e … H. This is a contradiction.

We shall now prove analogous theorems for arbitrary infinite cancellative semi-
groups.

If � is a cardinal, �d will denote � with the discrete topology andC denotes ordinal
addition. Let N� be the set of nonlimit ordinals in �. The function x 7! x � 1 which
sends a successor to its immediate predecesor extends continuously to N� . We denote
the value of this extension at the point v 2 N� by v � 1. We recall that, if S is a set
with cardinality �, U�.S/ denotes the set of ultrafilters on S whose members all have
cardinality �.

Lemma 6.54.2. Let S be an infinite weakly left cancellative semigroup with cardi-
nality � and let T be any subset of S for which jT j D �. Let f W S ! � be a function
whose existence is guaranteed by Lemma 6.47 and let ef W ˇS ! ˇ�d be its continu-
ous extension. If x 2 ˇS and y 2 U�.S/, then ef .xy/ 2 ¹ef .y/� 1;ef .y/;ef .y/C 1º
if ef .y/ 2 N� and ef .xy/ 2 ¹ef .y/;ef .y/C 1º otherwise.

Proof. Let y 2 U�.S/. Since ef ı �y is continuous, it suffices to prove the conclusion
for x 2 S . So let x 2 S be given. By Lemma 6.47 (3), if t 2 S and f .x/C 1 < f .t/,
then f .xt/ 2 ¹f .t/�1; f .t/; f .t/C1º if f .t/ 2 N� and f .xt/ 2 ¹f .t/; f .t/C1º if
f .t/ … N� . Let Y�1 D ¹t 2 S W f .x/C1 < f .t/; f .t/ 2 N� , and f .xt/ D f .t/�1º.
For i 2 ¹0; 1º, let Yi D ¹t 2 S W f .x/C1 < f .t/ and f .xt/ D f .t/Ciº. By Lemma
6.47 (2), j¹t 2 S W f .t/ 
 f .x/C 1ºj < � so ¹t 2 S W f .x/C 1 < f .t/º 2 y. Thus
there is some i 2 ¹�1; 0; 1º such that Yi 2 y. Since ef ı �x is constant on a member
of y, the conclusion follows.

Theorem 6.54.3. Let S be an infinite cancellative uncountable semigroup with car-
dinality �. Let T be a subsemigroup of S for which jT j D �. There exists a sequence
hpni

1
nD1 of minimal idempotents in ˇT with the property that no accumumlation point

of the sequence is in K.ˇT /.

Proof. Let f W S ! � be a function whose existence is guaranteed by Lemma 6.47
and let ef W ˇS ! ˇ�d denote its continuous extension. Since f ŒT � D �, it follows
from Exercise 3.4.1 that ef ŒˇT � D ˇ�d . Let A D � n N� , the set of limit ordinals
in �. Since jAj D �, jU�.A/j D 22

�

by Theorem 3.58. We can choose an injective
sequence hxni1nD1 for which ¹xn W n 2 Nº is a discrete subset of U�.A/. Then
¹xn W n 2 Nº [ ¹xn C 1 W n 2 Nº is discrete in ˇ�d . (If k 2 N and B 2 xk such
that B … xm for m ¤ k, then B \ A is an element of xk not in any other member of
¹xn W n 2 Nº [ ¹xnC 1 W n 2 Nº and .B \A/C 1 is an element of xkC 1 not in any
other member of ¹xn W n 2 Nº [ ¹xn C 1 W n 2 Nº.)
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We claim that for each n 2 N, ef �1Œ¹xn; xnC1º� contains a left ideal of ˇT . To see
this, pick v 2 ˇT such that ef .v/ D xn. Since xn 2 U�.A/, we have v 2 U�.T / and
so, by Lemma 6.54.2, ˇT v � ef �1Œ¹xn; xn C 1º�. Also, by Theorem 6.44, each left
ideal of ˇT contains at least 2c minimal idempotents belonging to distinct minimal
right ideals of ˇT . Thus we may inductively choose a sequence hpni1nD1 of minimal
idempotents of ˇT such that each pn 2 ef �1Œ¹xn; xn C 1º� and if n ¤ m, then pn
and pm belong to distinct minimal right ideals of ˇT .

Let p be an accumulation point of hpni1nD1 and suppose that p 2 K.ˇT /. Let L be
the minimal left ideal of ˇT containing p and let q be an idempotent inL. By Lemma
6.34.3, U�.T / is an ideal of ˇT , so q 2 U�.T /. Let P D c`ˇS .¹pn W n 2 Nº/. We
claim that ef is injective on P . To see this, note that by Exercise 3.4.3 (c), ¹ef .pn/ W
n 2 Nº is strongly discrete so we can choose Cn 2 ef .pn/ such that Cn \ Cm D ; if
n ¤ m. If u 2 P and B 2 u, then

S
¹Cn W n 2 N and pn 2 Bº 2 ef .u/. Therefore,

if u ¤ v in P , then ef .u/ ¤ ef .v/.
Let B D ¹n 2 N W pn 2 Lº and let C D ¹n 2 N W pnq 2 P º. Let D D
¹ef .q/�1;ef .q/;ef .q/C1º ifef .q/ 2 N� and letD D ¹ef .q/;ef .q/C1º ifef .q/ … N� .
Then by Lemma 6.54.2, ef ŒL� � D. So B is finite and P \ L is finite. Thus C is
finite, because pm and pn belong to different minimal right ideals of ˇT if m ¤ n,
and therefore pmq ¤ pnq. Now p 2 c`.¹pn W n 2 N n Bº/. Also, since p D pq,
p 2 c`.¹pnq W n 2 N n C º/. So, by Theorem 3.40, pk 2 c`.¹pnq W n 2 N n C º/ for
some k 2 N n B or pkq 2 c`.¹pn W n 2 N n Bº/ for some k 2 N n C . In the first
case, pk 2 L, so k 2 B . In the second case pkq 2 P so k 2 C .

We can prove a stronger theorem in the case in which S is countable. (See also
Theorem 8.22.)

Theorem 6.54.4. Let S be a discrete countably infinite cancellative semigroup and
let T be an infinite subsemigroup of S . Let f W S ! ! be a function whose existence
is guaranteed by Lemma 6.47 and let ef W ˇS ! ˇ! denote its continuous extension.
Let hpni1nD1 be a sequence in T � such that ¹ef .pn/ W n 2 Nº is discrete andef .pm/ ¤ef .pn/ if m ¤ n. If p is an accumulation point of the sequence hpni1nD1, then Sp \
S�S� D ;.

Proof. By Lemma 6.54.2, for all x 2 ˇS and all y 2 S�, ef .xy/ 2 ¹ef .y/ � 1;ef .y/;ef .y/C 1º.
We now assume that sp D uv for some s 2 S and u; v 2 S�. Let P D c`.¹pn W

n 2 Nº/. As in the proof of Lemma 6.54.2 we have that ef is injective on P . It
follows that sP \ ˇSv is finite, because sq 2 ˇSv implies that ¹ef .q/ � 1;ef .q/;ef .q/C 1º \ ¹ef .v/ � 1;ef .v/;ef .v/C 1º ¤ ;. Let A D ¹t 2 S W tv 2 sP º and let
B D ¹n 2 N W spn 2 ˇSvº. Then A is finite by Lemma 6.28, because sv ¤ tv if
s and t are distinct elements of S . Also B is finite because sP \ ˇSv is finite. So
uv 2 c`..S n A/v/ \ c`.¹spn W n 2 N n Bº/. Hence, by Theorem 3.40, there exists
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t 2 S n A such that tv 2 c`.¹spn W n 2 N n Bº/ or there exists n 2 N n B such that
spn 2 c`..S nA/v/. In the first case tv 2 sP so t 2 A. In the second case spn 2 ˇSv
so n 2 B .

Exercise 6.4.1. Let S be a discrete infinite weakly left cancellative semigroup with
cardinality �. Prove that U�.S/ is a left ideal of ˇS .

6.5 Semiprincipal Left Ideals and the Center of p.ˇS/p

We show in this section that in N� there are infinite decreasing chains of semiprincipal
left ideals. We also study the center of p.ˇS/p for nonminimal idempotents p.

If S is embedded in a group G, ˇS is also embedded (topologically and alge-
braically) in ˇG by Remark 4.19. We shall assume, whenever it is convenient to do
so, that ˇS � ˇG.

Theorem 6.55. Let S be a countably infinite discrete semigroup embedded in a count-
able discrete group G. Let q 2 K.ˇS/ and let A 2 q. Let n 2 N and let p1; p2; : : : ;
pn 2 S

� nK.ˇS/. Then there is an infinite subset B of A such that, for every r 2 B�

and every i; j 2 ¹1; 2; : : : ; nº, pi … .ˇG/rpj .

Proof. We claim that, for every i; j 2 ¹1; 2; : : : ; nº, pi … .ˇG/qpj . To see this, we
note that qpj 2 K.ˇS/ and hence that qpj D qpj e for some idempotent e 2 K.ˇS/
(by Theorem 2.8). So if pi 2 .ˇG/qpj , we have pi D xqpj for some x 2 ˇG and
so pie D xqpj e D xqpj D pi and thus pi D pie 2 K.ˇS/, a contradiction.

Thus there is a subset D of G such that

¹p1; p2; : : : ; pnº � D and D \
� nS
iD1

.ˇG/qpi

�
D ;:

For each a 2 G, letEa D ¹x 2 A� W there exists i 2 ¹1; 2; : : : ; nº such that axpi 2
Dº. Notice that Ea D A� \

Sn
iD1.�a ı �pi /

�1ŒD� and is therefore closed. Now
q 2 S�, by Theorem 4.36. Since q 2 A� n

S
a2G Ea, it follows that

T
a2G.A

� nEa/

is a nonempty Gı set in S�. So by Theorem 3.36 there is an infinite subset B of A
such that B� �

T
a2G.A

� nEa/.
Let r 2 B� and let i; j 2 ¹1; 2; : : : ; nº. If pi 2 .ˇG/rpj D c`ˇG.Grpj /, then

arpj 2 D for some a 2 G and hence r 2 B� \ Ea, contradicting our choice
of B�.

Theorem 6.56. Let S be a countably infinite discrete semigroup embedded in a count-
able discrete group G. Let p 2 S� nK.ˇS/, let q 2 K.ˇS/ and let A 2 q. There is
an infinite subset B of A with the property that, for every r 2 B�, p … .ˇG/rp, and,
whenever r1 and r2 are distinct members of B�, we have .ˇG/r1p \ .ˇG/r2p D ;.
Furthermore, for every r 2 B�, rp is right cancelable in ˇG.
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Proof. By Theorem 6.55, there is an infinite subset C of A with the property that
r 2 C� implies that p … .ˇG/rp.

We choose a sequential ordering for G and write a < b if a precedes b in this
ordering.

We can choose a sequence hbni1nD1 inC with the property that abm ¤ bn whenever
m < n and a 2 G satisfies a < bm. We then let B D ¹bn W n 2 Nº.

We shall now show that whenever r1; r2 2 B�, v 2 ˇG, and r1p D vr2p, we have
r1 D r2 and v D 1, the identity of G. We choose subsets B1 and B2 of B which
satisfy B1 2 r1 and B2 2 r2, choosing them to be disjoint if r1 ¤ r2.

Now r1p 2 c`.B1p/ and vr2p 2 c`.Gr2p/. Furthermore, vr2p 2 c`..G n
¹1º/r2p/ in the case in which v ¤ 1. By applying Corollary 3.42, we can deduce
that bp D v0r2p for some b 2 B1 and some v0 2 ˇG, or else r 0p D ar2p for some
r 0 2 B�1 and some a 2 G. We can strengthen the second statement in the case in
which v ¤ 1, by asserting that a 2 G n ¹1º. The first possibility contradicts the fact
that p … .ˇG/r2p, because it implies that p D b�1v0r2p, and so we assume the
second.

Put B 01 D B1 \ ¹s 2 S W s > a
�1º and B 02 D B2 \ ¹s 2 S W s > aº. Then B 01 2 r

0

and B 02 2 r2. Since r 0p 2 c`.B 01p/ and ar2p 2 c`.aB 02p/, another application
of Corollary 3.42 shows that cp D awp for some c 2 B 01 and some w 2 c`B 02,
or else zp D adp for some z 2 c`B 01 and some d 2 B 02. Now, in the first case,
w … .B 02/

�, because p … .ˇG/wp if w 2 .B 02/
�. Similarly, in the second case,

z … .B 01/
�. Thus we can deduce that bmp D abnp for some bm 2 B 01 and some

bn 2 B
0
2. This equation implies that bm D abn by Lemma 6.28. By our choice of

the sequence hbni1nD1, a�1bm ¤ bn if n > m and abn ¤ bm if m > n. Thus the
equation bm D abn can only hold if m D n, and this implies that a D 1. We can thus
deduce that r1 D r2 and that v D 1, as claimed.

Now if .ˇG/r1p \ .ˇG/r2p ¤ ;, then r1p 2 .ˇG/r2p or r2p 2 .ˇG/r1p, by
Corollary 6.20. We have seen that this implies that r1 D r2.

Finally, let r 2 B�. If rp is not right cancelable in ˇG, there are distinct elements
w; z 2 ˇG for which wrp D zrp. We can choose disjoint subsets W and Z of G
satisfying W 2 w and Z 2 z. Since wrp 2 c`.W rp/ and zrp 2 c`.Zrp/, another
application of Corollary 3.42 allows us to deduce that drp D z0rp for some d 2 W
and some z0 2 c`Z, or else w0rp D d 0rp for some d 0 2 Z and some w0 2 c`W .
In either case, it follows that rp 2 .ˇG n ¹1º/rp, because d�1z0 2 ˇG n ¹1º in the
first case, and .d 0/�1w0 2 ˇG n ¹1º in the second case. (If z0 2 G, then d�1z0 ¤ 1

because z … W . If z0 2 G�, then d�1z0 2 G� by Theorem 4.36.) We have seen that
this is not possible.

Theorem 6.57. Suppose that S is a countable discrete semigroup embedded in a
countable discrete group G. Let n 2 N and let p1; p2; : : : ; pn 2 S� n K.ˇS/.
Suppose that, in addition, pi … Gpj whenever i and j are distinct members of
¹1; 2; : : : ; nº. Let B be an infinite subset of S with the property that pi … .ˇG/rpj
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whenever r 2 B� and i; j 2 ¹1; 2; : : : nº. Then .ˇG/rpi \ .ˇG/rpj D ; for every
r 2 B� and every pair of distinct members i; j of ¹1; 2; : : : ; nº.

Proof. Suppose, on the contrary, that there is an element r 2 B� for which .ˇG/rpi\
.ˇG/rpj ¤ ; for some pair i; j of distinct members of ¹1; 2; : : : ; nº. We may then
suppose that rpi D xrpj for some x 2 ˇG, by Corollary 6.20. Now rpi 2 c`.Bpi /
and xrpj 2 c`.Grpj /. Thus, by Corollary 3.42, r 0pi D arpj for some r 0 2 c`.B/
and some a 2 G, or bpi D x0rpj for some b 2 B and some x0 2 ˇG. The second
possibility can be ruled out because pi … .ˇG/rpj , and so the first must hold.

We now observe that r 0pi 2 c`.Bpi / and arpj 2 c`.aBpj /. So another application
of Corollary 3.42 shows that cpi D aspj for some c 2 B and some s 2 c`.B/, or
else tpi D adpj for some t 2 B� and some d 2 B . The first possibility cannot
hold if s 2 B�, because then pi … .ˇG/spj . Neither can it hold if s 2 B , because
pi … Gpj . So the first possibility can be ruled out. The second possibility cannot hold
since pj … .ˇG/tpi .

Theorem 6.58. LetG be a countably infinite discrete group and let p 2 G�nK.ˇG/.
Suppose that B � G is an infinite set with the property that, for every r 2 B�,
p … .ˇG/rp, and that .ˇG/rp \ .ˇG/r 0p D ; for every pair of distinct elements r
and r 0 in B�. (The existence of such a set follows from Theorem 6.56 with S D G.)
Then, for every r 2 B�, .ˇG/rp is maximal subject to being a principal left ideal of
ˇG strictly contained in .ˇG/p.

Proof. We note that .ˇG/rp is strictly contained in .ˇG/p, because p 2 .ˇG/p and
p … .ˇG/rp.

Suppose that we have .ˇG/rp ¨ .ˇG/x ¨ .ˇG/p for some x 2 ˇG.
Then rp D yx for some y 2 ˇG and thus Bp \ Gx ¤ ;. So by Corollary 3.42,

either bp D zx for some b 2 B and some z 2 ˇG or else r 0p D ax for some r 0 2 B�

and some a 2 G. The first possibility can be ruled out since p D b�1zx 2 .ˇG/x

implies that .ˇG/p � .ˇG/x.
Therefore assume that r 0p D ax for some r 0 2 B� and some a 2 G. Then x D

a�1r 0p 2 .ˇG/r 0p and so .ˇG/rp � .ˇG/x � .ˇG/r 0p. In particular .ˇG/rp \
.ˇG/r 0p ¤ ; and so r D r 0. But then .ˇG/x D .ˇG/rp, a contradiction.

We now prove a theorem about semiprincipal left ideals in N�. An analogous
theorem is true if N is replaced by any countably infinite commutative cancellative
discrete semigroup. However, we shall confine ourselves to the special case of N,
because it is the most important and because the more general theorem is somewhat
more complicated to formulate.

Theorem 6.59. Let p 2 N� nK.ˇN/. Suppose that B � N is an infinite set with the
property that, for every x 2 B�, p … ˇZC x C p, and that for every distinct pair of
elements x; x0 in B�, .ˇZC x C p/ \ .ˇZC x0 C p/ D ;. (The existence of such
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a set follows from Theorem 6.56). Then, for every x 2 B�, N� C x C p is maximal
subject to being a semiprincipal left ideal of N� strictly contained in N� C p.

Proof. We first note that N� C x C p is strictly contained in N� C p. To see this,
pick x0 2 B� n ¹xº. Then x0 C p 2 N� C p and x0 C p … N� C x C p because
.N� C x0 C p/ \ .N� C x C p/ D ;.

Suppose that N� C x C p � N� C y � N� C p, where y 2 N� and x 2 B�. We
shall show that N� C y is equal to N� C x C p or N� C p.

By Corollary 6.21, x C p 2 ˇN C y or y 2 ˇN C x C p. The second possibility
implies that N� C y D N� C x C p, and so we assume the first.

Then x C p D z C y for some z 2 ˇN. Now x C p 2 c`.B C p/ and z C y 2
c`.N C y/. We can therefore deduce from Corollary 3.42, that nC p D z0 C y for
some n 2 B and some z0 2 ˇN or else x0 C p D mC y for some x0 2 B� and some
m 2 N. In the first case p D �n C z 0 C y and so N� C p D N� C y. Thus we
assume that the second case holds.

The left ideals ˇZC x C p and ˇZC x0 C p intersect, because, for any u 2 N�,
u C x C p 2 N� C y D N� C .�m/ C x0 C p. It follows that x0 D x. Then
y D �mC x C p and this implies that N� C y D N� C x C p.

Corollary 6.60. If p 2 N� nK.ˇN/, the semiprincipal left ideal N�Cp of N� con-
tains 2c disjoint semiprincipal left ideals, each maximal subject to being a semiprin-
cipal left ideal strictly contained in N� C p.

Proof. We choose a set B satisfying the hypotheses of Theorem 6.59. The corollary
then follows from the fact that jB�j D 2c. (See Theorem 3.59.)

Corollary 6.60 does not hold as it stands if N� is replaced by ˇN. For example, if
p is a right cancelable element of ˇN, there is precisely one semiprincipal left ideal
of ˇN maximal subject to being strictly contained in ˇN C p, namely ˇN C 1C p.

Corollary 6.61. Let p 2 N�nK.ˇN/. Then N�Cp belongs to an infinite decreasing
sequence of semiprincipal left ideals of N�, each maximal subject to being strictly
contained in its predecessor.

Proof. By Theorem 6.56 choose an infinite set B � N such that for every x 2 B�,
p … ˇZCxCp and xCp is right cancelable in ˇZ and such that whenever x and x0

are distinct members of B�, ˇZCxCp\ˇZCx0Cp D ;. Pick any x 2 B�. Then
by Theorem 6.59 N�C xC p is maximal among all semiprincipal left ideals that are
properly contained in N� C p. Since x C p is right cancelable, x C p … K.ˇN/ by
Exercise 1.7.1, so one may repeat the process with x C p in place of p.

It is possible to prove [299] – although we shall not do so here – that the statement
of Corollary 6.61 can be strengthened by replacing the word “sequence” by “!1-
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sequence”. Thus N� certainly contains many reverse well-ordered chains of semiprin-
cipal left ideals. It is not known whether every totally ordered chain of semiprincipal
left ideals of N� is reverse well-ordered.

Theorem 6.62. Let S be a countably infinite semigroup, embedded in a countable
groupG. If p is a nonminimal idempotent in S�, the center of the semigroup p.ˇS/p
is contained in Gp.

Proof. Suppose that x is an element of the center of p.ˇS/p. Then, for every r 2 ˇS ,
we have x.prp/ D .prp/x and hence xrp D prx, because xp D px D x.

We first show that x … K.ˇS/. Suppose instead that x 2 K.ˇS/ and pick an
idempotent e 2 K.ˇS/ such that x D xe. By Theorem 6.56 there is an infinite
subset B of S such that .ˇG/r1p \ .ˇG/r2p D ; whenever r1 and r2 are distinct
elements of B� and rp is right cancelable in ˇG for every r 2 B�. We can choose
r 2 B� such that x … .ˇG/rp, because this must hold for every r 2 B� with at most
one exception. Now rp … .ˇG/x because otherwise rp D rpe 2 K.ˇS/, while rp is
right cancelable. (By Theorem 4.36K.ˇS/ � S�, so by Exercise 1.7.1 no member of
K.ˇS/ is right cancelable.) Since x … .ˇG/rp and rp … .ˇG/x we have by Corollary
6.20 that .ˇG/rp \ .ˇG/x D ; and hence that xrp ¤ prx, a contradiction.

Now suppose that x … Gp. Then also p … Gx and so by Theorems 6.55 and
6.57 with n D 2, p1 D p, and p2 D x, there is an infinite subset C of S such that
.ˇG/rp \ .ˇG/rx D ; for every r 2 C �. This implies that xrp ¤ prx, again
contradicting our assumption that x is in the center of p.ˇS/p.

Recall that if S is an infinite, commutative, and cancellative semigroup, then S has
a “group of quotients”, G. This means that G is a group in which S can be embedded
in such a way that each element of G has the form s�1t for some s; t 2 S . The group
G is also commutative. If S is countable, then so is G.

Theorem 6.63. Let S be a countable commutative cancellative semigroup and let G
be its group of quotients. If p is a nonminimal idempotent in ˇS the center of p.ˇS/p
is equal to Gp \ p.ˇS/p.

Proof. By Theorem 6.62 the center of p.ˇS/p is contained in Gp. Conversely, let
a 2 G such that ap 2 p.ˇS/p. Now a is in the center of ˇG by Theorem 4.23. Thus,
if y 2 p.ˇS/p, then apy D ay D ya D ypa D yap.

Corollary 6.64. If p is a nonminimal idempotent in N�, the center of p C ˇN C p
is equal to ZC p.

Proof. This follows from Theorem 6.63 and the fact that Z C N� � N� (by Exer-
cise 4.3.5).
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Notice that the requirement that p be nonminimal in Theorem 6.63 is important. It
is not even known whether Z C p is the center of p C ˇN C p for an idempotent
which is minimal in .ˇN;C/.

Lemma 6.65. Let S be a countably infinite, commutative, and cancellative semi-
group, and let G be its group of quotients. Then K.ˇS/ D K.ˇG/ \ ˇS .

Proof. By Theorem 1.65, it is sufficient to show that K.ˇG/ \ ˇS ¤ ;.
Let q be a minimal idempotent in ˇS . We claim thatGq � ˇS . To see this, choose

any r 2 G and put r D s�1t for some s; t 2 S . Now sS is an ideal of S and so
c`.sS/ D sˇS is an ideal of ˇS , by Corollary 4.18. It follows that K.ˇS/ � sˇS .
Hence q 2 sˇS so s�1q 2 ˇS and so rq D s�1tq D ts�1q 2 tˇS � ˇS .

Now there is a minimal idempotent p in K.ˇG/ for which pq D p, by Theo-
rem 1.60. Thus p 2 .ˇG/q D c`.Gq/ � ˇS .

Exercise 6.5.1. Suppose that p 2 N� n .N�CN�/. Prove that N�Cp is a maximal
semiprincipal left ideal of N�. (Hint: Use Corollary 6.21.)

Exercise 6.5.2. Let F denote the free semigroup on two generators, a and b, and let
G denote the free group on these generators. Prove that K.ˇG/ \ ˇF D ;. (Hint:
Suppose that p 2 ˇF and that q 2 c`ˇG¹b

�na W n 2 Nº \ G�. Each x 2 G can
be expressed uniquely in the form an1bn

0
1an2bn

0
2 : : : ankbn

0
k , where all the exponents

are in Z and all, except possibly n1 and n0
k

, are in Zn ¹0º. Define f .x/ D
Pk
iD1 jn

0
i j.

Let E D ¹xb�nay W x 2 G, y 2 F , and n > f .x/º. Show that E \ F D ;, that
.ˇG/qp � c`ˇG E, and hence that p … .ˇG/qp.)

Exercise 6.5.3. Let S be a countably infinite, commutative, and cancellative semi-
group, and let G be its group of quotients. Show that if p is a minimal idempotent in
ˇS , then Gp � p.ˇS/p. (Hint: Consider the proof of Lemma 6.65.)

Exercise 6.5.4. Let S D .N; � /, so that the group of quotients G of S is .QC; � /.
Show that there are idempotents p 2 S� for which Gp 6� S�.

6.6 Principal Ideals in ˇZ

It is a consequence of Theorems 6.56 and 6.58 that, given any p 2 Z� nK.ˇZ/ there
is an infinite sequence hpni1nD1 with p1 D p such that ˇZC pnC1 ¨ ˇZC pn for
each n. Whether there is an infinite strictly increasing chain of principal left ideals
of ˇZ is an old and notoriously difficult problem. (See the notes to this chapter for a
discussion of the history of this problem.) We do not address this problem here, but
instead solve the corresponding problem for principal right ideals and principal closed
ideals (defining the latter term below).
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Recall from Exercise 4.4.9 that if S is a commutative semigroup, then the closure
of any right ideal of ˇS is a two sided ideal of ˇS .

Definition 6.66. Let .G;C/ be a commutative group and let p 2 ˇG. Then c`.p C
ˇG/ is the principal closed ideal generated by p.

Notice that the terms “principal closed ideal” and “closed principal ideal” mean
two different things. Indeed the later can only rarely be found in ˇS where S is a
semigroup.

The reasons for defining the term “principal closed ideal” only for groups are first,
that this guarantees that p is a member, and second, because we are only going to use
the notion in Z.

We now introduce some special sets needed for our construction. Recall thatL1
iD1 ! D ¹Ea 2 ⨉

1
iD1 ! W ¹i W ai ¤ 0º is finiteº.

Definition 6.67. (a) For m; n 2 N,

�mn D
°
Ea 2

1M
iD1

! W

1X
iD1

ai

2i
D

1

2n
and min¹i 2 N W ai ¤ 0º � mC n

±
:

(b) Fix a sequence hzki1kD1 such that for each k, zkC1 >
Pk
iD1 2

iC1zi .

(c) For m; n 2 N, Amn D ¹
P1
iD1 aizi W Ea 2 �

m
n º.

Lemma 6.68. For each m; n 2 N, AmC1n � Amn and jAmn j D !. Further, for each
Ea 2 �mn and each i 2 N, ai < 2i .

Proof. That AmC1n � Amn is trivial. For the second assertion notice that ¹2k�nzk W
k � mC nº � Amn . For the third assertion notice that if ai � 2i , then ai

2i
> 1
2n

.

Lemma 6.69. Let m; n 2 N. Then AmnC1 C A
m
nC1 � A

mC1
n .

Proof. Let x; y 2 AmnC1 and pick Ea; Eb 2 �mnC1 such that x D
P1
iD1 aizi and y DP1

iD1 bizi . Let Ec D Ea C Eb. Then x C y D
P1
iD1 cizi so it suffices to show that

Ec 2 �mC1n . First
P1
iD1

ci
2i
D
P1
iD1

ai
2i
C
P1
iD1

bi
2i
D 1

2nC1
C 1

2nC1
D 1

2n
. Also,

min¹i 2 N W ci ¤ 0º D min.¹i 2 N W ai ¤ 0º[ ¹i 2 N W bi ¤ 0º/ � nC1Cm.

Lemma 6.70. If Ea; Eb 2
L1
iD1Z,

P1
iD1 aizi D

P1
iD1 bizi , and for each i 2 N,

jai j 
 2
i and jbi j 
 2i , then Ea D Eb.
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Proof. Suppose Ea ¤ Eb. Since Ea and Eb each have only finitely many nonzero coor-
dinates, we may pick the largest n such that an ¤ bn and assume without loss of
generality that an > bn. Then

Pn
iD1 aizi D

Pn
iD1 bizi so

zn 
 .an � bn/zn D

n�1X
iD1

.bi � ai /zi 


n�1X
iD1

2iC1zi < zn;

a contradiction.

Definition 6.71. For each n 2 N, Bn D
T1
mD1 c`Amn .

Lemma 6.72. For each n 2 N, Bn is a nonempty Gı subset of N� such that

(a) BnC1 C BnC1 � Bn and

(b) for each p 2 Bn, c`.p C ˇZ/ \ BnC1 D ;.

Proof. By Lemma 6.68, we have that Bn ¤ ;. Since for each m, minAmn D 2m �

znCm, we have Bn � N�.
To verify (a), let p; q 2 BnC1. To see that p C q 2 Bn, let m 2 N be given. Then

by Lemma 6.69, for each x 2 AmnC1, AmnC1 � �x C A
mC1
n so

AmnC1 � ¹x 2 Z W �x C AmC1n 2 qº

and consequently AmC1n 2 p C q. Since AmC1n � Amn , we have Amn 2 p C q as
required.

To verify (b), let p 2 Bn and suppose that we have some r 2 BnC1 \ c`.pCˇZ/.

Then A1nC1 2 r so A1nC1 \ .p C ˇZ/ ¤ ;. Pick q 2 ˇZ such that A1nC1 2 p C q
and let C D ¹x 2 Z W �x C A1nC1 2 qº. Then C 2 p so pick x 2 C \ A1n and pick
Ea 2 �1n such that x D

P1
iD1 aizi . Let m D max¹i 2 N W ai ¤ 0º. Since Amn 2 p,

pick y 2 Amn \C and pick Eb 2 �mn such that y D
P1
iD1 bizi . Since x and y are in C ,

pick w 2 .�xCA1nC1/\ .�yCA
1
nC1/. Then xCw 2 A1nC1 and yCw 2 A1nC1 so

pick Ec and Ed in �1nC1 such that x C w D
P1
iD1 cizi and y C w D

P1
iD1 dizi . Then

w D
P1
iD1.ci�ai /zi D

P1
iD1.di�bi /zi . By Lemma 6.68, for each i , jci�ai j < 2i

and jdi � bi j < 2i so by Lemma 6.70 Ec � Ea D Ed � Eb. Now Eb 2 �mn so bi D 0 for
i < n C m and thus

P1
iDnCm

bi
2i
D 1

2n
. Since ai D 0 for i > m we have that for

i � nCm, di D bi C ci . But then

1

2nC1
D

1X
iD1

di

2i
�

1X
iDnCm

di

2i
D

1X
iDnCm

bi C ci

2i
�

1X
iDnCm

bi

2i
D

1

2n
;

a contradiction.
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The following lemma is quite general. We state it for semigroups written additively
because we intend to use it with .ˇZ;C/.

Lemma 6.73. Let .S;C/ be a compact right topological semigroup and for each
n 2 N, letDn be a nonempty closed subset of S such that for each n,DnC1CDnC1 �
Dn. Given any sequence hqni1nD1 in S with each qn 2 Dn, there is a sequence
hpni

1
nD1 with each pn 2 Dn, such that, for each n, pnC1 C qnC1 D pn.

Proof. Pick some r 2 N�. For n and m in N with n � m, let tn;m D qn. By
downward induction on n, for n < m, let tn;m D tnC1;m C qnC1 and notice that each
tn;m 2 Dn. For each n 2 N, let pn D r-lim

m2S
tn;m and notice that, since Dn is closed,

pn 2 Dn. Since for m > n, tn;m D tnC1;m C qnC1 one has that

pn D r-lim
m>n

.tnC1;m C qnC1/ D r-lim
m>n

tnC1;m/C qnC1 D pnC1 C qnC1:

Theorem 6.74. There is a sequence hpni1nD1 in N� such that hpn C ˇZi1nD1 is a
strictly increasing chain of principal right ideals of ˇZ and hc`.pn C ˇZ/i1nD1 is a
strictly increasing chain of principal closed ideals of ˇZ.

Proof. Pick some qn 2 Bn for each n 2 N. By Lemma 6.72, we have the sequences
hBni

1
nD1 and hqni1nD1 satisfy the hypotheses of Lemma 6.73 with S D ˇZ so pick a

sequence hpni1nD1 with each pn 2 Bn and each pn D pnC1 C qnC1. Then one has
immediately that for each n, pnCˇZ � pnC1CˇZ and so, of course, c`.pnCˇZ/ �
c`.pnC1 C ˇZ/. Further, by Lemma 6.72 (b), for each n,

pnC1 D pnC1 C 0 2 .pnC1 C ˇZ/ n c`.pn C ˇZ/

so both chains are strictly increasing.

6.7 Ideals and Density

The concept of density for a set of positive integers has interesting algebraic implica-
tions in ˇN. We shall show that the set of ultrafilters in ˇN all of whose members
have positive upper density is a left ideal of .ˇN;C/ as well as of .ˇN; � /, and that
the same statement holds for the complement in N� of this set.

Lemma 6.75. Let S be an arbitrary semigroup and let R be a partition regular set
of subsets of S . Let R denote the set of ultrafilters in ˇS all of whose members are
supersets of sets in R. If R has the property that sA 2 R for every A 2 R and every
s 2 S , then R is a closed left ideal of ˇS .
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Proof. It follows from Theorem 3.11 that R is nonempty and it is immediate that
R is closed.

To see that R is a left ideal, let p 2 R. It suffices to show that Sp � R, for
then .ˇS/p D c`ˇS .Sp/ � R. So let s 2 S and let B 2 sp. Then s�1B 2 p so
pick A 2 R such that A � s�1B . Then sA 2 R and sA � B .

Definition 6.76. Let A � N. We define the upper density d.A/ of A by

d.A/ D lim sup
n!1

jA \ ¹1; 2; : : : ; nºj

n
:

Remark 6.77. Let A � N and let m 2 N. Then

d.mC A/ D d.A/ and d.mA/ D
1

m
d.A/:

Definition 6.78. We define  � ˇN by

 D ¹p 2 ˇN W d.A/ > 0 for all A 2 pº:

Theorem 6.79.  is a closed left ideal of .ˇN;C/ and of .ˇN; � /.

Proof. We apply Lemma 6.75 with R D ¹A � N W d.A/ > 0º. It is clear that R

is partition regular. By Remark 6.77 we have m C A 2 R and mA 2 R for every
A 2 R and every m 2 N. Thus our conclusion follows.

Theorem 6.80. N� n is a left ideal of .ˇN;C/ and of .ˇN; � /:

Proof. Let p 2 N� n  and let q 2 ˇN. There is a set B 2 p such that d.B/ D 0.
For each n 2 N we put f .n/ D jB\¹1;2;:::;nºj

n
. So f .n/ ! 0 as n ! 1. For

each m 2 N, we choose nm 2 N so that f .n/ < 1
m2

whenever n > nm. We put
Bm D ¹n 2 B W n > nmº and observe that Bm 2 p. It follows from Theorem 4.15
that S D

S
m2N.mCBm/ 2 qCp and P D

S
m2N mBm 2 qp:We shall show that

these sets both have zero upper density. It will follow that p C q and pq are both in
N� n.

Suppose then thatm 2 N and that n 2 Bm and thatmCn < r for some r 2 N. This
implies that nm < r because n > nm, and hence that f .r/ < 1

m2
. So, for a given

value of r , if f .r/ ¤ 0, the number of possible choices of m is at most
p
1=f .r/.

Since we also have n 2 B \ ¹1; 2; : : : ; rº, the number of possible choices of n is at
most f .r/r: Thus the number of possible choices of m C n is at most r

p
f .r/. It

follows that
jS \ ¹1; 2; : : : ; rºj

r


p
f .r/:
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The same argument shows that

jP \ ¹1; 2; : : : rºj

r


p
f .r/:

This establishes the claim that d.S/ D d.P / D 0 and it follows that ˇN� n  is a
left ideal of .ˇN;C/ and of .ˇN; � /.

Notice that it did not suffice to show in the proof of Theorem 6.80 that nC p and
np are in N� n  for every p 2 N� n  because N� n  is not closed. Notice also
that Theorems 6.79 and 6.80 provide an alternative proof that the centers of .ˇN;C/
and of .ˇN; � / are both equal to N.

6.8 Notes

The fact in Theorem 6.9 that ˇN has 2c minimal right ideals is due to J. Baker and
P. Milnes [18], while the fact that ˇN has 2c minimal left ideals is due to C. Chou
[99].

The concept of an oid (“‘
L

id’ being unpronounceable”) is due to J. Pym [341],
who showed that the semigroup structure H depended only on the oid structure of
FS.h2ni1nD1/. Theorem 6.27 is due to A. Lisan [296]. Theorem 6.32 is due to T. Budak
(nee Papazyan) [318].

The fact in Theorem 6.15.2 that the set of idempotents in a minimal left ideal of
ˇZ is not closed is due to J. Auslander in a personal communication. His elegant
and instructive proof was based on a deep result in topological dynamics, namely the
existence of what is called a graphic flow.

Exercise 6.1.4 is from [62], a result of collaboration with J. Berglund.
Theorem 6.34.4 is from [91], a result of collaboration with T. Carlson and J. McLeod.
Theorem 6.36, one of four nonelementary results used in this book that we do not

prove, is due to M. Rudin and S. Shelah. Theorem 6.36 and Lemma 6.37 deal (without
ever explicitly defining them) with the Rudin–Keisler and Rudin–Frolík orderings of
ultrafilters. See Chapter 11 for more information about these orderings as well as a
discussion of their origins. For a simpler proof that there exist two points in N� that
are not Rudin–Keisler comparable, see [305, Section 3.4].

The proof of Theorem 6.38 is from [105].
In [410] Y. Zelenyuk proved that if G is an infinite discrete Abelian group with

cardinality �, then ˇG contains 22
�

minimal right ideals.
Theorem 6.42 is from [91], a result of collaboration with T. Carlson and J. McLeod.
Theorem 6.46 is due to D. Parsons in [319].
Theorem 6.46.5 is from [229], a result of collaboration with L. Legette.
Theorem 6.53 is, except for its weaker hypotheses, a special case of the following

theorem which is due to E. van Douwen (in a letter to the first author). A proof,
obtained in collaboration with D. Davenport, can be found in [115].
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Theorem. Let S be an infinite cancellative semigroup with cardinality �. There exists
a decomposition I of U�.S/ with the following properties:

(1) jIj D 22
�

.

(2) Each I 2 I is a left ideal of ˇS .

(3) For each I 2 I and each p 2 I , c`.pS/ � I .

(4) Each I 2 I is nowhere dense in U�.S/.

The above theorem has been generalized by M. Filali and P. Salmi [151] to apply to
all weakly cancellative semigroups with conclusion (2) strengthened to “each I 2 I

is a closed left ideal of ˇS .”
Theorem 6.63 is from [299], a result of collaboration with A. Maleki.
The results of Section 6.6 are from [238], a result of collaboration with J. van

Mill and P. Simon. Sometime in the 1970s or 1980s M. Rudin was asked by some,
now anonymous, analysts whether every point of Z� is a member of a maximal orbit
closure under the continuous extensione� of the shift function � , where �.n/ D nC1.
This question was not initially recognized as a question about the algebra of ˇZ.
However, if p 2 ˇZ, then e�.p/ D 1 C p and so, for all n 2 Z, e�n.p/ D n C p.
Thus the orbit closure of p is ˇZC p and so the question can be rephrased as asking
whether every point of ˇZ lies in some maximal (proper) principal left ideal of ˇZ.
One could answer this question in the affirmative by determining that there is no
strictly increasing sequence of principal left ideals of ˇZ.

The results of Section 6.7 are due to E. van Douwen in [127].



Chapter 7

Groups in ˇS

If S is a discrete semigroup, it is often quite easy to find large groups contained in ˇS .
For example, the maximal groups in the smallest ideal of ˇN contain 2c elements.
More generally, as we shall show in this chapter, if S is infinite and cancellative with
cardinality �, ˇS contains algebraic copies of the free group on 22

�

generators. This
provides a remarkable illustration of how far ˇS is from being commutative.

However, it can be tantalizingly difficult to find nontrivial small groups in ˇS .
For many years, one of the difficult open questions about the algebra of ˇN was
whether or not ˇN contained any nontrivial finite groups. This question has now been
answered by Y. Zelenyuk, and we give the proof of his theorem in Section 7.1 below.
Whether or not ˇN contains any elements of finite order which are not idempotent
still remains a challenging open question.

Of course, there are many copies of Z in N�, since Z C p provides a copy of Z
if p denotes any idempotent in N�. It is consistent with ZFC that there are maximal
groups in N� isomorphic to Z, since Martin’s Axiom can be used to show that there
are idempotents p in N� for which H.p/, the largest group with p as identity, is
just Z C p. (See Theorem 12.42). It is not known whether the existence of such an
idempotent can be proved within ZFC.

Because we shall be constructing several topological spaces in this chapter, some
of which are not necessarily Hausdorff, we depart for this chapter only from our
standing assumption that all hypothesized spaces are Hausdorff.

7.1 Zelenyuk’s Theorem

The proof of Zelenyuk’s Theorem uses the notion of a left invariant topology on a
group.

Definition 7.1. Let G be a group. A topology T on G is left invariant if and only if
for every U 2 T and every a 2 G, aU 2 T .

Notice that a topology on G is left invariant if and only if for every a 2 G, �a is
a homeomorphism. Notice also that to say that .G; � / is a group with a left invariant
topology T is the same as saying that .G; � ; T / is a left topological group, i.e., a group
which is a left topological semigroup.

The next result, Lemma 7.4, is unfortunately rather lengthy and involves a good
deal of notation. We shall see after the proof of this lemma how a topology on G and
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a set X satisfying the hypotheses of this lemma arise naturally from the assumption
that ˇG has a nontrivial finite subgroup while G does not.

Definition 7.2. (a) F will denote the free semigroup on the letters 0 and 1 with
identity ;.

(b) If m 2 ! and i 2 ¹0; 1; 2; : : : ; mº, smi will denote the element of F consisting
of i 0’s followed by m � i 1’s. We also write um D smm (so that u0 D ; ).

(c) If s 2 F , l.s/ will denote the length of s and supp s D ¹i 2 ¹1; 2; : : : ; l.s/º W
si D 1º where si is the i th letter of s.

(d) If s; t 2 F , we shall write s � t if max supp s C 1 < min supp t .

(e) If s; t 2 F , we define s C t to be the element of F for which l.s C t / D

max¹l.s/; l.t/º and .s C t /i D 1 if and only if si D 1 or ti D 1.

Given any t 2 F , t has a unique representation in the form t D s
m0
i0
C s

m1
i1
C � � � C

s
mk
ik

where 0 
 i0 < m0 < i1 < m1 < � � � < ik 
 mk (except that, if k D 0, the
requirement is 0 
 i0 
 m0). We shall call this the canonical representation of t .
When we write t D sm0i0 C s

m1
i1
C � � � C s

mk
ik

we shall assume that this is the canonical
representation.

Definition 7.3. (a) Given t 2 F , if t D smi for some i; m 2 !, then t 0 D ; and
t� D t . Otherwise, if t D s

m0
i0
C s

m1
i1
C � � � C s

mkC1
ikC1

, then t 0 D s
m0
i0
C s

m1
i1
C

� � � C s
mk
ik

and t� D s
mkC1
ikC1

.

(b) The mapping c W F ! ! is defined by stating that c.t/ D jsupp t j .

(c) For each p 2 N, define gp W F ! Zp by gp.t/ 	 c.t/ .mod p/.

While the proof of Lemma 7.4 is long, because there are a large number of state-
ments to be checked, the reader will see that checking any one of them is not difficult.

Recall that a topology is zero-dimensional if it has a basis of clopen sets.

Lemma 7.4. Suppose that G is a group with identity e, and that X is a countable
subset of G containing e. Suppose also that G has a left invariant Hausdorff zero-
dimensional topology and that X has no isolated points in the relative topology. We
also suppose that, for every a 2 X , aX \X is a neighborhood of a in X . We suppose
in addition that p 2 N and that there is a mapping h W X ! Zp such that, for
each a 2 X , there is a neighborhood V.a/ of e in X satisfying aV.a/ � X and
h.ab/ D h.a/C h.b/ for every b 2 V.a/. Furthermore, we suppose that hŒY � D Zp
for every nonempty open subset Y of X and that V.e/ D X .

Then we can define x.t/ 2 X and X.t/ � X for every t 2 F so that x.;/ D e,
X.;/ D X , and the following conditions are all satisfied:

(1) X.t/ is clopen in X .

(2) x.t/ 2 X.t/.
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(3) X.t_0/ [X.t_1/ D X.t/ and X.t_0/ \X.t_1/ D ; .

(4) x.t_0/ D x.t/.

(5) x.t/ D x.t 0/x.t�/.

(6) X.t/ D x.t 0/X.t�/.

(7) X.t�/ � V.x.t 0//.

(8) h.x.t// D gp.t/.

(9) For any s; t 2 F , x.s/ D x.t/ if and only if s is equal to t followed by 0’s or
vice versa.

(10) If s; t 2 F and s � t , then x.s C t / D x.s/x.t/.

(11) If s; t 2 F and s � t , then h.x.s C t // D h.x.s//C h.x.t//.

(12) For every n 2 !, xŒunF � D X.un/, so that in particular xŒF � D X .

(13) If hWni1nD1 is any preassigned sequence of neighborhoods of e in X; we can
choose X.un/ to satisfy X.unC1/ � Wn for every n 2 N:

Proof. We assume that we have chosen a sequential ordering for X . We define x.t/
and X.t/ by induction on l.t/.

We start by stating that x.;/ D e and X.;/ D X . We then make the inductive
assumption that, for some n 2 !, x.t/ and X.t/ have been defined for every t 2 F
with l.t/ 
 n so that conditions (1)–(9) and (13) are satisfied and further if n � 1,
sequences hakin�1kD0

in X and htkin�1kD0
in F have been chosen satisfying the following

additional hypotheses for each k:

(i) ak D minX n ¹x.t/ W t 2 F and l.t/ 
 kº,

(ii) ak 2 X.tk_1/, and

(iii) if h.ak/ D gp.tk_1/, then ak D x.tk_1/.

Of these hypotheses, only (8) requires any effort to verify at n D 0. For this, note
that h.e/ D h.ee/ D h.e/C h.e/ so h.e/ D 0 D gp.;/.

Let an be the first element of X which is not in ¹x.t/ W t 2 F and l.t/ 
 nº.
Now the sets X.t/ with l.t/ D n form a disjoint partition of X by condition (3) and
the choice of X.;/ and so an 2 X.tn/ for a unique tn 2 F with l.tn/ D n. Since
X.tn/ D x.t

0
n/X.t

�
n /, it follows that an D x.t 0n/cn for some cn 2 X.t�n /.

For each s 2 ¹sni W i 2 ¹0; 1; : : : ; nºº choose bs 2 X.s/ such that bs ¤ x.s/ and
h.bs/ D gp.s

_1/. (To see that we can do this, note that, by conditions (1) and (2),
X.s/ is a nonempty open subset ofX so, sinceX has no isolated points, X.s/n¹x.s/º
is a nonempty open subset of X and hence hŒX.s/ n ¹x.s/º� D Zp.) In the case in
which s D t�n , we choose bt�n D cn if h.cn/ D gp.t�n

_1/. To see that this can be done,
notice that if cn D x.s/, then by condition (5), an D x.t 0n/cn D x.t

0
n/x.t

�
n / D x.tn/.

For each s 2 ¹sni W i 2 ¹0; 1; : : : ; nºº define x.s_0/ D x.s/ and x.s_1/ D bs .
Notice that x.s_1/ D x.s0/x.s�_1/.
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Now, given any other t 2 F with l.t/ D n, notice that we have already defined
x.t�_1/ 2 X.t�/. We define x.t_0/ D x.t/ and x.t_1/ D x.t 0/x.t�_1/. Notice
that

x.t/ D x.t 0/x.t�/ ¤ x.t 0/x.t�_1/ D x.t_1/

and x.t_1/ 2 x.t 0/X.t�/ D X.t/.
We can choose a clopen neighborhood Un of e in G such that Un \ X � V.x.v//

and x.v/Un \ X � x.v/X for every v 2 F with l.v/ 
 n. (We can get the latter
inclusion because x.v/X \ X is a neighborhood of x.v/ in X .) We can also require
that an … x.tn/Un and that Un satisfies both of the following conditions for every
t 2 F with l.t/ D n:

x.t/Un \X � X.t/ and x.t_1/ … x.t/Un:

Furthermore, in the case in which there is an assigned sequence hWni1nD1 of neigh-
borhoods of e in X , we choose Un to satisfy Un \X � Wn.

Let us note now that for any v 2 F with l.v/ 
 n, we have x.v/Un \ X D
x.v/.Un \X/. To see this, notice that x.v/Un \X � x.v/X so that

x.v/Un \X � x.v/Un \ x.v/X D x.v/.Un \X/:

Also Un \ X � V.x.v// and so x.v/.Un \ X/ � x.v/V .x.v// � X: Hence
x.v/.Un \X/ � x.v/Un \X .

We put X.t_0/ D x.t/Un \X and X.t_1/ D X.t/ nX.t_0/.
We need to check that conditions (1)–(9) and (13) and hypotheses (i), (ii), and (iii)

are satisfied for elements of F of length n C 1. Suppose then that t 2 F and that
l.t/ D n: We put v D t_1 and w D t_0. Notice that v0 D t 0 and v� D t�_1.
Notice also that t is equal to w0 followed by a certain number (possibly zero) of 0’s
so that x.t/ D x.w0/ and that w� D unC1.

Conditions (1), (2), (3) and (4) are immediate. In particular, notice that x.unC1/ D
x.un/ D e.

We observe that (5) holds for v because x.v/ D x.t 0/x.t�_1/ D x.v0/x.v�/. It
holds for w because x.w/ D x.t/ D x.w0/ D x.w0/e D x.w0/x.w�/.

We now check condition (6). By the definition of X.w/, we have

X.w/ D x.t/Un \X

D x.t/.Un \X/

D x.w0/X.unC1/

D x.w0/X.w�/:
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We also have

X.v/ D X.t/ n .x.t/Un \X/

D X.t/ n .x.t/.Un \X//

D x.t 0/X.t�/ n .x.t 0/x.t�/.Un \X//

D x.t 0/.X.t�/ n x.t�/.Un \X//

D x.t 0/.X.t�/ n .x.t�/Un \X//

D x.t 0/X.t�_1/

D x.v0/X.v�/:

To verify condition (7) for v, we note thatX.v�/DX.t�_1/�X.t�/�V.x.t 0//D
V.x.v0//. It also holds for w, because X.w�/ D X.unC1/ D Un \ X � V.x.t// D

V.x.w0//.
Condition (8) for w is immediate because h.x.w// D h.x.t// D gp.t/ D gp.w/.

To verify condition (8) for v, we have h.x.v// D h.x.v0/x.v�// D h.x.v0// C

h.x.v�// because x.v�/ 2 X.v�/ � V.x.v0//. Also x.v�/ D x.t�_1/ D bt� and
so

h.x.v// D gp.v
0/C h.bt�/

D gp.v
0/C gp.t

�_1/

D gp.v
0/C gp.v

�/

D gp.v
0 C v�/

D gp.v/

because the supports of v0 and v� are disjoint.
To see that (9) holds, we first note that s and t can be assumed to have the same

length, because we can add 0’s to s or t to achieve this. By condition (4), this will not
change the value of x.s/ or x.t/. Then x.t/ and x.s/ belong to disjoint clopen sets if
one of the elements s or t has a 1 in a position where the other has a 0. Also, if there
is an assigned sequence hWni1nD1, then X.unC1/ D Un \X � Wn, so (13) holds.

Now an was chosen to satisfy (i). Further, since an … x.tn/Un, one has an …
X.tn

_0/ so, since an 2 X.tn/, one has an 2 X.tn
_1/ and thus (ii) holds. To

verify (iii), assume that h.an/ D gp.tn
_1/. Observe that tn_1 D t 0n C t

�
n
_1 so

gp.tn
_1/ D gp.t

0
n/C gp.t

�
n
_1/. Also, an D x.t 0n/cn and cn 2 X.t�n / � V.x.t

0
n//

so h.an/ D h.x.t 0n// C h.cn/. Thus h.cn/ D gp.t
�
n
_1/ so x.t�n

_1/ D bt�n D cn.
Therefore an D x.t 0n/cn D x.t

0
n/x.t

�
n
_1/ D x.tn

_1/.
Thus we can extend our definition of x and X to sequences in F of length n C 1

so that conditions (1)–(9) and (13), as well as hypotheses (i), (ii), and (iii) remain
true. This shows that these functions can be defined on the whole of F with these
conditions remaining valid.
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It is now easy to show by induction on k using condition (5) that if the canonical
representation of t is

t D s
m0
i0
C s

m1
i1
C � � � C s

mk
ik
;

then x.t/ D x.sm0i0 /x.s
m1
i1
/ � � � x.s

mk
ik
/, so that condition (10) holds.

To verify condition (11) notice that for any t 2 F we have

h.x.t// D h.x.t 0/x.t�// D h.x.t 0//C h.x.t�//

because x.t�/ 2 X.t�/ � V.x.t 0//. Thus one can show by induction on k that if the
canonical representation of t is

t D s
m0
i0
C s

m1
i1
C � � � C s

mk
ik
;

then h.x.t// D h.x.sm0i0 //C h.x.s
m1
i1
//C � � � C h.x.s

mk
ik
//.

To check condition (12), we show first that each a 2 X eventually occurs as a
value of x. Suppose instead that X n xŒF � ¤ ; and let a D minX n xŒF �. Then
a has only finitely many predecessors so a D an for some n. Pick m 2 Zp such
that h.an/ D gp.tn

_1/ C m. If one had m D 0, then one would have by (iii)
that an D x.tn

_1/ so m � 1. By (i) and the assumption that an … xŒF �, one
has anC1 D an. Also by (ii) an 2 X.tn_1/ and anC1 2 X.tnC1_1/ � X.tnC1/

so tnC1 D tn
_1. Then gp.tnC1_1/ D gp.tn

_1/ C 1 so h.anC1/ D h.an/ D

gp.tn
_1/Cm D gp.tnC1

_1/C .m� 1/. Repeating this argument m times, one has
h.anCm/ D gp.tnCm

_1/ so by (iii), an D anCm D x.tnCm_1/, a contradiction.
To complete the verification of condition (12), we note that, for every n 2 ! and

every t 2 F , we have x.unt / 2 X.unt / � X.un/ and so xŒunF � � X.un/: On the
other hand, suppose that a 2 X n xŒunF �:We have already established that a D x.v/
for some v 2 F n unF . Since e 2 xŒunF �, a ¤ e and hence v … ¹um W m 2 !º so
in particular supp v ¤ ;. If k D min supp v, then k 
 n. We have x.v/ 2 X.sk

k�1
/

and X.un/ � X.uk/. Now X.sk
k�1

/ \ X.uk/ D ; and so a D x.v/ … X.un/. Thus
X.un/ � xŒunF �.

From this point until the statement of Zelenyuk’s Theorem,G will denote a discrete
group with identity e and C will denote a finite subsemigroup of G�.

Definition 7.5. (a) CeD ¹x 2 ˇG W xC � C º.
(b) ' is the filter of subsets U of G for which C � U .

(c) 'e is the filter of subsets U of G for which Ce� U :
Observe that C e is a semigroup and e 2 C e . Note also that ' D

T
C and

'eDTCe.

Lemma 7.6. We can define a left invariant topology on G for which 'e is the filter of
neighborhoods of e. If we also have xC D C for every x 2 Ce, then this topology
has a basis of clopen sets.
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Proof. Given U 2 ' , we put UbD ¹a 2 G W aC � U º and observe that e 2 Ub.
We begin by showing that

(i) for each U 2 ', Ub2 'e,

(ii) ¹Ub W U 2 'º is a base for the filter 'e, and

(iii) for all U 2 ' and all a 2 Ub, a�1Ub2 'e.

To verify (i), suppose that x 2 Cen Ub. Since Ub… x,

G n UbD ¹a 2 G W ay … U for some y 2 C º 2 x:

Since C is finite, there exists y 2 C such that ¹a 2 G W ay … U º 2 x and hence
xy … U . This contradicts the assumption that x 2 Ce:

Since (i) holds, to verify (ii) it will be sufficient to show that
T
U2' Ub D Ce.

(For then if one had some V 2 'e such that for all U 2 ', Ub n V ¤ ; one would
have that ¹Ubn V W U 2 'º is a collection of closed subsets of ˇG with the finite
intersection property, and hence there would be some x 2

T
U2' Ubn V .)

Suppose, on the contrary, that there is an element x 2
T
U2' Ub n C e . Then

xy … C for some y 2 C . We can choose U 2 ' such that xy … U : This implies that
x … Ub, a contradiction.

To verify (iii), let U 2 ' and a 2 Ubbe given and suppose that a�1Ub… 'e. Then
there is an element y 2 Cen a�1Ub. Then

G n a�1UbD ¹b 2 G W abz … U for some z 2 C º 2 y:

Since C is finite, we can choose z 2 C such that ¹b 2 G W abz … U º 2 y: This
implies that ayz … U contradicting the assumptions that yz 2 C and a 2 Ub.

Now that (i), (ii), and (iii) have been verified, let B D ¹aUb W U 2 'º. We claim
that B is a basis for a left invariant topology onG with 'eas the set of neighborhoods
of e.

To see that B is a basis for a topology, let U; V 2 ', let a; b; c 2 G, and assume
that c 2 aUb\ bVb. Now a�1c 2 Ub so by (iii), c�1aUb 2 'e so by (ii) we may
pick W1 2 ' such that W1b� c�1aUb. Similarly, we may pick W2 2 ' such that
cW2b� bVb and hence c.W1 \W2/b� aUb\ bVb.

That the topology generated by B is left invariant is trivial.
To see that 'e is the set of neighborhoods of e, notice that by (ii), each member

of 'e is a neighborhood of e. So let W be a neighborhood of e and pick a 2 G and
U 2 ' such that e 2 aUb � W . Then a�1 2 Ub so by (iii), aUb 2 'e and hence
W 2 'e.

Finally we suppose that xC D C for every x 2 Ce. We shall show that in this
case, for each U 2 ', Ub is closed.

To this end let U 2 ' and let a 2 G n Ub. We show that V D G n a�1Ub 2 'e
so that aV is a neighborhood of a missing Ub. So let y 2 Ce. We show that y 2 V .
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Now ayC D aC 6� U since a … Ub so pick z 2 C such that ayz … Ub. Then
¹b 2 G W abz … U º 2 y and ¹b 2 G W abz … U º � ¹b 2 G W abC 6� U º D V .

Since each �a is a homeomorphism we have shown that B consists of clopen sets.

Lemma 7.7. Assume that xC D C for every x 2 Ce. The following statements are
equivalent:

(a) The topology defined in Lemma 7.6 is Hausdorff.

(b) ¹a 2 G W aC � C º D ¹eº.

(c)
T
'eD ¹eº.

Proof. (a) implies (b). Let a 2 G n ¹eº and pick U 2 'e such that a … U . Since
Ce� U , one has a … Ce.

(b) implies (c). Let a 2 G n ¹eº. Then by assumption a … Ce. Also, Ce DT
x2C �x

�1ŒC � so Ce is closed in ˇG. Pick U � G such that Ce � U and a … U .
Then U 2 'e so a …

T
'e.

(c) implies (a). Let a 2 G n ¹eº. By Lemma 7.6 there is some clopen U 2 'e such
that a … U . Then U and G n U are disjoint neighborhoods of e and a.

We shall now assume, until the statement of Zelenyuk’s Theorem, that C is a finite
subgroup of G�. We shall denote the identity of C by u. We note that, since C is a
group, xC D C for every x 2 Ce.

Lemma 7.7.1. There is a left invariant topology on G with a basis of clopen sets
such that 'e is the filter of neighborhoods of e. If

T
'e D ¹eº, then the topology is

Hausdorff.

Proof. This is immediate from Lemmas 7.6 and 7.7.

Lemma 7.8.
T
'eD ¹a 2 G W aC � C º and

T
'e is a finite subgroup of G.

Proof. Observe that
T
'e D Ce\ G D ¹a 2 G W aC � C º. (For if a 2 Ce\ G,

then for each U 2 'e, a 2 U . And if a 2 G nCe, then for each p 2 Ce, G n¹aº 2 p
so G n ¹aº 2 'e.) Therefore

T
'e is a subgroup of G. Suppose that

T
'e is infinite.

By the pigeonhole principle, there exists a ¤ b inG such that au D bu, contradicting
Lemma 6.28.

Lemma 7.9. There is a left invariant topology on G with a basis of clopen sets such
that 'e is the filter of neighborhoods of e. If G has no nontrivial finite subgroups,
then the topology is Hausdorff.

Proof. By Lemma 7.7.1 we only need to observe that if G has no nontrivial finite
subgroups, then

T
'eD ¹eº, a fact which follows from Lemma 7.8.
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Definition 7.10. (a) Fix a family hUyiy2C of pairwise disjoint subsets of G such
that Uy 2 y for every y 2 C:

(b) For each y 2 C; we put Ay D ¹a 2 G W az 2 Uyz for every z 2 C º:

Observe that Ay D
T
z2C ¹a 2 G W a

�1Uyz 2 zº and that e 2 Au:

Lemma 7.11. For each y 2 C , Ay 2 y, and if y and w are distinct members of C ,
then Ay \ Aw D ;.

Proof. Let y 2 C . For each z 2 C , Uyz 2 yz so ¹a 2 G W a�1Uyz 2 zº 2 y. ThusT
z2C ¹a 2 G W a

�1Uyz 2 zº 2 y.
Now let y and w be distinct members of C and suppose that a 2 Ay \ Aw . Then

Uy D Uyu 2 au and Uw D Uwu 2 au so Uy \ Uw ¤ ;, a contradiction.

Definition 7.12. (a) X D
S
y2C Ay .

(b) We define f W X ! C by stating that f .a/ D y if a 2 Ay .

(c) For each z 2 C and a 2 X , Vz.a/ D ¹b 2 Az W ab 2 Af .a/zº.

(d) For each a 2 X , V.a/ D
S
z2C Vz.a/.

Notice that for each a 2 X , V.a/ � X and aV.a/ � X . Notice also that f .e/ D u
so that for each z 2 C , Vz.e/ D Az and consequently V.e/ D X .

Lemma 7.13. For each a 2 X and each b 2 V.a/, f .a/f .b/ D f .ab/.

Proof. Let a 2 X and let b 2 V.a/. Pick z 2 C such that b 2 Vz.a/. Since
Vz.a/ � Az , we have that f .b/ D z. Then ab 2 Af .a/z D Af .a/f .b/ so f .ab/ D
f .a/f .b/.

Lemma 7.14. For each a 2 X , V.a/ 2 'e.

Proof. We begin by showing that

(i) for each y 2 C and each a 2 G, a 2 Ay if and only if au 2 Ay and

(ii) for all y; z 2 C and each a 2 Ay , az 2 Ayz .

To verify (i), suppose first that a 2 Ay . If au … Ay , then ¹b 2 G W ab … Ayº 2 u.
Now ab … Ay implies that abz … Uyz for some z 2 C . Since C is finite, we may
suppose that there exists z 2 C such that ¹b 2 G W abz … Uyzº 2 u. This implies
that auz D az … Uyz , a contradiction.

Now suppose that au 2 Ay . Then ¹b 2 G W ab 2 Ayº 2 u so for each z 2 C ,
¹b 2 G W abz 2 Uyzº 2 u. Thus, for each z 2 C , az D auz 2 Uyz so that a 2 Ay .

To verify (ii), suppose instead that a�1Ayz … z so that G n a�1Ayz 2 z. Now

G n a�1Ayz D
S
w2C

¹b 2 G W abw … Uyzwº
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so pick w 2 C such that ¹b 2 G W abw … Uyzwº 2 z. Then azw … Uyzw so a … Ay ,
a contradiction.

Now, having established (i) and (ii), let a 2 X . We show that V.a/ 2 'e . So
suppose instead that V.a/ … 'e and pick x 2 Ce n V.a/. Let y D f .a/ and let
z D xu. Since x 2 Ce, z 2 C , so x … Vz.a/ and hence

G n Vz.a/ D ¹b 2 G W b … Az or ab … Ayzº 2 x:

By (i), ¹b 2 G W b … Az or ab … Ayzº D ¹b 2 G W bu … Az or abu … Ayzº so
either ¹b 2 G W bu … Azº 2 x or ¹b 2 G W abu … Ayzº 2 x. That is, xu … Az or
axu … Ayz . Since xu D z this says z … Az , which is impossible, or az … Ayz which
contradicts (ii).

Corollary 7.15. X is open in the left invariant topology defined on G by taking 'e
as the base of neighborhoods of e.

Proof. For every a 2 X , we have aV.a/ � X by the definition of V.a/.

Lemma 7.16. For every nonempty Y � X which is open in the topology defined by
'e, we have f ŒY � D C:

Proof. If U 2 'e; then, for every y 2 C , U \ Ay ¤ ; because U 2 y and Ay 2 y.
So f ŒU � D C . If a 2 Y , then aU � Y for some U 2 'e satisfying U � V.a/.
By Lemma 7.13 f ŒaU � D f .a/f ŒU � so C D f .a/C D f .a/f ŒU � D f ŒaU � �

f ŒY �.

Theorem 7.16.1. Let G be a countable discrete group with identity e. Assume that
C � G� is a finite group satisfying C ' Zp for some integer p > 1. Then

T
'e D

¹a 2 G W aC � C º ¤ ¹eº.

Proof. We assume that
T
'eD ¹eº and derive a contradiction.

Let � be an isomorphism from C onto Zp and for each i 2 Zp, let yi D ��1.i/.
Let h D � ı f . Then h W X ! Zp and h.a/ D i if and only if f .a/ D yi .

We assume that G has the topology produced in Lemma 7.7.1. Then by Lemmas
7.7.1, 7.13, 7.14, and 7.16 and Corollary 7.15 (and some other observations made
after the definitions) the hypotheses of Lemma 7.4 are satisfied. So we presume we
have chosen x.t/ and X.t/ for each t 2 F as guaranteed by Lemma 7.4.

Now Ay1 2 y1 and if a 2 Ay1 , then f .a/ D y1 so h.a/ D 1. If a D x.t/,
then h.a/ D gp.t/ by condition (8) of Lemma 7.4 and so Ay1 � ¹x.t/ W t 2
F and gp.t/ D 1º and hence

¹x.t/ W t 2 F and c.t/ 	 1 .mod p/º D ¹x.t/ W t 2 F and gp.t/ D 1º 2 y1:
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For r 2 ¹0; 1; : : : ; p � 1º, let Br D ¹x.t/ W t 2 F and c.t/ 	 rp C 1 .mod p2/º.
Now Ay1 �

Sp�1
rD0 Br and by condition (9) of Lemma 7.4 Br \Bk D ; when r ¤ k

so we may pick the unique r 2 ¹0; 1; : : : ; p � 1º such that Br 2 y1.
Now for each n 2 N, X.un/ is open and e D x.un/ 2 X.un/ so X.un/ is a

neighborhood of e and hence X.un/ 2 'eD T
Ce� TC � y1. Given t 2 F and

n 2 N one has min supp t > n if and only if t 2 unF n ¹um W m 2 Nº. Also, for
each n 2 N, xŒunF � D X.un/ by condition (12) of Lemma 7.4 so ¹x.t/ W t 2 F and
min supp t > nº D X.un/ n ¹eº 2 y1.

For each n 2 N, let

An D ¹x.s1 C s2 C � � � C sn/ W for each i 2 ¹1; 2; : : : ; nº; si 2 F;

c.si / 	 rp C 1 .mod p2/;

and if i < n; si � siC1º:

We show by induction on n that An 2 y1n. Since A1 D Br 2 y1, the assertion is true
for n D 1.

So let n 2 N and assume that An 2 y1n. We claim that

An � ¹a 2 G W a
�1AnC1 2 y1º

so that AnC1 2 y1ny1 D y1nC1. So let a 2 An and pick s1 � s2 � � � � � sn in F
such that each c.si / 	 rp C 1 .mod p2/ and a D x.s1 C s2 C � � � C sn/. Let

D D ¹x.t/ W t 2 F and min supp t > max supp sn C 1º:

Then Br \D 2 y1 so it suffices to show that Br \D � a�1AnC1. To this end, let
t 2 F such that min supp t > max supp sn C 1 and c.t/ 	 rp C 1 .mod p2/. By
condition (10) of Lemma 7.4,

x.s1 C s2 C � � � C sn/x.t/ D x.s1 C s2 C � � � C sn C t /

so x.s1 C s2 C � � � C sn/x.t/ 2 AnC1 as required.
Now y1

pC1 D y1 so ApC1 2 y1 so pick some a 2 ApC1 \ Br . Then

a D x.s1 C s2 C � � � C spC1/

where each c.si / 	 rp C 1 .mod p2/ and s1 � s2 � � � � � spC1. Then

c.s1 C s2 C � � � C spC1/ 	 .rp C 1/ � .p C 1/ .mod p2/

	 .r C 1/p C 1 .mod p2/

and hence a 2 BrC1 so Br \ BrC1 ¤ ;, a contradiction.

Theorem 7.17 (Zelenyuk’s Theorem). If G is a countable discrete group with no
nontrivial finite subgroups, then G� contains no nontrivial finite groups.
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Proof. This follows immediately from Theorem 7.16.1 and Lemma 7.8, since any
nontrivial finite group contains a copy of Zp for some p > 1.

Corollary 7.18. N� contains no nontrivial finite subgroups.

Proof. Since Z� contains no nontrivial finite subgroups, neither does N�.

Lemma 7.18.1. Let G be a countable commutative discrete group with identity e, let
C be a finite subgroup of G� with identity u, and let H D ¹a 2 G W aC � C º.
Then H is a finite subgroup of G and H D ¹a 2 G W au 2 C º. Further, if a 2 G,
x; y 2 C , and ax D y, then a 2 H .

Proof. By Lemma 7.8, H is a finite subgroup of G. To see that H D ¹a 2 G W au 2
C º, note that, if au D x 2 C , then, for any y 2 C , ay D auy D xy 2 C . So
¹a 2 G W au 2 C º � H , and the reverse inclusion is obvious. Finally, let a 2 G,
x; y 2 C , and assume that ax D y. Then au D yx�1 2 C .

Corollary 7.18.2. Let G be a countable commutative discrete group with identity e.
Let C be a finite subgroup of G� with identity u. Then there is a finite subgroup H of
G for which C D Hu.

Proof. Put H D ¹a 2 G W aC � C º. By Lemma 7.18.1, H is a finite subgroup of
G and H D ¹a 2 G W au 2 C º. If jC j D 1, then by Lemma 6.28, H D ¹eº. Thus
C D Hu. So we may suppose that jC j > 1. We make the inductive assumption that
our claim holds for any countable commutative group S and any finite subgroup of
S� with order less than that of C .

Let q 2 C n ¹uº and let Q denote the subgroup of C generated by q. By Theorem
7.16.1 applied to the group Q in place of C , there exist a 2 G n ¹eº and x 2 Q,
such that ax 2 Q. Then au D axx�1 2 Q. By Lemma 6.28, au ¤ eu D u.
Let F D ¹s 2 G W sQ � Qº. By Lemma 7.18.1, F is a finite subgroup of G and
F D ¹s 2 G W su 2 Qº. Also F � H and, since a 2 F , F is nontrivial. Let

 W G ! G=F denote the canonical homomorphism and let e
 W ˇG ! ˇ.G=F /

denote its continuous extension. By Corollary 4.22, e
 is a homomorphism.
We claim that, for any x; y 2 ˇG, e
.x/ D e
.y/ implies that x 2 Fy. To see

this, assume that e
.x/ D e
.y/ and that x … Fy. Then, for each s 2 F , there exists
Xs 2 x and Ys 2 y such that Xs \ sYs D ;. If X D

T
s2F Xs and Y D

T
s2F Ys ,

thenX 2 x, Y 2 y andX\FY D ;. Thus 
ŒX�\
ŒY � D ;. This is a contradiction,
because e
.x/ 2 
ŒX� and e
.y/ 2 
ŒY � by Lemma 3.30.

It follows thate
ŒG�� � .G=F /�, becausee
.x/ ¤ 
.y/ if x 2 G� and y 2 G. We
now observe that e
.au/ D 
.a/e
.u/ D Fe
.u/ D e
.u/ because F is the identity
of G=F , hence of ˇ.G=F /. Since the order of e
ŒC � is less than that of C , becausee
.au/ D e
.u/, it follows from our inductive assumption that there is a finite subgroup
M ofG=F such thate
ŒC � DMe
.u/. LetK D 
�1ŒM�. ThenK is a finite subgroup
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ofG for whiche
ŒC � D 
.K/e
.u/. Sincee
ŒC � D e
ŒKu�, C � FKu. We claim that
FK � H for which it suffices that K � H , so let b 2 K. Then e
.bu/ D e
.v/ for
some v 2 C and so bu 2 FC � HC � C . Therefore b 2 H as required. We thus
have C � Hu while Hu � C by definition.

Recall that a partial multiplication on a set X is a function mapping some subset
Z of X � X to X and that a set with a partial multiplication is a partial semigroup
provided .xy/z D x.yz/ whenever x; y; z 2 X and either side of the equation is
defined.

Definition 7.19. Let X be a topological space with a distinguished element e which
is also a partial semigropup. We shall say that X is a local left group if there is a left
topological group G in which X can be topologically embedded so that the following
conditions hold:

(i) e is the identity of G,

(ii) the partial multiplication defined on X is that induced by the multiplication
of G,

(iii) for every a 2 X , there is a neighborhood V.a/ of e in X for which aV.a/ � X ,
and

(iv) for every a 2 X , aX \X is a neighborhood of a in X .

We shall say that X is a regular local left group if X can be embedded in a Hausdorff
zero-dimensional left topological group G so that these four conditions hold.

Notice that if G is a left topological group with identity e, then every open neigh-
borhood of e in G is a local left group. Notice also that in any local left group, one
may presume that V.e/ D X .

Definition 7.20. Let X and Y be local left groups. We shall say that a mapping
k W X ! Y is a local homomorphism if, for each a 2 X , there is a neighbor-
hood V.a/ of e in X such that b 2 V.a/ implies that ab 2 X , k.a/k.b/ 2 Y and
k.ab/ D k.a/k.b/: We shall say that k is a local isomorphism if it is a bijective local
homomorphism and k�1 is a local homomorphism.

Lemma 7.21. Let X and Y be local left groups with distinguished elements e and f
respectively and let k W X ! Y be a local homomorphism. Then k.e/ D f . If k is
continuous at e, then k is continuous on all of X .

Proof. Pick groups G and H containing X and Y respectively as guaranteed by the
definition of local left group. For each a 2 X pick V.a/ as guaranteed by the defini-
tion of local homomorphism. Since e 2 X and e 2 V.e/, one has k.e/ D k.ee/ D

k.e/k.e/ so k.e/ is an idempotent in H and thus k.e/ D f .
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Now assume that k is continuous at e and let a 2 X . Let W be a neighborhood of
k.a/ in Y and pick open U � H such that k.a/ 2 U \ Y � W . Then Y \ k.a/�1U
is a neighborhood of f in Y so pick a neighborhood T of e in X such that kŒT � �
Y \k.a/�1U and pick open R � G such that e 2 R\X � V.a/\T . Then aR\X
is a neighborhood of a in X and, by the definition of local left group, aX \ X is
a neighborhood of a in X . We claim that kŒaR \ aX \ X� � W . To see this let
c 2 aR \ aX \ X and pick b 2 R \ X such that c D ab. Then b 2 V.a/ \ T so
k.c/ D k.ab/ D k.a/k.b/ and k.b/ 2 k.a/�1U . Thus k.c/ 2 U \ Y � W .

Theorem 7.22. Let X and Y be countable regular local left groups without isolated
points. Then there is a local isomorphism k W X ! Y . If Y is first countable, then k
can be chosen to be continuous. If X and Y are both first countable, then k can be
chosen to be a homeomorphism.

Proof. We shall apply Lemma 7.4 with p D 1, so that the functions h and gp are
trivial.

Let e and f denote the distinguished elements of X and Y respectively. We can
define x.t/ 2 X andX.t/ � X for every t 2 F , so that the conditions in the statement
of Lemma 7.4 are satisfied. We can also define y.t/ 2 Y and Y.t/ � Y so that these
conditions are satisfied with x replaced by y and X replaced by Y .

Define k W X ! Y by k.x.t// D y.t/ for each t 2 F . By condition (9) of Lem-
ma 7.4, x.t/ D x.s/ if and only if y.t/ D y.s/ so k is well defined and one-to-one.
By conclusion (12) of Lemma 7.4, k is defined on all of X and kŒX� D Y .

Now let a 2 X , pick t 2 F such that a D x.t/, and let n D l.t/C 1. Pick (since
X is a local left group) a neighborhood V1.a/ such that ab 2 X for all b 2 V1.a/
and let V.a/ D V1.a/ \ X.un/. By conditions (1) and (2) of Lemma 7.4 and the
fact that x.un/ D e, V.a/ is a neighborhood of e in X . Let b 2 V.a/. Since
b 2 V1.a/, ab 2 X . By condition (12) of Lemma 7.4 pick v 2 unF such that
b D x.v/. Then by condition (10) of Lemma 7.4, x.t C v/ D x.t/x.v/ D ab and
y.t C v/ D y.t/y.v/ D k.a/k.b/ and consequently k.ab/ D k.a/k.b/ as required.

Thus k is a bijective local homomorphism. Since k�1 W Y ! X is characterized by
k.y.t// D x.t/ for each t 2 F , an identical argument establishes that k�1 is a local
homomorphism.

Now assume that Y is first countable, and let ¹Wn W n 2 Nº be a neighborhood
base at f . Then we may assume that for each n 2 N, Y.unC1/ � Wn by con-
dition (13) of Lemma 7.4. Given any n 2 N, by condition (12) of Lemma 7.4,
Y.unC1/ D yŒunC1F � D kŒxŒunC1F �� D kŒX.unC1/� so X.unC1/ is a neighbor-
hood of e contained in k�1ŒWn�. Thus k is continuous at e so, by Lemma 7.21, k is
continuous on X .

Similarly, if X is first countable, we deduce that k�1 is continuous.
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Exercise 7.1.1. Let G be a countable group with no nontrivial finite groups. Show
that G� contains no nontrivial compact groups. (Hint: An infinite compact subset of
ˇG cannot be homogeneous by Theorem 6.38.)

Exercise 7.1.2. Let G be an infinite commutative group which does contain a non-
trivial finite subgroup. Show that G� also contains a nontrivial finite subgroup.

Exercise 7.1.3. Let p 2 N�. Let p1 D p and for n 2 N, let pnC1 D pn C p. (We
cannot use np for the sum of p with itself n times because np is the product of n with
p in .ˇN; � /. As we shall see in Corollary 17.22, np is never equal to the sum of p
with itself n times, if n > 1 and p 2 N�.) Show that, if pn D p for some n > 1 in
N, p must be idempotent.

7.2 Semigroups Isomorphic to H

We remind the reader that H denotes
T1
nD1 c`ˇN.2

nN/. Recall from Chapter 6 that
a good deal is known of the structure of H. (More information will be found in
Section 7.3.)

We show in this section that copies of H arise in many contexts. In particular, G�

contains copies of H whenever G is a countable Abelian group (Corollary 7.30) or a
countable free group (Corollary 7.31).

Definition 7.23. Let X be a subset of a semigroup. A function  W ! ! X will be
called an H-map if it is bijective and if  .mC n/ D  .m/ .n/ whenever m; n 2 N
satisfy max supp.m/C 1 < min supp.n/:

(We remind the reader that, if n 2 !, supp.n/ 2 Pf .!/ is defined by the equation
n D

P
¹2i W i 2 supp.n/º.)

In the following theorem, and again in Theorem 7.28, we shall be dealing with two
topologies at the same time. The spaces ˇG and ˇX are constructed by taking G and
X to be discrete, while the “neighborhoods” refer to the left invariant topology on G
and the topology it induces on X .

Theorem 7.24. Let G be a group with a left invariant zero-dimensional Hausdorff
topology, and let X be a countable subspace of G which contains the identity e of
G and has no isolated points. Suppose also that, for each a 2 X , aX \ X is a
neighborhood of a in X and that, for each a 2 X; there is a neighborhood V.a/ of e
in X , with V.e/ D X , for which aV.a/ � X:

Then there is a countable set ¹Vn W n 2 Nº of neighborhoods of e in X for which
Y D

T1
nD1 c`ˇX Vn n ¹eº is a subsemigroup of ˇG. Furthermore, there is an H-map

 W ! ! X such that e defines an isomorphism from H onto Y .
In the case in which the filter of neighborhoods of e in X has a countable base, Y

can be taken to be
T
¹c`ˇX W W W is a neighborhood of e in Xº n ¹eº.
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Proof. We apply Lemma 7.4 with p D 1 so that jZpj D 1. We define h W X ! Z1 to
be the constant map. We then observe that the hypotheses of Lemma 7.4 are satisfied,
and hence x.t/ and X.t/ can be defined for every t 2 F so that the conditions stated
in this lemma will hold.

We put Vn D X.un/ and Y D
T1
nD1 c`ˇX X.un/ n ¹eº. We show that Y is a

semigroup by applying Theorem 4.20 with A D ¹X.un/ n ¹eº W n 2 Nº. Now for
each n 2 N, X.un/ n ¹eº D xŒunF � n ¹eº D ¹x.t/ W t 2 F and min supp .t/ > nº

by condition (12) of Lemma 7.4. Given any m 2 N and any v 2 umF n ¹eº, let
n D max supp .v/ C 2. Then if w 2 unF n ¹eº we have v C w 2 umF n ¹eº and
x.v C w/ D x.v/x.w/ by condition (10) of Lemma 7.4 so x.v/.xŒunF � n ¹eº/ �
xŒumF � n ¹eº as required by Theorem 4.20.

We define � W F ! ! by stating that �.t/ D
P
¹2i W i 2 supp tº. By condition

(9) of Lemma 7.4, for every t1; t2 2 F; we have �.t1/ D �.t2/ if and only if x.t1/ D
x.t2/. Thus we can define a bijective mapping  W ! ! X for which  ı � D x. The
mapping e W ˇ! ! ˇX is then also bijective (by Exercise 3.4.1). By condition (10)
of Lemma 7.4,  .mC n/ D  .m/ .n/ whenever m; n 2 ! satisfy max supp.m/C
1 < min supp.n/, for we then have m D �.s/ and n D �.t/ for some s; t 2 F
with s � t . So  is an H-map. By Lemma 6.3 e .p C q/ D e .p/e .q/ for every
p; q 2 H.

Thus e jH is a homomorphism. Furthermore,

e ŒH� D 1T
nD1

c`ˇX  Œ2
nN� D

1T
nD1

c`ˇX xŒunF � n ¹eº D Y:

This establishes that e defines a continuous isomorphism from H onto Y .
Finally, if there is a countable base ¹Wn W n 2 Nº for the neighborhoods of e in X ,

the sets X.un/ can be chosen so that X.unC1/ � Wn for every n 2 N (by condition
(13) of Lemma 7.4). So Y D

T
¹c`ˇX W W W is a neighborhood of e in Xº n ¹eº:

Lemma 7.25. Let T be a left invariant zero-dimensional Hausdorff topology on
.Z;C/ with a countable base and assume that ! has no isolated points in this topol-
ogy. Then the hypotheses of Theorem 7.24 hold for G D Z and X D !.

Proof. Given any a 2 X , a C X is a cofinite subset of the Hausdorff space X and
hence is open in X . For each a 2 X let V.a/ D X .

Theorem 7.24 has several applications to subsemigroups of ˇN. The following is
one example and others are given in the exercises.

Corollary 7.26. The set
T1
nD1 c`ˇN.nN/ is algebraically and topologically isomor-

phic to H.

Proof. Let B D ¹a C nZ W a 2 Z and n 2 Nº. Given a; b; c 2 Z and n;m 2 N, if
c 2 .a C nZ/ \ .b C mZ/, then c 2 c C nmZ � .a C nZ/ \ .b C mZ/ so B is a
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basis for a left invariant topology T on Z. To see that T is zero-dimensional, notice
that if c 2 Z n .a C nZ/, then c C nZ is a neighborhood of c missing .a C nZ/. To
see that T is Hausdorff, let a and b be distinct members of Z and pick n 2 N with
n > ja � bj. Then .aC nZ/ \ .b C nZ/ D ;.

Thus by Lemma 7.25, Theorem 7.24 applies. SoT
¹c`ˇ!.W n ¹0º/ W W is a neighborhood of 0 in !º D

T
n2N

.c`ˇN nN/

is algebraically and topologically isomorphic to H.

Lemma 7.27. LetG be a countably infinite subgroup of a compact metric topological
group C . Then with the relative topology, G is a Hausdorff zero-dimensional first
countable topological group without isolated points.

Proof. Let d be the metric of C . That G is a Hausdorff first countable topological
group is immediate. To see that G is zero-dimensional, let x 2 G and let U be a
neighborhood of x in G. Since G is countable, for only countably many r 2 R is
¹y 2 C W d.x; y/ D rº \ G ¤ ;. Pick r 2 R such that ¹y 2 C W d.x; y/ D
rº \ G D ; and ¹y 2 G W d.x; y/ < rº � U . Then ¹y 2 G W d.x; y/ < rº is a
clopen neighborhood of x in G which is contained in U .

To see that G has no isolated points, it suffices to show that the identity e of G
is not isolated. Let U be an open neighborhood of e in C . Then ¹xU W x 2 Gº is
an open cover of c`G. (Given y 2 c`G, yU�1 \ G ¤ ;. If x 2 yU�1 \ G, then
y 2 xU .) Pick finite F � G such thatG �

S
x2F xU . Pick x 2 F such that xU \G

is infinite. Then U \G D U \ x�1G is infinite.

In the following theorem, the condition that C be metrizable is not really neces-
sary, because any countable topological group which can be mapped injectively into a
compact topological group can also be mapped injectively into a compact metrizable
topological group. However, the proof of this fact would take us rather far from our
subject; and it is not needed in any of our applications.

Theorem 7.28. Let G be a countably infinite discrete group which can be mapped
into a compact metrizable topological group C by an injective homomorphism h. Let
V D G� \eh�1Œ¹1º�, where 1 denotes the identity of C and eh W ˇG ! C denotes
the continuous extension of h: Then V is a compact Gı subsemigroup of G� which
contains all the idempotents ofG�: Furthermore, there is an H-map  W ! ! G such
that e W ˇ! ! ˇG defines an isomorphism from H onto V: In addition, for every
pair of distinct elements a; b 2 G, aV \ Vb D ;:

Proof. Let e denote the identity of G. By Lemma 7.27, with the relative topology,
hŒG� is a Hausdorff zero-dimensional first countable left topological group without
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isolated points. Thus, giving G the topology ¹h�1ŒU � W U is open in C º, h becomes a
topological embedding and G enjoys all of these same properties.

For each a 2 G, let V.a/ D G. Then G satisfies the hypotheses of Theorem 7.24
with X D G. Let V D

T
¹c`ˇG W W W is a neighborhood of e in Gº n ¹eº. (Notice

that one is again considering two topologies onG. The space ˇG is constructed taking
G to be discrete, while the “neighborhoods” of e are with respect to the topology just
introduced.) By Theorem 7.24, V is a semigroup algebraically and topologically
isomorphic to H. Further, since G is first countable, V is a Gı in ˇG.

To see that V D G� \eh�1Œ¹1º�, note that, if p 2 G�, then p 2 V if and only
if h�1ŒU � 2 p for every neighborhood U of 1 in C , and h�1ŒU � 2 p if and only ifeh.p/ 2 U . Then, sinceeh is a homomorphism by Corollary 4.22, V contains all of the
idempotents of G�.

Now let a; b 2 G and assume that aV \ Vb ¤ ;. Pick x and y in V such that
ax D yb. Sinceeh W ˇG ! C is a homomorphism andeh.x/ D eh.y/ D 1, we have
h.a/ D h.b/: So a D b, because h is injective.

Lemma 7.29. LetG be an Abelian group with identity e. For every a ¤ e inG, there
is a homomorphism h from G to the circle group T D ¹z 2 C W jzj D 1º for which
h.a/ ¤ 1.

Proof. Let C D ¹an W n 2 Zº be the cyclic group generated by a. We define f on
C by stating that f .an/ D exp.in/ if C is infinite, and f .an/ D exp.2n�i

k
/ if C has

order k. We shall show that f can be extended to G. Let A D ¹.h;H/ W H is a
subgroup of G, C � H , h is a homomorphism from H to T and f � hº. Ordering
A by inclusion on both coordinates, we obtain a maximal member .h;H/ of A by
Zorn’s Lemma.

We claim that H D G. Suppose instead that H ¤ G and pick x 2 G n H . Let
H 0 D ¹xny W n 2 Z and y 2 H º. ThenH 0 is a subgroup ofG properly containingH .
We show that h can be extended to a homomorphism h0 from H 0 to G, contradicting
the maximality of .h;H/.

Assume first that there is no n 2 Z n ¹0º such that xn 2 H . Since members of H 0

have a unique expression of the form xny with n 2 Z and y 2 H , one may define a
homomorphism h0 on H 0 by h0.xny/ D h.y/.

Otherwise, we choose m to be the first positive integer for which xm 2 H and
choose � 2 R satisfying exp.i�/ D h.xm/. We observe that, for any n 2 Z, we
have xn 2 H if and only if n is a multiple of m. We can now extend h to H 0 by
stating that h0.xny/ D exp.ni

m
/h.y/. To see that this is well defined, suppose that

xny D xkz where n; k 2 Z and y; z 2 H . Then k � n D qm for some q 2 Z and
so y D .xm/qz. Thus h.y/ D .h.xm//qh.z/ D exp.qi�/h.z/ D exp. .k�n/i

m
/h.z/.

Thus exp.ni
m
/h.y/ D exp.ki

m
/h.z/.
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Corollary 7.30. Let G be a commutative countable discrete group. Then there is
a compact Gı subsemigroup V of G� which contains all the idempotents of G�:
Furthermore, there is an H-map  W ! ! G such that e W ˇ! ! ˇG defines an
isomorphism from H onto V: In addition, V has the property that aV \ V D ; for
every a 2 G other than the identity.

Proof. Let e denote the identity of G. By Lemma 7.29, for every a ¤ e in G; there
is a homomorphism ha W G ! T for which ha.a/ ¤ 1. We put C D GT , and
observe that C is a compact topological group and, being the countable product of
metric spaces, is metrizable. We define h W G ! C by .h.x//a D ha.x/. Then the
hypotheses of Theorem 7.28 are satisfied and so the conclusion follows.

Corollary 7.31. Let G denote the free group on a countable set of generators. There
is a compact Gı subsemigroup V of G� which contains all the idempotents of G�:
Furthermore, there is an H-map  W ! ! G such that e W ˇ! ! ˇG defines an
isomorphism from H onto V: In addition, aV \ Vb D ; for every pair of distinct
elements a; b 2 G.

Proof. We shall use ; to denote the identity of G. By Theorem 1.23, for every a 2
G n ¹;º there is a finite group Fa and a homomorphism ha W G ! Fa for which
ha.a/ ¤ ;: We put C D ⨉a2G Fa, where each Fa has the discrete topology. Then
C is a compact topological group and, being the countable product of metric spaces,
is metrizable. We define h W G ! C by .h.x//a D ha.x/. Then the hypotheses of
Theorem 7.28 are satisfied and so the conclusion follows.

Theorem 7.32. Let G be an infinite countable discrete group which can be mapped
by an injective homomorphism into a compact metrizable topological group. Then the
minimal left ideals of ˇG are homeomorphic to those of ˇ!. Furthermore, if L is any
minimal left ideal of ˇ!, there is a homeomorphism from L onto a minimal left ideal
M of ˇG which maps L \H isomorphically onto a subsemigroup of M containing
all the idempotents of M .

Proof. By Theorem 7.28, there exist a compact subsemigroup V of G� which con-
tains all the idempotents of G� and an H-map  W ! ! G for which e W ˇ! ! ˇG

defines a continuous isomorphism from H onto V .
By Theorem 2.11, all the minimal left ideals of ˇ! are homeomorphic to each

other, and so are all those of ˇG. Thus it suffices to establish the final statement of
the theorem.

Let L be a minimal left ideal of ˇ! and pick an idempotent p 2 L. By Theorem
1.38, p is a minimal idempotent in ˇ!. Since all idempotents of ˇ! are in H by
Lemma 6.8, all idempotents of ˇG are in V , and e jH is an isomorphism onto V ,e .p/ is a minimal idempotent in ˇG. Thus M D .ˇG/e .p/ is a minimal left ideal
of ˇG.
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We claim that for each m 2 !, e .m C p/ D  .m/e .p/. Indeed, e ı �m
and � .m/ ı e are continuous functions agreeing on ¹n 2 N W min supp.n/ >
max supp.m/C 1º, which is a member of p. So e Œ! C p� D Ge .p/. Thus

e ŒL� D e Œˇ! C p� D c`ˇG e Œ! C p� D c`ˇG.Ge .p// D .ˇG/e .p/ DM:
Since e is a bijection (by Exercise 3.4.1), L is homeomorphic to M . Since e jH is
an isomorphism and V contains all of the idempotents of ˇG, one has e ŒL \H� is a
subsemigroup of M containing all of the idempotents of M .

Exercise 7.2.1. Show that
T
n2Z c`ˇZ.2

nZ/ is algebraically and topologically iso-
morphic to H.

Exercise 7.2.2. Show that
T
n2N c`ˇN.3

nN/ is algebraically and topologically iso-
morphic to H.

Exercise 7.2.3. Show that
T
n2N c`ˇZ.3

nZ/ is algebraically and topologically iso-
morphic to H.

Exercise 7.2.4. Show that N� is not algebraically and topologically isomorphic to H.
(Hint: Consider Exercises 6.1.1 and 6.1.2.)

Exercise 7.2.5. Suppose that G D
L
i2N Gi , where each Gi is a nontrivial count-

able discrete group. (The direct sum of the groups Gi , is the subgroup of ⨉i2N Gi
containing the elements equal to the identity on all but finitely many coordinates.) Let
ei denote the identity of Gi and let 
i W G ! Gi denote the natural projection map.
If Ui D ¹a 2 G W 
j .a/ D ej for all j 
 iº, show that

T
i2N c`ˇG Ui n ¹eº is

algebraically and topologically isomorphic to H.

7.3 Free Semigroups and Free Groups in ˇS

We shall show that there is a high degree of algebraic freedom in ˇS . If S is any
cancellative discrete semigroup with cardinality �, then S� contains algebraic copies
of the free group on 22

�

generators.
Recall that a sequence hxni1nD1 in a semigroup S has distinct finite products pro-

vided that, whenever F;G 2 Pf .N/ and
Q
n2F xn D

Q
n2G xn, one has F D G.

Theorem 7.33. Let S be a discrete semigroup and let hxni1nD1 be a sequence in S
which has distinct finite products. If A D ¹xn W n 2 Nº, then jA�j D 2c and the
elements of A� generate a free subsemigroup in S�.
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Proof. By Corollary 3.57 jA�j D 2c.
We define a mapping c W FP.hxni1nD1/! N and mappings fi W FP.hxni1nD1/! A

for each i 2 N as follows. Given y 2 FP.hxni1nD1/, there is a unique F 2 Pf .N/
such that y D

Q
m2F xm. Let c.y/ D jF j and write F D ¹m1; m2; : : : ; mc.y/º,

where m1 < m2 < � � � < mc.y/. If i 2 ¹1; 2; : : : ; c.y/º, let fi .y/ D xmi and
otherwise let fi .y/ D x1.

Now let k 2 N and let p1; p2; : : : ; pk 2 A�. If i 2 ¹1; 2; : : : ; kº, then

efi .p1p2 : : : pk/ D efi . lim
xn1!p1

lim
xn2!p2

: : : lim
xnk!pk

xn1xn2 � � � xnk /

D lim
xn1!p1

lim
xn2!p2

: : : lim
xnk!pk

fi .xn1xn2 � � � xnk /

D lim
xn1!p1

lim
xn2!p2

: : : lim
xnk!pk

xni

D pi :

Similarly,

ec.p1p2 : : : pk/ Dec. lim
xn1!p1

lim
xn2!p2

: : : lim
xnk!pk

xn1xn2 � � � xnk /

D k:

Now assume that k;m 2 N, p1; p2; : : : ; pk ; q1; q2; : : : ; qm 2 A�, and p1p2 � � �pk D
q1q2 � � � qm. Then k D ec.p1p2 � � �pk/ D ec.q1q2 � � � qm/ D m and given i 2
¹1; 2; : : : ; kº, pi D efi .p1p2 � � �pk/ D efi .q1q2 � � � qm/ D qi .

Thus A� generates a free subsemigroup of ˇS .

As a consequence of Theorem 7.33 (with S D N) we have the following example.

Example 7.34. If A D ¹2n W n 2 Nº, the elements of A� generate a free subsemi-
group of .ˇN;C/.

Theorem 7.35. Let � be an infinite cardinal and let ha	i	<� be a �-sequence in a
discrete semigroup S which has distinct finite products. Let

T D
T
	<�

c`.FP.ha
i	<
<�//:

Then T is a compact subsemigroup of ˇS and every maximal group in the smallest
ideal of T contains an algebraic copy of the free group on 22

�

generators.

Proof. To see that T is a subsemigroup of ˇS , we apply Theorem 4.20. So let � < �
and let x 2 FP.ha
i	<
<�/ be given. Pick a finite subset L of ¹� W � < � < �º such
that x D

Q

2L a
. Let � D maxL. Then x � FP.ha
i�<
<�/ � FP.ha
i	<
<�/.
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Let p be a minimal idempotent in T . We recall that this implies that pTp is a
group, by Theorem 1.59.

Let A D ¹a
 W � < �º and note that U�.A/ � T . (To see this, let q 2 U�.A/
and let � < � be given. Then ¹a
 W � < � < �º 2 q and ¹a
 W � < � <

�º � FP.ha
i	<
<�/ so q 2 c`.FP.ha
i	<
<�//.) Let G denote the subgroup of T
generated by p �U�.A/ �p. We shall show that G is isomorphic to the free group with
22
�

generators.
We choose any set in one-one correspondence with U�.A/, denoting by �q the

element in this set corresponding to the element q in U�.A/. (Of course we can
choose U�.A/ itself, but it may be helpful to think of the set as distinct from U�.A/.)
Let F be the free group generated by ¹�q W q 2 U�.A/º. By the universal property
of free groups (Lemma 1.22), there is a homomorphism g W F ! G for which
g.�q/ D pqp. We shall show that g is an isomorphism. It will be sufficient to prove
that g is one-to-one on every subgroup of F which is generated by finitely many
elements of ¹�q W q 2 U�.A/º, because any two elements of F belong to such a
subgroup of F .

Let q1; q2; : : : ; qn be distinct elements of U�.A/ and let D be the subgroup of F
generated by ¹�q1 ; �q2 ; : : : ; �qnº. For each i 2 ¹1; 2; : : : ; nº choose Bi 2 qi such that
Bi \Bj D ; if i ¤ j . We may assume

Sn
iD1Bi D A because we can replace B1 by

A n
Sn
iD2 Bi .

We define a mapping h W FP.ha
i
<�/ ! F as follows. First, we define h on A.
If a
 2 Bi , then h.a
/ D �qi . Now given r 2 FP.ha
i
<�/ there is a unique
L 2 Pf .�/ such that r D

Q

2L a
. Define h.r/ D

Q

2L h.a
/. (Recall that

this product is taken in increasing order of indices.) Now extend h arbitrarily so that
h W S ! F .

By Theorem 2.24 F can be embedded in a compact topological group eF , and we
shall assume that F � eF . Leteh W ˇS ! eF be the continuous extension of h. Note
that hŒBi � D ¹�qi º so thateh.qi / D �qi .

We shall show thatehjT is a homomorphism. By Theorem 4.21 it suffices to show
that for each x 2 FP.ha
i
<�/ there is some �< � so that for all y 2 FP.ha
i	<
<�/,
h.x � y/ D h.x/ � h.y/. Given x 2 FP.ha
i
<�/ with x D

Q

2L a
, let � D maxL.

Then given y 2 FP.ha
i	<
<�/, if y D
Q
t2M a
, one has minM > maxL so

h.x � y/ D h
� Y

2L[M

a


�
D

Y

2L[M

h.a
/

D
Y

2L

h.a
/ �
Y

2M

h.a
/

D h.x/ � h.y/:
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Thusehıg is a homomorphism. Further, given i 2 ¹1; 2; : : : ; nº, one haseh.g.�qi // Deh.p � qi � p/ D eh.p/ �eh.qi / �eh.p/ D eh.qi / D �qi . (Since p is an idempotent in T ,eh.p/ is the identity of F .) Sinceehıg agrees with the identity on the generators ofD,
it agrees with the identity on D and consequently g is injective on D as required.

Corollary 7.36. Every maximal group in the smallest ideal of H contains a free group
on 2c generators.

Proof. The sequence h2t it<! has distinct finite sums and

H D
T
n<!

c`.FS.h2t in<t<!//

so Theorem 7.35 applies.

Corollary 7.37. Every maximal group in the smallest ideal of .ˇN;C/ contains a
free group on 2c generators.

Proof. By Lemma 6.8, H contains all of the idempotents of .ˇN;C/ and conse-
quently, K.ˇN/ \H ¤ ;. Thus by Theorem 1.65, K.H/ D K.ˇN/ \H.

Corollary 7.38. Let S be an infinite right cancellative and weakly left cancellative
semigroup. Every neighborhood of every idempotent in S� contains an algebraic
copy of the free group on 2c generators.

Proof. This follows from Theorem 6.32 and Corollary 7.36.

Note that we do not claim that every idempotent in S� is the identity of a free group
on 2c generators. In fact, according to Theorem 12.42 it is consistent with ZFC that
there are idempotents p 2 N� for which the maximal groupH.p/ is just a copy of Z.

Corollary 7.39. Let S be an infinite discrete semigroup with cardinality � which is
right cancellative and weakly left cancellative. Then ˇS contains an algebraic copy
of the free group on 22

�

generators.

Proof. By Lemma 6.31 there is a sequence ha	i	<� which has distinct finite products
so Theorem 7.35 applies.

Corollary 7.40. Let G be a countably infinite group which can be mapped into a
compact metrizable topological group by an injective homomorphism. Then every
maximal group in the smallest ideal of ˇG contains a free group on 2c generators.

Proof. By Theorem 7.28, there is a subsemigroup eG of ˇG which is isomorphic to
H and contains all of the idempotents of G�. Thus by Theorem 1.65, K.eG/ D eG \
K.ˇG/. Thus, if p is any idempotent inK.ˇG/, p is minimal in a copy of H so peGp
contains a free group on 2c generators by Corollary 7.36.
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We remind the reader that a subspace Y of a topological space X is said to be C�-
embedded in X if every continuous function from Y into Œ0; 1� can be extended to a
continuous function defined on X .

Lemma 7.41. Let S be a discrete semigroup and let p be an idempotent in ˇS . Then
Sp is extremally disconnected and is C�-embedded in .ˇS/p. In fact, any continu-
ous function from Sp to a compact Hausdorff space extends to a continuous function
defined on .ˇS/p.

Proof. Let U and V be disjoint open subsets of Sp. Define f W S ! ¹�1; 0; 1º by
stating that f .s/ D �1 if sp 2 U , f .s/ D 1 if sp 2 V , and f .s/ D 0 otherwise.
Let x 2 U . Then xp D x 2 U so ¹s 2 S W sp 2 U º 2 x so ef .x/ D �1, whereef W ˇS ! ¹�1; 0; 1º denotes the continuous extension of ef . Similarly, ef .y/ D 1

for every y 2 V . Hence NU \ NV D ;, and so Sp is extremally disconnected.
To show that Sp is C �-embedded, let ' W Sp ! Y be a continuous mapping into a

compact Hausdorff space. The map 	 W S ! Y defined by 	.s/ D '.sp/ extends to a
continuous mape	 W ˇS ! Y . Let t 2 S . Then lim

s!p
tsp D tpp D tp so

e	.tp/ D lim
s!p

	.ts/

D lim
s!p

'.tsp/

D '. lim
s!p

tsp/

D '.tp/

so the restriction ofe	 to .ˇS/p is an extension of '.

Let S be an infinite discrete semigroup. We know that, for every idempotent p in
ˇS; the subsemigroup p.ˇS/p of ˇS is a group if and only if p is in the smallest
ideal of ˇS by Theorem 1.59. In this case, it is the maximal group containing p.

We have also seen that the maximal groups in the smallest ideal of ˇS are disjoint
and that they are all algebraically isomorphic (by Theorem 1.64). We shall show that,
in spite of being algebraically isomorphic, they lie in at least 2c different homeomor-
phism classes, provided that they are infinite.

If S is weakly left cancellative and has cardinality �, then there are 22
�

maximal
groups in the smallest ideal of ˇS (by Corollary 6.43).

Theorem 7.42. Let S be a discrete commutative semigroup and let L be a minimal
left ideal in ˇS . If L is infinite, the maximal groups in L lie in at least 2c homeomor-
phism classes.
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Proof. Notice that if e is an idempotent in L, then the group e.ˇS/e D eL. Suppose
that e and f are idempotents in L and that there is a homeomorphism ' W eL! fL.
We shall show that, given any x 2 eL and any y 2 fL, there is a homeomorphism of
L to itself which maps x to y. Notice that by Theorem 4.23 Se D eS and Sf D fS .
In particular, Se D See D eSe � eL.

We know, by Lemma 7.41, that 'jSe has a continuous extension e' defined on L.
Now eS is dense in eL, because c`ˇS .eS/ D c`ˇS .Se/ D .ˇS/e D L and eL � L.
Soe' coincides with ' on eL.

Now 	 D '�1jSf also has a continuous extensione	 defined on L. Sincee	 ıe' ande' ıe	 are the identity maps on eL and fL respectively and since these sets are dense
in L, it follows that they are also the identity maps on L. Soe' is a homeomorphism.

There is an element z of fL for which e'.x/z D y because fL is a group. Now
the map �z defines a homeomorphism on L (by Theorem 2.11), and so �z ıe' is a
homeomorphism of L to itself which maps x to y.

The conclusion now follows from the fact that the points of L lie in at least 2c

different homeomorphism classes by Theorem 6.38.

Exercise 7.3.1. LetG be any given finite group. Show that there is an infinite discrete
semigroup S for which the maximal groups in the smallest ideal of ˇS are isomorphic
to G and are equal to the minimal left ideals of ˇS . (Hint: Choose T to be an infinite
right zero semigroup and put S D T �G.)

Exercise 7.3.2. Let S denote an infinite discrete commutative group. Prove that none
of the maximal groups in the smallest ideal of ˇS can be closed. (Hint: Use Theorem
6.38 and the fact that each maximal group in the smallest ideal of ˇS is infinite.)

7.4 Discrete copies of Z

It is trivial that N� contains algebraic copies of Z. If p is any idempotent in N�, then
Z C p is a group in N� algebraically isomorphic to Z. However, no group of this
form can be discrete, because p 2 c`.N C p/. We shall show that the smallest ideal
of N� does contain many discrete copies of Z.

The elements un and the group G.u/ which we define next depend on the choice
of the minimal idempotent q, although the notation does not reflect that fact.

Definition 7.43. Let q be a minimal idempotent in N� and recall that q C ˇN C q
is a group in N� with identity q by Theorem 2.9. For each element u 2 ˇN and
each n 2 ! we define an element un 2 q C ˇN C q inductively by putting u0 D q,
u1 D q C uC q and unC1 D u1 C un if n > 1 and un has been defined. For each
n 2 N, we then define u�n to be the inverse of un in the group q C ˇN C q. We let
G.u/ D ¹un W n 2 Zº.
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It is easy to verify that G.u/ is a subgroup of q C ˇN C q and that the mapping
n 7! un is a homomorphism from Z onto G.u/.

Lemma 7.44. Let q be a minimal idempotent in N� and let u 2 ˇN. If q … c`.¹un W
n 2 Z n ¹0ºº/, then G.u/ is discrete and the mapping n 7! un is injective.

Proof. If uk 2 c`.¹un W n 2 Z n ¹kºº/ for some k 2 Z, then

q D uk C u�k 2 c`.¹un C u�k W n 2 Z n ¹kºº/ D c`.¹un W n 2 Z n ¹0ºº/:

Hence, if q … c`.G.u/ n ¹qº/, G.u/ is discrete.
If the mapping n 7! un is not injective, there exist distinct integers k and m for

which uk D um. Then q D uk C u�m D uk�m 2 ¹un W n 2 Z n ¹0ºº.

We recall that, for n 2 N, supp.n/ was defined in Definition 6.2.

Theorem 7.45. Let q be a minimal idempotent in N� and let u and v be distinct
elements of ¹2n W n 2 !º�. ThenG.u/\G.v/ D ¹qº. At least one of the groupsG.u/
and G.v/ must be a discrete copy of Z.

Proof. We can choose disjoint subsets A and B of ! such that ¹2n W n 2 Aº 2 u
and ¹2n W n 2 Bº 2 v. We define mappings �A and �B from N to ! by �A.n/ D
jsupp.n/\Aj and �B.n/ D jsupp.n/\Bj. We let f�A W ˇN ! ˇN and f�B W ˇN !
ˇN be the continuous extensions of �A and �B respectively.

For any m; n 2 N for which max.supp.m// < min.supp.n//, �A.m C n/ D
�A.m/ C �A.n/. It follows from Lemma 6.3 that f�A is a homomorphism on H.
The same statement holds for f�B .

For each r 2 N let hr W N ! Zr denote the canonical homomorphism and letehr W ˇN ! Zr denote its continuous extension. By Corollary 4.22,ehr is a homomor-
phism. Since q 2 H by Lemma 6.8, .ehr ıf�A/.q/ and .ehr ıf�B/.q/ are idempotents,
and so these elements of Zr are both 0.

Since �A is constantly equal to 1 on ¹2n W n 2 Aº and constantly equal to 0,
on ¹2n W n 2 Bº, we have that .ehr ı f�A/.u/ D hr .1/ D 1 and .ehr ı f�A/.v/ D
hr.0/ D 0 for each r 2 N. By an easy induction, for every n 2 ! and every r 2 N,
.ehr ıf�A/.un/ 	 n .mod r/ and .ehr ıf�A/.vn/ D 0: These equations then extend to
every n 2 Z.

We claim that, if m 2 Z n ¹0º, um … c`.G.v//. To see this, choose r > jmj in N
and observe that .ehr ıf�A/.um/ 	 m .mod r/ ¤ 0, while .ehr ıf�A/ŒG.v/� D ¹0º: In
particular, G.u/ \G.v/ D ¹qº.

Similarly, by applying �B instead of �A, we see that vm … c`.G.u//.
It follows from Theorem 3.40 that c`.G.u/n¹qº/\c`.G.v/n¹qº/ D ;: Hence q …

c`.G.u/ n ¹qº/ or q … c`.G.v/ n ¹qº/. Our claim now follows from Lemma 7.44.



194 Chapter 7 Groups in ˇS

Corollary 7.46. Let q be a minimal idempotent in ˇN. The groups of the form G.u/,
where u 2 ¹2n W n 2 Nº�, are all distinct. So there are 2c groups of this form. They
are all discrete copies of Z, with at most one possible exception.

Proof. By Theorem 7.45, G.u/ ¤ G.v/ if u and v are distinct elements of ¹2n W
n 2 Nº�. By Corollary 3.57, j¹2n W n 2 Nºj D 2c.

The following corollary shows that there are many semigroups S for which S�

contains discrete copies of Z.

Corollary 7.47. Let S be an infinite discrete semigroup which is right cancellative
and weakly left cancellative. Then every Gı subset of S� which contains an idem-
potent, contains 2c discrete copies of Z.

Proof. This follows from Theorem 6.32 and the observation that the semigroups
G.u/, for u 2 ¹2n W n 2 Nº�, are contained in H.

It is tantalizing that we have been unable to answer the following question.

Question 7.48. Let q be a minimal idempotent in ˇN. Is every group G.u/, where
u 2 ¹2n W n 2 Nº�, discrete?

7.5 Notes

The material in Section 7.1 as well as Theorem 7.24 are due to Y. Zelenyuk [392].
I. Protasov [330] has generalized Zelenyuk’s Theorem by characterizing the finite

subgroups of ˇG, where G denotes a countable discrete group. Every finite subgroup
of ˇG has the form Hp for some finite subgroup H of G and some idempotent p in
ˇG which commutes with all the elements of H . Theorem 7.18.2 is the special case
of this result for commutative countable discrete groups. The proof in this special
case is much simpler than in the general case.

Our proof of Lemma 7.29 is based on the proof in [183, p. 441]
Corollary 7.36 is from [244], a result of collaboration with J. Pym. Corollary 7.38

extends a result of A. Lisan in [296]. It was subsequently shown in [140], in collabo-
ration with S. Ferri, that ifG is an infinite commutative discrete group with cardinality
�, every maximal group in the smallest ideal of ˇG contains an algebraic copy of the
free group on 22

�

generators. In [415] Y. and Y. Zelenyuk proved that, that, if G
is an infinite discrete group of cardinality � which can be embedded in a direct sum
of countable groups, then every maximal group in the smallest ideal ˇG contains an
algebraic copy of the free group on 22

�

generators. This implies the result for com-
mutative groups, since every commutative group can be embedded in a direct sum of
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copies of Q. Although Corollary 7.39 shows thatG� contains copies of the free group
on 22

�

, it does not show that these occur in K.ˇG/.
Section 7.4 is from [260], where it was also shown that there are discrete copies

of the free group on two generators in ˇN, and was extended in [269], where other
discrete copies of Z in ˇN are described. It was shown in this paper that, for any
u 2 H, there is a minimal idempotent q 2 ˇN for which q C u C q generates an
infinite discrete subgroup of q C ˇN C q.
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Cancellation

It may be the case that ˇS does not have any interesting algebraic properties. For
example, if S is a right zero or a left zero semigroup, then ˇS is as well and there is
nothing very interesting to be said about the algebra of ˇS .

However, the presence of cancellation properties in S produces a rich algebraic
structure in ˇS . To cite one example: we saw in Chapter 6 that, if S is an infinite
cancellative semigroup with cardinality �, then ˇS contains 22

�

disjoint left ideals.
We also saw in Chapter 7 that ˇS contains copies of the free group on 22

�

generators.
In the first three sections of this chapter, we shall describe elements of ˇS which

are right or left cancelable. If S is a cancellative semigroup with cardinality �, we
shall show that ˇS contains 22

�

right cancelable elements. If we also suppose that S
is countable, the set of right cancelable elements of ˇS contains a dense open subset
of S�. In the important case in which S is N or a countable group, we can strengthen
this statement and assert that the set of elements of ˇS that are cancelable on both
sides contains a dense open subset of S�.

In the final section, we shall suppose that S is N or a countable group and shall
discuss the smallest compact subsemigroup of S� containing a given right cancelable
element. We shall show that these semigroups have a rich algebraic structure. Their
properties lead to new insights about ˇS , allowing us to prove that K.ˇS/ contains
infinite chains of idempotents, as well as 
R-maximal idempotents.

We remark that, if S is an infinite discrete semigroup, ˇS may well contain a rich
set of cancelable elements, but cannot be a cancellative semigroup. If it were, S
would be cancellative and S� would contain two disjoint left ideals, L1 and L2, by
Theorem 6.42. We could choose an idempotent p in L1. Then for any x 2 ˇS , the
equation xp D xpp would imply that x D xp and hence that ˇS D L1. This would
contradict our assumption that ; ¤ L2 � ˇS n L1.

8.1 Cancellation Involving Elements of S

Lemma 8.1. Suppose that S is a discrete semigroup. If s is a left cancelable element
of S , it is also a left cancelable element of ˇS . The analogous statement holds for
right cancelable elements as well.

Proof. Let s 2 S be left cancelable. Since the map �s is injective on S , its extension
to ˇS is injective as well (by Exercise 3.4.1). In the same way, if s 2 S is right
cancelable, �s is injective on ˇS .



Section 8.1 Cancellation Involving Elements of S 197

Recall that we showed in Lemma 6.28 that if s is a cancelable element of the semi-
group S , t 2 S , and p 2 ˇS one has:

(i) if S is right cancellative and sp D tp, then s D t , and

(ii) if S is left cancellative and ps D pt , then s D t .

As a consequence the following holds.

Corollary 8.2. Suppose that S is a discrete cancellative semigroup. If s and t are
distinct elements of S , then, for every p 2 ˇS , sp ¤ tp and ps ¤ pt .

Proof. This is an immediate consequence of Lemma 6.28.

We now consider some of the properties of left cancellative semigroups. In the
following example, we show that the assumption that S is left cancellative is not
enough to imply that, for every pair of distinct elements s; t 2 S and every p 2 ˇS ,
ps ¤ pt .

Example 8.3. There is a countable left cancellative semigroup S containing distinct
elements g and h such that pg D ph for some p 2 ˇS .

Proof. We take S to be the set of all injective functions f W N ! N for which there
exist m; r 2 N such that f .n/ D 2rn whenever n � m. We observe that S is a
semigroup under composition and that S is countable and left cancellative.

We define g; h 2 S as follows: if n � 2, g.n/ D h.n/ D 2n, while g.1/ D 1 and
h.1/ D 2.

We shall show that, for every finite partition F of S , there exists A 2 F such that
Ag \ Ah ¤ ;. Let

E D ¹f 2 S W f .1/ and f .2/ are odd, f .1/ < f .2/, and f .n/ D 2n for all n � 3º:

For each A 2 F , let bA D ¹.f .1/; f .2// W f 2 E \ Aº. Given odd integers a < b,
there is a unique member f of E with .f .1/; f .2// D .a; b/. So

¹.a; b/ W a; b 2 2N � 1 and a < bº D
S
A2F

bA:
By Ramsey’s Theorem (Theorem 5.6), we can choose A 2 F and odd integers a, b,
and c with a < b < c and ¹.a; b/; .b; c/º � bA. There exist f; k 2 E \ A such that
.a; b/ D .f .1/; f .2// and .b; c/ D ..k.1/; k.2//. Then k.g.1// D k.1/ D b D

f .2/ D f .h.1// and, for every n � 2, k.g.n// D k.2n/ D 4n D f .2n/ D f .h.n//.
So kg D f h and hence Ag \ Ah ¤ ;.

By Theorem 5.7, there is an ultrafilter p 2 ˇS such that Bg \ Bh ¤ ; for every
B 2 p. Since ¹Bg W B 2 pº is a base for pg and ¹Bh W B 2 pº is a base for ph, it
follows that pg D ph.
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We saw in Theorem 3.35 that if f W S ! S , p 2 ˇS , and ef .p/ D p, then
¹x 2 S W f .x/ D xº 2 p. It might seem reasonable to conjecture that if f; k W
S ! S , p 2 ˇS , and ef .p/ D ek.p/, then ¹x 2 S W f .x/ D k.x/º 2 p. However,
the functions �g ; �h W S ! S and the point p 2 ˇS of Example 8.3 provide a
counterexample.

In the next lemma we show that an example of this kind cannot occur with two
commuting elements of S .

Lemma 8.4. Let S be a left cancellative discrete semigroup and let s and t be distinct
elements of S such that st D ts. Then, for every p 2 ˇS , ps ¤ pt .

Proof. We can define an equivalence relation 	 on S by stating that u 	 v if and
only if usn D vsn for some n 2 N. (To verify transitivity, note that if usn D vsn

and vsm D wsm, then usnCm D wsnCm.) Let � W S ! S=	 denote the canonical
projection. We shall define a mapping f W �ŒS�! �ŒS� which has no fixed points.

For each u 2 S , we put f .�.us// D �.ut/. To show that this is well defined,
suppose that �.us/ D �.vs/. Then usn D vsn for some n 2 N, and hence usnt D
vsnt so that utsn D vtsn. So �.ut/ D �.vt/. Thus f is well defined on �ŒSs�. To
complete the definition of f , we put f .�.w// D �.ss/ for every w 2 S n ��1Œ� ŒSs��.
We observe that ef .e�.ps// D e�.pt/ for every p 2 ˇS , where e� W ˇS ! ˇ.S=	/.
(One has that ef ıe� ı �s and e� ı �t are continuous functions agreeing on S , hence
on ˇS .)

We claim that f has no fixed points. Certainly if w 2 S n ��1Œ� ŒSs��, then
f .�.w// ¤ �.w/. Now suppose that �.us/ D �.ut/ for some u 2 S . Then
ussn D utsn for some n so that usns D usnt and hence s D t , contradicting our
assumption that s and t are distinct.

It now follows from Lemma 3.33, that �ŒS� can be partitioned into three sets
A0; A1; A2, such that f ŒAi � \ Ai D ; for every i 2 ¹0; 1; 2º. Suppose that p 2 ˇS
satisfies ps D pt . We can choose i such that ��1ŒAi � 2 ps. Then Ai 2 e�.ps/ and
f ŒAi � 2 ef .e�.ps// De�.pt/ De�.ps/ so that Ai \ f ŒAi � ¤ ;, a contradiction.

Lemma 8.5. Let S be a discrete left cancellative semigroup and let s and t be distinct
elements of S . If p 2 ˇS , then sp D tp if and only if ¹u 2 S W su D tuº 2 p.

Proof. Let E D ¹u 2 S W su D tuº. We suppose that sp D tp and that E … p. We
shall define a mapping f W S ! S which has no fixed points.

For every u 2 S n E, we put f .su/ D tu. We observe that this is well defined,
because every element in sS has a unique expression of the form su. Furthermore,
f .su/ ¤ su. To complete the definition of f , for each v 2 S n s � .S nE/, we choose
f .v/ to be an arbitrary element of s.S nE/. This is possible, because our assumption
that E … p implies that S nE ¤ ;.

By Theorem 3.34, ef W ˇS ! ˇS has no fixed point. However, f .su/ D tu if
u 2 S nE and hence ef .sp/ D tp D sp, a contradiction.
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For the converse implication observe that �s and �t are continuous functions agree-
ing on a member of p.

Comment 8.6. Let .S �/ be a semigroup and define an operation � on S by x � y D
y �x. Then for all x 2 S and all p 2 ˇS one has x�p D p-lim

y2S

.x�y/ D p-lim
y2S

.y �x/ D

p �x and, similarly, p�x D x �p. Consequently, the left-right switches of Example 8.3
and Lemmas 8.4 and 8.5 remain valid.

Exercise 8.1.1. Let S be any semigroup. Show that the set of right cancelable ele-
ments of S is either empty or a subsemigroup of S , and that the same is true of the set
of left cancelable elements. Show that the complement of the first is either empty or a
right ideal in S , and that the complement of the second is either empty or a left ideal
of S .

8.2 Right Cancelable Elements in ˇS

In this section, we shall show that cancellation assumptions about S imply the exis-
tence of a rich set of right cancelable elements in S�. We shall also show that right
cancelability is closely related to topological properties and to the Rudin–Keisler or-
der.

The following theorem gives an intrinsic characterization of ultrafilters which are
right cancelable in ˇS for any infinite semigroup S . It is intriguing that this is an
intrinsic property, characterizing a single ultrafilter without reference to any others,
since right cancelability is defined in terms of the set of all ultrafilters in ˇS . (Another
intrinsic characterization will be given in Theorem 8.19 in the case that S is either
.N;C/ or a countable group.)

Theorem 8.7. Let S be an infinite semigroup, let p 2 ˇS , and let T be an infinite
subset of S . Then sp ¤ rp whenever s and r are distinct members of T if and only
if for every A � T there is some B � S such that A D ¹x 2 T W x�1B 2 pº. In
particular, p is right cancelable in ˇS if and only if for every A � S , there is some
B � S such that A D ¹x 2 S W x�1B 2 pº.

Proof. The sufficiency is easy. Given r ¤ s in T , pick A 2 r n s. Pick B � S such
that A \ T D ¹x 2 T W x�1B 2 pº. Then B 2 r � p n s � p.

To prove the necessity, assume that �p is injective on T and let A � T . Since �pjT
is a homeomorphism, Ap is a clopen subset of T p. So by Theorem 3.23 there exists
a set B � T for which Ap D B \ T p. If x 2 T , we have

x 2 A , xp 2 B

, x�1B 2 p

so A D ¹x 2 T W x�1B 2 pº.
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Now right cancellation in ˇS can be made to fail in trivial ways. For example, if S
has two distinct left identities a and b, then for all p 2 ˇS , ap D bp. Consequently,
one may also wish to know for which points p 2 S� is p right cancelable in S�

(meaning of course that whenever q and r are distinct elements of S�, qp ¤ rp). The
proof of the following theorem is a routine modification of the proof of Theorem 8.7,
and we leave it as an exercise.

Theorem 8.8. Let S be an infinite semigroup and let p 2 S�. Then p is right
cancelable in S� if and only if for every A � S , there is some B � S such that
jA4 ¹x 2 S W x�1B 2 pºj < !.

Proof. This is Exercise 8.2.1.

We remind the reader that a subset D of a topological space X is strongly discrete
if and only if there is a family hUaia2D of pairwise disjoint open subsets of X such
that a 2 Ua for every a 2 D. It is easy to see that if D is countable and X is regular,
then D is strongly discrete if and only if it is discrete.

Lemma 8.9. Let S be a discrete semigroup, let T be an infinite subset of S , and let
p 2 ˇS have the property that ap ¤ bp whenever a and b are distinct elements of T .

(i) If qp ¤ rp whenever q and r are distinct members of T , then Tp is discrete in
ˇS .

(ii) If Tp is strongly discrete in ˇS , then qp ¤ rp whenever q and r are distinct
members of T .

Proof. (i). If Tp is not discrete in ˇS , there is an element a 2 T such that ap 2
c`..T n ¹aº/p/. Since �p is continuous, c`..T n ¹aº/p/ D .c` .T n ¹aº//p and so
ap D xp for some x 2 .T n ¹aº/ D T n ¹aº.

(ii). Suppose that Tp is strongly discrete in ˇS and pick a family hBaia2T of
subsets of S such that Ba \ Bb D ; whenever a and b are distinct members of T
and ap 2 Ba for each a 2 T . Let A � T and let C D

S
a2ABa. Then A D

¹s 2 T W s�1C 2 pº. (If a 2 A, then a�1Ba � a�1C and if a 2 T n A, then
a�1Ba \ a

�1C D ;.) Thus by Theorem 8.7, qp ¤ rp whenever q and r are distinct
members of T .

Theorem 8.10. Let S be an infinite discrete right cancellative and weakly left can-
cellative semigroup with cardinality �. Then the set of right cancelable elements of
ˇS contains a dense open subset of U�.S/. In particular, S� contains 22

�

elements
which are right cancelable in ˇS .

Proof. We apply Theorem 6.30 with R D S . By this theorem, every subset T of S
with jT j D � contains a subset V with jV j D � such that for every uniform ultrafilter
p on V , ap ¤ bp whenever a and b are distinct members of S and Sp is strongly



Section 8.2 Right Cancelable Elements in ˇS 201

discrete in ˇS . By Lemma 8.9, this implies that every uniform ultrafilter on V is right
cancelable in ˇS . Since the sets of the form T \ U�.S/ provide a base for the open
subsets of U�.S/, it follows that every nonempty open subset of U�.S/ contains a
nonempty open subset of U�.S/ whose elements are all right cancelable in ˇS . Thus
the set of right cancelable elements of ˇS contains a dense open subset of U�.S/.

Finally, the fact that there are 22
�

right cancelable elements of ˇS follows from the
fact that jU�.V /j D 22

�

if jV j D � (by Theorem 3.58.)

We now show that, if S is countable, right cancelability in ˇS is equivalent to
several other properties. (If S D T in Theorem 8.11, then statement (3) says that p is
right cancelable in ˇS .)

Theorem 8.11. Let S be a semigroup, let p 2 ˇS , and let T be an infinite subset
of S . Consider the following statements. Statements (1) and (2) are equivalent and
imply each of statements (3), (4), (5), and (6) which are equivalent. Statements (7),
(8), and (9) are equivalent and are implied by each of statements (3), (4), (5), and (6).
If T is countable, all nine statements are equivalent.

(1) ap ¤ bp whenever a and b are distinct members of T and Tp is strongly
discrete.

(2) There is a function f W S ! S such that for every q 2 T , ef .q � p/ D q.

(3) qp ¤ rp whenever q and r are distinct members of T .

(4) For every A � T there exists B � S such that A D ¹s 2 T W s�1B 2 pº.

(5) For every pair of disjoint subsets A and B of T , Ap \ Bp D ;.

(6) �pjT W T ! T p is a homeomorphism.

(7) �pjT W T ! Tp is a homeomorphism.

(8) ap ¤ bp whenever a and b are distinct members of T and Tp is discrete.

(9) For every a 2 T and every q 2 T n ¹aº, ap ¤ qp.

Proof. To see that (1) implies (2) assume that (1) holds. Then there is a family
hBaia2T of pairwise disjoint subsets of T such that ap 2 Ba for every a 2 T .
We define f W S ! S by stating that f .s/ D a if s 2 Ba, defining f arbitrarily
on S n

S
a2S Ba. Since, given a 2 T , f is identically equal to a on Ba and since

ap 2 Ba, it follows that ef .ap/ D a for every a 2 T . Hence, for every q 2 T , we
have ef ı �p agrees with the identity on a member of q and thus ef .qp/ D q.

To see that (2) implies (1) pick a function f as guaranteed by (2). For each a 2 T
one has that ef ı �a.p/ D a and ¹aº is open in S so pick a member Ba of p such thatef ı�aŒBa� D ¹aº. If a ¤ b, then f ŒaBa� D ¹aº ¤ ¹bº D f ŒbBb� so aBa\bBb D ;.

That (1) implies (3) is Lemma 8.9 (ii). That (3) and (4) are equivalent is Theo-
rem 8.7.
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To see that (4) implies (5), let A and B be disjoint subsets of T and pick C � S

such that A D ¹s 2 T W s�1C 2 pº. Then Ap � C and Bp � S n C .
To see that (5) implies (3), let q and r be distinct members of T and pick A 2 q n r .

Then qp 2 .A \ T /p and rp 2 .T n A/p so qp ¤ rp.
Statements (3) and (6) are equivalent because a continuous function with compact

domain (onto a Hausdorff space, which all of our hypothesized spaces are) is a home-
omorphism if and only if it is one to one.

That statement (6) implies statement (7) is trivial as is the equivalence of statements
(7) and (8).

To see that statement (8) implies statement (9), let a 2 T and let q 2 T n ¹aº. Then
qp 2 .T n ¹aº/p D .T n ¹aº/p D .T n ¹aº/p D Tp n ¹apº and ap … Tp n ¹apº.

To see that statement (9) implies statement (8), notice that trivially ap ¤ bp when-
ever a ¤ b in T . If Tp is not discrete then for some a 2 T one has ap 2 Tp n ¹apº D
.T n ¹aº/p, a contradiction.

Finally, if S is countable one has that statement (8) implies statement (1).

We do not know whether the requirement that S is countable is needed for the
equivalence of all nine statements in Theorem 8.11.

Question 8.12. Do there exist a semigroup S (necessarily uncountable) and a point
p of ˇS such that p is right cancelable in ˇS but Sp is not strongly discrete?

Question 8.13. Do there exist a semigroup S (necessarily uncountable) and a point
p of ˇS such that ap ¤ bp whenever a and b are distinct members of S and Sp is
discrete, but p is not right cancelable in ˇS?

Recall that a point x of a topological space X is a weak P-point of X provided that
whenever D is a countable subset of X n ¹xº, x … c`D.

Corollary 8.14. Assume that S is a countable cancellative semigroup. Then every
weak P-point in S� is right cancelable in ˇS .

Proof. Suppose that p is a weak P-point in S�. We shall show that for every a 2 S
and every q 2 ˇS n ¹aº one has ap ¤ qp. The required result will then follow from
Theorem 8.11.

Suppose instead that we have a 2 S and q 2 ˇS n ¹aº such that ap D qp. By
Corollary 8.2, q 2 S�. By Lemma 8.1, �a is one to one, and hence �ajS� is a
homeomorphism from S� onto aS� so that ap is a weak P-point of aS�.

Let B D ¹s 2 S n ¹aº W s�1aS 2 pº. Since aS 2 ap D qp, one has B 2 q so that
ap D qp 2 c`.Bp/. But now, given s 2 B one has sp 2 aS D aˇS so Bp � aˇS .
By Corollary 4.33 Bp � S� so Bp � aS�. Since ap … Bp we have a contradiction
to the fact that ap is a weak P-point of aS�.
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In certain cases we shall see that the following necessary condition for right cance-
lability is also sufficient.

Lemma 8.15. Let S be a weakly left cancellative semigroup and let p 2 ˇS . If p is
right cancelable in ˇS , then p … S�p.

Proof. Suppose that p D xp for some x 2 S� and pick a 2 S . Then ax 2 S� by
Theorem 4.31, so ax ¤ a while ap D axp, a contradiction.

We pause to introduce a notion which will be used in our next characterization.

Definition 8.16. Let S be a discrete space. The Rudin–Keisler order 
RK on ˇS is
defined by stating that for any p; q 2 ˇS , p 
RK q if and only if there is a function
f W S ! S for which ef .q/ D p.

If p; q 2 ˇS we shall write p �RK q if p 
RK q and q 
RK p and we shall write
p <RK q if p 
RK q and q 6
RK p.

Theorem 8.17. Let S be a discrete space. The following statements are equivalent:

(a) p �RK q.

(b) p 
RK q and whenever f W S ! S and ef .q/ D p, there exists some Q 2 q
such that fjQ is injective.

(c) There exist f W S ! S and Q 2 q such that ef .q/ D p and fjQ is injective.

(d) There is a bijection g W S ! S such thateg.q/ D p.

Proof. (a) implies (b). Let f W S ! S such that ef .q/ D p. Since q 
RK p, pick
g W S ! S such thateg.p/ D q. Then Ag ı f .q/ Deg.ef .q// D q so by Theorem 3.35,
Q D ¹a 2 S W g.f .a// D aº 2 q.

That (b) implies (c) is trivial.
(c) implies (d). By passing to a subset if necessary we may presume that jS nQj D
jS n f ŒQ�j. Thus we may choose a bijection g W S ! S such that gjQ D fjQ.

(d) implies (a). Sinceeg.q/ D p, p 
RK q. Since eg�1.p/ D q, q 
RK p.

In the case S is a countable group (or .N;C/ ) we see that we can add to the
equivalent conditions of Theorem 8.11.

Theorem 8.18. Suppose that S is either .N;C/ or a countable group. For every
p 2 S� the following statements are equivalent:

(1) p is right cancelable in ˇS .

(2) p … S�p.

(3) There is no idempotent e 2 S� for which p D ep.
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(4) For every x 2 S�, x <RK xp and p <RK xp.

(5) For every x 2 S�, p <RK xp.

Proof. That (1) implies (2) is Lemma 8.15. To see that (2) implies (1), it suffices by
Theorem 8.11 to show that for each a 2 S and each q 2 ˇS n ¹aº, ap ¤ qp so let
a 2 S and q 2 ˇS n ¹aº and suppose that ap D qp. In case S is a countable group,
we have p D a�1qp and by Corollary 4.33 a�1q 2 S�. In case S is .N;C/, the
equation becomes a C p D q C p so, in ˇZ, p D �a C q C p. By Exercise 4.3.5,
N� is a left ideal of ˇZ so �aC q 2 N�.

The equivalence of (2) and (3) follows from the fact that ¹x 2 S� W p D xpº is
a compact subsemigroup of S� if and only if it is nonempty. Thus, by Theorem 2.5,
this set is nonempty if and only if it contains an idempotent.

To show that (1) implies (4), suppose that p is right cancelable in ˇS . By Theo-
rem 8.11, there is a family hUaia2S of pairwise disjoint open subsets of ˇS such that
ap 2 Ua for every a 2 S . We put Pa D ¹b 2 S W ab 2 Uaº and observe that Pa 2 p
for every a 2 S . Every element s 2

S
a2S aPa can be expressed uniquely in the form

s D ab with a 2 S and b 2 Pa. We define functions f; g W S ! S by stating that
f .s/ D a and g.s/ D b if s is expressed in this way, defining f and g arbitrarily on
S n

S
a2S aPa. Let x 2 S�. Since f .ab/ D a and g.ab/ D b if a 2 S and b 2 Pa,

we have

ef .xp/ D f .x-lim
a2S

p-lim
b2Pa

ab/ D x-lim
a2S

p-lim
b2Pa

f .ab/ D x-lim
a2S

p-lim
b2Pa

a D x and

eg.xp/ D g.x-lim
a2S

p-lim
b2Pa

ab/ D x-lim
a2S

p-lim
b2Pa

g.ab/ D x-lim
a2S

p-lim
b2Pa

b D p:

So x 
RK xp and p 
RK xp.
If x �RK xp, then by Theorem 8.17 there is a set B 2 xp such that fjB is injective.

Let X D ¹a 2 S W a�1B 2 pº. Then X 2 x so is nonempty. Pick a 2 X and, since
p 2 S�, pick distinct elements b and c of a�1B \ Pa. Then ab and ac are distinct
elements of B so f .ab/ ¤ f .ac/. But ab; ac 2 aPa so f .ab/ D a D f .ac/, a
contradiction.

Similarly, if p �RK xp, then there is a set C 2 xp such that fjC is injective. Let
Y D ¹a 2 S W a�1C 2 pº. Then Y 2 x and x 2 S�, so pick distinct a and b
in Y . Pick c 2 a�1C \ b�1C \ Pa \ Pb . Then ac and bc are distinct members
of C so g.ac/ ¤ g.bc/. But ac 2 aPa and bc 2 bPb , so g.ac/ D c D g.bc/, a
contradiction.

Trivially (4) implies (5) and (5) implies (2).

The equivalence of statements (1), (4), and (5) of Theorem 8.18 will be established
under weaker assumptions in Theorem 11.8.

We saw in Theorem 8.7 that for any semigroup S and any p 2 ˇS , p is right
cancelable in ˇS if and only if for every A � S there is some B � S such that
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A D ¹x 2 S W x�1B 2 pº. We see now that, in the case S is a countable group, it is
sufficient to know this for A D ¹eº.

Theorem 8.19. Suppose that S is either .N;C/ or a countable group. An element
p 2 ˇS is right cancelable in ˇS if and only if there exists B 2 p such that, for every
a 2 S distinct from the identity, a�1B … p.

Proof. Necessity. In case S is a group with identity e, let A D ¹eº and pick B as
guaranteed by Theorem 8.7. In case S is .N;C/, apply 8.7 with A D ¹1º, and if C is
such that ¹1º D ¹x 2 N W �x C C 2 pº, let B D �1C C .

Sufficiency. Pick such B and suppose that p is not right cancelable. Then by
Theorem 8.18 pick x 2 S� such that p D xp. Since B 2 p, one has ¹a 2 S W
a�1B 2 pº 2 x so there is some a distinct from the identity such that a�1B 2 p, a
contradiction.

In the next theorem, we show that every ultrafilter in ˇN is right cancelable on a
large open subset of ˇN.

Theorem 8.20. Suppose that S is either .N;C/ or a countable group. Let p 2 ˇS .
There is a dense open subset U of ˇS such that U \ S� is dense in S� and xp ¤ yp
whenever x and y are distinct elements of U .

Proof. For each a 2 S , let Ca D ¹x 2 S� W ap D xpº. Then Ca is a closed subset
of S�. We claim that it is nowhere dense in S�. To see this, suppose we have some
infinite subset A of S such that A \ S� � Ca. Then by Corollaries 8.2 and 4.33, Ap
is an infinite subset of S� so we can choose an infinite subset T of A n ¹aº for which
Tp is discrete in ˇS . Now by Theorem 8.11, qp ¤ rp whenever q and r are distinct
members of T , so for at most one q 2 T is qp D ap and thus there exists r 2 T \S�

such that rp ¤ ap so that r … Ca, a contradiction.
Now

S
a2S Ca is nowhere dense in S� by Corollary 3.37. Let U D ˇS n

S
a2S Ca.

Then U is a dense open subset of ˇS for which U \ S� is dense in S�.
It is immediate that, for every a 2 S and every x 2 U , ap ¤ xp. Suppose that

x and y are distinct elements of U . We can choose disjoint subsets X and Y of S
satisfying X 2 x; Y 2 y, X � U , and Y � U . We observe that xp 2 Xp and
yp 2 Y p. So the equation xp D yp would imply, by Theorem 3.40, that ap D y0p

for some a 2 X and some y 0 2 Y or that x0p D bp for some x0 2 X and some
b 2 Y . Since this is not possible, xp ¤ yp.

We now show that the semigroup generated by a right cancelable element of S�

provides, under certain conditions on S , an example of a semigroup whose closure
fails dramatically to be a semigroup.
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Theorem 8.21. Let S be a discrete countable cancellative semigroup and let p 2 S�

be a right cancelable element of ˇS . Let T D ¹pn W n 2 Nº and X D c`ˇG T n T .
Then the elements of X generate a free subsemigroup of ˇS .

Proof. We shall use the fact that S� is an ideal of ˇS (by Theorem 4.36).
We first note that, if a 2 S , n 2 N, and y 2 X , then apn … .ˇS/y. This follows

from the observation that y 2 c`¹pr W r > nº � S�pn and that, since pn is right
cancelable in ˇS , apn … S�pn.

We now show that the equation ax D uy, where x; y 2 X , a 2 S and u 2 ˇS ,
implies that a D u and x D y. We may assume that a ¤ u, because a D u implies
that x D y by Lemma 8.1.

We note that ax 2 c`.aT / and uy 2 c`..S n ¹aº/y/. It follows from Theorem 3.40
that apn D vy for some n 2 N and some v 2 ˇS , or else az D by for some z 2 X
and some b 2 S n ¹aº. The first possibility cannot hold because apn … .ˇS/y, and so
we may assume the second.

Now az 2 c`.aT / and by 2 c`.bT /. So another application of Theorem 3.40
shows that az0 D by0, where z0; y0 2 c`T and either z0 or y0 is in T . We have seen
that z0 2 T implies that y0 2 T and vice-versa. So we have apm D bpn for some
m; n 2 N. However, this cannot hold if m D n (by Lemma 6.28). It cannot hold if
m < n, because this would imply that a D bpn�m 2 S�. Similarly, it cannot hold if
m > n. So ax D uy does imply that a D u and x D y.

We can therefore assert that the elements of X are right cancelable in ˇS , by con-
dition (9) of Theorem 8.11. Furthermore, for any x; y 2 X , x ¤ y implies that
.ˇS/x \ .ˇS/y D ;, by Theorem 6.19.

To see that X generates a free subsemigroup of ˇS , suppose that m; n 2 N and
that x1x2 � � � xm D y1y2 � � �yn where each xi and each yj is in X and the sequences
.x1; x2; : : : ; xm/ and .y1; y2; : : : ; yn/ are different. We also suppose that we have
chosen an equation of this kind for which m C n is as small as possible. Since
.ˇS/xm \ .ˇS/yn D ; if xm ¤ yn, we have that xm D yn. We claim that m; n > 1.
To see this, we note that m D 1 implies that n > 1 and that ax1 D ay1y2 � � �yn
for any a 2 S . Since x1 is right cancelable in ˇS , this results in the contradic-
tion that a 2 S�. Using the fact that xm is right cancelable once again, we have
x1x2; � � � xm�1 D y1y2 � � �yn�1. This contradicts our assumption that m C n is as
small as possible.

We shall show in Corollary 8.26 that right cancelable elements can occur in the
closure of the smallest ideal of ˇS .

Theorem 8.22. Let S be a discrete countably infinite cancellative semigroup and
let T be an infinite subsemigroup of S . There is a sequence hpni1nD1 of minimal
idempotents in ˇT with the property that, if p is any accumulation point of hpni1nD1,
then Sp \ S�S� D ;.
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Proof. Let f W S ! ! denote a function whose existence is guaranteed by Lemma
6.47. Since f ŒT � D !, ef ŒˇT � D ˇ!. We observe that f ŒS� D ! and hence
that ef �1Œ!�� � S�. Choose an infinite sequence hpni1nD1 in 3N n N such that
¹xn W n 2 Nº is discrete. Then ¹i C xn W n 2 N and i 2 ¹�1; 0; 1ºº is discrete. Given
n 2 N, one may pick v 2 T � \ ef �1Œ¹xnº�. For this v, ˇT v � ef �1Œ¹xn � 1; xn;
xn C 1º� by Lemma 6.54.2, and one may therefore pick by Corollary 2.6 a minimal
idempotent pn of ˇT with ef .pn/ 2 ¹xn � 1; xn; xn C 1º. We recall that T � is an
ideal of ˇT (by Theorem 4.36), and so pn 2 T �. The conclusion now follows from
Theorem 6.54.4.

Corollary 8.23. Let S be a discrete countably infinite cancellative semigroup and let
T be an infinite subsemigroup of S . There are elements p in E.K.ˇT // which are
not in S�S�.

Proof. Let heni1nD1 be as guaranteed by Theorem 8.22 and let p be a cluster point
of this sequence. Suppose that p D qr for some q; r 2 S� and pick a 2 S . By
Theorem 4.31, aq 2 S�, so ap D aqr 2 Sp \ S�S�, a contradiction.

Corollary 8.24. If S is a discrete infinite right cancellative and weakly left cancella-
tive semigroup, then the set of idempotents in S� is not closed.

Proof. By Corollary 8.23, the set of idempotents in ˇN is not closed and therefore
the set of idempotents in H is not closed. Now S� is a compact semigroup (by The-
orem 4.31) and therefore contains an idempotent. It follows from Theorem 6.32 that
S� contains a copy of H.

Corollary 8.25. Let S be a discrete countably infinite cancellative semigroup. Then
K.ˇS/ is not closed in ˇS .

Proof. This follows from Corollary 8.23 (with S D T ) and the observation that
K.ˇS/ � S�S�, because S�S� is an ideal of ˇS (by Theorem 4.36).

We shall show in Corollary 8.26 that right cancelable elements can occur in the
closure of the set of minimal idempotents in ˇS .

Corollary 8.26. Let S be a discrete countably infinite cancellative semigroup and let
T be an infinite subsemigroup of S . There are right cancelable elements of ˇS in
E.K.ˇT //.

Proof. This is immediate from Theorem 8.22, Corollary 8.2, and condition (9) of
Theorem 8.11.
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It is an immediate consequence of Theorem 8.22 that the set of minimal idem-
potents in ˇZ is not closed.

Exercise 8.2.1. Prove Theorem 8.8 by modifying the proof of Theorem 8.7.

Exercise 8.2.2. Let S be any discrete semigroup and let x; p 2 ˇS . Show that:

(i) If p is right cancelable, xp 2 K.ˇS/ if and only if x 2 K.ˇS/.

(ii) If p is left cancelable, px 2 K.ˇS/ if and only if x 2 K.ˇS/. (Recall that
every element in K.ˇS/ belongs to a group contained in K.ˇS/ by Theorem
1.64).

Exercise 8.2.3. Prove that the topological center of N� is empty. (Hint: Suppose that
x is in the topological center of N�. Show that x is in the center of ˇN by choosing
an element y 2 N� which is right cancelable in ˇN. For every z 2 ˇN we have
xC zCy D �x. lim

n!z
.nCy// D lim

n!z
.xCnCy/ and zCxCy D lim

n!z
.nCxCy/,

where n denotes a positive integer.)

8.3 Right Cancellation in ˇN and ˇZ

In the case of the semigroups .N;C/ and .Z;C/, there are additional characteriza-
tions of right cancelability.

Theorem 8.27. Let p 2 ˇN. Then p is right cancelable in ˇN if and only if there is
an increasing sequence hxni1nD1 in N such that for every k 2 N,

¹xn W xn C k < xnC1º 2 p:

Proof. Necessity. Choose by Theorem 8.19 some B 2 p such that �k C B … p for
each k 2 N and let hxni1nD1 enumerate B in increasing order. Then given k 2 N,

B n
Sk
iD1.�i C B/ 2 p and B n

Sk
iD1.�i C B/ � ¹xn W xn C k < xnC1º.

Sufficiency. Let B D ¹xn W n 2 Nº. Then given k 2 N,

.�k C B/ \ ¹xn W xn C k < xnC1º D ;

so �k C B … p.

The proof of the following theorem is nearly identical, and we leave it as an exer-
cise.

Theorem 8.28. Let p 2 ˇN. Then p is right cancelable in ˇZ if and only if there is
an increasing sequence hxni1nD1 in N such that for every k 2 N, ¹xn W xn�1 C k <
xn < xnC1 � kº 2 p.
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Proof. This is Exercise 8.3.1

In the next example, we show that the condition of Theorem 8.28 is really stronger
than the condition of Theorem 8.27.

Example 8.29. There is an element p 2 ˇN which is right cancelable in ˇN but not
in ˇZ.

Proof. We choose an idempotent q 2 ˇN for which FS.h3t i1
tDk

/ 2 q for each k 2 N.
(This is possible by Lemma 5.11.) We put p D �q C q and shall show that p is right
cancelable in ˇN but p is not right cancelable in ˇZ. (We recall that �q 2 ˇZ is the
ultrafilter generated by ¹�A W A 2 qº). By Exercise 4.3.5, N� is a left ideal of ˇZ so
p 2 N�.

It is easy to check that �q 2 E.ˇZ/ and thus �qCp D p so that p 2 Z�Cp and
hence by Theorem 8.18, p is not right cancelable in ˇZ.

Suppose that p is not right cancelable in ˇN. Then p D z C p for some z 2 N�,
by Theorem 8.18. That is �q C q D z C�q C q. Let

A D
°X
t2F

3t �
X
t2H

3t C k W k 2 N; F;H 2 Pf .N/;

minF > maxH C 1, and k < 3minH�1
±

and let

B D
°X
t2F

3t �
X
t2H

3t W F;H 2 Pf .N/ and minF > maxH C 1
±
:

Using Theorem 4.15, one easily shows that A 2 z C�q C q and B 2 �q C q.
Now, elements of B are easy to recognize by their ternary representations. That

is, if F;H 2 Pf .N/, j D minF > maxH C 1, i D minH , and maxF D `,

then
P
t2F 3

t �
P
t2H 3

t D
P`
tDi at3

t , where ai D aj�1 D 2, at 2 ¹1; 2º for all
t 2 ¹i; i C 1; : : : ; j � 1º, and at 2 ¹0; 1º if t � j . That is each such an element has a
highest order 2 and a lowest order 2, which is its lowest nonzero ternary digit, and no
0’s between these positions. No element of A can fit that description, so A \ B D ;,
a contradiction.

Corollary 8.26 yields some surprising information about H. We know from Exam-
ple 2.16 that in a compact right topological semigroup S , c`K.S/ need not be a left
ideal. On the other hand, if S is a discrete semigroup, we know from Theorems 2.15
and 2.17 that c`K.ˇS/ is always a two sided ideal of ˇS .

Theorem 8.30. The closure of K.H/ is not a left ideal of H.
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Proof. By Corollary 8.26 (with T D N and S D Z), there is an element x 2
E.K.ˇN// which is right cancelable in ˇZ. By Theorem 8.27, there is an increasing
sequence hbni1nD1 in N such that for each k 2 N, ¹bn W bnC1 > bn C kº 2 x.

Now K.H/ D H \ K.ˇN/ by Theorem 1.65. So, by Lemma 6.8, E.K.H// D
E.K.ˇN// and thus x 2 c`K.H/. We shall show that there is some w 2 H such that
w C x … c`K.H/.

Recall that for a 2 N, supp.a/ denotes the binary support of a. For a; b 2 N,
write a � b if and only if max supp.a/ < min supp.b/. For a 2 N, let f .a/ D
max supp.a/. Let

X D ¹aC bn W a 2 N; bnC1 > bn C 2
f .a/C1, and a� bnº:

We claim that ˇN C x � X for which it suffices to show that N C x � X . So
let a 2 N. Then ¹bn W bnC1 > bn C 2

f .a/C1º 2 x and, since x 2 H, ¹w 2 N W
a � wº 2 x. Since ¹bn W bnC1 > bn C 2

f .a/C1º \ ¹w 2 N W a � wº � �a C X ,
aC x 2 X as required.

Now each y 2 X has a unique representation in the form a C bn with bnC1 >
bn C 2f .a/C1 so we may define g W X ! N by g.a C bn/ D a and extend g
arbitrarily to N. Let B D ¹bn W n 2 Nº. Then given any y 2 ˇN, one has

eg.y C x/ Deg.y-lim
a2N

x-lim
b2B

.aC b// D y-lim
a2N

x-lim
b2B

g.aC b/ D y-lim
a2N

a D y:

We now show that

if z 2 H \K.ˇN/ \X , theneg.z/ 2 K.ˇN/. (�)

To see this, let z 2 H \ K.ˇN/ \ X and pick an idempotent e 2 K.ˇN/ such
that z D e C z. Now if u; a 2 N and u � a, then f .u C a/ D f .a/ so if
bnC1 > bn C 2

f .a/C1 and a � bn, then u C a C bn 2 X and a C bn 2 X so
g.uC aC bn/ D uC a D uC g.aC bn/.

We now show thateg.z/ D e Ceg.z/ so thateg.z/ 2 K.ˇN/ as required. Suppose
instead thateg.z/ ¤ e Ceg.z/ and pick disjoint open neighborhoods U ofeg.z/ and V
of eCeg.z/. Pick an open neighborhood R of z such thategŒR� � U . Then eC z 2 R
so pick C1 2 e such that C1Cz � R and pick C2 2 e such that C2Ceg.z/ � V . Pick
u 2 C1 \ C2 and let m D f .u/C 1. Pick A1 2 z such that uC A1 � R and pick a
neighborhood W ofeg.z/ such that uCW � V . Pick A2 2 z such thategŒA2� � W .
Then A1\A2\N2m \X 2 z so pick y 2 A1\A2\N2m \X . Since y 2 X , pick
a and n such that y D a C bn, bnC1 > bn C 2

f .a/C1, and a � bn. Since a � bn,
m 
 min supp.y/ D min supp.a C bn/ D min supp.a/ so u � a. Now y 2 A1
so u C a C bn 2 R so g.u C a C bn/ 2 U . Also, y 2 A2 so g.a C bn/ 2 W so
uC g.aC bn/ 2 V . This is a contradiction since g.aC bn/ D uC g.aC bn/ so (�)
is established.
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Now pick any w 2 H n c`K.ˇN/ (such as w 2 ¹2n W n 2 Nº�). We claim that
w C x … c`K.H/ so suppose instead that w C x 2 c`K.H/ D c`.H \ K.ˇN//.
Then since ˇNC x � X we have wC x 2 c`.H\K.ˇN//\X . Since X is clopen,
c`.H \K.ˇN// \X D c`.H \K.ˇN/ \X/. Thus

w Deg.w C x/ 2egŒc`.H \K.ˇN/ \X/� � c`K.ˇN/;

by (�). This contradiction completes the proof.

Corollary 8.31. c`K.H/ ¨ H \ c`K.ˇN/.

Proof. We know that H\ c`K.ˇN/ is an ideal of H by Theorems 2.15 and 2.17.

We do not know whether it is possible for the sum of two elements in ˇNn.K.ˇN//
to be in K.ˇN/; nor do we know the corresponding possibility for the closure of
K.ˇN/. However, something can be said in answer to these questions if one of the
elements is right cancelable. The answer for the case of K.ˇN/ was in fact given in
Exercise 8.2.2.

Theorem 8.32. Let p be a right cancelable element in ˇN n K.ˇN/. For every
q 2 ˇN, q C p 2 K.ˇN/ if and only if q 2 K.ˇN/.

Proof. It follows from Theorem 2.15 that q C p 2 K.ˇN/ if q 2 K.ˇN/. So we
shall suppose that q C p 2 K.ˇN/.

By Theorem 8.27, there is a set P 2 p which can be arranged as an increasing
sequence hxni1nD1 with the property that, for every k 2 N, ¹xn W xnCk < xnC1º 2 p.
It is convenient to suppose that x1 D 1. Since p … K.ˇN/, we may suppose that
P \K.ˇN/ D ;.

For each a 2 N, let Ca D ¹xn W 2a C xn < xnC1º and let B D
S
a2N.a C Ca/.

By Theorem 4.15, B 2 q C p. We can define functions f; g W N ! ! by stating
that f .r/ D xn if and only if xn 
 r < xnC1 and g.r/ D r � f .r/. We observe
that, if b 2 B is expressed as b D a C xn, where a 2 N and 2a C xn < xnC1, then
f .b/ D xn and g.b/ D a.

This implies that

eg.q C p/ D q-lim
a2N

p-lim
xn2Ca

g.aC xn/ D q-lim
a2N

a D q:

We shall show that, for any z 2 B \ K.ˇN/,eg.z/ 2 K.ˇN/. We first show thateg.z/ 2 N�. To see this, suppose thateg.z/ D m 2 N. For every b 2 B \ g�1Œ¹mº�,
we have b D g.b/Cf .b/ D mCf .b/. Since B \g�1Œ¹mº� 2 z, it follows that z D
mCef .z/. SomCef .z/ 2 K.ˇN/ and hence ef .z/ D �mC .mCef .z// 2 K.ˇN/.
Now ef .z/ 2 P , and so this contradicts our assumption that K.ˇN/ \ P D ;.
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Since z 2 K.ˇN/, there is an idempotent e 2 K.ˇN/ for which z D e C z. We
claim that for each a 2 N, Da D ¹b 2 N W g.a C b/ D a C g.b/º 2 z. To see
this, let a 2 N. Sinceeg.z/ 2 N� and B 2 z one has ¹b 2 B W g.b/ > aº 2 z. We
claim that ¹b 2 B W g.b/ > aº � Da. To this end, let b 2 B with g.b/ > a and let
f .b/ D xn. Then b D g.b/ C xn and since b 2 B , 2g.b/ C xn < xnC1 and thus
xn < aC b < xnC1 so g.aC b/ D aC b � xn D aC g.b/. Thuseg.z/ Deg.e C z/

D e-lim
a2N

z-lim
b2Da

g.aC b/

D e-lim
a2N

z-lim
b2Da

.aC g.b//

D e-lim
a2N

z-lim
b2Da

.�a ı g/.b/

D e-lim
a2N

.aCeg.z//
D e Ceg.z/:

This shows thateg.z/ 2 K.ˇN/, as claimed.
Since q C p 2 K.ˇN/ \ B , it follows that

q Deg.q C p/ 2egŒK.ˇN/ \ B� � c`egŒK.ˇN/ \ B� � K.ˇN/:
Exercise 8.3.1. Prove Theorem 8.28.

Exercise 8.3.2. Show that there is an element of ˇN which is right cancelable, but
not left cancelable, in ˇN. (Hint: Show that the element p produced in Example 8.29
is not left cancelable.)

Exercise 8.3.3. Show that every left cancelable element of ˇN is also left cancelable
in ˇZ. (Hint: Use the fact that there are elements of ˇN that are right cancelable
in ˇZ.)

8.4 Left Cancelable Elements in ˇS

Left cancelable elements in ˇS are harder to characterize than right cancelable ele-
ments, because the maps �p are discontinuous and are therefore harder to work with
than the maps �p. However, there are many semigroups S for which ˇS does con-
tain a rich set of left cancelable elements. These include the important case in which
S D N.

We shall derive several results for countable semigroups which can be algebraically
embedded in the topological center of a compact cancellative right topological semi-
group, in particular for those which can be algebraically embedded in compact topo-
logical groups. We recall that this is a property of all discrete countable semigroups
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which are commutative and cancellative, and of many noncommutative semigroups
as well, including the free group on any countable set of generators. (See the proofs
of Corollaries 7.30 and 7.31.)

Lemma 8.33. Suppose that S is a discrete semigroup, that C is a compact can-
cellative right topological semigroup and that there is an injective homomorphism
h W S ! ƒ.C/. If D is a countable subset of S for which hŒD� is discrete, then every
element in c`ˇS D is left cancelable in ˇS .

Proof. We note that our assumptions imply that S is cancellative. We also note thateh W ˇS ! C is a homomorphism (by Corollary 4.22).
Suppose that p 2 c`ˇS D and that px D py, where x and y are distinct elements

of ˇS . Theneh.p/eh.x/ Deh.p/eh.y/ soeh.x/ Deh.y/.
Now px 2 Dx and py 2 Dy. By Theorem 3.40, we may suppose without loss

of generality that ax D qy for some a 2 D and some q 2 D. Now q ¤ a, by
Lemma 8.1, and so D n ¹aº 2 q. Now

eh.q/ 2ehŒD n ¹aº� D c`.ehŒD n ¹aº�/ D c`.hŒD� n ¹h.a/º/

and consequently h.a/eh.x/ D eh.q/eh.y/ 2 c`.hŒD� n ¹h.a/º/eh.y/ and so by right
cancellation h.a/ 2 hŒD� n ¹h.a/º contradicting our assumption that hŒD� is discrete.

Theorem 8.34. Let S be a countable discrete semigroup which can be algebraically
embedded in the topological center of a compact cancellative right topological semi-
group. Then the set of cancelable elements of ˇS contains a dense open subset of S�.

Proof. Suppose that C is a compact cancellative right topological semigroup and that
h W S ! ƒ.C/ is an injective homomorphism. Every infinite subset T of S contains
an infinite subset D for which hŒD� is discrete. By Lemma 8.33, every element of
c`ˇS D is left cancelable in ˇS . So the set of left cancelable elements of ˇS contains
a dense open subset of S�. The same statement holds for the set of right cancelable
elements of ˇS , by Theorem 8.10.

Theorem 8.35. Suppose that S is a countable discrete semigroup, that C is a com-
pact cancellative right topological semigroup and that there is an injective homomor-
phism h W S ! ƒ.C/. Let D be a countable subset of S with the property thateh is
constant on D \ S�. Then every element of D is cancelable in ˇS .

Proof. We note thateh W ˇS ! C is a homomorphism (by Corollary 4.22) and that S
is cancellative.

Every element of D is cancelable in ˇS , by Lemma 8.1. So it is sufficient to prove
that every element of D \ S� is cancelable in ˇS .
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Suppose that p 2 D \ S� and that px D py, where x and y are distinct elements
of ˇS . This implies thateh.x/ Deh.y/. There is at most one element s 2 D for which
h.s/ D eh.p/. Let B denote D with this element deleted, if it exists. Now px 2 Bx

and py 2 By. By Theorem 3.40, we may suppose that ax D qy for some a 2 B
and some q 2 B . Now a ¤ q, by Lemma 8.1. Furthermore,eh.ax/ D eh.qy/ and so
h.a/eh.x/ Deh.q/eh.y/ so by right cancellation h.a/ Deh.q/. This implies that q … D
and hence thateh.q/ Deh.p/, contradicting our assumption that h.a/ ¤eh.p/. So p is
left cancelable in ˇS .

We now show that, if a 2 S , p 2 D \ S�, and z 2 ˇS n ¹aº, then ap ¤ zp. It will
then follow from Theorem 8.11 that p is also right cancelable in ˇS . By Corollary 8.2,
ap ¤ zp for z 2 S n ¹aº.

Suppose then that ap D zp for some z 2 S�. Since ap 2 aD and zp 2 .S n ¹aº/p,
it follows from Theorem 3.40 that ac D rp for some c 2 D and some r 2 S n ¹aº or
aq D bp for some q 2 D \S� and some b 2 S n ¹aº. But the first possibility cannot
occur because S� is a left ideal of ˇS by Corollary 4.33 so the second possibility
must hold. Theneh.q/ D eh.p/. So aq D bp implies that h.a/ D h.b/ and thus that
a D b, a contradiction.

Given n 2 N, let hn W Z! Zn denote the canonical projection so that ehn W ˇZ!
Zn denotes its continuous extension.

Corollary 8.36. Suppose that p 2 Z� and that there is a set A 2 p and an infinite
subset M of N such that ehn.x/ D ehn.p/ for every x 2 A \ Z� and every n 2 M .
Then p is cancelable in .ˇZ;C/.

Proof. Let C denote the compact topological group ⨉n2M Zn. We can define an
embedding h W Z ! C by stating that 
n.h.r// D hn.r/ for every n 2 M . It then
follows from Theorem 8.35 that p is cancelable in ˇZ.

Recall that a point x of a topological space X is a P-point if and only if whenever
hUni

1
nD1 is a sequence of neighborhoods of x one has that

T1
nD1 Un is a neighbor-

hood of x.

Corollary 8.37. Let p be a P-point of Z�. Then there is a set A 2 p such that every
q 2 A \ Z� is cancelable in ˇZ.

Proof. For each n 2 N let Bn D ¹m 2 N W hn.m/ D ehn.p/º. Then each Bn 2 p soT1
nD1Bn is a neighborhood of p so pick A 2 p such that A\Z� �

T1
nD1Bn. Then

Corollary 8.36 applies to A and any q 2 A \ Z�.

Corollary 8.38. Let hxni1nD1 be an infinite sequence in N with the property that xnC1
is a multiple of xn for every n 2 N. Then every ultrafilter in N� \ ¹xn W n 2 Nº is
cancelable in .ˇZ;C/.

Proof. This is Exercise 8.4.1.
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By Ramsey’s Theorem (Theorem 5.6), every infinite sequence in N contains an
infinite subsequence which satisfies the hypothesis of Corollary 8.38 or the hypothesis
of the following theorem. So these two results taken together provide a rich set of left
cancelable elements of ˇN.

Theorem 8.39. Let hxni1nD1 be an infinite sequence in N with the property that, for
every m ¤ n in N, xn is not a multiple of xm. Then every ultrafilter in ¹xn W n 2 Nº
is left cancelable in .ˇN;C/.

Proof. Let P D ¹xn W n 2 Nº, let p 2 P , and suppose that u and v are distinct
elements of ˇN for which p C u D p C v.

We now observe that we may suppose that u; v 2
T
n2N nN. To see this, note that

there is a cancelable element r of ˇN for which uCr 2
T
n2N nN by Exercise 8.4.3.

The equation pCu D pC v implies that ehn.u/ D ehn.v/ for every n 2 N, and hence
we also have v C r 2

T
n2N nN. Since uC r ¤ v C r , we can replace u and v by

uC r and v C r respectively.
We define functions f W N ! N and g W N ! ! as follows: If some xk divides n,

then f .n/ D xm wherem is the first index such that xm divides n. If no xk divides n,
then f .n/ D 1. Let g.n/ D n � f .n/.

If s 2
Tn
mD1 xmN, then f .xn C s/ D xn and g.xn C s/ D s. For each n 2 N, let

Bn D
Tn
mD1 xmN. Then each Bn 2 u so

eg.p C u/ D p-lim
xn2P

u-lim lim
s2Bn

g.xn C s/ D p-lim
xn2P

u-lim lim
s2Bn

s D u:

Similarly,eg.pC v/ D v. This contradicts our assumption that pCu D pC v.

Example 8.40. There is an element of ˇN which is left cancelable, but not right
cancelable, in ˇN.

Proof. As in Example 8.29, we choose q to be an idempotent in ˇN for which
FS.h3ni1

nDk
/ 2 q for every k 2 N. We choose y 2 N� with ¹3n W n 2 Nº 2 y, and

we put x D q C�q C y. We shall show that x is left cancelable in ˇN.
Suppose that u and v are distinct elements of ˇN for which xCu D xCv. We may

suppose that u; v 2
T
n2N nN. To see this, we observe that by Exercise 8.4.3, there

is a cancelable element r of ˇN such that uC r 2
T
n2N nN. Since r is cancelable,

u C r ¤ v C r . Since x C u D x C v implies that ehn.u/ehn.v/ for every n 2 N,
we also have v C r 2

T
n2N nN. So we can replace u and v by u C r and v C r

respectively.
Pick U and V disjoint members of u and v respectively. Let

A D
°
nC 3` �

X
t2H

3t C
X
t2F

3t W ` 2 N; n 2 N3`C1 \ U; H;F 2 Pf .N/;

` > maxH , and minH > maxF
±
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and

B D
°
nC 3` �

X
t2H

3t C
X
t2F

3t W ` 2 N; n 2 N3`C1 \ V; H; F 2 Pf .N/;

` > maxH , and minH > maxF
±
:

Using Theorem 4.15, one easily shows that A 2 q C �q C y C u D x C u and
B 2 q C�q C y C v D x C v.

Now consider the ternary expansion of any number s of the form nC3`�
P
t2H 3

tCP
t2F 3

t where ` 2 N, n 2 N3`C1, H;F 2 Pf .N/, ` > maxH , and minH D

j > maxF . Pick a number k 2 N such that n < 3kC1. Then s D
Pk
tD0 at3

t

where at 2 ¹0; 1º if t 2 ¹0; 1; : : : ; j � 1º, aj D 2, at 2 ¹1; 2º if t 2 ¹j C 1; j C
2; : : : ; `�1º, a` D 0, and at 2 ¹0; 1; 2º if t 2 ¹`; `C1; : : : ; kº. That is, knowing that
s can be written in this form, one can read ` just by looking at the ternary expansion,
because ` is the position of the lowest order 0 occurring above the lowest order 2.
Since ` is determined from the form of the ternary expansion, so is n. That is, n DPk
tD`C1 at3

t . Since U \ V D ;, one concludes that A \ B D ;, a contradiction.
So x is left cancelable in ˇN. It is not right cancelable, because q C x D x.

Theorem 8.41. Let S be a discrete countable cancellative semigroup and let p be a
P-point in S�. Then p is cancelable in ˇS .

Proof. Suppose that px D py, where x and y are distinct elements of ˇS .
Let D D ¹a 2 S W ax 2 Syº. If a 2 D, there is a unique element b 2 S for

which ax D by (by Corollary 8.2). Thus we can define a function f W D ! S by
stating that ax D f .a/y for every a 2 D. We observe that f has no fixed points,
by Lemma 8.1. We can extend f to a function g W S ! S which also has no fixed
points. By Lemma 3.33, there is a set A 2 p such that A \ gŒA� D ;. Similarly, if
E D ¹b 2 S W by 2 Sxº, we can choose a function h W S ! S such that by D h.b/x
for every b 2 E and B \ hŒB� D ; for some B 2 p.

We note that the equation sx D py has at most one solution with s 2 S , and that
the same is true of the equation px D sy (by Corollary 8.2). Hence we can choose
P 2 p such that P � A \ B and, for every a 2 P , ax ¤ py and px ¤ ay. For
each a 2 P , let Ca D ¹u 2 S� W ax D uy or ux D ayº. Since each Ca is closed
(Ca D �y

�1Œ¹axº� [ �x
�1Œ¹ayº�), p … Ca, and p is a P-point of S�, it follows that

p …
S
a2P Ca. So we can choose Q 2 p with Q � P , such that Q \ Ca D ; for

every a 2 P .
Now px 2 Qx and py 2 Qy. It follows without loss of generality from Theorem

3.40, that ax D uy for some a 2 Q and some u 2 Q. This equation implies that
u … S�, since otherwise we should have u 2 Q \ Ca. So u 2 S and u D g.a/, and
hence u 2 A \ gŒA�. This contradicts the fact that A \ gŒA� D ;.

We have thus shown that p is left cancelable in ˇS . By Corollary 8.14, p is also
right cancelable in ˇS .
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The reader may have noticed that all the criteria for left cancelability given in this
section, apart from that of being a P-point in an arbitrary countable cancellative semi-
group, describe a clopen subset of S� all of whose elements are left cancelable. Thus
these criteria cannot be used to find left cancelable elements in K.ˇS/. There are
several questions about left cancelable elements of ˇN which remain open, although
the corresponding questions for right cancelable elements are easily answered.

Question 8.42. Is every element in N� n .N� CN�/ left cancelable?

Question 8.43. Are weak P-points in N� left cancelable?

Question 8.44. Are there left cancelable elements in K.ˇS/‹

Exercise 8.4.1. Prove Corollary 8.38.

Exercise 8.4.2. Let Hı denote the interior of H in N�. Prove that Hı is dense in H
and that every element of Hı is cancelable in ˇZ.

Exercise 8.4.3. Let p 2 ˇN. Show that there is a cancelable element r 2 ˇN for
which ehn.r C p/ D ehn.p C r/ D 0 for every n 2 N. (Hint: For every k 2 N,
¹m 2 Z W hk.m/ D fhk.�p/º 2 �p. Thus for each n 2 N, one can choose mn 2Tn
kD1¹m 2 Z W hk.m/ Dfhk.�p/º. Show that one can assume that this mn 2 N and

that fhk.mn C p/ D 0 for every k 2 ¹1; 2; : : : ; nº. The set A D ¹mn W n 2 Nº then
satisfies the hypotheses of Corollary 8.36.)

8.5 Compact Semigroups Determined by Right Cancelable
Elements in Countable Groups

In this section we assume that G is a countably infinite discrete group and we discuss
the smallest compact subsemigroup of ˇG containing a given right cancelable element
of ˇG. We show that it has a rich structure. Furthermore, all the subsemigroups of
ˇG arising in this way are algebraically and topologically isomorphic to ones which
arise in ˇN.

We shall use some special notation in this section. Throughout this section, we
shall suppose that G is a countable group and shall denote its identity by e. We shall
also suppose that we have chosen an element p 2 G� which is right cancelable in
ˇG.

We assume that we have arranged the elements of G as a sequence, hsni1nD1, with
e D s1. We shall write a < b if a; b 2 G and a precedes b in this sequence.

Given F;H � G, let F�1H D
S
t2F t

�1H . We can choose P 2 p with the
property that e … P and F�1P … p whenever F 2 Pf .G n ¹eº/ (by Theorem 8.19).
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If A � G, we use FP.A/ to mean the set of finite products of distinct terms of A
written in increasing order. That is, if A D ¹st W t 2 Bº, then FP.A/ D FP.hst it2B/.

We shall assume that P has been arranged as an increasing sequence hbni1nD1.
(That is, if bn D st and bnC1 D sk , then t < k.)

Definition 8.45. Let n 2 N.

(a) Fn D ¹u�1v W u; v 2 FP.¹a 2 G W a 
 bnº/ and u ¤ vº.

(b) Pn D P n .Fn [ F�1n P /.

Observe that for each n 2 N, Pn 2 p and ¹a 2 G W a 
 bnº n ¹eº � Fn.

Definition 8.46. (a) T D ¹bn1bn2 � � � bnk W for each i 2 ¹2; 3; : : : ; kº; bni 2Pni�1º.

(b) For each n 2 N,

Tn D ¹bn1bn2 : : : bnk W for each i 2 ¹2; 3; : : : ; kº; bni 2 Pni�1 and bn1 2 Pnº:

(c) T1 D
T1
nD1 Tn.

We shall call a product of the form bn1bn2 � � � bnk as given in the definition of T a
P -product. Notice that P � T . (If i D 0, we define the empty product bn1bn2 � � � bni
to be e.)

Definition 8.47. Let S be a discrete semigroup and let q 2 ˇS .

Cq D
T
¹D � ˇS W D is a compact subsemigroup of ˇS and q 2 Dº:

Notice that Cq is the smallest compact subsemigroup of ˇS which contains q. We
may denote this by Cq.ˇS/ in a context in which more than one semigroup S is being
considered.

Lemma 8.48. Suppose that k; l 2 N, that bm1bm2 � � � bmk and bn1bn2 � � � bnl are
P -products and that abm1bm2 � � � bmk D bn1bn2 � � � bnl for some a 2 G satisfying
a < bm1 and a�1 < bm1 . Then l � k and, if i D l � k, we have a D bn1bn2 � � � bni
and mj D niCj for every j 2 ¹1; 2; : : : ; kº.

Proof. We shall first show that bmk D bnl . Suppose that nl�1 � mk�1. We then
have bnl D u

�1vbmk , where u D bn1bn2 � � � bnl�1 and v D abm1bm2 � � � bmk�1 . This
implies that u D v, because otherwise we should have bnl 2 F

�1
nl�1

P , contradicting
our assumption that bnl 2 Pnl�1 . However, u D v implies that bmk D bnl .

Similarly, if mk�1 � nl�1, the equation bmk D v
�1ubnl implies that bmk D bnl .

So bmk D bnl and these terms can be cancelled from the equation and the argument
repeated until we have a D bn1bn2 � � � bni if i D l�k � 0, or else abm1bm2 � � � bmj D
e if j D k � l > 0. The first possibility is what we wish to prove, and so it will
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be sufficient to rule out the second. This is done by noting that, if j > 1, since
bmj ¤ e, the equation abm1bm2 � � � bmj D e implies that bmj 2 Fmj�1 , which is a
contradiction. If j D 1, it implies that a�1 D bm1 , contradicting our assumption that
a�1 < bm1 .

Lemma 8.49. The expression for an element of T as a P -product is unique.

Proof. We apply Lemma 8.48 with a D e. We observe that we cannot express e as
a P -product bn1bn2 � � � bni with i > 0. To see this, note that otherwise, if i D 1, we
should have bn1 D e, contradicting our assumption that e … P . If i > 1, we should
have bni 2 Fni�1 , contradicting our definition of a P -product.

Thus, if bm1bm2 � � � bmk D bn1bn2 � � � bnl , where these are P -products, Lemma
8.48 implies that k D l and that mi D ni for every i 2 ¹1; 2; : : : ; kº.

Lemma 8.49 justifies the following definition.

Definition 8.50. Define  W T ! N by stating that  .x/ D k if x D bn1bn2 � � � bnk ,
where this is a P -product.

As usual e W T W! ˇN is the continuous extension of  .

Theorem 8.51. Let G be a countably infinite discrete group and let p 2 G� be right
cancelable in ˇG. Then T1 is a compact subsemigroup of G� which contains Cp.
Furthermore, e is a homomorphism on T1 satisfying e .p/ D 1 and e ŒCp� D ˇN.

Proof. Let x 2 Tm and express x as a P -product: x D bm1bm2 � � � bmk . If n > mk
and if y 2 Tn, then xy 2 Tm and  .xy/ D  .x/C  .y/. It follows from Theorems
4.20 and 4.21 that T1 is a subsemigroup ofG� and that e is a homomorphism on T1.

For every n 2 N and every A 2 p, we can choose b 2 Pn \ A. So A \ Tn \e �1Œ¹1º� ¤ ;. It follows that

; ¤
T
A2p

T
n2N

c`.A \ Tn \ e �1Œ¹1º�/ � ¹pº \ T1 \ e �1Œ¹1º�:
This shows that p 2 T1 and hence that Cp � T1. It also shows that e .p/ D 1 and
hence that e ŒCp� D ˇN, because e ŒCp� is a compact subsemigroup of ˇN which
contains 1.

Theorem 8.51 allows us to see that Cp has a rich algebraic structure.

Corollary 8.52. Let G be a countably infinite discrete group and let p 2 G� be right
cancelable in ˇG. The semigroup Cp has 2c minimal left ideals and 2c minimal right
ideals. Each of these contains 2c idempotents.
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Proof. We apply Theorem 6.44. The result then follows because, if L is a left ideal of
ˇN, e �1ŒL� \ Cp is a left ideal of Cp; and the corresponding remark holds for right
ideals. We recall that every left ideal of Cp contains a minimal left ideal and every
right ideal of Cp contains a minimal right ideal, and the intersection of any left ideal
and any right ideal contains an idempotent (by Corollary 2.6 and Theorem 2.7).

We remind the reader that, if e and f are idempotents in a semigroup, we write
f 
 e if ef D fe D f .

Lemma 8.53. Let e1 and e2 be idempotents in ˇN with e2 < e1, and let f1 be an
idempotent in Cp for which e .f1/ D e1. There is an idempotent f2 in Cp for which
f2 < f1 and e .f2/ D e2.

Proof. First notice that e �1Œ¹e2º� \ Cpf1 ¤ ;, because .e �1Œ¹e2º� \ Cp/f1 is
contained in this set. So e �1Œ¹e2º�\Cpf1 is a compact semigroup and thus contains
an idempotent f (by Theorem 2.5). We put f2 D f1f . It is easy to check that f2 is
an idempotent satisfying e .f2/ D e2 and f2 < f1.

Corollary 8.54. Let G be a countably infinite discrete group and let p 2 G� be
right cancelable in ˇG. The semigroup Cp contains infinite decreasing chains of
idempotents.

Proof. There is a decreasing sequence of idempotents heni1nD1 in ˇN by Theorem
6.12. By Lemma 8.53 we can inductively choose a decreasing sequence hfni1nD1 of
idempotents in Cp for which e .fn/ D en for every n 2 N.

Corollary 8.55. Let G be a countably infinite discrete group and let p 2 G� be right
cancelable in ˇG. Every maximal group in the smallest ideal of Cp contains a copy
of the free group on 2c generators.

Proof. Let q be a minimal idempotent in Cp . Then e .q/ is a minimal idempotent in
ˇN by Lemma 8.53 and so .e .q//ˇN.e .q// contains a group F which is a copy of
the free group on 2c generators (by Corollary 7.36). For each generator x in F , we
can choose y 2 qCpq such that e .y/ D x. These elements generate a group in qCpq
which can be mapped homomorphically onto F and which is therefore free.

Comment 8.56. If we do not specify that p is right cancelable, the preceding results
may no longer hold. For example, if p is an idempotent, Cp is just a singleton. Less
trivially, if p D 1 C e, where e is a minimal idempotent in ˇZ, Cp is contained in
the minimal left ideal ˇZC e of ˇZ and contains no chains of idempotents of length
greater than 1.

Theorem 8.57. Let G be a countably infinite discrete group and let p 2 G� be right
cancelable in ˇG. The semigroup Cp does not meet K.ˇG/.
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Proof. We can choose x 2 P \ G� with x ¤ p. We can then choose Q � P such
thatQ 2 x andQ … p. We put P 0 D P nQ. Let hb0ni

1
nD1 enumerate P 0 in increasing

order. Then define F 0n, P 0n, T 0, T 0n, and T 01 in terms of P 0 analogously to Definitions
8.45 and 8.46. Notice that for each n, Fn � F 0n, and hence P 0n � Pn, T 0n � Tn, and
T 01 � T1.

We claim that T 01 \ K.ˇG/ D ;. Suppose instead that we have some y 2 T 01 \
K.ˇG/. Then by Theorem 1.67, y 2 .ˇG/xy. So pick some u 2 ˇG such that
y D uxy. For each a 2 G, the set Xa D ¹bn W bn 2 Q, bn > a, and bn > a�1º 2 x.
For each bn 2 Xa, we have Tn 2 y. So ¹abnv W a 2 G, bn 2 Xa, and v 2 Tnº 2 uxy,
by Theorem 4.15. Since T 0 2 y, there must be elements a 2 G, bn 2 Xa, and v 2 Tn
for which abnv 2 T 0. We note that bnv is a P -product and so, by Lemma 8.48, it
follows that bn 2 P 0. This contradicts our assumption that bn 2 Q and establishes
that T 01 \K.ˇG/ D ;.

NowCp�T 01 (by Theorem 8.51 withP 0 in place ofP ) and henceCp\K.ˇG/D;.

Corollary 8.58. IfG is a countably infinite discrete group, there is a right cancelable
element p in ˇG for which Cp � c`.K.ˇG// nK.ˇG/.

Proof. We can choose a right cancelable element p of ˇG in K.ˇG/ (by Corollary
8.26). Since K.ˇG/ is a compact subsemigroup of ˇG (by Theorem 4.44), Cp �
K.ˇG/. By Theorem 8.57, Cp \K.ˇG/ D ;.

Lemma 8.59. Let G be a countably infinite discrete group, let p 2 G� be right
cancelable in ˇG, and let q be an idempotent in Cp. Then there is some idempotent
r 2 .ˇG/p which is 
R-maximal in G� such that q 
R r .

Proof. We can choose a 
R-maximal idempotent r in G� for which q 
R r by
Theorem 2.12.

Suppose that r … .ˇG/p. There is then a set E 2 r such that .ˇG/p\E D ;. For
every a 2 G, we have E … ap and hence Ba D a�1.G nE/ 2 p.

We consider the set A of all P -products bn1bn2 : : : bnk with the property that, for
each i 2 ¹1; 2; : : : ; kº, bni … E and, if i > 1, bni 2 Bu for every u 2 Fni�1 .
We observe that, for a P -product of this form, we have

Qi�1
jD1 bnj 2 A for every

i 2 ¹2; 3; : : : ; kº. We also note that A \E D ;.
For each n 2 N, we define An to be the set of all P -products bn1bn2 � � � bnk in A\

Tn for which bn1 2 Bu whenever u 2 Fn. We shall show that
T
n2N An is a compact

semigroup which contains p. That it is a compact semigroup follows from Theorem
4.20 and the observation that, if u 2 Am is expressed as a P -product bn1bn2 � � � bnk ,
then uAn � Am whenever n > nk . Now, for each n 2 N, we have An 2 p, becauseT
u2Fn
¹br W br 2 Pn and br 2 Buº 2 p. So p 2

T
n2N An.

Since
T
n2N An is a compact semigroup which contains p, Cp �

T
n2N An and so

q 2
T
n2N An. For each a 2 G, let Qa denote the set of P -products bn1bn2 � � � bnk
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with bn1 > a and bn1 > a�1. Then Qa 2 q and so ¹au W a 2 E and u 2 Qaº 2 rq
(by Theorem 4.15). Since A 2 q D rq, there exists a 2 E and u 2 Qa such that
au 2 A. By Lemma 8.48, it follows that a 2 A. This contradicts the assumption that
a 2 E.

The following theorem may be surprising because all idempotents in K.ˇN/ are

R-minimal (by Theorems 1.36 and 1.38).

Theorem 8.60. Let G be a countably infinite discrete group. For every q 2 G� n
K.ˇG/, there is a 
R-maximal idempotent of G� in K.ˇG/ \ .ˇG/q.

Proof. By Theorem 6.56 we can choose an element x 2 G� for which xq is right
cancelable in ˇG. By Corollary 8.26, there is an element p 2 K.ˇG/ which is right
cancelable in ˇG. Since pxq is also right cancelable, it follows from Lemma 8.59
that there is a 
R-maximal idempotent of G� in .ˇG/pxq. Now K.ˇG/ is an ideal
of ˇG (by Theorem 4.44), and so .ˇG/pxq � K.ˇG/.

Theorem 8.61. Let G be a countably infinite discrete group and let p 2 G� be right
cancelable in ˇG. There is an injective mapping � W T ! N with the following
properties:

(1) e�ŒT1� � H.

(2) e� defines an isomorphism from T1 ontoe�ŒT1�.
(3) e�.p/ 2 ¹2n W n 2 Nº.

Proof. We define � by stating that �.bn1bn2 � � � bnk / D
Pk
iD1 2

ni whenever
bn1bn2 � � � bnk is a P -product. Then � is well defined by Lemma 8.49, and is triv-
ially injective. We note that, if bn1bn2 � � � bnk 2 Tn, then bn1 2 Pn and so bn1 … ¹a 2
G W a 
 bnº and hence n1 > n. It follows that �ŒTn� � 2nN and thate�ŒT1� � H.

Suppose that x 2 T is expressed as a P -product bn1bn2 : : : bnk . Then, if n > nk
and y 2 Tn, we have �.xy/ D �.x/ C �.y/. It follows from Theorem 4.21 that e�
is a homomorphism on T1. Sincee� is injective (by Exercise 3.4.1), it follows thate�
defines an isomorphism from T1 ontoe�ŒT1�.

Now �ŒP � � ¹2n W n 2 Nº. Since P 2 p, ¹2n W n 2 Nº 2 e�.p/.
Corollary 8.62. Let G be a countably infinite discrete group and let p 2 G� be right
cancelable in ˇG. There is an element q 2 N�, for which ¹2n W n 2 Nº 2 q and
Cp.ˇG/ is algebraically and topologically isomorphic to Cq.ˇN/.

Proof. We put q D e�.p/, where � is the mapping defined in Theorem 8.61. Thene�ŒCp.ˇG/� is a compact subsemigroup of ˇN which contains q, and hencee�ŒCp.ˇG/� � Cq.ˇN/. Similarly, e��1ŒCq.ˇN/� \ T1 is a compact subsemigroup
of ˇN containing p and so Cp.ˇG/ � e��1ŒCq.ˇN/�. So e�ŒCp.ˇG/� D Cq.ˇN/
ande� defines an isomorphism from Cp.ˇG/ onto Cq.ˇN/.
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Theorem 8.63. Let G be a countably infinite discrete group and let p 2 G� be right
cancelable in ˇG. Then T1 is algebraically and topologically isomorphic to H.

Proof. By Theorem 7.24 (takingX D G and V.a/ D G for all a 2 G), it is sufficient
to show that we can define a left invariant zero dimensional topology on G which has
the sets ¹eº [ Tn as a basis of neighborhoods of e.

As we observed in the proof of Theorem 8.51, if x 2 Tmis expressed as aP -product
bm1bm2 : : : bmk , then xTn � Tm if n > mk .

Let B D ¹¹xº[xTn W x 2 G and n 2 Nº. We claim that B is a basis for a topology
on G such that for each x 2 G, ¹¹xº[ xTn W n 2 Nº is a neighborhood basis at x. To
see this, let x; y 2 G, let n; k 2 N, and let a 2 .¹xº [ xTn/ \ .¹yº [ yTk/.

(i) If a D x D y, let r D max¹n; kº.

(ii) If a D x D ybm1bm2 : : : bmi where bm1bm2 � � � bmi is a P -product and bm1 2
Pk , let r D max¹n;mi C 1º.

(iii) If a D xbl1bl2 � � � blj D y where bl1bl2 � � � blj is a P -products and bl1 2 Pn let
r D max¹lj C 1; kº.

(iv) If aDxbl1bl2 � � � blj Dybm1bm2 � � � bmi where bl1bl2 � � � blj and bm1bm2 � � � bmi
are P -products, bl1 2 Pn, and bm1 2 Pk , let r D max¹lj C 1;mi C 1º.

Then ¹aº [ aTr � .¹xº [ xTn/ \ .¹yº [ yTk/ as required. The topology generated
by B is clearly left invariant.

Suppose that a 2 G nTm. If we choose n such that a < bn and a < b�1n , it follows
from Lemma 8.48 that aTn \ Tm D ;. Thus the sets ¹eº [ Tn are clopen in our
topology.

We now claim that
T
n2N Tn D ;, because a < bn implies that a … Tn. To see this,

suppose that a D bn1bn2 � � � bnl , where this is a P -product and bn1 2 Pn. We note
that bn1 > bn, since otherwise we should have bn1 2 Fn. So bn1 > a and therefore
l > 1. We then have bnl 2 Fnl�1 , contradicting our definition of P -product.

This shows that our topology is Hausdorff, and completes the proof.

Lemma 8.64. Let G be a countably infinite discrete group and let p be a right can-
celable element of G�. Suppose that x 2 ˇG and y 2 T1. Then xy 2 T implies that
x 2 T .

Proof. LetX 2 x and letZ denote the set of all products of the form abn1bn2 � � � bnk ,
where bn1bn2 � � � bnk is a P -product, a 2 X , a < bn1 and a�1 < bn1 . By Theo-
rem 4.15, Z 2 xy. Hence, if xy 2 T , T \Z ¤ ;. It then follows from Lemma 8.48,
that T \X ¤ ; and hence that T 2 x.

So far, in this section, we have restricted our attention to ˇG, where G denotes a
countably infinite discrete group. However, some of the results obtained have appli-
cations to .ˇN;C/ and .ˇN; � /, the following theorem being an example.
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Theorem 8.65. Let S be a countably infinite discrete semigroup which can be embed-
ded in a countable discrete group G. Then K.ˇS/ contains 2c nonminimal idempo-
tents, infinite chains of idempotents, and idempotents which are 
R-maximal in G�.

Proof. By Corollary 8.26 (with T and S replaced by S and G respectively), there
is an element p 2 K.ˇS/ which is right cancelable in ˇG. Taking this p to be the
element held fixed at the start of this section, we can choose the set P so that P � S .
Consequently T � S so that T � ˇS .

Now K.ˇS/ is a compact subsemigroup of ˇS , by Theorem 4.44, and is therefore
a compact subsemigroup of ˇG. So Cp.ˇG/ � K.ˇS/. By Corollary 8.54, Cp.ˇG/
contains infinite chains of idempotents, and so the same statement is true of K.ˇS/.

Let e1 be any nonminimal idempotent in ˇN. Since e1 is not minimal, we can
choose an idempotent e2 in ˇN for which e2 < e1. By Lemma 8.53, we can then
choose idempotents f1 and f2 in Cp.ˇG/ satisfying f2 < f1, e .f1/ D e1, ande .f2/ D e2. Since f1; f2 2 K.ˇS/, f1 is a nonminimal idempotent in K.ˇS/.
There are 2c possible choices of e1 (by Corollary 6.33) and therefore 2c possible
choices of f1. So K.ˇS/ contains 2c nonminimal idempotents.

By Lemma 8.59, if q is an idempotent in Cp.ˇG/, there is an idempotent r 2
.ˇG/p which is
R-maximal inG� and satisfies q 
R r . Since q D rq and q 2 T1,
it follows from Lemma 8.64 that r 2 T � ˇS .

We know that r D xp for some x 2 ˇG. By Lemma 8.64, x 2 T and so r 2
.ˇS/p. Since K.ˇS/ is an ideal of ˇS , it follows that r 2 K.ˇS/.

Most of the results in this section also hold for the semigroups Cp.ˇN/, where p
denotes a right cancelable element of N�. The proofs have to be modified, since N is
not a group, but they are essentially similar to the proofs given above. We leave the
details to the reader in the following exercise.

Exercise 8.5.1. Let p be a right cancelable element in ˇN. By Theorem 8.27, there
is a set P 2 p which can be arranged as an increasing sequence hbni1nD1 with the
property that, for each k 2 N, Pk D ¹bn W bn C k < bnC1º 2 p. We define
T to be the set of all sums of the form bn1 C bn2 C � � � C bnk , where, for each
i 2 ¹2; 3; : : : ; kº, bniC1 � bni > 1 C 2 C 3 C � � � C bni�1 . We shall refer to a sum
of this kind as a P -sum. We define Tn to be the set of sums of all P -sums for which
bn1C1 � bn1 > 1 C 2 C � � � C n and we put T1 D

T
n2N Tn. Prove the following

statements:

(1) The expression of an integer in T as a P -sum is unique.

(2) T1 is a compact subsemigroup of ˇN which contains Cp .

(3) There is a homomorphism mapping Cp onto ˇN.

(4) Cp contains 2c minimal left ideals and 2c minimal right ideals, and each of these
contains 2c idempotents.
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(5) Cp contains infinite chains of idempotents.

(6) There is an element q 2 ¹2n W n 2 Nº for which Cq is algebraically and topo-
logically isomorphic to Cp.

(7) T1 is algebraically and topologically isomorphic to H.

8.6 Notes

Most of the results of Sections 8.1, 8.2, 8.3, and 8.4 are from [70] (a result of col-
laboration with A. Blass ), [194], [247], and [369]. Theorem 8.22 extends a result of
H. Umoh in [379]. Theorem 8.30 is from [198], where it had a much longer proof,
which did however provide an explicit description of the elements of c`K.H/.

We saw in Theorem 8.22 that K.ˇS/ is not closed if S is a countably infinite dis-
crete cancellative semigroup. Y. Zelenyuk proved in [411] that K.ˇS/ is not closed if
S is an infinite discrete semigroup which can be algebraically embedded in a compact
topological group.

Theorem 8.63 is due to I. Protasov. Most of the other theorems in Section 8.5 were
proved for ˇN in [136], a result of collaboration with A. El-Mabhouh and J. Pym,
[250], and [369], and were proved for countable groups by I. Protasov.
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Idempotents

We remind the reader that, if p and q are idempotents in a semigroup .S; � /, we write:

p 
L q if p � q D pI

p 
R q if q � p D pI

p 
 q if p � q D q � p D p:

These relations are reflexive and transitive, and the third is anti-symmetric as well.
We may write p < q if p 
 q and p ¤ q. We may also write p <L q if p 
L q

and q 6
L p, and p <R q if p 
R q and q 6
R p.
Let p be an idempotent in a semigroup S . We shall say that p is maximal if, for

every q 2 E.S/, p 
 q implies that p D q. We shall say that p is right maximal if,
for every q 2 E.S/, p 
R q implies that q 
R p and that p is left maximal if, for
every q 2 E.S/, p 
L q implies that q 
L p.

We do not need to introduce separate terms for the minimal elements of the three
relations defined above, because we saw in Theorem 1.36 that, for any idempotent
in S , being minimal for one of these relations is equivalent to being minimal for each
of the others. This is also equivalent to being in the smallest ideal of S , if S has a
minimal left ideal which contains an idempotent (by Theorem 1.59). In this case, for
every idempotent q 2 S , there exists an idempotent p 2 K.S/ satisfying p 
 q (by
Theorem 1.60).

We have also seen that the study of the relation 
 on E.ˇN/ is equivalent to study-
ing commutativity of idempotents in ˇN. Two idempotents in ˇN are comparable for
this relation if and only if they commute (by Corollary 6.24). In fact, this statement
holds in ˇS , if S is any countable discrete semigroup which can be embedded in a
group.

There are seemingly simple questions about the order of idempotents in ˇS which
are very hard to answer. At the end of Section 9.3, we shall list some simple and
obvious questions which have remained open for several years.

9.1 Right Maximal Idempotents

Recall from Theorem 2.12 that right maximal idempotents exist in every compact right
topological semigroup. We shall see now that there are 2c right maximal idempotents
in N�. This contrasts with the fact that we do not know of any ZFC proof that there
are any left maximal idempotents in ˇN.
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Theorem 9.1. There are 2c right maximal idempotents in N�.

Proof. We remind the reader that, for any n 2 N, supp.n/ 2 Pf .!/ is defined by the
equation n D

P
i2supp.n/ 2

i . We define � W N ! ! by stating that �.n/ D 2m where
m D min supp.n/. If k 2 N and r > min supp.k/, then for all n 2 2rN one has
�.k C n/ D �.k/. Thus, given p 2 ˇN and q 2 H,

e�.p C q/ D p-lim
k2N

q-lim
n2N

�.k C n/

D p-lim
k2N

�.k/

De�.p/:
We note that � is the identity map on ¹2n W n 2 !º and hence thate� is the identity

map on c`ˇN¹2
n W n 2 Nº. Let X D c`ˇN¹2

n W n 2 !º \ N�. Then jX j D 2c by
Theorem 3.59.

For each x 2 X , let Dx D e��1Œ¹xº� \ H. Then Dx is a compact subsemigroup
of H and the sets Dx are pairwise disjoint. By Theorem 2.12, we can choose an
idempotent qx in Dx which is a right maximal idempotent in the semigroup Dx .

We shall show that qx is a right maximal idempotent in N�. To see this, let p be an
idempotent in N� for which p C qx D qx . Thene�.p/ D e�.p C qx/ D e�.qx/ D x

and so p 2 Dx . This implies that qx C p D p and thus that qx is a right maximal
idempotent in N�

We now show that right maximal idempotents in Z� have remarkable properties.

Lemma 9.2. Let G be a countable discrete group and let q be a right maximal
idempotent in G�. Then, if p is any element of ˇG which is not right cancelable in
ˇG, pq D q implies that qp D p.

Proof. By Theorem 8.18, there is an idempotent e 2 G� for which ep D p. Assume
that pq D q. Then eq D epq D pq D q so, since q is right maximal, qe D e so
qp D qep D ep D p.

Lemma 9.3. Let S be a countable right cancellative discrete semigroup. Then every
compact right zero subsemigroup of ˇS is finite.

Proof. We first note that, if t 2 S has a left identity s 2 S , then s has to be a right
identity for S . To see this, let u 2 S . Then ust D ut so by right cancellation us D u.

Let D denote the set of right identities of S . If q 2 D, then pq D p for every
p 2 ˇS , because pq D p-lim

u2S

q-lim
v2D

uv D p-lim
u2S

u D p.

Suppose that C is an infinite compact right zero subsemigroup of ˇS . Then q 2 C
implies thatD … q, because otherwise we should have xq D x for every x 2 C . This
implies that x D q, because xq D q, and hence that jC j D 1.



228 Chapter 9 Idempotents

Since C is infinite, pick an infinite sequence hpni1nD1 of distinct elements of C
and let p be any accumulation point of the sequence. There is at most one ele-
ment pn in the sequence for which pn D p, and so we can delete this element
(if it exists) and assume that pn ¤ p for every n 2 N. Since p 2 C , p D
pp 2 c`ˇS ..S n D/p/ \ c`ˇS¹pn W n 2 Nº. It follows from Theorem 3.40, that
sp D q for some q 2 c`ˇN¹pn W n 2 Nº and some s 2 S nD, or else pn D xp for
some n 2 N and some x 2 ˇS .

The first possibility implies that sq D spq D qq D q. It follows from Theo-
rem 3.35 that ¹t 2 S W st D tº 2 q and hence that ¹t 2 S W st D tº ¤ ; and that
s 2 D, a contradiction.

The second possibility implies that p D pnp D xpp D xp D pn, again a contra-
diction.

Theorem 9.4. Suppose thatG is a countable discrete group. Let q be a right maximal
idempotent in G� and let C D ¹p 2 G� W pq D qº. Then C is a finite right zero
subsemigroup of ˇG and every member of C is a right maximal idempotent in G�.

Proof. C is a compact right topological semigroup and so K.C/ ¤ ;. We note that
q 2 K.C/ because ¹qº D K.C/q � K.C/. Since ¹qº D Cq, ¹qº is a minimal left
ideal of C . Thus all the minimal left ideals of C are singletons, by Theorem 1.64,
and so the elements of K.C/ are all idempotent. Now every minimal right ideal
of C intersects every minimal left ideal of C . It follows by Theorem 1.61 that C
has a unique minimal right ideal R and therefore that K.C/ D R D E.R/ (by
Theorem 1.64). By Lemma 1.30 (b), E.R/ is a right zero semigroup and so K.C/ is
a right zero semigroup.

We now claim that E.C/ D K.C/. To see this, let p 2 E.C/. Since pq D q and
q is right maximal, we have qp D p and so p 2 K.C/.

It follows that C contains no 
-chains of idempotents with more than one element,
because all elements of K.C/ are 
-minimal in C . Now any compact subsemigroup
of G� which contains a right cancelable element, must contain infinite 
-chains of
idempotents (by Corollary 8.54). So C cannot contain any right cancelable elements
of ˇG.

We shall show that C D K.C/. To see this, let p 2 C . Since p is not right
cancelable in ˇG and pq D q, it follows from Lemma 9.2, that qp D p and hence
that p 2 K.C/. Thus, by Lemma 9.3, C is finite.

Finally, let p 2 C and assume that r 2 G� and p 
R r . Then rq D r.pq/ D

.rp/q D pq D q and thus r 2 C so pr D r .

Lemma 9.5. Suppose that G is a countable discrete group. Let q be a right maximal
idempotent in G� and let C D ¹p 2 ˇG W pq D qº. Then, for every x; y 2 ˇG, the
equation xq D yq implies that x 2 yC or y 2 xC .
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Proof. Suppose that x … yC and y … xC . Then, for each p 2 C , x ¤ yp and so
there are disjoint clopen subsets Up and Vp of ˇG for which x 2 Up and yp 2 Vp. If
Xp D G \ Up and Yp D G \ ��1p ŒVp�, then Xp 2 x, Yp 2 y and Xp \ .Ypp/ D ;,

because Xp � Up and Ypp � Vp . Similarly, there exist X 0p 2 x and Y 0p 2 y for

which .X 0pp/ \ Y 0p D ;. Let X D
T
p2C .Xp \ X

0
p/ and Y D

T
p2C .Yp \ Y

0
p/. By

Lemma 6.28, C D ¹eº [ ¹p 2 G� W pq D qº, so by Theorem 9.4, C is finite and so
X 2 x and Y 2 y.

Assume that xq D yq. Since xq 2 Xq and yq 2 Yq, it follows from Theorem 3.40
that bq D uq for some b 2 Y and some u 2 X , or else vq D aq for some v 2 Y and
some a 2 X . Assume without loss of generality that bq D uq for some b 2 Y and
some u 2 X . Then b�1uq D q and hence b�1u 2 C . If p D b�1u, then bp D u,
contradicting our assumption that b 2 Yp and u 2 Xp, while Xp \ .Ypp/ D ;.

Theorem 9.6. Suppose thatG is a countable discrete group. Let q be a right maximal
idempotent in G�, let C D ¹p 2 ˇG W pq D qº, and let n D jC j. Suppose that x is
a given element of ˇG and that Y D ¹y 2 ˇG W yq D xqº. Then Y has either n or
n � 1 elements.

Proof. Let C 0 D C n ¹eº, where e denotes the identity of G. We note that by Lem-
ma 6.28, C 0 D ¹p 2 G� W pq D qº so C 0 is a finite right zero semigroup, by
Theorem 9.4, and in particular all elements of C 0 are idempotents. For every p 2 C 0,
xp is the unique element in Y \ .ˇG/p. To see this, we note that xp is in this set
because xpq D xq. On the other hand, if y is in this set, then y D yp D yqp D

xqp D xp.
We shall show that the sets .ˇG/p, where p 2 C 0, are pairwise disjoint. If

p; p0 2 C 0, then .ˇG/p \ .ˇG/p0 ¤ ; implies that p 2 .ˇG/p0 or p0 2 .ˇG/p
by Corollary 6.20. Now p 2 .ˇG/p0 implies that pp0 D p and hence that p D p0,
because pp0 D p0. Thus jY \ .ˇG/C 0j D jC 0j D n � 1.

We claim that there is at most one element of Y in ˇG n ..ˇG/C 0/. Suppose that
y and z are distinct elements of Y which are in this set. Since yq D zq, y 2 zC D
zC 0 [ ¹zº or z 2 yC D yC 0 [ ¹yº (by Lemma 9.5). However, neither of these
possibilities can hold, because y … zC 0, z … yC 0 and y ¤ z.

Thus jY j is either n or n � 1, as claimed.

We now show that right maximal idempotents occur in every neighborhood of every
idempotent in S�, if S is a countable cancellative semigroup.

Theorem 9.7. Let S be a countable cancellative semigroup and let U be a Gı subset
of S�. If U contains an idempotent, then U contains a right maximal idempotent
of S�.

Proof. We may suppose that S has an identity e, since an identity can be adjoined to
any semigroup. We assume that S has been given a sequential ordering (i.e., a well
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ordering of order type !), with e as the first element. If a; b 2 S , we shall write a � b
if a precedes b in this ordering. For each a 2 S , we put L.a/ D ¹b 2 S W b � aº.
For each F 2 Pf .S/,

Q
F will denote the product of the elements of F with these

arranged in increasing order. We define
Q
; to be e. If B � S , FP.B/ will, as usual,

denote ¹
Q
F W F 2 Pf .B/º.

Let p 2 U be an idempotent. For each A 2 p, recall that A? D ¹s 2 A W A 2 spº.
We remind the reader that A? 2 p and that, for every s 2 A?, s�1A? 2 p (by Lemma
4.14).

We can choose a decreasing sequence hAni1nD1 of infinite subsets of S satisfying
An 2 p and An \ S� � U for every n.

We shall inductively define a sequence hani1nD1 in S . We choose any a1 2 A?1 . We
then suppose that a1; a2; : : : ; ak have been chosen so that the following conditions
are satisfied for every i; j 2 ¹1; 2; : : : ; kº:

(i) If i < j , then ai � aj ,

(ii) If i 
 j , then FP.hani
j
nDi / � A

?
i , and

(iii) If i > 1, then FP.L.ai�1// \ FP.L.ai�1//ai D ;.

Now, if b; c 2 FP.L.ak//, since S is left cancellative there is at most one element
s 2 S for which b D cs and hence there are only a finite number of solutions of all
the equations of this form. Thus we can choose

akC1 2 A
?
kC1 \

kT
iD1

T
¹b�1A?i W b 2 FP.haniknDi /º;

with the property that ak � akC1 and b ¤ cakC1 whenever b; c 2 FP.L.ak//. The
induction hypotheses are then satisfied.

The sequence hani1nD1 having been chosen, we note that, for every m 2 N, we
have FP.hani1nDm/ � Am.

We now show that if b 2 S n ¹eº, F;G 2 Pf .¹an W n 2 Nº/ with minF D at ,
b � at�1, and b �

Q
F D

Q
G, then F ¨ G and b D

Q
.G n F /.

We first establish that with b, F , and G as above, one has maxF D maxG. Let
ai D maxF and let aj D maxG. If i < j , then b �

Q
F 2 FP.L.aj�1// andQ

.G n ¹aj º/ 2 FP.L.aj�1// (even if G n ¹aj º D ;) so
Q
G 2 FP.L.aj�1//aj ,

contradicting hypothesis (iii). If j < i , then
Q
G 2 FP.L.ai�1// and b �

Q
.F n

¹aiº/ 2 FP.L.ai�1//. (If F D ¹aiº, this is because b � at�1 D ai�1.) Thus, if
j < i , then b �

Q
F 2 FP.L.ai�1//ai , again contradicting hypothesis (iii).

Now we establish that F ¨ G and b D
Q
.GnF / by induction on jF j. IfF D ¹atº,

then bat D
Q
.G n ¹atº/at so, since S is right cancellative, b D

Q
.G n ¹atº/. Since

b ¤ e, G n ¹atº ¤ ; so F ¨ G.
Now assume that jF j > 1 and the statement is true for smaller sets. We observe

that jGj > 1. (Indeed, if G D ¹aj º, then we have b �
Q
.F n ¹aj º/ D e, so if

ai D max.F n ¹aj º/, we have b �
Q
.F n ¹aj º/ 2 FP.L.ai�1//ai \ FP.L.ai�1//,
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contradicting hypothesis (iii).) Let F 0 D F n ¹aj º and G0 D G n ¹aj º where aj D
maxF D maxG. Then by right cancellation, b �

Q
F 0 D

Q
G0 so F 0 ¨ G0 and

b D
Q
.G0 n F 0/ D

Q
.G n F /.

Now there is an idempotent q 2
T1
mD1 FP.hani1nDm/ by Lemma 5.11. By Theorem

2.12, there is a right maximal idempotent r 2 S� for which rq D q. We shall show
that r 2 U .

Let R 2 r and let m 2 N. We show that R \ FP.hani1nDm/ ¤ ;. For each
b 2 R n ¹eº, pick k.b/ 2 N such that b � ak.b/�1. Then by Theorem 4.15,S

b2Rn¹eº

b � FP.hani1nDk.b// 2 rq D q:

Since also FP.hani1nDm/ 2 q, pick b 2 R n ¹eº, F 2 Pf .¹an W n � k.b/º/, and
G 2 Pf .¹an W n � mº/ such that b �

Q
F D

Q
G. Then F ¨ G and b D

Q
.GnF / 2

FP.hani1nDm/.
Since for each R 2 r and m 2 N, R \ FP.hani1nDm/ ¤ ;, we have that

r 2 S� \
1T
mD1

FP.hani1nDm/ � S
� \

1T
mD1

Am � U:

We do not know whether the sum of two elements in N�nK.ˇN/ can be inK.ˇN/,
or whether the sum of two elements in N� nK.ˇN/ can be in K.ˇN/. We do know
that, if p is a right cancelable element of ˇN, then, for any q 2 ˇN, qCp 2 K.ˇN/
implies that q 2 K.ˇN/ by Exercise 8.2.2, and that, if p is a right cancelable element
of ˇN n K.ˇN/, then q C p 2 K.ˇN/ implies that q 2 K.ˇN/ by Theorem 8.32.
There are idempotents p in ˇN which also have this property. As a consequence
of the next theorem, one sees that if p is a right maximal idempotent in N� and if
q 2 ˇN nK.ˇN/, then qCp … K.ˇN/. The corresponding statement forK.ˇN/ is
also true: if p is a right maximal idempotent in ˇN nK.ˇN/ and if q 2 ˇN nK.ˇN/,
then q C p … K.ˇN/. We shall not prove this here. However, a proof can be found
in [252].

Theorem 9.8. Let G be a countably infinite discrete group and let p be a right maxi-
mal idempotent in G�. Then, if q 2 ˇG nK.ˇG/, qp … K.ˇG/.

Proof. Suppose that qp 2 K.ˇG/. Then qp D eqp for some minimal idempotent
e 2 ˇG by Theorem 1.64. Let C D ¹x 2 G� W xp D pº. By Theorem 9.4, C is a
finite right zero semigroup.

Now q … .ˇG/C . To see this we observe that, if q D ur for some u 2 ˇG
and some r 2 C , then q D qr D q.pr/ D .qp/r 2 K.ˇG/, contradicting our
assumption that q … K.ˇG/. Since .ˇG/C is compact, we can choose Q 2 q

satisfying Q \ .ˇG/C D ;. Since q … K.ˇG/, q ¤ eq and so we may also suppose
that Q … eq.
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We also claim that eq … .ˇG/C . If we assume the contrary, then eq D ur for
some u 2 ˇG and some r 2 C . By Corollary 6.20, this implies that q 2 .ˇG/r
or r 2 .ˇG/q. We have ruled out the first possibility, and the second implies that
p D rp 2 .ˇG/qp � K.ˇG/. However, by Exercise 9.1.4, p … K.ˇG/. So we can
choose Y 2 eq satisfying Y \ .ˇG/C D ; and Y \Q D ;.

Now qp 2 c`.Qp/ and eqp 2 c`.Yp/. It follows from Theorem 3.40 that ap D yp
for some a 2 Q and some y 2 Y , or else xp D bp for some x 2 Q and some b 2 Y .

If we assume the first possibility, the fact that a ¤ y implies that y 2 G�, by
Lemma 6.28 and thus a�1y 2 G� by Theorem 4.31. The equation p D a�1yp then
implies that a�1y 2 C and hence that y 2 .ˇG/C , contradicting our choice of Y .
The second possibility results in a contradiction in a similar way.

Definition 9.9. Let S be a semigroup and let p be an idempotent in S . Then p is a
strongly right maximal idempotent of S if and only if the equation xp D p has the
unique solution x D p in S .

Observe that trivially a strongly right maximal idempotent is right maximal.
We now show that strongly right maximal idempotents exist in N�, by giving a

proof which illustrates the power of the methods introduced by Y. Zelenyuk. As we
shall see in Theorem 12.39, strongly summable ultrafilters are strongly right maximal.
However, by Corollary 12.38, the existence of strongly summable ultrafilters cannot
be deduced in ZFC. It was an open question for several years whether the existence
of strongly right maximal idempotents in N� could be deduced in ZFC. This question
has now been answered by I. Protasov.

We do not know whether it can be shown in ZFC that there are any right maximal
idempotents in N� which are not strongly right maximal. However, Y. Zelenyuk
has shown that Martin’s Axiom does imply the existence of idempotents of this kind
[391].

Theorem 9.10. There is a strongly right maximal idempotent in N�. Furthermore,
for every right maximal idempotent e in Z�, there is an H-map  from ! onto a
subset of Z for which e �1.e/ is defined and is a strongly right maximal idempotent
in N�.

Proof. We know that there are right maximal idempotents in Z� by Theorem 2.12.
Let e be an idempotent of this kind, let C D ¹x 2 Z� W x C e D eº, and let
CeD ¹x 2 ˇZ W xCC � C º. By Theorem 9.4 C is a finite right zero subsemigroup
of ˇZ so in particular, x C C D C for every x 2 C . Then C e D ¹0º [ C .
(Certainly ¹0º [ C � Ce. Assume x 2 Ce n ¹0º. Then by Lemma 6.28, x … Z.
Let y D x C e. Then y 2 C so x C e D x C e C e D y C e D e.) Let
'eDTCeD ¹U � Z W Ce� U º. By Lemmas 7.6 and 7.7, there is a left invariant
zero-dimensional topology 	 on Z for which 'e is the filter of neighborhoods of 0.
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We choose a set U � Z such that 0 and e are in U but f … U if f 2 Ce n ¹0; eº.
We note that for every f 2 Ce n ¹0; eº, ¹n 2 Z W n C f 2 Z n U º 2 e because
e C f D f 2 Z n U . We put

V D U \
T

f 2CQn¹0;eº

¹n 2 Z W nC f 2 Z n U º

and observe that 0 2 V and V 2 e. Let X D V ? D ¹n 2 V W �nC V 2 eº and note
that 0 2 X and X 2 e. Let n 2 X . We shall show that

(i) there exists W.n/ 2 'e for which nC .W.n/ \X/ � X ,

(ii) .nC X/ \ X is a neighborhood of n in X for the relative topology induced by
	 , and

(iii) n is not isolated in the relative topology on X induced by 	 .

Before verifying (i), (ii), and (iii), note that if xW 2 W for each W 2 'e, then
the net hxW iW 2�Q (directed by reverse inclusion) has a cluster point f in Ce. To
see this, suppose instead that for each f 2 Ce one has some U.f / 2 f and some
W.f / 2 'e such that xW 0 … U.f / for all W 0 2 'e with W 0 � W.f /. Let
W 0 D .

S
f 2CQU.f // \ .

T
f 2CQW.f //. Then W 0 2 'e. Pick f 2 Ce such that

xW 0 2 U.f /. Then since W 0 � W.f /, we have a contradiction.
To verify (i), suppose that for every W 2 'e, there exists rW 2 W \ X such that

nC rW … X . Pick a cluster point f 2 Ce of the net hrW iW 2�Q. Since each rW 2 X
one has f 2 X , and thus f D 0 or f D e. Since each rW 2 Z n .�nC X/ one has
f 2 Z n .�nCX/. But 0 2 �nCX and by Lemma 4.14, �nCX D �nC V ? 2 e
so e 2 �nCX , a contradiction.

To verify (ii) we show that there is some W 2 'e such that .n C W / \ X �

.nCX/\X . Suppose instead that for each W 2 'e there is some sW 2 W such that
nC sW 2 X but sW … X . Pick a cluster point f 2 Ce of the net hsW iW 2�Q. Since
each sW 2 Z n X , f … X and since each sW 2 �n C X , n C f 2 X . But since
f … X , one has f … ¹0; eº so, since n 2 V , nC f … U � X , a contradiction.

To verify (iii), let W 2 'e . We show that there exists m 2 W n ¹0º such that
nCm 2 X (so that .nCW /\X ¤ ¹nº). SinceW 2 'e, e 2 Ce� W soW n¹0º 2 e.
Also, n 2 V ? so by Lemma 4.14, �nC V ? 2 e. Pick m 2 .W n ¹0º/ \ .�nC V ?/.

Having established (i), (ii), and (iii), for each n 2 X pickW.n/ 2 'e as guaranteed
by (i), choosing W.0/ D X . Now we have shown that the hypotheses of Theorem
7.24 are satisfied with G D Z and V.n/ D W.n/ \ X . Thus there is a countable
set ¹Vn W n 2 Nº of neighborhoods of 0 in X for which Y D

T1
nD1 c`ˇX Vn n ¹0º

is a subsemigroup of ˇZ and there is an H-map  W ! ! X such that e jH is
an isomorphism from H onto Y . For each n, there is some Wn 2 'e such that
Wn \X � Vn and thus each Vn 2 e so e 2 Y .

Now the equation xCe D e has the unique solution x D e inXn¹0º. It follows that
the equation x C e �1.e/ D e �1.e/ has the unique solution x D e �1.e/ in H and
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hence that e �1.e/ is a strongly right maximal idempotent in H. Since by Lemma 6.8
all idempotents of N� are in H, e �1.e/ is a strongly right maximal idempotent in N�.

Theorem 9.11. There are 2c strongly right maximal idempotents in H. Consequently
there are 2c strongly right maximal idempotents in N�.

Proof. We know that there are 2c right maximal idempotents in Z� by Theorem 9.1.
For each idempotent e of this kind, there is an H map  e from ! onto a subset of
Z for which f e�1.e/ is defined and is a strongly right maximal idempotent in H (by
Theorem 9.10). For any given e, there are at most c right maximal idempotents f in
Z� for which e �1e .e/ D e �1

f
.f /, because this equation implies that e f .e �1e .e// D

f , so that e f is a H-map taking e �1e .e/ to f , and there are at most c H-maps from
! to subsets of Z. Thus there are 2c distinct elements of the form e �1e .e/.

Corollary 9.12. Let G be a countably infinite discrete group which can be alge-
braically embedded in a metrizable compact topological group. Then there are 2c

strongly right maximal idempotents in G�.

Proof. This follows immediately from Theorem 9.11 and Theorem 7.28.

Exercise 9.1.1. Which idempotent in .ˇZ;C/ is the unique
R-maximal idempotent
and the unique 
L-maximal idempotent?

Exercise 9.1.2. Let S be a semigroup and let p; q 2 E.S/. Show that p 
R q if and
only if pS � qS and that p 
L q if and only if Sp � Sq.

Exercise 9.1.3. Let q be an element of ˇN which is not right cancelable in ˇN. Show
that there is a right maximal idempotent p 2 ˇN for which p C q D q. (Hint: Use
Theorems 8.18 and 2.12.)

The following exercise contrasts with the fact that we do not know whether idem-
potents in K.ˇZ/ can be left maximal.

Exercise 9.1.4. LetG be a countably infinite discrete group. Show that no idempotent
in K.ˇG/ can be right maximal in G�. (Hint: Use Theorems 6.44 and 9.4.)

Exercise 9.1.5. Let p and q be any two given elements of ˇZ. Show that the equation
x C p D q either has 2c solutions in ˇZ or else has only a finite number. (Hint: You
may wish to use Theorem 3.59.)



Section 9.2 Topologies Defined by Idempotents 235

9.2 Topologies Defined by Idempotents

In this section we investigate left invariant topologies induced on a group G in each
of two natural ways by idempotents in G�. The first of these is the topology induced
on G by the map a 7! ap from G to Gp.

Theorem 9.13. Let G be an infinite discrete group and let p be an idempotent in
G�. There is a left invariant zero-dimensional Hausdorff topology on G such that
the filter 'e of neighborhoods of the identity e consists of the subsets U of G for
which ¹x 2 ˇG W xp D pº � c`ˇG U . This topology is extremally disconnected
and is the same as the topology on G induced by the mapping .�p/jG W G ! G�.
Furthermore, if .�p/jG and .�q/jG induce the same topology onG, then pˇG D qˇG.
Consequently there are at least 2c distinct topologies which arise in this way.

Proof. Let �p D .�p/jG . Notice that by Lemma 6.28, �p is injective. In particular
¹a 2 G W ap D pº D ¹eº so by Lemmas 7.6 and 7.7, with C D ¹pº (so that
C e D ¹x 2 ˇG W xp D pº), we can define a zero-dimensional Hausdorff left
invariant topology on G, for which 'e is the filter of neighborhoods of e.

We show first that the topology we have defined on G is the one induced by �p.
Let T be the topology defined by 'e and let V be the topology induced by �p. In the
proof of Lemma 7.6 we showed in statement (ii) that the sets of the form UbD ¹a 2
G W ap 2 c`ˇG U º where U 2 p form a basis for the neighborhoods of e in T and in
statement (iii) that each Ub 2 T . Hence ¹bUb W b 2 G and U 2 pº forms a basis for
T . Given b 2 G and U 2 p, bUbD �p

�1Œ�b�1
�1Œc`ˇG U �� so T � V . To see that

V � T , let U 2 V and let b 2 U . Pick V � G such that b 2 �p
�1Œc`ˇG V � � U .

Then b�1V 2 p and b 2 b.b�1V /b� U .
Since Gp is extremally disconnected as a subspace of ˇG (by Lemma 7.41), it

follows that G is extremally disconnected.
Now suppose that p and q are idempotents in G� which define the same topology

on G. Then the map  D �q ı �p
�1 is a homeomorphism from Gp to Gq for which

 .ap/ D aq for all a 2 G. Now q D  .p/ D  .pp/ D lim
a!p

 .ap/ D lim
a!p

aq D

pq so q belongs to the principal right ideal of ˇG defined by p. Similarly, since
�p ı �q

�1 is a homeomorphism, p belongs to the principal right ideal of ˇG defined
by q. Thus pˇG D qˇG. Now ˇG contains at least 2c disjoint minimal right ideals
(by Corollary 6.41). Choosing an idempotent in each will produce at least 2c different
topologies on G.

The second method of inducing a topology onG by an idempotent p is more direct,
taking ¹A [ ¹eº W a 2 pº as a neighborhood base for e.

Theorem 9.14. Let G be an infinite discrete group with identity e and let p 2 G�.
Let N D ¹A [ ¹eº W A 2 pº and let T D ¹U � G W for all a 2 U , a�1U 2 pº.
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Then T is the finest left invariant topology on G such that each neighborhood of e
is a member of N . The filter of neighborhoods of e is equal to N if and only if p is
idempotent. In this case, the topology T is Hausdorff.

Proof. It is immediate that T is a left invariant topology onG. (For this fact, one only
needs p to be a filter on G.) Let V be a neighborhood of e with respect to T . Pick
U 2 T such that e 2 U � V . Then U 2 p and thus V 2 p. Also V D V [ ¹eº so
V 2 N .

Now let V be a left invariant topology on G such that every neighborhood of e with
respect to V is a member of N . To see that V � T , let U 2 V and let a 2 U . Then
a�1U is a neighborhood of e with respect to V so a�1U D A [ ¹eº for some A 2 p
and thus a�1U 2 p.

Let M be the set of neighborhoods of e with respect to T . Assume first that M D

N . To see that pp D p, let A 2 p. Then A [ ¹eº is a neighborhood of e so pick
U 2 T such that e 2 U � A [ ¹eº. Then U 2 p. We claim that U � ¹a 2 G W
a�1A 2 pº. To this end, let a 2 U . Then a�1U 2 p and a�1U � a�1A [ ¹a�1º so
a�1A [ ¹a�1º 2 p so a�1A 2 p.

Now assume that pp D p. To see that M D N , let V 2 N . Then V 2 p. Let
B D V ? D ¹x 2 V W x�1V 2 pº. Then B 2 p. We show that B [ ¹eº 2 T . (Then
e 2 B [ ¹eº � V so V 2 M.) To see this, let x 2 B [ ¹eº. Now e�1B D B 2 p

and, if x ¤ e, then by Lemma 4.14, x�1B 2 p.
Finally assume that pp D p and let a ¤ e. Then ap ¤ ep by Lemma 6.28, so

pick B 2 p n ap. Let A D B n .a�1B [ ¹a; a�1º/. Then aA [ ¹aº and A [ ¹eº are
disjoint neighborhoods of a and e respectively.

The following theorem tells us, among other things, that the topologies determined
by p in Theorems 9.13 and 9.14 agree if and only if p is strongly right maximal.

We saw in Corollary 9.12 that, if G is a countable group which can be embed-
ded in a compact metrizable topological group, there are 2c strongly right maximal
idempotents in G�.

Theorem 9.15. Let G be a group with identity e and let p be an idempotent in G�.
Let T be the left invariant topology on G such that N D ¹A [ ¹eº W A 2 pº is the
filter of neighborhoods of e. Then T is Hausdorff and the following statements are
equivalent:

(a) The topology T is regular.

(b) The idempotent p is strongly right maximal in G�.

(c) The map .�p/jG is a homeomorphism from .G; T / onto Gp.

(d) The topology T is regular and extremally disconnected.

(e) The topology T is zero-dimensional.
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Proof. The topology T is Hausdorff by Theorem 9.14.
(a) implies (b). Let q 2 G� such that qp D p and suppose that q ¤ p. Pick

B 2 q n p with e … B . Now G nB D .G nB/[ ¹eº is a neighborhood of e so pick a
neighborhood U of e which is closed with respect to T such that U � G n B . Then
U 2 p D qp so pick b 2 B such that b�1U 2 p. Since U is closed, G n U is a
neighborhood of b so b�1.G n U / 2 p, a contradiction.

(b) implies (c). By Theorem 9.13, the topology induced on G by the map .�p/jG
has 'e D ¹U � G W ¹x 2 ˇG W xp D pº � c`ˇG U º as the filter of neighborhoods
of e. Now, by assumption ¹x 2 ˇG W xp D pº D ¹p; eº. (By Lemma 6.28, ap ¤ p

if a 2 G n ¹eº.) Thus, given U � G, ¹x 2 ˇG W xp D pº � c`ˇG U if and only if
U 2 p and e 2 U . Consequently 'eD N so this topology is T .

(c) implies (d). By Theorem 9.13, the topology induced on G by the map .�p/jG is
regular and extremally disconnected.

Each of the implications (d) implies (e) and (e) implies (a) is trivial.

Theorem 9.16. Let G be a discrete group with identity e, and let p be an idempotent
in G�. Let T be the left invariant topology defined on G by taking ¹A[ ¹eº W A 2 pº
as a base for the neighborhoods of e. Let V be any topology on G for which G has
no isolated points. Then V cannot be strictly finer than T .

Proof. By Theorem 9.14, T D ¹U � G W for all a 2 U , a�1U 2 pº. Suppose
that T ¨ V and pick V 2 V n T . Since V … T pick a 2 V such that a�1V … p.
Then G n a�1V 2 p so .G n a�1V / [ ¹eº is a neighborhood of e with respect to the
topology T and thus a..G n a�1V / [ ¹eº/ D .G n V / [ ¹aº is a neighborhood of a
with respect to T , and thus also with respect to V . But then ..GnV /[¹aº/\V D ¹aº
is a neighborhood of a with respect to V , a contradiction.

Corollary 9.17. Let G be an infinite group. If p is a strongly right maximal idempo-
tent inG�, then the left invariant topology T onG defined by taking ¹A[¹eº W A 2 pº
as the filter of neighborhoods of the identity e is homogeneous, zero-dimensional,
Hausdorff, extremally disconnected, and maximal among all topologies without iso-
lated points. Distinct strongly right maximal idempotents give rise to distinct topolo-
gies.

Proof. Since the topology is left invariant, it is trivially homogeneous. By Theo-
rem 9.15, T is Hausdorff, zero-dimensional, and extremally disconnected. By The-
orem 9.16, T is maximal among all topologies without isolated points. By Theo-
rem 9.15, T is the topology induced on G by the function .�p/jG . Given distinct right
maximal idempotents p and q, one has p ¤ qp so p … qˇG. Thus, by Theorem 9.13,
.�p/jG and .�q/jG induce distinct topologies on G.

Combined with Corollary 9.12, the following Corollary shows that there are 2c

distinct homeomorphism classes of topologies on Z that are homogeneous, zero-
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dimensional, Hausdorff, extremally disconnected, and maximal among all topologies
without isolated points.

Corollary 9.18. Let G be an infinite group. Let

� D j¹p 2 G� W p is a strongly right maximal idempotent in G�ºj:

If 2jGj < �, then there are at least � distinct homeomorphism classes of topologies on
G that are homogeneous, zero-dimensional, Hausdorff, extremally disconnected, and
maximal among all topologies without isolated points.

Proof. By Corollary 9.17 distinct strongly right maximal idempotents give rise to dis-
tinct topologies on G, each of which is homogeneous, zero-dimensional, Hausdorff,
extremally disconnected, and maximal among all topologies without isolated points.
Since any homeomorphism class has at most jGjjGj D 2jGj members, the conclusion
follows.

The use of ultrafilters leads to partition theorems for left topological groups. The
following theorem and Exercises 9.2.5 and 9.2.6 illustrate results of this kind.

Let X be a topological space. Recall that an ultrafilter p on X is said to converge
to a point x of X if and only if p contains the filter of neighborhoods of x.

Theorem 9.19. Let G be a countably infinite discrete group with identity e. Suppose
that there is a left invariant topology 	 on G for which there is a right cancelable
ultrafilter p 2 G� converging to e. Then G can be partitioned into ! disjoint subsets
which are all 	 -dense in G.

Proof. Let � W G � G ! N be a bijection. For each b 2 G let Xb D ¹ap�.a;b/ W
a 2 Gº. Notice that if a; b; c; d 2 G and ap�.a;b/ D cp�.c;d/, then �.a; b/ D
�.c; d/ so that a D c and b D d . (If apn D cpm where, say, n > m, one has by
the right cancelability of p that apn�m D c 2 G, while G� is a right ideal of ˇG by
Theorem 4.31.)

We claim that for each b 2 G, c`ˇG Xb \ c`ˇG.
S
d2Gn¹bºXd / D ;. Suppose

instead that for some b 2 G, c`ˇG Xb\c`ˇG.
S
d2Gn¹bºXd / ¤ ;. Then by Theorem

3.40, either Xb \ c`ˇG.
S
d2Gn¹bºXd / ¤ ; or c`ˇG Xb \ .

S
d2Gn¹bºXd / ¤ ;.

Since the latter implies a version of the former, we may assume that we have some
x 2 Xb \ c`ˇG.

S
d2Gn¹bºXd /. Then for some a 2 G, x D ap�.a;b/ and x 2

c`ˇG¹cp
�.c;d/ W c 2 G and d 2 G n ¹bºº. As we have already observed, ap�.a;b/ ¤

cp�.c;d/ if d ¤ b, so x 2 c`ˇG¹cp
m W c 2 G and m > �.a; b/º. Let n D �.a; b/.

Then apn 2 c`ˇG¹cp
m W c 2 G and m > nº � G�pn so pn 2 a�1G�pn � G�pn.

Thus, by Theorem 8.18 pn is not right cancelable, a contradiction.
Since c`ˇG Xb \ c`ˇG.

S
d2Gn¹bºXd / D ; for every b 2 G, we can choose a

family hAbib2G of pairwise disjoint subsets of G such that Xb � c`ˇG Ab for each
b. We may replace Ae by G n

S
b2Gn¹eºAb so that ¹Ab W b 2 Gº is a partition of G.
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Now let b 2 G. We claim that Ab is 	 -dense in G. Notice that for each n 2 N,
pn converges to e because (by Exercise 9.2.3) the ultrafilters in G� that converge
to e form a subsemigroup of ˇG. Let V be a nonempty 	 -open subset of G and
pick a 2 V . Then a�1V is a 	 -neighborhood of e so a�1V 2 p�.a;b/. Since also
Ab 2 ap

�.a;b/, we have V \ Ab ¤ ;.

Corollary 9.20. Let G be a group with a left invariant topology 	 with respect to
which G has no isolated points. If there is a countable basis for 	 then G can be
partitioned into ! disjoint subsets which are all 	 -dense in G.

Proof. Let ¹Vn W n 2 Nº be a basis for the neighborhoods of the identity e of G. By
Theorem 3.36 the interior inG� of

T1
nD1 Vn

� is nonempty and thus by Theorem 8.10
there is some p 2

T1
nD1 Vn

� which is right cancelable in ˇG (where ˇG is the Stone–
Čech compactification of the discrete space G). Thus Theorem 9.19 applies.

Exercise 9.2.1. Let S be any discrete semigroup and let p be any idempotent in S�:
Prove that the left ideal .ˇS/p is extremally disconnected. (Hint: Consider Lem-
ma 7.41.)

Exercise 9.2.2. Let G be an infinite discrete group and let p and q be idempotents
in G�. Show that the following statements are equivalent.

(a) q 
R p.

(b) The function  W Gp ! Gq defined by  .ap/ D aq is continuous.

(c) The topology induced on G by .�p/jG is finer than or equal to the one induced
by .�q/jG .

(Hint: Consider the proof of Theorem 9.13.)

Exercise 9.2.3. LetG be a group with identity e and let 	 be a nondiscrete left invari-
ant topology on G. Let X� D

T
¹c`ˇG.U n ¹eº/ W U is a 	 -neighborhood of e in Gº.

(So X� is the set of nonprincipal ultrafilters on G which converge to e.) Show that X�
is a compact subsemigroup of G�. (Hint: Use Theorem 4.20.) Show that if 	 0 is also
a nondiscrete left invariant topology on G, then 	 D 	 0 if and only if X� D X� 0 .

The following exercise shows that topologies defined by idempotents can be char-
acterized by a simple topological property.

Exercise 9.2.4. Let G be a group with identity e and let p be an idempotent in G�.
Let T be the left invariant topology defined on G by choosing the sets of the form
U [ ¹eº, where U 2 p, as the neighborhoods of e. Show that for any A � G

and any x 2 G, x 2 c`T A if and only if either x 2 A or x�1A 2 p. Then
show that, for any two disjoint subsets A and B of G, we have c`T A \ c`T B D
.A \ c`T B/ [ .c`T A \ B/.
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Conversely, suppose that T is a left invariant Hausdorff topology on G without
isolated points such that for any two disjoint subsets A and B of G, one has c`T A \
c`T B D .A\ c`T B/[ .c`T A\B/. Let p D ¹A � G W e 2 c`T .A n ¹eº/º. Show
that p is an idempotent in G� such that the T -neighborhoods of e are the sets of the
form U [ ¹eº, where U 2 p.

Exercise 9.2.5. Let G be a countably infinite discrete group with identity e and let p
be an idempotent inG�. Let 	 be the left invariant topology defined onG by choosing
the sets of the form U [ ¹eº, where U 2 p, as the neighborhoods of e. Show that G
cannot be partitioned into two disjoint sets which are both 	 -dense in G.

Exercise 9.2.6. Let G be a countably infinite discrete group with identity e and let
p be a right maximal idempotent in G�. Let D D ¹q 2 G� W qp D pº. Then D
is a finite right zero subsemigroup of G� by Theorem 9.4. Let 	 be the left invariant
topology defined on G by choosing the subsets U of G for which D [ ¹eº � c`ˇG U
as the neighborhoods of the identity. Suppose that jDj D n. Show that G can be
partitioned into n disjoint 	 -dense subsets, but cannot be partitioned into nC1 disjoint
	 -dense subsets. (Hint: Use Corollary 6.20 to show that .ˇG/q \ .ˇG/q0 D ; if q
and q0 are distinct elements of C .)

The following exercise provides a contrast to Ellis’ Theorem (Corollary 2.39).

Exercise 9.2.7. Let p be an idempotent in N� and let T D ¹U � Z W for all a 2 U ,
�a C U 2 pº. Then by Theorem 9.14, .Z;C; T / is a semitopological semigroup
which is algebraically a group. Prove that it is not a topological semigroup. (Hint:
Either ¹22n.2k C 1/ W n; k 2 !º 2 p or ¹22nC1.2k C 1/ W n; k 2 !º 2 p.)

9.3 Chains of Idempotents

We saw in Corollary 6.34 that nonminimal idempotents exist in S� whenever S is
right cancellative and weakly left cancellative. In this section, we shall show that
every nonminimal idempotent p in Z� lies immediately above 2c nonminimal idem-
potents, in the sense that there are 2c nonminimal idempotents q 2 Z� satisfying
q < p, which are maximal subject to this condition. This will allow us to construct
!1-sequences of idempotents in Z�, with the property that each idempotent in the
sequence corresponding to a nonlimit ordinal is maximal subject to being less than its
predecessor. Whether any infinite increasing chains of idempotents exist in Z� is a
difficult open question.

Theorem 9.21. LetG be a countably infinite discrete group, let p be any nonminimal
idempotent in G�, and let A � G with A \ K.ˇG/ ¤ ;. Then there is a set Q �
.E.G�/ \ A/ nK.ˇG/ such that
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(1) jQj D 2c,

(2) each q 2 Q satisfies q < p, and

(3) each q 2 Q is maximal subject to the condition that q < p.

Proof. By Theorems 6.56 and 6.58, there is an infinite subset B of A such that the
following statements hold for every x 2 B�:

(i) p … .ˇG/xp,

(ii) xp is right cancelable in ˇG,

(iii) .ˇG/xp is maximal subject to being a principal left ideal of ˇG strictly con-
tained in .ˇG/p, and

(iv) for all distinct x and x0 in B�, .ˇG/xp and .ˇG/x0p are disjoint.

Let x be a given element of B� and let C denote the smallest compact subsemi-
group of ˇG which contains xp. Pick an idempotent u 2 C . By Theorem 8.57,
u is not minimal in G�. We can choose an idempotent q 2 .ˇG/xp which is 
R-
maximal in G� and satisfies qu D u (by Lemma 8.59). Let v D pq. Using the fact
that qp D q, it is easy to check that v is idempotent and that v 
 p. Now v ¤ p,
because v 2 .ˇG/xp and p … .ˇG/xp, and so v < p.

Let D D ¹w 2 E.G�/ W v < w < pº. Then D � ¹w 2 ˇG W wq D pqº since,
if v < w < p, one has pq D v D wv D wpq D wq. Thus, by Theorem 9.6, D is
finite. If D ¤ ;, choose w maximal in D. If D D ;, let w D v. We then have an
idempotent w 2 G� which satisfies w < p and is maximal subject to this condition.

We shall show that w 2 .ˇG/xp. Since v 2 .ˇG/w \ .ˇG/xp, it follows from
Corollary 6.20, that w 2 .ˇG/xp or xp 2 .ˇG/w. The first possibility is what
we wish to prove, and so we may assume the second. We also have w 2 .ˇG/p
and so .ˇG/xp � .ˇG/w � .ˇG/p. Now .ˇG/xp is maximal subject to being a
principal left ideal of ˇG strictly contained in .ˇG/p. Thus .ˇG/w D .ˇG/xp or
.ˇG/w D .ˇG/p. The first possibility implies that w 2 .ˇG/xp, as claimed. The
second can be ruled out because it implies that p 2 .ˇG/w and hence that pw D p,
contradicting our assumption that pw D w.

We now claim that w … K.ˇG/. To see this, since v 
 w it suffices to show that
v … K.ˇG/. We note that xvu D xpqu D xpu 2 C and that C \K.ˇG/ D ; (by
Theorem 8.57). So xvu … K.ˇG/ and therefore v … K.ˇG/.

Thus we have found a nonminimal idempotentw 2 .ˇG/xp which satisfiesw < p,
and is maximal subject to this condition. Our theorem now follows from the fact that
there are 2c possible choices of x, because jB�j D 2c (by Theorem 3.59), and that
.ˇG/xp and .ˇG/x0p are disjoint if x and x0 are distinct elements in B�.

Lemma 9.22. Let G be a countably infinite discrete group. Let hqni1nD1 be a se-
quence of idempotents in G� such that, for every n 2 N, qnC1 <L qn. If q is any
limit point of the sequence hqni1nD1, then q 2 .ˇG/qn for every n 2 N and q is right
cancelable in ˇG.
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Proof. For every n 2 N, we have qr 2 .ˇG/qn whenever r > n. Since .ˇG/qn is
closed in ˇG, it follows that q 2 .ˇG/qn.

Suppose that q is not right cancelable in ˇG. Then q D uq for some idempotent
u 2 G� (by Theorem 8.18). So q 2 c`..G n ¹eº/q/ and q 2 c` ¹qn W n 2 Nº, where
e denotes the identity of G. It follows from Theorem 3.40 that aq D q0 for some
a 2 G n ¹eº and some q0 2 c` ¹qn W n 2 Nº, or else qn D xq for some n 2 N and
some x 2 ˇG.

Assume first that qn D xq for some n 2 N and some x 2 ˇG. Then q 2 ˇGqnC1
so qn 2 ˇGqnC1 and thus, qn 
L qnC1, a contradiction.

Thus we have aq D q0 for some a 2 G n ¹eº and some q0 2 c` ¹qn W n 2 Nº. Since
aq 2 c`¹aqn W n 2 Nº and q0 2 c`¹qn W n 2 Nº, another application of Theorem
3.40, allows us to deduce that aqn D q00 or else aq00 D qn for some n 2 N and some
q00 2 c`¹qn W n 2 Nº. Since the equation aq00 D qn implies that a�1qn D q00, we
need only refute the first of these equations. Assume first that q00 D qm for some
m 2 N. Then qm D aqn D aqnqn D qmqn so qm 
L qn. Also aqnqm D qmqm D

qm D aqn so by Lemma 8.1, qnqm D qn so that qn 
L qm. Thus m D n and
consequently aqn D eqn so by Lemma 6.28, a D e, a contradiction.

Thus q00 is a limit point of the sequence hqni1nD1. So, as already established, q00 2
.ˇG/qnC1 and thus qn D a�1q00 2 .ˇG/qnC1 so that qn 
L qnC1, a contradiction.

Theorem 9.23. Let G be a countably infinite discrete group and let p be any non-
minimal idempotent inG�. There is an !1-sequence hp˛i˛<!1 of distinct nonminimal
idempotents in G� with the following properties:

(1) p0 D p,

(2) for every ˛; ˇ 2 !1, ˛ < ˇ implies that pˇ <L p˛,

(3) for each nonlimit ordinal ˛ in !1, p˛ < p˛�1 and p˛ is maximal subject to
satisfying this relation, and

(4) for each limit ordinal ˛ ¤ 0 in !1, p˛ is a right maximal idempotent in G�.

Proof. We construct the sequence inductively, first putting p0 D p. We then assume
that ˇ 2 !1 and that p˛ has been defined for every ˛ < ˇ so that hp˛i˛<ˇ has the
required properties.

If ˇ is not a limit ordinal, we can choose pˇ to be a nonminimal idempotent which
satisfies pˇ < pˇ�1 and is maximal subject to this condition by Theorem 9.21. Then
hp˛i˛�ˇ has the required properties.

Suppose then that ˇ is a limit ordinal. We can choose a cofinal sequence h˛ni1nD1
in ˇ. Let q be a limit point of the sequence hp˛ni

1
nD1. By Lemma 9.22, q 2 .ˇG/p˛n

for every n 2 N and so q 2 .ˇG/p˛ for every ˛ < ˇ. Furthermore, q is right
cancelable in ˇG. So we can choose an idempotent pˇ 2 .ˇG/q which is 
R-
maximal in G� (by Lemma 8.59). The fact that pˇ 2 .ˇG/p˛ for every ˛ < ˇ,
implies that pˇ 
L p˛. Furthermore, if ˛ < ˇ, we can choose � 2 !1 satisfying
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˛ < � < ˇ. We then have pˇ 
L p� <L p˛ and this implies that pˇ <L p˛. Thus
the sequence hp˛i˛�ˇ has the required properties.

Remark 9.24. Theorems 9.21 and 9.23 are valid with .N;C/ in place ofG. This is an
immediate consequence of the fact that N� is a left ideal of .ˇZ;C/ by Exercise 4.3.5.

We conclude this section by listing some open questions which are tantalizingly
easy to formulate, but very hard to answer.

We shall see, as a consequence of Theorems 12.29 and 12.45, that it is consistent
that there are idempotents p in ˇN such that, if p D q C r , then both q and r are in
ZC p. In particular, such idempotents are both 
R-maximal and 
L-maximal.

Question 9.25. Can it be shown in ZFC that Z� contains left maximal idempotents?

As a consequence of Exercise 9.1.4 we know that no minimal idempotent in Z� can
be right maximal.

Question 9.26. Are there any idempotents in Z� which are both minimal and maxi-
mal?

If hpni1nD1 is a sequence of idempotents in ˇZ such that pn <L pnC1 for each
n, then hˇZ C pni1nD1 is a strictly increasing chain of principal left ideals. We saw
in Chapter 6 that the question of whether such a chain of left ideals exists is itself a
difficult open problem.

Question 9.27. Is there an infinite increasing 
L-chain of idempotents in ˇZ‹

We now show that there are always many minimal idempotents close to a given
minimal idempotent in .ˇN;C/.

Theorem 9.27.1. Let p be a minimal idempotent in .ˇN;C/ and let L and R be
respectively the minimal left and minimal right ideals of .ˇN;C/ with p 2 L \ R.
Then for each C 2 p, there are 2c minimal idempotents in L \ C and 2c minimal
idempotents in R \ C .

Proof. Let C 2 p, let C ? D ¹x 2 C W �xCC 2 pº, and recall that, by Lemma 4.14,
for each x 2 C ?,�xCC ? 2 p. For eachm 2 !, let Sm D 2mN\C ?\

T
¹�kCC ? W

k 2 C ? \ ¹1; 2; : : : ; mºº. (Or Sm D 2mN \ C? if C ? \ ¹1; 2; : : : ; mº D ;.) Let
V D

T
m2N Sm. For every m 2 N, 2mN 2 p by Lemma 6.6 and so Sm 2 p. Thus

p 2 V .
We show that V is a subsemigroup of ˇN, using Theorem 4.20. So, let m 2 N

and let n 2 Sm. It suffices to show that nC SmCn � Sm. Let r 2 SmCn. Certainly
nC r 2 2mN. Since n 2 C ? \ ¹1; 2; : : : ; mC nº, r 2 �nCC ? and so nC r 2 C ?.
Let k 2 C ? \ ¹1; 2; : : : ; mº. Then n 2 �kCC ? so kC n 2 C? \ ¹1; 2; : : : ; mC nº
and thus r 2 �.k C n/C C ? so that nC r 2 �k C C? as required.
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Since p 2 V we have by Theorem 6.32 that V contains a copy of H D
T1
nD1N2

n.
(This copy is guaranteed to be both an algebraic and topological copy, via the same
function, but here we only care about the fact that it is an algebraic copy.) By Theo-
rem 6.9, .ˇN;C/ has 2c minimal left ideals, so there is a setW � ˇN of idempotents
such that jW j D 2c and whenever u and v are distinct members of W , u C v ¤ u

and v C u ¤ v. Since by Lemma 6.6, W � H and V contains a copy of H, we have
a set E � V of idempotents such that jEj D 2c and whenever u and v are distinct
members of E, uC v ¤ u and v C u ¤ v.

By Corollary 6.20, if u and v are distinct members of E, then .ˇN C u/\ .ˇN C
v/ D ;, so in particular .V C u/\ .V C v/ D ;. By Corollary 2.6 and Theorem 2.7,
given u 2 E, p C V contains a minimal right ideal of V and V C u contains a
minimal left ideal of V , and the intersection of a minimal right ideal of V with a
minimal left ideal of V is a group. Let ˛u be the identity of this group. Then ˛u 2
.p C V / \ .V C u/ and ˛u is a minimal idempotent in V . Then ¹˛u W u 2 Eº is a
set of 2c idempotents in p C V � R, each minimal in V . Since p 2 V \K.ˇN/ we
have that K.V / D V \K.ˇN/ by Theorem 1.65, so that each ˛u is minimal in ˇN.

Now we verify the assertion about L. For each x 2 N recall that supp.x/ 2 Pf .!/

is defined by x D
P
t2supp.x/ 2

t . Inductively choose a sequence hrni1nD1 in N such
that, for each n 2 N, rn 2 Sn and max supp.rn/ < min supp.rnC1/. Let X D ¹rn W
n 2 Nº and note that X \ N� � V . Note also that, since Sn � N2n, V � H.
Define � W N ! ! by �.n/ D min.supp.n// and lete� W ˇN ! ˇ! be its continuous
extension. By Lemma 6.8, if x 2 ˇN and q 2 H, thene�.x C q/ De�.x/.

For each y 2 e�ŒX \ N�� one has ¹q 2 V W e�.q/ D yº is a right ideal of V so
pick an idempotent ıy 2 ¹q 2 V W e�.q/ D yº \ L which is minimal in V . Each ıy
is minimal in V , hence in ˇN, and if y ¤ z, then ¹q 2 V W e�.q/ D yº \ ¹q 2 V We�.q/ D zº D ;. It thus suffices to show that je�ŒX \N��j D 2c. To see this, let v be
any nonprincipal ultrafilter on ¹�.rn/ W n 2 Nº (of which there are 2c). For A 2 v, let
B.A/ D ¹rn W �.rn/ 2 Aº. Then ¹B.A/ W A 2 vº has the finite intersection property,
so pick q 2 ˇN with ¹B.A/ W A 2 vº � q. Since

T
A2v B.A/ D ;, q 2 N�. Ande�.q/ D v.

Corollary 9.27.2. Let C be a central set in N. Then there exists a sequence hCni1nD1
of pairwise disjoint central sets in N with

S1
nD1 Cn � C .

Proof. By Theorem 9.27.1, the set of minimal idempotents in C is infinite, hence
contains an infinite strongly discrete subset. (Alternatively, there are two minimal
idempotents in C so that C can be split into two central sets, C1 and D1. Then D1
can be split into two central sets, C2 and D2, and so on.)

Exercise 9.3.1. Suppose that � is a cardinal for which there exists a sequence hp˛i˛<�
in ˇZ with the properties listed in the statement of Theorem 9.23. Show that � 
 c.
(Hint: First show that, for each ˛ 2 �, p˛ … c`¹pˇ W ˇ > ˛º. This implies that there
is a clopen subset U˛ of ˇZ such that p˛ 2 U˛ and pˇ … U˛ if ˇ > ˛.)
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9.4 Identities in ˇS

If S is any discrete semigroup, then an identity e of S is also an identity of ˇS . This
follows from the fact that the equations se D s and es D s, which are valid for every
s 2 S , extend to ˇS because the maps �e and �e are continuous on ˇS . In this
section, we shall see that this is the only way in which an identity can arise in ˇS .
We shall show, in fact, that ˇS cannot have a unique right identity which is a member
of S�.

If S is a weakly left cancellative semigroup, S� is a left ideal in ˇS (by Theo-
rem 4.31) and ˇS can have no right identities in S�. However, a simple example of
a semigroup S in which S� has right identities, although S has none, is provided by
putting S D .N;^/. In this case, every element of S� is a right identity for ˇS . (See
Exercise 4.1.11.)

In contrast, we shall see that, if S is commutative, then no element of S� can be a
left identity for ˇS .

Theorem 9.28. Let S be a discrete semigroup. If ˇS has a right identity q 2 S�,
then ˇS has at least 22

�

right identities in S�, where � D kqk.

Proof. For each s 2 S , let Is D ¹t 2 S W st D sº. Since sq D s, we have
q 2 ��1s Œ¹sº�. This is an open subset of ˇS and so Is D S \ ��1s Œ¹sº� 2 q. Choose
A 2 q with jAj D �. Then ¹A\Is W s 2 Aº is a collection of � sets with the �-uniform
finite intersection property. It follows from Theorem 3.62 that

T
s2A A \ Is contains

22
�

�-uniform ultrafilters. We shall show that every ultrafilter p in this set is a right
identity for ˇS .

To see this, let s 2 S . We can choose t 2 A \ Is , because A and Is are both in q.
Then It 2 p. Now It � Is , because u 2 It implies that su D .st/u D s.tu/ D

st D s. So Is 2 p. Hence sp 2 c`¹su W u 2 Isº D ¹sº and therefore sp D s. It
follows from the continuity of �p that xp D x for every x 2 ˇS .

Corollary 9.29. Let S be any discrete semigroup. If q 2 ˇS is a unique right identity
for ˇS , then q 2 S .

Corollary 9.30. Let S be any discrete semigroup. If q 2 ˇS is an identity for ˇS ,
then q 2 S .

Theorem 9.31. Let S be a left cancellative discrete semigroup. If p is a right identity
for ˇS , then p 2 S and p is an identity for S and hence for ˇS .

Proof. Let s 2 S . Since sp D s, we must have p 2 S , because S� is a left ideal of
ˇS (by Theorem 4.31). This implies that p is a left identity for S because, for every
t 2 S , we have st D spt and so t D pt . So p is an identity for S , and we have noted
that this implies that p is an identity for ˇS .
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Theorem 9.32. Let S be a commutative discrete semigroup and let q 2 S�. Then q
cannot be a left identity for ˇS .

Proof. If q is a left identity for ˇS , then qs D s for every s 2 S . Since qs D
lim
t!q

ts D lim
t!q

st D sq, we have sq D s for every s 2 S . By the continuity of �q ,

this implies that xq D x for every x 2 ˇS . So q is an identity for ˇS , contradicting
Corollary 9.30.

We obtain a partial analogue to Theorem 9.28.

Theorem 9.33. Let S be a discrete semigroup. If ˇS has a left identity q 2 S� with
kqk D �, then S� has at least 22

�

elements p with the property that ps D s for every
s 2 S .

Proof. The proof of Theorem 9.28 may be copied, with left-right switches, except for
the last sentence.

We now see that any right identity on S� is close to being a right identity on ˇS .

Theorem 9.34. Let S be any discrete semigroup. If S� has a right identity q, then S
has a left ideal V such that q is a right identity on V and S n V is finite.

Proof. The map �q W ˇS ! ˇS coincides with the identity map of ˇS on S�. So, by
Exercise 3.4.8, if E D ¹x 2 ˇS W xq D xº, ˇS n E is a finite subset of S . So our
claim holds with V D E \ S .

Corollary 9.35. Let S be any discrete semigroup. If S� has a right identity q and
� D kqk, then S� has at least 22

�

right identities.

Proof. Let q 2 S� be a right identity for S� and let V be the left ideal of S guaranteed
by Theorem 9.34. By Theorem 9.28, with V in place of S , there are 22

�

elements of
S� which are right identities on V . If p is one of these elements and if x 2 S�, then
the fact that vp D v for every v 2 V implies that xp D x, because x 2 V .

Exercise 9.4.1. Let S be a right cancellative discrete semigroup and let p be a left
identity for ˇS . Prove that p 2 S and that p is an identity for S and hence for ˇS .
(This is Theorem 9.31 with the words “left” and “right” interchanged.)

9.5 Rectangular Semigroups in ˇN

In this section, we shall show that the smallest ideal of ˇN contains copies of the
2c�2c rectangular semigroup by showing that certain compact topological semigroups
resemble absolute coretracts in the category of compact right topological semigroups.
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Definition 9.36. Let A and B be nonempty sets. A semigroup operation can be de-
fined on A � B by putting .a; b/.c; d/ D .a; d/ for every a; c 2 A and b; d 2 B . A
semigroup defined in this way is called a rectangular semigroup.

Definition 9.37. Let A be a nonempty set such that A \ .A � A/ D ;. We put
VA D A [ .A � A/ and define a semigroup operation on VA as follows: for every
a; b; c; d 2 A,

ab D b

a.b; c/ D .b; c/

.b; c/a D .b; a/

.a; b/.c; d/ D .a; d/:

If A is a topological space, let VA have the topology such that A � A inherits the
product topology and A inherits its original topology.

Lemma 9.38. (1) The operation defined on VA is associative.

(2) If A is a topological space, VA is a topological semigroup.

(3) For each a 2 A, ¹aº�A is a minimal right ideal of VA and A�¹aº is a minimal
left ideal of VA.

Proof. We omit the routine proofs of (1) and (2). To prove (3), observe that ¹aº � A
is a right ideal of VA and A� ¹aº is a left ideal of VA. Let R be a left ideal of VA with
R � ¹aº � A and let L be a left ideal of VA with L � A � ¹aº. Pick b; c 2 A such
that .a; b/ 2 R and .c; a/ 2 L and let d 2 A. Then .a; d/ D .a; b/d 2 RVA � R

and .d; a/ D .d; a/.c; a/ 2 VAL � L.

Theorem 9.39. Let A be a nonempty set such that A \ .A � A/ D ;. Let S be a
semigroup which contains a minimal left ideal with an idempotent and let f W S ! VA
be a surjective homomomorphism for which f �1ŒA� contains a minimal left ideal with
an idempotent. Then there is a homomorphism g W VA ! S for which f ı g is the
identity map of VA and gŒA � A� � K.S/.

Furthermore, let p be any minimal idempotent of f �1ŒA� and let z D f .p/. Let
L be any minimal left ideal of S for which L � Sp. Then, for each a 2 A, there is
a minimal idempotent pa of pf �1ŒA� for which f .pa/ D a, with pz D z, and an
idempotent qa 2 pL for which f .qa/ D .a; z/.

Given L and idempotents pa and qa satisfying the conditions of the paragraph
above, we can choose the function g so that g.a/ D pa and g.a; z/ D qa for every
a 2 A.

Proof. By Corollary 1.47, pick a minimal left ideal L of S such that L � Sp. Now
pf �1ŒA� is a minimal right ideal of f �1ŒA� by Theorem 1.48. Let M D pf �1ŒA�.
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Since M is a right ideal of f �1ŒA�, f ŒM� is a right ideal of A, and therefore, since
A is right simple, f ŒM� D A. By Lemma 1.61.1 (c), M has a minimal left ideal with
an idempotent, so by Exercise 1.7.3 (3), we may we can choose a minimal idempotent
pa of M for each a 2 A n ¹zº such that f .pa/ D a.

By Exercise 1.7.3, f ŒL� is a minimal left ideal of VA. Since A � A is a two sided
ideal of VA, we have f ŒL� � A�A. Since L � Sp, we have Lp D L. We claim that
f ŒL� D A � ¹zº. Indeed f ŒL� D f ŒLp� D f ŒL�z � .A � A/z D A � ¹zº. Thus
f ŒL� is a left ideal of VA contained in the minimal left ideal A�¹zº, and is thus equal
to A � ¹zº as claimed. Trivially pL � pS \ L. Also, given x 2 pS \ L, one has
px D x, so x 2 pL. Thus pL D pS \L so by Lemma 1.61.1 (b), pL has a minimal
left ideal with an idempotent. Further, f ŒpL� D zf ŒL� D z.A � ¹zº/ D A� ¹zº and
for each a 2 A, .a; z/ is a minimal idempotent of A�¹zº so by Exercise 1.7.3 (3), we
may pick an idempotent qa 2 pL such that f .qa/ D .a; z/. We have thus shown that
we can choose L, hpaia2A, and hqaia2A as in the second paragraph of the theorem.

Now we assume that we have chosen any L, hpaia2A, and hqaia2A satisfying the
conditions of the second paragraph of the theorem. For a 2 A we define g.a/ D pa.
For a; b 2 A, we define g.a; b/ D qapb . Then given a; b 2 A, f .g.a// D f .pa/ D
a and f .g.a; b// D f .qapb/ D .a; z/b D .a; b/ so f ı g is the identity on VA.
Further, each qa 2 pL � L � K.S/ so gŒA � A� � K.S/.

It remains to show that g is a homomorphism. Notice that for any a 2 A, g.a; z/ D
qap D qa because qa 2 pL � L � Sp. Since A and the set of idempotents
in pf �1ŒA� are both right zero semigroups, g is a homomorphism on A. Now let
a; b; c; d 2 A.

(i) We have qb 2 pL so pqb D qb. Also pap D g.a/g.z/ D g.z/ D p.
Therefore g.a/g.b; c/ D paqbpc D papqbpc D pqbpc D qbpc D g.b; c/ D
g.a.b; c//.

(ii) g.b; c/g.d/ D qbpcpd D qbpd D g.b; d/ D g..b; c/d/.

(iii) Since qa and qc are idempotents in L, which is a minimal left ideal of S , we
have qaqc D qa. Therefore g.a; b/g.c; d/ D qapbqcpd D qag.b/g.c; d/ D

qag.c; d/ D qaqcpd D qapd D g.a; d/ D g..a; b/.c; d//.

Corollary 9.40. Let S , A, and f satisfy the hypotheses of Theorem 9.39. Let p be
a minimal idempotent of f �1ŒA� and let q be a minimal idempotent of S for which
q 
 p. Then p and q are members of a subsemigroup of S algebraically isomorphic
to VA with q in the copy of A � A.

Proof. We put z D f .p/. If L is the minimal left ideal of S which contains q, then
L D Lq D Lqp � Sp. Now f .q/ 2 K.VA/ D A � A, by Exercise 1.7.3. Since
q D qp, f .q/ 2 .A�A/z D A� ¹zº. So f .q/ D .a; z/ for some a 2 A, and we can
choose qa D q in the statement of Theorem 9.39.
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Theorem 9.41. ˇN contains an algebraic copy of VˇN , with the copy of the rectan-
gular semigroup ˇN � ˇN contained in K.ˇN/.

Proof. The countable semigroup VN is dense in the topological semigroup VˇN . It
follows from Theorem 6.4 that there is a continuous surjective homomorphism f W

H ! VˇN . Also f �1ŒˇN� is a compact right topological semigroup and therefore
contains a minimal left ideal with an idempotent. So, by Theorem 9.39, there is
an injective homomomorphism g W VˇN ! H with gŒˇN � ˇN� � K.H/. By
Lemma 6.8, H meets K.ˇN/. So, by Theorem 1.65, KŒH� � KŒˇN�.

It is easy to get idempotents whose sum is an idempotent. Any idempotents in the
same minimal left or minimal right ideal have that property. It was unknown for a long
time whether there were idempotents whose sum was an idempotent but not equal to
either of them.

Corollary 9.42. There exist minimal idempotents p and q in ˇN such that p C q is
an idempotent, p C q ¤ p, and p C q ¤ q.

Proof. By Theorem 9.41 there is a copy of the rectangular semigroup ˇN � ˇN
contained in K.ˇN/. In a rectangular semigroup all elements are idempotents. If
a ¤ c and b ¤ d , then .a; b/.c; d/ … ¹.a; b/; .c; d/º.

Theorem 9.39 allows us to choose certain minimal idempotents in ˇN guaranteed
to be in an algebraic copy of the rectangular subsemigroup ˇN � ˇN of VˇN .

Theorem 9.43. Let E denote an infinite subset of ! whose complement is infinite,
and let C D ¹n 2 N W supp.n/ � Eº. Then C \H is a compact subsemigroup of H.
Let p be a minimal idempotent in C \H. If q is a minimal idempotent in H for which
q 
 p, then q is a member of an algebraic copy of the rectangular subsemigroup
ˇN � ˇN of VˇN .

Proof. The fact that C \ H is a compact subsemigroup of ˇN follows from Theo-
rem 4.20 with A D ¹C \ 2nN W n 2 Nº, and the observation that, ifm; n 2 C satisfy
max.supp.m// < min.supp.n//, then mC n 2 C .

Let � W ¹2n W n 2 !º ! VN be any surjective mapping for which the inverse image
of every singleton subset of VN is infinite and for which �Œ¹2n W n 2 Eº� D N and
�Œ¹2n W n 2 ! n Eº� D N � N. We can extend � to N by putting �.

P
i2F 2

i / DQ
i2F �.2

i / for every F 2 Pf .!/. Then, if m; n 2 N satisfy max.supp.m// <
min.supp.n//, �.m C n/ D �.m/�.n/. It follows from Lemma 6.3 that the contin-
uous extension e� W ˇN ! VˇN defines a surjective homomorphism on H. We put
f D e� jH.
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We have that f ŒH� D VˇN and for r 2 H, f .r/ 2 ˇN if and only if r 2 C . (The
proof of these assertions is Exercise 9.5.2.) Now f �1ŒˇN� D C \ H is a compact
right topological semigroup and so has a minimal left ideal with an idempotent.

Our claim now follows from Corollary 9.40.

Question 9.44. Does every minimal idempotent of ˇN belong to an algebraic copy
of the rectangular subsemigroup ˇN � ˇN of VˇN?

Exercise 9.5.1. Let A be an infinite compact topological space and let f W ˇN !
VA be a continuous homomorphism. Show that the homomorphism g W VA ! ˇN
guaranteed by Theorem 9.39 cannot be continuous. (Hint: Choose a 2 A and an
infinite injective sequence hanin2N in A. Apply Theorem 6.54.1 to the sequence
g.a; an/ in H.)

Exercise 9.5.2. Let f and C be as in the proof of Theorem 9.43. Prove that f ŒH� D
VˇN and for r 2 H, f .r/ 2 ˇN if and only if r 2 C . Also prove that H n C is an
ideal of H.

9.6 Notes

Y. Zelenyuk proved in [391] that CH implies that, if G is a countably infinite discrete
Boolean group, then, for any n 2 N, there is right maximal idempotent p 2 G� for
which j¹x 2 G� W xCp D pºj D n. It follows from Theorem 7.28 that this statement
holds for N and for all discrete countably infinite maximally periodic groups

Theorem 9.10 was proved by I. Protasov (in a personal communication). Y. Ze-
lenyuk proved in [412] that, if S is any infinite cancellative semigroup, then S� con-
tains a uniform strongly right maximal idempotent.

Topologies of the kind discussed in Theorem 9.13 have been studied by T. Papazyan
[317]. Topologies defined by compact subsemigroups of ˇS , where S denotes a dis-
crete semigroup, were studied in [243] in collaboration with I. Protasov. For some,
but not all, compact subsemigroups C of S�, it is possible to define a topology on S
for which S is left topological by choosing the sets of the form ¹sA [ ¹sº W C � Aº
as a base for the neighbourhoods of the point s 2 S . Y. Zelenyuk proved in [413] that
every finite subsemigroup C of S� defines a topology on S in this way. In this paper,
he showed that, if S is an infinite discrete cancellative semigroup with an identity,
then, for every n 2 N, there is a chain C of n idempotents in U.S/ which defines a
zero-dimensional Hausdorff topology on S .

Theorem 9.15, Theorem 9.16, Corollary 9.17, and Theorem 9.19 are due to I. Pro-
tasov (in personal communications).

Topologies on S defined by idempotents in ˇS have had signicant applications in
set theoretic topology. Corollary 9.17 answers an old unpublished question of E. van
Douwen, who wanted to know if there were any homogeneous regular topologies
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that are maximal among topologies with no isolated points. Y. Zelenyuk proved the
following striking results in [398]:

(1) A countable topological group in which the elements of order 2 do not form
a neighbourhood of the identity, can be partitioned into infinitely many dense
subsets.

(2) A countable maximally almost periodic group which contains only a finite num-
ber of elements of order 2, can be partitioned into infinitely many subsets each
of which is dense in every nondiscrete group topology.

The semigroups X� , defined in Exercise 9.2.3, were introduced by Y. Zelenyuk in
[392].

Theorem 9.27.1 is from [223], a result of collaboration with I. Leader.
Theorem 9.28 is due to J. Baker, A. Lau, and J. Pym, in [17].
Corollary 9.42 is due to Y. Zelenyuk in [397]. In that paper he introduced a class C

of semigroups of idempotents which have the following property: for every V in
C and every continuous homomorphism f from a compact right topological semi-
group S onto a compact right topological semigroup containing V algebraically, there
exists a homomorphism g W V ! S for which f ı g is the identity of V . Every semi-
group in C is a chain of rectangular semigroups. Furthermore, he showed that every
finite semigroup V of idempotents with this property must be in C .

Theorem 9.39 is a simple special case of a more powerful theorem in [272], a paper
written in collaboration with Y. Zelenyuk. In this paper, it was shown that ˇN contains
a semigroup of idempotents whose rectangular components are all copies of the 2c �
2c rectangular semigroup and form a decreasing chain indexed by c C 1, with the
minimum component contained in K.ˇN/. As a fortuitous corollary, we were able to
show that ˇN contains decreasing 
L-chains of idempotents of length c.



Chapter 10

Homomorphisms

In this chapter, we shall consider continuous homomorphisms defined on subsemi-
groups of ˇS , where S denotes a countable discrete semigroup which is commutative
and cancellative.

Given two semigroups which are also topological spaces, we shall say that they are
algebraically and topologically equivalent or that one is a copy of the other, if there
is a mapping from one to the other which is both a homeomorphism and an algebraic
isomorphism.

We have seen that copies of H occur everywhere, because of the remarkable facility
with which homomorphisms can be defined on H. (See Theorem 6.32, for example).

In contrast, if S and T are countably infinite discrete semigroups which are com-
mutative and cancellative, there are surprisingly few continuous injective homomor-
phisms mapping ˇT into ˇS or T � into S�, and none at all mapping ˇT into S�. In
particular, there are no topological and algebraic copies of ˇN in N�. Of course, any
injective homomorphism from T into S does determine a continuous injective homo-
morphism from ˇT into ˇS , as well as a continuous injective homomorphism from
T � into S� (by Exercise 3.4.1 and Theorem 4.8). We shall see in Theorems 10.30
and 10.31 that it is true that every continuous injective homomorphism from ˇT into
ˇS , and almost true that every continuous injective homomorphism from T � into S�,
must arise in this way as the extension of an injective homomorphism from T into S .

If S and T are groups and if L andM are principal left ideals in S� and T � respec-
tively, defined by nonminimal idempotents, we shall see that any mapping between
L and M which is both an isomorphism and a homeomorphism must arise from an
isomorphism between S and T . We shall also see that any two distinct principal left
ideals of ˇN defined by nonminimal idempotents cannot be copies of each other.
Whether this statement holds for minimal left ideals is an open question.

We remind the reader that, if S is a commutative discrete semigroup, then S is
contained in the center of ˇS (by Theorem 4.23). We shall frequently use this fact
without giving any further reference.

We shall use additive notation throughout this chapter, except on one occasion
where we present two results about .N; � /, because .N;C/ is the most important
semigroup to which our discussion applies and because this notation in convenient for
some of the proofs.
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10.1 Homomorphisms to the Circle Group

In this section we develop some algebraic information related to natural homomor-
phisms from a subsemigroup of .R;C/, the primary example being N, to the circle
group T . This information is of interest for its own sake and will be useful in Sec-
tion 10.2 and again in Section 16.4 where we produce a large class of examples of sets
with special combinatorial properties.

We take the circle group T to be R=Z and shall use ˚ for the group operation
in T . We define 
 to be the natural projection of R onto T . If t1; t2 2 T we shall
write t1 � t2 if there exists u1; u2 2 R such that 
.u1/ D t1, 
.u2/ D t2 and
u1 < u2 < u1 C

1
2

.

Lemma 10.1. Let S be an infinite discrete semigroup and let h W S ! T be an
injective homomorphism, witheh denoting its continuous extension. Let

U D ¹x 2 S� W ¹s 2 S Weh.x/ � h.s/º 2 xº;
D D ¹x 2 S� W ¹s 2 S W h.s/ �eh.x/º 2 xº; and

Z D ¹x 2 S� Weh.x/ D 0º:
Then U \D D ;, U [DD S�, and U \Z and D \Z are nonempty. Furthermore,
U and D are both right ideals of ˇS .

Proof. Let x 2 S�, let T1 D ¹s 2 S Weh.x/ � h.s/º and T2 D ¹s 2 S W h.s/ �eh.x/º.
Then T1 \ T2 D ;. Since jS n .T1 [ T2/j 
 1, T1 2 x or T2 2 x. Thus x … U \D
and x 2 U [D.

We now show that U \ Z and D \ Z are nonempty. Let p be an idempotent in
S�. Sinceeh is a homomorphism (by Corollary 4.22), p 2 Z. Suppose that p 2 U .
Then we can choose a sequence htni1nD1 in hŒS� for which 
.0/ � tn for every n and
tn ! 
.0/. Now ehŒˇS� is a compact subsemigroup of T and is therefore a group
(by Exercise 2.2.3). Hence, for each n 2 N, we can choose yn 2 ˇS for whicheh.yn/ D �tn. Let y 2 S� be a limit point of the sequence hyni1nD1. Then y 2 Z andeh.yn/ D �tn � 
.0/ for every n. For each n 2 N, yn 2 c`.¹s 2 S W h.s/ � 
.0/º/
and so y 2 c`.¹s 2 S W h.s/ � 
.0/º/. Thus ¹s 2 S W h.s/ � 
.0/º 2 y and y 2 D.
This shows that p 2 U implies that D \ Z ¤ ;. Similarly, p 2 D implies that
U \Z ¤ ;. So U \Z and D \Z are nonempty.

We now show that U is a right ideal of ˇS . Suppose that x 2 U and that y 2
ˇS . Choose u and v in R such that 
.u/ D eh.x/ and 
.v/ D eh.y/. Let X D
¹s 2 S W eh.x/ � h.s/º. Then X 2 x. Given a 2 X , let a 2 .u; u C 1

2
/ satisfy


.a/ D h.a/. Put Ya D ¹s 2 S W h.s/ 2 
Œ.v C u � a; v C u C 1
2
� a/�º. Now


Œ.vCu�a; vCuC 1
2
�a/� is a neighborhood of 
.v/ Deh.y/ in T , and so Ya 2 y. By

Theorem 4.15, ¹aC b W a 2 X and b 2 Yaº 2 x C y. We claim that ¹aC b W a 2 X
and b 2 Yaº � ¹s 2 S W eh.x C y/ � h.s/º so that x C y 2 U as required. To
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this end let a 2 X and b 2 Ya. Pick w 2 .v C u � a; v C u C 1
2
� a/ such that


.w/ D h.b/. Sinceeh and 
 are homomorphisms we haveeh.xCy/ D 
.uCv/ and
h.aCb/ D 
.aCw/. Since uCv < aCw < uCvC 1

2
, we haveeh.xCy/ � h.aCb/

as required.
This establishes that U is a right ideal of ˇS . The proof that D is a right ideal of

ˇS is essentially the same.

The following notation does not reflect its dependence on the choice of the semi-
group S .

Definition 10.2. Let S be a subsemigroup of .R;C/ and let ˛ be a positive real
number. We define functions g˛ W S ! Z, f˛ W S ! Œ�1

2
; 1
2
/, and h˛ W S ! T as

follows for x 2 S :

g˛.x/ D
j
x˛ C

1

2

k
I

f˛.x/ D x˛ � g˛.x/I

h˛.x/ D 
.f˛.x//:

We shall use fg˛, ff˛ , and fh˛ to denote the continuous extensions of these functions
which map ˇS to ˇZ, Œ�1

2
; 1
2
�, and T respectively, where S has the discrete topology.

These exist because the spaces ˇZ, Œ�1
2
; 1
2
�, and T are compact.

Note that g˛.x/ is the nearest integer to x˛ if x˛ … Z C 1
2

. We shall use the
fact that, for any p 2 ˇS and any neighborhood U of ff˛.p/, the fact that ff˛ is
continuous implies that ff˛�1ŒU � is a neighborhood of p and hence that f˛

�1ŒU � 2 p

(by Theorem 3.22).

Lemma 10.3. Let S be a subsemigroup of .R;C/ and let ˛ > 0. The map h˛ is a
homomorphism from S to T . Consequently fh˛ W ˇS ! T is also a homomorphism.

Proof. We note that h˛.x/ D 
.˛x/ and so h˛ is a homomorphism. The second
conclusion then follows by Corollary 4.22.

Definition 10.4. Let S be a subsemigroup of .R;C/ and let ˛ > 0.

(a) U˛ D ¹p 2 ˇS W ¹x 2 S Wff˛.p/ < f˛.x/º 2 pº.
(b) D˛ D ¹p 2 ˇS W ¹x 2 S Wff˛.p/ > f˛.x/º 2 pº.
(c) Z˛ D ¹p 2 ˇS Wff˛.p/ D 0º.
(d) X˛ D U˛ \Z˛.

(e) Y˛ D D˛ \Z˛.

Observe that U˛ and D˛ are the set of points of ˇS for which ff˛ approaches its
value from above and below respectively.
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Definition 10.5. Let S be a subsemigroup of .R;C/ and let ˛ 2 R. Then ˛ is
irrational with respect to S if and only if

˛ …
° n

a � b
W n 2 Z; a; b 2 S , and a ¤ b

±
[
°n
a
W n 2 Z and a 2 S n ¹0º

±
:

Saying that ˛ is irrational with respect to S means that h˛ is one-to-one on S and
that 0 … h˛ŒS n ¹0º�.

Notice that “irrational with respect to N” is simply “irrational”. Notice also that if
jS j < c, then the set of numbers irrational with respect to S is dense in R.

Remark 10.6. Suppose that S is a subsemigroup of .R;C/ and that ˛ > 0 is irra-
tional with respect to S . Let U , D and Z be the sets defined in Lemma 10.1 with
h D h˛. Then U D U˛, D D D˛ and Z D Z˛ n ¹0º.

Lemma 10.7. Let S be a subsemigroup of .R;C/ and let ˛ > 0 be irrational with
respect to S . Then U˛ [D˛ D S�.

Proof. This is immediate from Lemma 10.1 and Remark 10.6.

The following result is of interest because, given the continuity of �p , it is usually
easier to describe left ideals of ˇS . (See for example Theorem 5.20.)

Theorem 10.8. Let S be a subsemigroup of .R;C/ and let ˛ > 0 be irrational with
respect to S . Then U˛ and D˛ are right ideals of ˇS .

Proof. This is immediate from Lemma 10.1 and Remark 10.6.

In the following lemma, all we care about is that c`ˇS .Na/ \ U˛ ¤ ; and that
c`ˇS .Na/ \D˛ ¤ ;. We get the stronger conclusion for free, however.

Lemma 10.9. Let S be a subsemigroup of .R;C/ and let ˛ > 0 be irrational with
respect to S . Then for each a 2 Sn¹0º, c`ˇS .Na/\X˛ ¤ ; and c`ˇS .Na/\Y˛ ¤ ;.

Proof. We apply Lemma 10.1 with h replaced by h˛ and S replaced by Na. Then
c`ˇS .Na/ \X˛ D U \Z ¤ ; and c`ˇS .Na/ \ Y˛ D D \Z ¤ ;.

For the remainder of this section we restrict our attention to N.
Notice that, while h˛ is a homomorphism on .ˇN;C/, it is not a homomorphism

on .ˇN; � /. However, close to 0 it is better behaved.

Theorem 10.10. Let S D N and let ˛ be a positive irrational number. Then X˛ and
Y˛ are left ideals of .ˇN; � /.
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Proof. We establish the statement for X˛, the proof for Y˛ being nearly identical.
Let p 2 X˛ and let q 2 ˇN. We first observe that, for any m; n 2 N, if jf˛.n/j <
1
2m

, then f˛.mn/ D mf˛.n/.
To see that qp 2 X˛, let � > 0 be given (with � 
 1

2
). For each m 2 N, let

Bm D ¹n 2 N W 0 < f˛.n/ <
�
m
º and note that Bm 2 p. Thus by Theorem 4.15,

¹mn W m 2 N and n 2 Bmº 2 qp. since ¹mn W m 2 N and n 2 Bmº � ¹k 2 N W 0 <
f˛.k/ < �º, it follows that qp 2 X˛.

Of course, as the kernel of a homomorphism, Z˛ is a subsemigroup of .ˇN;C/
for any ˛ > 0. Consequently, by Theorem 10.8, if ˛ is irrational, then X˛ and Y˛ are
subsemigroups of .ˇN;C/.

Corollary 10.11. Let S D N and let ˛ be a positive irrational number. Then Z˛ is a
subsemigroup of .ˇN; � /.

Proof. Since ˛ is irrational, ¹n 2 N W f˛.n/ D 0º D ; so by Lemma 10.7, Z˛ D
X˛ [ Y˛ so the result follows from Theorem 10.10.

The following result is our main tool to be used in Section 16.4 in deriving nontriv-
ial explicit examples of IP* sets and central* sets.

Theorem 10.12. Let S D N and let ˛ > 0. Then fg˛ is an isomorphism and a
homeomorphism from Z˛ onto Z1=˛ with inverse eg1=˛. If ˛ is irrational, then fg˛
takes X˛ onto Y1=˛ and takes Y˛ onto X1=˛ .

Proof. We show that

(1) if p; q 2 Z˛ , then fg˛.p C q/ Dfg˛.p/Cfg˛.q/,
(2) if p 2 Z˛, then fg˛.p/ 2 Z1=˛,

(3) if p 2 Z˛, then eg1=˛.fg˛.p// D p,

(4) if p 2 X˛, then fg˛.p/ 2 Y1=˛, and

(5) if p 2 Y˛, then fg˛.p/ 2 X1=˛.

Then using the fact that the same assertions are valid with 1=˛ replacing ˛ proves the
theorem. Notice that the hypotheses of statements (4) and (5) are nonvacuous only
when ˛ is irrational.

To verify (1), let p; q 2 Z˛ and let 0 < � < 1
4

. Let A D ¹m 2 N W jg˛.m/ �

˛mj < �º. If n and m are in A, then jg˛.m/ C g˛.n/ � ˛.m C n/j < 2� < 1
2

so
g˛.m/C g˛.n/ D g˛.mC n/. Also, A 2 p and A 2 q so

fg˛.pCq/ D p-lim
m2A

q-lim
n2A

g˛.mCn/ D p-lim
m2A

q-lim
n2A

.g˛.m/Cg˛.n// Dfg˛.p/Cfg˛.q/:
To verify (2) and (3), let p 2 Z˛ and let q D fg˛.p/. Let � 2 .0; ˛

2
/ and let B D

¹n 2 N W jf˛.n/j < �º. For any n 2 N, we have jf˛.n/j < � if and only if jm�n˛j <
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� where m D g˛.n/. Now jm � n˛j < � if and only if jm 1
˛
� nj < �

˛
. The second

inequality establishes that n is the integer closest to m 1
˛ and hence that n D g 1

˛
.m/.

Thus we have seen that n 2 B implies both jf 1
˛
.g˛.n//j <

�
˛

and n D g 1
˛
.g˛.n//. So

jff 1
˛
.q/j D p-lim

n2B

jf 1
˛
.g˛.n//j 


�
˛

and p D p-lim
n2B

n D p-lim
n2B

g 1
˛
.g˛.n// D fg 1

˛
.q/.

This establishes (2) and (3).
To verify (4), let p 2 X˛, let � > 0 be given with � < 1=2, and let B D ¹n 2

N W �� < f1=˛.n/ < 0º. We need to show B 2 g˛.p/. Pick ı > 0 with ı < � � ˛.
Let C D ¹n 2 N W 0 < f˛.n/ < ıº. We show g˛ŒC � � B . Let n 2 C and let
m D g˛.n/ so that m < ˛n < m C ı. Then m=˛ < n < m=˛ C ı=˛ < m=˛ C �

so n � � < m=˛ < n and hence m 2 B as required. This establishes (4), and (5) is
shown in just the same way.

Exercise 10.1.1. It is a fact that if F and G are disjoint finite nonempty subsets of R
and F [G is linearly independent over Q, then

T
˛2F U˛\

T
˛2GD˛ ¤ ;. Use this

fact, together with Theorem 10.8 to show that .ˇN;C/ has a collection of 2c pairwise
disjoint right ideals. (This fact also follows from Theorem 6.44.)

Exercise 10.1.2. Let ˛ > 0 and let p; q 2 ˇN. Prove that fg˛.p C q/ 2 ¹fg˛.p/ Cfg˛.q/;fg˛.p/Cfg˛.q/ � 1;fg˛.p/Cfg˛.q/C 1º.
Exercise 10.1.3. Let ˛ > 0 be irrational, let k 2 N with k > ˛, and let ı D k � ˛.
Prove that

(i) for all p 2 ˇN, fh˛.p/ D �ehı.p/,
(ii) Z˛ D Zı ,

(iii) X˛ D Yı , and

(iv) Y˛ D Xı .

10.2 Homomorphisms from ˇT into S �

We know that topological copies of ˇN are abundant in N�. Indeed, every infinite
compact subset of N� contains a copy of this kind, by Theorem 3.59. However, as we
shall show in this section, there are no copies of the right topological semigroup ˇN
in N�. In fact, if � W ˇN ! N� is a continuous homomorphism, then �ŒˇN� is finite
and j�ŒN��j D 1.

We shall show that, if S and T are countable, commutative, cancellative semigroups
and if S can be embedded in the unit circle, then we can often assert that �ŒT �� is a
finite group whenever � W ˇT ! S� is a continuous homomorphism.

Lemma 10.13. Let S be an infinite discrete semigroup which can be algebraically
embedded in T and let V be an infinite subsemigroup of S . Then, for every x and p
in S�, there exists y 2 V � for which x C y C p ¤ y C p C x.



258 Chapter 10 Homomorphisms

Proof. Let h W S ! T be an injective homomorphism, witheh W ˇS ! T denoting
its continuous extension. Let U and D be defined as in Lemma 10.1. By this lemma,
applied to V instead of S , if U 0 D ¹y 2 V � W ¹s 2 V W eh.y/ � h.s/º 2 yº and
D0 D ¹y 2 V � W ¹s 2 V W h.s/ �eh.y/º 2 yº, then U 0 and D0 are nonempty.

Let x; p 2 S�. If x 2 U , we can choose y 2 D0. Since D0 � D and U and D are
right ideals of ˇS , xCyCp 2 U and yCpCx 2 D and so xCyCp ¤ yCpCx.
Similarly, if x 2 D, we can choose y 2 U 0 and deduce that xCyCp ¤ yCpCx.

Lemma 10.14. Suppose that S is a countably infinite discrete semigroup which can
be algebraically embedded in T and that T is a countably infinite commutative weakly
left cancellative semigroup. Let � W ˇT ! S� be a continuous homomorphism. Then
K.�ŒT ��/ is a finite group. Furthermore, for every c 2 T , ¹b 2 T W �.b C c/ 2
K.�ŒT ��/º is infinite.

Proof. Observe that by Theorem 4.23, if a 2 S , then a commutes with every member
of ˇS . Also, if t 2 T , then t commutes with every member of ˇT and hence �.t/
commutes with every member of �ŒˇT �.

We shall show that if p is any minimal idempotent in �ŒT �� and q 2 T � with
�.q/ D p, then

(1) there exists t 2 T such that �.t/ 2 �ŒT ��C p and

(2) given any c 2 T and any B 2 q, there exists t 2 T such that �.b/ C �.c/ 2
K.�ŒT ��/.

To see this, let such p and q be given, let c 2 T , and let B 2 q. Let V D
¹a 2 S W a C �.q/ 2 �ŒˇT �º. We claim that V is finite. Suppose instead that V is
infinite, and notice that V is a subsemigroup of S . (Given a; b 2 V , aC b C �.q/ D
a C b C �.q/ C �.q/ D a C �.q/ C b C �.q/.) For every y 2 V �, we have
y C �.q/ 2 �ŒˇT �, by the continuity of ��.q/. Then for every y 2 V �, we have
�.c/C y C �.q/ D y C �.q/C �.c/ which contradicts Lemma 10.13.

Choose A 2 �.c/ for which A \ V D ;. Now �.c/ C �.q/ D �.q/ C �.c/,
�.c/C �.q/ 2 c`.AC �.q//, and �.q/C �.c/ 2 c`.�ŒB�C �.b//. It follows from
Theorem 3.40 that one of the two following possibilities must hold:

(i) aC �.q/ D �.v/C �.c/ for some a 2 A and some v 2 ˇT I

(ii) uC �.q/ D �.b/C �.c/ for some b 2 B and some u 2 ˇS .

The first possibility is ruled out by the assumption that A \ V D ;. So we may
suppose that (ii) holds. Let t D bC c. Then �.t/ 2 ˇS Cp and so �.t/Cp D �.t/.
Since �.t/ D �.tCq/C�.q/ and tCq 2 T � (by Theorem 4.31), �.t/ 2 �ŒT ��Cp �
K.�ŒT ��/. Thus (1) and (2) hold.

Now let p be a minimal idempotent in �ŒT �� and pick by (1) t 2 T such that
�.t/ 2 �ŒT ��C p. Let F D �ŒT ��C �.t/. Then, since t 2 T , F D �.t/C �ŒT ��

so F is both a minimal left ideal and a minimal right ideal of �ŒT ��, and is therefore
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a group (by Theorem 1.61). Since F is compact, it must be finite, because an infinite
compact subset of ˇS cannot be homogeneous by 6.38.

If p0 is any other minimal idempotent in �ŒT ��, there exists t 0 2 T such that
�.t 0/ 2 �ŒT �� C p0. Now �.t C t 0/ D �.t 0 C t /, and so the minimal left ideals
�ŒT �� C p0 D �ŒT �� C �.t 0/ and �ŒT �� C p D �ŒT �� C �.t/ of �ŒˇT � intersect.
They are therefore equal. This shows that F is the unique minimal left ideal of �ŒT ��
and so F D K.�ŒT ��/ (by Theorem 1.64).

The fact that ¹b 2 T W �.b C c/ 2 K.�ŒT ��/º is infinite for each c 2 T follows
immediately from (2).

Theorem 10.15. Suppose that S is a countably infinite discrete semigroup which can
be algebraically embedded in the unit circle. Let T be a countably infinite commuta-
tive weakly left cancellative semigroup with the property that any ideal of T has finite
complement and let � W ˇT ! S� be a continuous homomorphism. Then �ŒˇT � is
finite and �ŒT �� is a finite group.

Proof. By Lemma 10.14, if F D K.�ŒT ��/, then F is a finite group. Let I D
��1ŒF �. We claim that I \ T is an ideal of T . It follows from Lemma 10.14 that
I \ T ¤ ;. If c 2 I \ T , then �.c/ D �.c/ C p for some minimal idempotent
p of �ŒT ��. There exists q 2 T � for which �.q/ D p. For every b 2 T , we have
�.bCc/ D �.b/C�.c/ D �.b/C�.c/C�.q/ D �.bCqCc/ D �.bCq/C�.c/ 2

K.�ŒT ��/. So b C c 2 I \ T and we have shown that I \ T is an ideal of T .
Thus T n I is finite. Given q 2 T �, I 2 q and so �ŒT �� � F . Since �ŒˇT � �

�ŒT n I � [ F , �ŒˇT � is finite. Since �ŒT �� is a finite cancellative semigroup, it is a
group by Exercise 1.3.1.

Notice that the hypotheses of Theorem 10.15 are satisfied in each of the following
three cases.

(i) T is a countably infinite commutative group;

(ii) T D .N;C/; or

(iii) T D .N;_/.

The following lemma is simple and well known.

Lemma 10.16. Let G be a commutative group with identity 0 which contains no
elements of finite order apart from 0. If jGj 
 c, then G can be embedded in .R;C/.

Proof. Let jGj D �. Suppose thatG n¹0º has been arranged as a �-sequence ha˛i˛<�
and that, for each ˇ < �, Gˇ denotes the subgroup of G generated by ¹a˛ W ˛ 
 ˇº.

We define f0 W G0 ! R by putting f0.na0/ D n for each n 2 Z. We then
make the inductive assumption that 0 < ˇ < � and that we have defined an injective
homomorphism f˛ W G˛ ! R for every ˛ < ˇ. We also assume that f˛ � f˛0
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whenever ˛ < ˛0 < ˇ. We shall show that we can define fˇ so that these properties
hold with ˇ replaced by ˇ C 1.

Let H D
S
˛<ˇ G˛ and f D

S
˛<ˇ f˛. Then f W H ! R is an injective

homomorphism. Notice that Gˇ D H C Zaˇ .
Assume first that Zaˇ \H D ¹0º. Then we can choose s 2 Rn .Qf ŒH�/, because
jQf ŒH�j < c. We define fˇ W H C Zaˇ ! R by stating that fˇ .b C ma/ D

f .b/ C ms for every b 2 H and every m 2 Z. Then fˇ is well defined because
Zaˇ \H D ¹0º and is easily seen to be an injective homomorphism.

Thus we may assume that kaˇ D c for some k 2 Z n ¹0º and some c 2 H . We
define fˇ W H CZaˇ ! R by stating that fˇ .bCmaˇ / D f .b/C

m
k
f .c/ for every

b 2 H and every m 2 Z.
To see that fˇ is well defined, suppose that bCmaˇ D b0Cm0aˇ , where b; b0 2 H

andm;m0 2 Z. Then k.b0�b/ D k.m�m0/aˇ D .m�m0/c and so k.f .b0/�f .b// D

.m �m0/f .c/ and f .b/C m
k
f .c/ D f .b0/C m0

k
f .c/.

It is easy to see that fˇ is a homomorphism. To see that it is injective, suppose that
fˇ .bCmaˇ / D 0 for some b 2 H and somem 2 Z. Then f .b/Cm

k
f .c/ D 0 and so

f .kbCmc/ D 0. Since f is injective, kbCmc D 0. That is to say, k.bCmaˇ / D 0
and so b Cmaˇ is of finite order in G and hence b Cmaˇ D 0.

Thus we can define an injective homomorphism fˇ W Gˇ ! R for every ˇ < �,
so that fˇ � fˇ 0 whenever ˇ < ˇ0 < �. Then

S
ˇ<� fˇ W G ! R is an injective

homomorphism.

Theorem 10.17. Let G be a countably infinite commutative group which contains no
nontrivial finite subgroups, and let T be a countably infinite commutative weakly left
cancellative semigroup with the property that any ideal of T has finite complement. If
� W ˇT ! G� is a continuous homomorphism, then �ŒˇT � is finite and j�ŒT ��j D 1.

Proof. By Lemma 10.16, G can be embedded in R and therefore in T . (If S is a
countable subsemigroup of R, we can choose ˛ 2 R such that ˛ is irrational with
respect to S . The mapping h˛ then embeds S in T ). Thus it follows from Theorem
10.15 that �ŒˇT � is finite and �ŒT �� is a group. By Theorem 7.17, G� contains no
nontrivial finite subgroups and so j�ŒT ��j D 1.

Theorem 10.18. If � W ˇN ! N� is a continuous homomorphism, �ŒˇN� is finite
and j�ŒN��j D 1.

Proof. This follows from Theorem 10.17 with T D N and G D Z.

Question 10.19. Is there any continuous homomorphism � W ˇN ! N� for which
j�ŒˇN�j ¤ 1?

We note that, in view of Theorem 10.18, there are two simple equivalent versions
of Question 10.19
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Corollary 10.20. The following statements are equivalent:

(a) There is a nontrivial continuous homomorphism from ˇN to N�.

(b) There exist p ¤ q in N� such that p C p D q C p D p C q D q C q D q.

(c) There is a finite subsemigroup of N� whose elements are not all idempotent.

Proof. (a) implies (b). Let � W ˇN ! N� be a nontrivial continuous homomorphism.
Then by Theorem 10.18, �ŒˇN� is finite and there is some q 2 N� such that �ŒN�� D
¹qº. There is a largest x 2 N such that �.x/ ¤ q. (Since � is nontrivial, there is some
such x, and if infinitely many x have �.x/ ¤ q and r 2 c`¹x 2 N W �.x/ ¤ qº\N�,
then �.r/ ¤ q.) Let p D �.x/.

(b) implies (c). The set ¹p; qº is such a subsemigroup.
(c) implies (a). Let S be a finite subsemigroup of N� whose elements are not all

idempotent and pick p 2 S which is not an idempotent. Define a homomorphism f

from N to S by stating that f .n/ is the sum of p with itself n times and let � be the
continuous extension of f to ˇN. Then � is a homomorphism by Corollary 4.22 and
� is nontrivial because ¹pº is not a semigroup.

Question 10.21. Which discrete semigroups S have the property that any continuous
homomorphism from ˇS to S� must have a finite image?

10.3 Homomorphisms from T � into S �

A good deal of specialized notation will apply throughout this section. S and T will
denote countably infinite discrete semigroups which are commutative and cancella-
tive. G will denote the group generated by S and 0 will denote the identity of G. (So
G is a countably infinite commutative group in which every element can be expressed
as the difference of two elements of S ). We shall regard S as embedded in G and ˇS
as embedded in ˇG.

We shall assume that T has an identity. (This is no real restriction, because an
identity can be adjoined to any semigroup).

We shall assume that we have chosen sequential orderings for G and T . For each
m 2 N, Gm will denote the set whose elements are the first m elements of G, and Tm
will denote the set whose elements are the first m elements of T .

We shall suppose that � W T � ! S� is a continuous injective homomorphism. We
choose q to be a nonminimal idempotent in T � and we put p D �.q/. (The existence
of a nonminimal idempotent in T � follows from Corollary 6.34.)

Lemma 10.22. �ŒK.T �/� D K.�ŒT ��/.

Proof. The mapping � defines an isomorphism from T � onto �ŒT ��.
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Lemma 10.23. For every s 2 S and every x 2 ˇS , s C x 2 K.ˇS/ implies that
x 2 K.ˇS/.

Proof. Suppose that s C x 2 K.ˇS/. Since K.ˇS/ is a union of groups (by Theo-
rem 1.64), there is an idempotent u 2 K.ˇS/ for which s C x C u D s C x. By
Lemma 8.1 this implies that x C u D x and hence that x 2 K.ˇS/.

Lemma 10.24. There is a subset Y D ¹tn W n 2 Nº of T with the following proper-
ties:

(i) For every y 2 Y � and every b; c 2 T , �.b C q/ … ˇG C �.c C y/C p.

(ii) For every m and n in N, every a 2 Gm, and every b; c 2 Tm, if m < n, then
�.b C tm C q/ ¤ aC �.c C tn C q/.

Proof. We can choose a minimal idempotent u 2 T � satisfying u D qCu D uCq (by
Theorem 1.60). We note that �.u/ is in the smallest ideal of �ŒT �� by Lemma 10.22.

We claim that, for every b 2 T , �.b C q/ … ˇG C �.u/. To see this, we note that
�.b C q/ 2 ˇG C �.u/ implies that �.b C q/ D �.b C q/C �.u/ 2 K.�ŒT ��/. By
Lemma 10.22, this would imply that b C q 2 K.T �/ and hence that q 2 K.T �/ (by
Lemma 10.23). This contradicts our choice of q.

So for each b 2 T , �.b C q/ has a clopen neighborhood Wb in ˇG disjoint from
the compact subset ˇG C �.u/ of ˇG. For each a 2 G and each b; c 2 T , let

Ea;b;c D ¹x 2 T
� W aC �.c C x/C p 2 Wbº:

By the continuity of the map x 7! aC�.cCx/Cp, Ea;b;c is a clopen subset of T �.
We note that u … Ea;b;c , because aC �.c C u/C p D aC �.c C uC u/C �.q/ D
aC�.cCu/C�.uCq/. Since uCq D u, aC�.cCu/Cp 2 ˇGC�.u/ � ˇGnWb .
Thus

S
a2G

S
b2T

S
c2T Ea;b;c ¤ T �, because u does not belong to this union. It

follows from Exercise 3.4.5 that there is a nonempty open subset U of T � disjoint
from

S
a2G

S
b2T

S
c2T Ea;b;c . We can choose an infinite subset V of T for which

V � � U .
We claim that, if y 2 V � and b; c 2 T , then �.bC q/ … ˇGC�.cCy/Cp. Sup-

pose, on the contrary, that �.bCq/ 2 ˇGC�.cCy/Cp. SinceWb is a neighborhood
of �.bC q/ in ˇG and we are assuming that �.bC q/ 2 c`.G C �.c C y/C p/, we
must have aC�.cCy/Cp 2 Wb for some a 2 G. This implies that y 2 Ea;b;c and
contradicts our assumptions that y 2 U and U \Ea;b;c D ;.

To obtain property (ii), we shall enumerate V as ¹vn W n 2 Nº and then replace
hvni

1
nD1 by a subsequence htni1nD1 defined inductively.

We put t1 D v1. We then assume that we have chosen elements t1; t2; : : : ; tk in
¹vn W n 2 Nº with the following property: if i; j 2 ¹1; 2; : : : ; kº, a 2 Gi , b; c 2 Ti ,
and i < j , then �.b C ti C q/ ¤ aC �.c C tj C q/.

Suppose that i 2 ¹1; 2; : : : ; kº. If a 2 G and b; c 2 T , we claim there are at most
a finite number of values of n for which �.bC ti C q/ D aC �.c C vn C q/. To see
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this, suppose that this set of values of n is infinite. Then the corresponding elements
vn have a limit point y in V � satisfying �.b C ti C q/ D a C �.c C y C q/ D

aC �.c C y/C p. We have seen that this cannot occur.
It follows that we can choose vn with the property that �.bC ti C q/ ¤ aC�.cC

vn C q/ whenever i 2 ¹1; 2; : : : ; kº, a 2 Gk and b; c 2 Tk . We put tkC1 D vn. This
shows that we can define a sequence htni1nD1 with the property specified in (ii).

We then put Y D ¹tn W n 2 Nº. The fact that Y � � V � implies that property (i)
holds as well.

Lemma 10.25. Let Y denote the set guaranteed by Lemma 10.24, let y 2 Y � and let
t 2 T . Then �.t C y/C p is right cancelable in ˇG.

Proof. If we suppose the contrary, then �.t C y/C p D xC �.t C y/C p for some
x 2 G� (by Theorem 8.18). Now �.t C y/ C p 2 c`.¹�.t C tn C q/ W n 2 Nº/,
because �.t C y/C p D �.t C y C q/ and t C y C q 2 c`.¹t C tn C q W n 2 Nº/.
We also have x C �.t C y/ C p 2 c`..G n ¹0º/C �.t C y/C p/. It follows from
Theorem 3.40 that �.t C tn C q/ D x0 C �.t C y/C p for some n 2 N and some
x0 2 ˇG, or else �.t C y0 C q/ D a C �.t C y/ C p for some y0 2 Y � and some
a ¤ 0 in G.

The first possibility contradicts condition (i) of Lemma 10.24, and so we shall as-
sume the second. Let m 2 N satisfy a;�a 2 Gm and t 2 Tm. Since �.t C y0C q/ 2
c`.¹�.t C tn C q/ W n > mº/ and aC�.tCy/Cp 2 c`.¹aC �.t C tnC q/ W n > mº/,
a second application of Theorem 3.40 allows us to deduce that �.t C tn C q/ D

a C �.t C y00 C q/ or �.t C tn C q/ D �a C �.t C y00 C q/ for some n > m in N
and some y00 2 c`.¹tn W n > mº/. Now, by condition (i) of Lemma 10.24, neither of
these equations can hold if y 00 2 Y �. So y00 D tr for some r > m. By condition (ii)
of Lemma 10.24, neither of these equations can hold if r ¤ n. However, they cannot
hold if r D n, by Lemma 6.28.

Thus �.t C y/C p is right cancelable in ˇG.

Lemma 10.26. Let Y D ¹tn W n 2 Nº be the set guaranteed by Lemma 10.24.
Suppose that �.b C y C q/ 2 ˇG C �.c C y C q/ for some b; c 2 T and some
y 2 Y �. Then �.c C q/ 2 G C �.b C q/.

Proof. Since �.bC y C q/ 2 c`.�Œb C Y C q�/ and �.bC y C q/ 2 c`.GC �.cC
y C q//, it follows from Theorem 3.40 that �.bC tnC q/ 2 ˇG C �.c C y C q/ for
some n 2 N, or else �.b C z C q/ D aC �.c C y C q/ for some z 2 Y � and some
a 2 G. The first possibility is ruled out by condition (i) of Lemma 10.24, and so we
assume the second.

We choose m 2 N such that a;�a 2 Gm and b; c 2 Tm. Now �.b C z C q/ 2

c`.¹�.bC tnC q/ W n > mº/ and aC�.cCyCq/ 2 c`.aC¹�.cC tnC q/ W n > mº/.
So a second application of Theorem 3.40 shows that there exists n > m in N and
v 2 c`.¹tn W n > mº/ satisfying �.bC tnCq/ D aC�.cCvCq/ or �.bCvCq/ D
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aC �.c C tn C q/. By condition (i) of Lemma 10.24, neither of these equations can
hold if v 2 Y �. So v D tr for some r > m. However, by condition (ii) of Lemma
10.24, neither of these equations can hold if r ¤ n. Thus r D n.

So �.bC tnC q/ D a0C �.cC tnC q/, where a0 2 ¹a;�aº. By adding �.yC q/
on the right of this equation, we see that �.b C q/C �.tn C y C q/ D a0 C �.c C

q/C �.tn C y C q/. By Lemma 10.25, �.tn C y C q/ is right cancelable in ˇG. So
�.b C q/ D a0 C �.c C q/ and �.c C q/ 2 G C �.b C q/.

Lemma 10.27. For every c 2 T , �.c C q/ 2 G C p.

Proof. Let Y be the set guaranteed by Lemma 10.24 and let y 2 Y �. For every b 2 T ,
we have �.cCq/C�.bCyCq/ D �.bCq/C�.cCyCq/. It follows from Corollary
6.20 that �.bCyCq/ 2 ˇGC�.cCyCq/ or �.cCyCq/ 2 ˇGC�.bCyCq/.
In either case, Lemma 10.26 implies that �.c C q/ 2 G C �.b C q/. By choosing b
to be the identity of T , we deduce that �.c C q/ 2 G C p.

In the statement of the following theorem, we remind the reader of the standing
hypotheses that have been applying throughout this section.

Theorem 10.28. Let S and T be countably infinite, commutative, and cancellative
semigroups and assume that T has an identity. Let G be the group generated by S
and assume that � W T � ! S� is a continuous injective homomorphism. Then there
is an injective homomorphism f W T ! G such that ef .x/ D �.x/ for every x 2 T �.

Proof. By Lemma 10.27, for each t 2 T , there exists a 2 G for which �.t C q/ D
aCp. This element ofG is unique, by Lemma 6.28. We define f W T ! G by stating
that �.t C q/ D f .t/C p. It is easy to check that f is an injective homomorphism,
and so ef is also an injective homomorphism (by Exercise 3.4.1 and Corollary 4.22).

Since �.tCq/ D f .t/Cp for every t 2 T , it follows by continuity that �.xCq/ Def .x/C p for every x 2 ˇT .
Let Y be the set guaranteed by Lemma 10.24 and let y 2 Y �. For every x 2 T �,

we have �.x/C�.yC q/ D �.xCyC q/ D ef .xCy/Cp D ef .x/Cef .y/Cp Def .x/ C �.y C q/. Now �.y C q/ is right cancelable in ˇG, by Lemma 10.25. Soef .x/ D �.x/.
Corollary 10.29. Let f denote the mapping defined in Theorem 10.28 and let T 0 D
f �1ŒS�. Then T 0 is a subsemigroup of T for which T n T 0 is finite.

Proof. It is immediate that T 0 is a subsemigroup of T . By Theorem 10.28, ef .x/ D
�.x/ 2 S� for every x 2 T �. Thus, if x 2 T �, then S 2 ef .x/ so T 0 D f �1ŒS� 2 x
by Lemma 3.30. Consequently T n T 0 is finite.
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Theorem 10.30. Let S and T be countably infinite, commutative, and cancellative
semigroups and assume that T has an identity and that � W T � ! S� is a continuous
injective homomorphism. There is a subsemigroup T 0 of T for which T n T 0 is finite,
and an injective homomorphism h W T 0 ! S for which eh.x/ D �.x/ for every
x 2 T �.

Proof. Let f denote the mapping defined in Theorem 10.28. We put T 0 D f �1ŒS�

and let h D fjT 0 . Our claim then follows from Corollary 10.29 and Theorem 10.28.

The necessity of introducing T 0 in Theorem 10.30, is illustrated by choosing T D !
and S D N. Then T � and S� are isomorphic, but there are no injective homomor-
phisms from T to S . In this example, T 0 D T n ¹0º.

In the case in which S is a group we have S D G and hence T 0 D f �1ŒS� D

f �1ŒG� D T .

Theorem 10.31. Let S and T be countably infinite, commutative, and cancellative
semigroups and assume that T has an identity. Suppose that � W ˇT ! ˇS is a
continuous injective homomorphism. Then there is an injective homomorphism f W

T ! S for which � D ef .

Proof. Let � D �jT � . We observe that �ŒT �� � S�, because x 2 T � implies that
�.x/ is not isolated in ˇS and hence that �.x/ … S . By Theorem 10.28 there is an
injective homomorphism f W T ! G such that �.x/ D ef .x/ for every x 2 T �.

Let Y denote the set guaranteed by Lemma 10.24 and let y 2 Y �. For each t 2 T ,
we have �.tCyCq/ D �.t/C�.yCq/ D �.t/C�.yCq/ and also �.tCyCq/ Def .t C y C q/ D f .t/Cef .y C q/ D f .t/C �.y C q/. By Lemma 10.25, �.y C q/
is right cancelable in ˇG. So f .t/ D �.t/. Now f .t/ 2 G and �.t/ 2 ˇS so
f .t/ 2 S .

Theorem 10.32. Let S and T be countably infinite, commutative, and cancellative
semigroups and assume that T has an identity. Then S� does not contain any topo-
logical and algebraic copies of ˇT .

Proof. This is an immediate consequence of Theorem 10.31.

At this point in the first edition, we asked, as Question 10.33, whether N� contains
an algebraic and topological copy of Z. We have presented the affirmative answer to
that question in Section 7.4.

Exercise 10.3.1. Show that the only topological and algebraic copies of N� in N�

are the sets of the form .kN/�, where k 2 N.
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Exercise 10.3.2. Show that the only topological and algebraic copies of Z� in Z� are
the sets of the form .kZ/�, where k 2 Z n ¹0º.

Exercise 10.3.3. Show that the only topological and algebraic copies of .N�;C/ in
.N�; � / are those induced by mappings of the form n 7! kn from N to itself, where
k 2 N n ¹1º.

Exercise 10.3.4. Let S be an infinite discrete cancellative semigroup. Show that S�

contains an algebraic and topological copy of N. (Hint: By Theorem 8.10, there is
an element p 2 S� which is right cancelable in ˇS . Define pn for each n 2 N by
stating that p1 D p and pnC1 D pn C p for every n 2 N. Then ¹pn W n 2 Nº is an
algebraic and topological copy of N.)

Exercise 10.3.5. Show that N� contains an algebraic and topological copy of !.
(Hint: Let p be an idempotent in N� for which FS.h3ni1nD1/ 2 p and let q 2
c`.¹2 � 3n W n 2 Nº/ \ N�. Define xn for every n 2 ! by stating that x0 D p,
x1 D p C q C p and xnC1 D xn C x1 for every n 2 N. Then ¹xn W n 2 !º is
an algebraic and topological copy of !. To see that ¹xn W n 2 !º is discrete, con-
sider the alterations of 1’s and 2’s in the ternary expansion of integers. For example,
¹
P
t2F1

3t C
P
t2F2

2 � 3t C
P
t2F3

3t W maxF1 < minF2 and maxF2 < minF3º 2
x1.)

10.4 Isomorphisms Defined on Principal Left and Right
Ideals

In this section, we shall discuss continuous isomorphisms between principal left ideals
or principal right ideals defined by idempotents.

Throughout this section, S and T will denote countably infinite discrete semi-
groups, which are commutative and cancellative, G will denote the group generated
by S and H will denote the group generated by T .

Lemma 10.34. Suppose that p and q are nonminimal idempotents in S� and T �

respectively, and that  W q C ˇT C q ! pC ˇS C p is a continuous isomorphism.
Let S 0 D ¹a 2 G W aC p 2 ˇSº and T 0 D ¹b 2 H W b C q 2 ˇT º. Then  .q/ D p
and there is an isomorphism f W T 0 ! S 0 such that  .t C q/ D f .t/C p for every
t 2 T 0.

Proof. Since q is in the center of q C ˇT C q,  .q/ is in the center of p C ˇS C p.
So  .q/ D a C p for some a 2 G (by Theorem 6.63). Since  .q/ is idempotent, it
follows from Lemma 6.28 that a is the identity of G and hence that p D  .q/.

For every t 2 T 0, t C q D q C .t C q/C q is in q C ˇT C q and is in the center
of this semigroup. So  .t C q/ is in the center of p C ˇS C p. It follows from
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Theorem 6.63 that  .t C q/ D s C p for some s 2 G. We note that s 2 S 0 and that
the element s is unique (by Lemma 6.28). So we can define a mapping f W T 0 ! S 0

such that  .t C q/ D f .t/C p for every t 2 T 0.
It is easy to see that f is injective and a homomorphism. To see that f is surjective,

let s 2 S 0. Since s C p is in the center of p C ˇS C p, s C p D  .x/ for some x in
the center of qCˇT Cq. We must have x D tCq for some t 2 T 0 by Theorem 6.63,
and this implies that f .t/ D s.

Lemma 10.35. Let p and q be nonminimal idempotents in S� and T � respectively.
Let S 0 D ¹a 2 G W a C p 2 ˇSº and let T 0 D ¹b 2 H W b C q 2 ˇT º. If
 W ˇT C q ! ˇS C p is a continuous isomorphism, then  .q/ is a nonminimal
idempotent, ˇS C p D ˇS C  .q/, and there is an isomorphism f W T 0 ! S 0 for
which  .t C q/ D f .t/C  .q/ for every t 2 T 0.

Proof. We first show that ˇS C p D ˇS C  .q/. On the one hand,  .q/ 2 ˇS C p
and so ˇS C  .q/ � ˇS C p. On the other hand,  �1.p/ D  �1.p/ C q and so
p D  . �1.p/C q/ D p C  .q/ and therefore ˇS C p � ˇS C  .q/. It follows
that  .q/ is a nonminimal idempotent (by Theorem 1.59).

We also observe that ¹a 2 G W aC p 2 ˇSº D ¹a 2 G W aC  .q/ 2 ˇSº. To see,
for example, that ¹a 2 G W a C p 2 ˇSº � ¹a 2 G W a C  .q/ 2 ˇSº, let a 2 G
and assume that aC p 2 ˇS . Then aC  .q/ D aC  .q/C p D  .q/C aC p 2
ˇS C ˇS � ˇS .

The result now follows from Lemma 10.34 and the observation that  defines a
continuous isomorphism from q C ˇT C q onto  .q/ C ˇS C  .q/. (To see that
 .q/CˇSC .q/ �  .qCˇT Cq/, let r 2  .q/CˇSC .q/. Then r D rC .q/
so r D  .v/ for some v 2 ˇT C q. Then q C v 2 q C ˇT C q and  .q C v/ D
 .q/C r D r .)

We omit the proof of the following lemma, since it is essentially similar to the
preceding proof.

Lemma 10.36. Let p and q be nonminimal idempotents in S� and T � respectively.
Let S 0 D ¹a 2 G W a C p 2 ˇSº and let T 0 D ¹b 2 H W b C q 2 ˇT º. If
 W q C ˇT ! p C ˇS is a continuous isomorphism, then  .q/ is a nonminimal
idempotent, p C ˇS D  .q/C ˇS , and there is an isomorphism f W T 0 ! S 0 such
that  .t C q/ D f .t/C  .q/ for every t 2 T 0.

Lemma 10.37. Suppose that y 2 G� nK.ˇG/. Let f W H ! G be an isomorphism.
Then there is an element x 2 T � for which ef .x/C y is right cancelable in ˇG.

Proof. We note that ef W ˇH ! ˇG is an isomorphism and so ef ŒK.ˇH/� D K.ˇG/.
By Lemma 6.65, T \K.ˇH/ ¤ ;, and so f ŒT �\K.ˇG/ D ef ŒT \K.ˇH/� ¤ ;. It
follows from Theorem 6.56 (with S D G) that there is an element v 2 G� such that
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f ŒT � 2 v and v C y is right cancelable in ˇG. Since v 2 ef ŒT �, v D ef .x/ for some
x 2 T �.

Theorem 10.38. Suppose that G and H are countable discrete commutative groups
and that L and M are principal left ideals in ˇG and ˇH respectively, defined by
nonminimal idempotents. If  W M ! L is a continuous isomorphism, there is an
isomorphism f W H ! G for which  D ef jM .

Proof. Let L D ˇG C p and M D ˇH C q, where p and q are nonminimal idem-
potents in G� and H� respectively. By applying Lemma 10.35 with G D S D S 0

and H D T D T 0, we see that  .q/ is nonminimal and there is an isomorphism
f W H ! G such that  .t C q/ D f .t/C  .q/ for every t 2 H . By continuity, this
implies that  .x C q/ D ef .x/C  .q/ for every x 2 ˇH .

For x 2 ˇH , we have  .qC xC q/ D ef .qC x/C .q/ D ef .q/Cef .x/C .q/
and also  .q C x C q/ D  .q/C  .x C q/ D  .q/C ef .x/C  .q/. So ef .q/Cef .x/C  .q/ D  .q/C ef .x/C  .q/ for every x 2 ˇH . By Lemma 10.37, we can
choose x 2 ˇH such that ef .x/C .q/ is right cancelable in ˇG. Thus .q/ D ef .q/.
This implies that  .x C q/ D ef .x C q/ for every x 2 ˇH .

Theorem 10.39. Suppose that L and M are principal left ideals in ˇN defined by
nonminimal idempotents. If  W M ! L is a continuous isomorphism then M D L

and  is the identity map.

Proof. Let p and q be nonminimal idempotents in ˇN for which L D ˇN C p and
M D ˇN C q. Then L D ˇZ C p and M D ˇZ C q, since, given r 2 ˇZ,
r C p D r C p C p 2 ˇN C p because N� is a left ideal in ˇZ (by Exercise 4.3.5).
SoL andM are principal left ideals in ˇZ defined by nonminimal idempotents in Z�.
It follows from Theorem 10.38 that there is an isomorphism f W Z ! Z for which
 D ef jM . Now there are precisely two isomorphisms from Z to itself: the identity
map t 7! t and the map t 7! �t . We can rule out the possibility that f is the second
of these maps, because this would imply that ef .q/ … ˇN. Hence f is the identity
map and so is  .

Theorem 10.40. LetG andH be countable commutative groups and let L andM be
principal right ideals inG� andH� respectively, defined by nonminimal idempotents.
Suppose that there is a continuous isomorphism  W M ! L. Then there is an
isomorphism f W H ! G for which ef ŒM� D L.

Proof. Let p and q be nonminimal idempotents inG� andH� respectively for which
L D p C ˇG and M D q C ˇH . By applying Lemma 10.36 with G D S D S 0

and H D T D T 0, we see that  .q/ is nonminimal and there is an isomorphism
f W H ! G such that  .t C q/ D f .t/ C  .q/. It follows, by continuity, that
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 .x C q/ D ef .x/ C  .q/ for every x 2 M . Putting x D q shows that  .q/ Def .q/C  .q/.
On the other hand, we also have, for every x 2 ˇH , that  .q C x C q/ D ef .q/Cef .x/C .q/ and .qCxCq/ D  .q/C .qCxCq/ D  .q/Cef .q/Cef .x/C .q/.

So ef .q/Cef .x/C .q/ D  .q/Cef .q/Cef .x/C .q/ for every x 2 ˇH . We can
choose x 2 H� for which ef .x/C .q/ is right cancelable in ˇG (by Lemma 10.37)
and so ef .q/ D  .q/C ef .q/.

It follows easily that .q/CˇG D ef .q/CˇG. We also know that .q/CˇG D L
(by Lemma 10.36). So ef ŒM� D ef .q/C ˇG D  .q/C ˇG D L.

The preceding results in this section tell us nothing about principal left or right
ideals defined by minimal idempotents.

If S is any discrete semigroup, we know that any two minimal left ideals in ˇS
are both homeomorphic and isomorphic by Theorems 1.64 and 2.11. However, the
maps which usually define homeomorphisms between minimal left ideals are different
from those which define isomorphisms. It may be the case that one minimal left ideal
cannot be mapped onto another by a continuous isomorphism. It is tantalizing that we
do not know the answer to either of the following questions.

Question 10.41. Are there two minimal left ideals in ˇN with the property that one
cannot be mapped onto the other by a continuous homomorphism?

Question 10.42. Are there two distinct minimal left ideals in ˇN with the property
that one can be mapped onto the other by a continuous homomorphism?

10.5 Notes

Most of the result of Section 10.1 are from [50], results of collaboration with V. Ber-
gelson and B. Kra. Theorem 10.8 is due to J. Baker and P. Milnes in [18].

Theorem 10.18 is from [369] and answers a question of E. van Douwen in [127].
Most of the results in Section 10.3 were proved in collaboration with A. Maleki

in [299].
The results in Section 10.2 and Section 10.3 have been extended.
It was shown in [338], a paper written in collaboration with I. Protasov and J. Pym,

that, if � W T � ! S� is a continuous surjective homomorphism, where S and T are
arbitrary discrete groups, then there is a surjective homomorphism f W T ! S for
which � D ef jT � , where ef W ˇT ! ˇS denotes the continuous extension of f . It was
also shown in [338] that, if � W T � ! S� is a continuous injective homomorphism,
where T is a cancellative discrete semigroup and S a countable discrete group, then
we again have � D ef jT � for some homomorphism f W T ! S .

Continuous homomorphisms � W ˇS ! N� were studied in [5] in collaboration
with P. Adams, where S denotes a discrete semigroup. It was shown that, if S is count-
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able and commutative, then jK.�ŒˇS�/j D 1. It was also shown in [5] that, for any
continuous homomorphism � W N� ! N�, jK.�ŒN��/j D 1, j�ŒN��C �ŒN��j D 1

and j�2ŒN��j D 1. Furthermore, every element of �ŒN�� has order at most 2. The
existence of a nontrivial continuous homomorphism � W N� ! N� was shown to
be equivalent to the assumption that N� contains a two-element subsemigroup ¹p; qº
satisfying p C p D p C q D q C p D q C q D q.

Continuous homomorphisms � W T � ! S�, where T denotes a countable discrete
semigroup, S denotes a countable discrete group and T � denotes a left ideal of ˇT
containing T �, were studied in [142] in collaboration with S. Ferri. In the case in
which T � D ˇT , it was shown that �ŒˇT � is a finite group. In the case in which T is
left cancellative, T � D T �, and � is injective, it was shown that � D ef jT � for some
injective homomorphism f W T ! S , where ef W ˇT ! ˇS denotes the continuous
extension of f .
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The Rudin–Keisler Order

Recall that if S is a discrete space, then the Rudin–Keisler order
RK on ˇS is defined
by stating that, for any p; q 2 ˇS , p 
RK q if and only if there is a function f W
S ! S for which ef .q/ D p. Also recall that if p; q 2 ˇS , we write p <RK q if
p 
RK q and q 6
RK p, and we write p �RK q if p 
RK q and q 
RK p.

As a consequence of Theorem 8.17 one notes that while the relation 
RK is clearly
reflexive and transitive, it is not anti-symmetric. The relation 
RK does induce an
antisymmetric partial order on the set of equivalence classes of the equivalence rela-
tion �RK.

The Rudin–Keisler order has proved to be an important tool in analyzing spaces of
ultrafilters. It shows how one ultrafilter can be essentially different from another.

There are deep and difficult theorems about the Rudin–Keisler order which we shall
not attempt to prove in this chapter. Our aim is to indicate some of the connections
between the Rudin–Keisler order and the algebraic structure of ˇS . If S is a discrete
semigroup, one would expect that the Rudin–Keisler order on ˇS would have little
relation to the algebra of ˇS , because any bijective mapping from one subset of S to
another induces a Rudin–Keisler equivalence between ultrafilters, and a bijection may
have no respect for algebraic structure. Nevertheless, there are algebraic properties
which are related to the Rudin–Keisler order. For example, if S is countable and
cancellative, an element q 2 S� is right cancelable in ˇS if and only if p <RK pq

and q <RK pq for every p 2 S� as we shall see in Theorem 11.8.

Exercise 11.0.1. Let S be a discrete space and let p 2 ˇS . Show that p 
 q for
every q 2 ˇS if and only if p 2 S .

Exercise 11.0.2. Let S be a countable discrete space and let p 2 ˇS . Show that
¹q 2 ˇS W q 
RK pº has cardinality at most c.

Exercise 11.0.3. Let S be a discrete semigroup and let a 2 S and p 2 ˇS . Show
that ap 
RK p and pa 
RK p. Show that ap �RK p if S is left cancellative and that
pa �RK p if S is right cancellative.

Exercise 11.0.4. Let S be a countable discrete space and let p be a P-point in S�. If
q 2 S� satisfies q 
RK p, show that q is also a P-point in S�.
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11.1 Connections with Right Cancelability

In this section we shall explore the connections between the relation 
RK and right
cancelability in ˇS . These arise from the fact that both concepts are related to the
topological property of strong discreteness.

Definition 11.1. Let S be a discrete space and let p; q 2 ˇS . The tensor product
p ˝ q of p and q is defined by

p ˝ q D ¹A � S � S W ¹s W ¹t W .s; t/ 2 Aº 2 qº 2 pº:

The reader is asked to show in Exercise 11.1.1 that p˝ q is an ultrafilter on S �S .
If A � S � S , then A 2 p ˝ q if and only if A contains a set of the form ¹.s; t/ W

s 2 P and t 2 Qsº, where P 2 p and Qs 2 q for each s 2 P . Note that, if s; t 2 S ,
we have s ˝ t D .s; t/ where, as usual, we identify the point .s; t/ with the principal
ultrafilter it generates.

We saw in Theorem 3.35 that if S is a discrete space, f W S ! S , ef W ˇS ! ˇS is
its continuous extension, and p 2 ˇS , then ef .p/ D p if and only if ¹x 2 S W f .x/ D
xº 2 p. It is tempting to conjecture that if S is a discrete space, f; g W S ! S ,ef ;eg W ˇS ! ˇS are their continuous extensions, and p 2 ˇS , then ef .p/ D eg.p/
if and only if ¹x 2 S W f .x/ D g.x/º 2 p, and of course, the sufficiency is valid.
Tensor products provide a simple counterexample.

Theorem 11.1.1. Let S be any infinite set. There exist functions f; g W S ! S and
a point p 2 ˇS such that ef .p/ D eg.p/ but ¹x 2 S W f .x/ D g.x/º D ;, whereef W ˇS ! ˇS andeg W ˇS ! ˇS are the continuous extensions of f and g.

Proof. Let T D .S � S/ n ¹.s; s/ W s 2 Sº. Pick any q 2 S� and any 	 W S ���!1-1
onto T .

Note that ¹.s; s/ W s 2 Sº … q ˝ q, so q ˝ q 2 ˇT . Let 
1 and 
2 be the projections
of T to the first and second coordinates respectively and let f
1 W ˇT ! ˇS andf
2 W ˇT ! ˇS be their continuous extensions. Let f D 
1 ı 	 and g D 
2 ı 	 .
Trivially ¹x 2 S W f .x/ D g.x/º D ;. By Exercise 3.4.1, the continuous extensione	 W ˇS ! ˇT is surjective. Pick p 2 ˇS such that e	.p/ D q ˝ q. By Exercise
11.1.5, f
1.q ˝ q/ Df
2.q ˝ q/ D q and consequently f
1 ıe	.p/ Df
2 ıe	.p/.

If we choose any bijection � W S � S ! S , we can regard p ˝ q as being an
ultrafilter on S by identifying it with e�.p ˝ q/, where e� W ˇ.S � S/ ! ˇS is the
continuous extension of �. In particular, if s; t 2 S , then s ˝ t can be identified with
the element �.s; t/ of S .

In this section, we shall sometimes think of ˝ as being a binary operation on S ,
assuming that a bijection � has been chosen. Of course, different bijections will result
in p ˝ q being identified with different elements of ˇS: These will, however, all be
Rudin–Keisler equivalent. So it does not matter which one we choose for studying
properties of the relation 
RK.



Section 11.1 Connections with Right Cancelability 273

Lemma 11.2. Let S be a discrete space and let p; q 2 S�. Then p <RK p ˝ q and
q <RK p ˝ q.

Proof. If 
1 and 
2 are the projection maps from S � S onto S , it is easy to see thatf
1.p ˝ q/ D p and f
2.p ˝ q/ D q. So p 
RK p ˝ q and q 
RK p ˝ q. Now
there is no member of p˝ q on which 
1 or 
2 is injective, and so p 6�RK p˝ q and
q 6�RK p ˝ q by Theorem 8.17.

Lemma 11.3. Let S be a discrete space and let p; q 2 ˇS . Then

p ˝ q D lim
s!p

lim
t!q

.s; t/

where s and t denote elements of S and the limits are taken to be in ˇ.S � S/.

Proof. This is Exercise 11.1.2.

Recall that in Section 4.1, we extended an arbitrary binary operation on S to ˇS .

Lemma 11.4. Let S be a discrete space and let � be a binary operation defined on S .
Let p; q; x; y 2 ˇS . If x 
RK p and y 
RK q, then x � y 
RK p ˝ q.

Proof. Let f W S ! S and g W S ! S be functions for which ef .p/ D x andeg.q/ D y. We define h W S � S ! S by h.s; t/ D f .s/ � g.t/. Then

eh.p ˝ q/ D lim
s!p

lim
t!q

h.s; t/ D lim
s!p

lim
t!q

f .s/ � g.t/ D ef .p/ �eg.q/ D x � y:
Corollary 11.5. Let S be a discrete space and let � be a binary operation defined
on S . For every p; q 2 ˇS , we have p�q 
RK p˝q. Furthermore, if h W S �S ! S

is defined by h.s; t/ D s � t , theneh.p ˝ q/ D p � q.

Proof. The proof is the same as the proof of Lemma 11.4, with f and g taken to be
the identity maps.

Corollary 11.5 shows that, for any p; q 2 ˇS , p ˝ q is a 
RK upper bound of the
set of all elements of the form p � q, where � denotes a binary operation on S . We
now investigate the possibility that p � q �RK p ˝ q.

When we say that an arbitrary binary operation � on S is left cancellative, we mean
exactly the same thing as when the operation is assumed to be associative. That is for
each s 2 S , the map t 7! s � t is injective.

Theorem 11.6. Let S be a discrete space and let � be a left cancellative binary
operation defined on S . Then, for every p; q 2 ˇS , the following are equivalent:

(1) p � q �RK p ˝ q.

(2) There is a set D 2 p for which D � q is strongly discrete and s � q ¤ t � q

whenever s and t are distinct members of D.
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Proof. (1) implies (2). If p � q �RK p ˝ q, there is a set A 2 p ˝ q on which
the mapping .s; t/ 7! s � t from S � S to S is injective (by Corollary 11.5 and
Theorem 8.17.) We may suppose that A D

S
s2D.¹sº � Es/, where D 2 p and

Es 2 q for each s 2 D. Then for each s 2 S , c`ˇS .s �Es/ is a neighborhood of s � q
in ˇS . If s and s0 are distinct elements of D, s � Es and s0 � Es0 are disjoint, and so
c`ˇS .s �Es/ and c`ˇS .s

0 �Es0/ are disjoint.
(2) implies (1). Suppose that for some D 2 p, D � q is strongly discrete and

s � q ¤ t � q whenever s and t are distinct members of D. Then, for each s 2 D,
there is a neighborhood Us of s�q in ˇS such that Us\Us0 D ;whenever s and s0 are
distinct elements ofD. For each s 2 D, we can chooseEs 2 q for which s�Es � Us .
If A D

S
s2D.¹sº � Es/, then A 2 p ˝ q and, since s � Es \ s0 � Es0 D ; when

s ¤ s0 and s � t ¤ s � t 0 when t ¤ t 0, the mapping .s; t/ 7! s � t is injective on A.
So p � q �RK p ˝ q.

Corollary 11.7. Let S be a countable left cancellative discrete semigroup and let q
be a right cancelable element of ˇS . Then pq �RK p ˝ q for every p 2 ˇS .

Proof. By Theorem 8.11, Sq is strongly discrete in ˇS and sq ¤ tq when s ¤ t

in S , and so our claim follows from Theorem 11.6.

We are now able to establish the equivalence of statements (1), (4) and (5) of The-
orem 8.18 under weaker hypotheses.

Theorem 11.8. Suppose that S is a countable cancellative discrete semigroup and
that q 2 S�. Then the following statements are equivalent:

(1) q is right cancelable in ˇS .

(2) p <RK pq and q <RK pq for every p 2 S�.

(3) q <RK pq for every p 2 S�.

(4) q 6�RK pq for every p 2 S�.

Proof. (1) implies (2). If q is right cancelable in ˇS; it follows from Lemma 11.2 and
Corollary 11.7 that p <RK pq and q <RK pq for every p 2 S�.

That (2) implies (3) and (3) implies (4) is trivial.
(4) implies (1). Suppose that q is not right cancelable in ˇS . By Theorem 8.11,

there exist a 2 S and p 2 ˇS n ¹aº such that aq D pq. By Lemma 6.28, p … S . We
have aq �RK q by Exercise 11.0.3. So q �RK pq, a contradiction.

Theorem 11.9. If S is an infinite discrete space, there are no elements of S� which
are maximal in the Rudin–Keisler order. In fact, if jS j D �, every element of S� has
22
�

distinct Rudin–Keisler successors.
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Proof. We may suppose that S is a group, because there are groups of cardinality �.
(The direct sum of � copies of Z2 provides an example.)

It then follows from Theorem 6.30 that there is a subset P of S� such that jP j D
22
�

, ap ¤ bp when a ¤ b in S and Sp is strongly discrete in ˇS for every p 2 P ,
and .ˇS/p \ .ˇS/q D ; whenever p and q are distinct elements of P .

By Lemma 11.2 and Theorem 11.6, x <RK xp for every x 2 S� and every p 2 P .
Since .ˇS/p \ .ˇS/q D ;, xp ¤ xq if p and q are distinct elements of P .

Theorem 11.10. Let S be an infinite discrete cancellative semigroup. There is no
element of S� whose Rudin–Keisler predecessors form a subsemigroup of ˇS .

Proof. Let p 2 S� and let L D ¹x 2 ˇS W x 
RK pº. Let � D kpk and let R 2 p
have cardinality �. We can find a subset V of S with cardinality � such that aq ¤ bq
when a ¤ b in R and Rq is strongly discrete in ˇS for every uniform ultrafilter q
on V by Theorem 6.30. Since R can be mapped bijectively onto V , we can choose a
uniform ultrafilter q on V for which p �RK q: By Theorem 11.6 and Lemma 11.2,
we have p <RK pq. Since p; q 2 L and pq … L, L is not a subsemigroup of ˇS .

Theorem 11.11. Let S be an infinite discrete left cancellative semigroup. LetD � S
and let q 2 S�. Suppose that Dq is strongly discrete in ˇS and that sq ¤ tq

whenever s and t are distinct elements of D. Suppose also that x; y 2 S�, p 2
D \ S�, x 
RK p, and y 
RK q. Then xy 
RK pq.

Proof. By Theorem 11.6, pq �RK p ˝ q. Now xy 
RK p ˝ q by Lemma 11.4.

Corollary 11.12. Let S be a discrete countable left cancellative semigroup and let q
be a right cancelable element of ˇS . Then, for every x; p 2 S�, x 
RK p implies
that xq 
RK pq.

Proof. By Theorem 8.11 (1), Theorem 11.11 applies with y replaced by q.

We now prove a converse to Corollary 11.12.

Theorem 11.13. Let S be a countable cancellative semigroup. Let q be a right can-
celable element of ˇS and let p 2 ˇS satisfy p 
RK q. If x; y 2 S� and xq 
RK yp,
then x 
RK y.

Proof. Let f W S ! S be a function for which ef .yp/ D xq. If q 2 S , then p 2 S
and so x �RK xq 
RK yp �RK y by Exercise 11.0.3, so we may assume that q 2 S�.

Let B D ¹b 2 S W ef .bp/ 2 Sqº. For each b 2 B , there is a unique c 2 S for
which ef .bp/ D cq, by Lemma 6.28. So we can define a function g W S ! S by
putting g.b/ D c if b 2 B , and extending g arbitrarily to S n B . We may suppose
thateg.y/ ¤ x, since otherwise x 
RK y as we wish to prove. So there is a set V 2 y
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for which gŒV � … x. We choose V � B in the case in which B 2 y and we choose
V � S n B if B … y.

We now claim that

for each X 2 x and each Y 2 y, if X � S n gŒV � and Y � V ,
then aq D ef .zp/ for some a 2 X and some z 2 Y .

(�)

To see this, suppose instead that (�) fails and pick X 2 x and Y 2 y witnessing
this failure. Now xq 2 c`.Xq/ \ c`ef ŒYp� so by Theorem 3.40 and the assumption
that (�) fails, we must have wq D ef .bp/ for some w 2 X and some b 2 Y . Then
wq 
RK bp, bp �RK p by Exercise 11.0.3, and p 
RK q by assumption. If w 2 S�,
then by Theorem 11.8, q <RK wq, a contradiction. Thus w 2 S and so b 2 B and
w D g.b/. Also b 2 Y � V so that w 2 gŒV � \ X , contradicting the fact that
gŒV � \X D ;. Thus (�) is established.

Let A D ¹a 2 S W aq 2 ef Œ.ˇS/p�º. If A … x, then letting X D S n .A[gŒV �/ and
Y D V one obtains a contradiction to (�), and so A 2 x. For each a 2 A, let Ca D
¹z 2 ˇS W aq D ef .zp/º. Then Ca D .ef ı�p/�1Œ¹aqº� so Ca is closed. We claim that
for each a 2 A, Ca \ c`.

S
b2An¹aº Cb/ D ;. Indeed, by Theorem 8.11, aq … c`¹bq W

b 2 A n ¹aºº so pick a neighborhood W of aq which misses ¹bq W b 2 A n ¹aºº.
Given z 2 Ca, pick D 2 z such that ef ŒDq� � W . Then D \

S
b2An¹aº Cb D ;.

Thus one can pick for each a 2 A a clopen set Va such that Ca � Va and Va \
.
S
b2An¹aº Cb/ D ;. Let A be sequentially ordered by <. For the first element a0

of A, let Ua0 D Va0 . For later elements, let Ua D Va n
S
b<a Vb . Then for each

a 2 A, Ua is clopen, Ca � Ua, and Ua \ Ub D ; if a ¤ b.
Define h W S ! S by h.s/ D a if s 2 Ua, defining h arbitrarily on S n

S
a2AUa.

We claim thateh.y/ D x. Suppose instead thateh.y/ ¤ x and pick X 2 x such thateh.y/ … X and pick Y 2 y such thatehŒY �\X D ;. We may assume thatX � SngŒV �
and Y � V . Then by (�), aq D ef .zp/ for some a 2 X and some z 2 Y . So z 2 Ua
and thuseh.z/ D a, contradicting the fact thatehŒY � \X D ;.
Corollary 11.14. Let S be a countable cancellative semigroup and let p 2 ˇS . The
following statements are equivalent:

(1) p is right cancelable in ˇS .

(2) For every x; y 2 ˇS , xp 
RK yp implies that x 
RK y.

(3) For every x; y 2 ˇS , xp �RK yp implies that x �RK y.

(4) For every x 2 S�, p <RK xp.

Proof. If p 2 S , then (1) is true by Lemma 8.1, (2) and (3) are true by Exercise 11.0.3,
and (4) is true by Exercises 11.0.1 and 11.0.3. Thus we may assume that p 2 S�.

The equivalence of (1) and (4) follows from Theorem 11.8. To see that (1) implies
(2), let x; y 2 ˇS with xp 
RK yp. If x; y 2 S�, then x 
RK y by Theorem 11.13
and if x 2 S , them x 
RK y by Exercise 11.0.1. Thus it suffices to show that one
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cannot have x 2 S� and y 2 S . Indeed in this case p <RK xp by Theorem 11.8 and
yp �RK p by Exercise 11.0.3 so one would conclude that p <RK p.

It is trivial that (2) implies (3). To see that (3) implies (1), assume that (3) holds and
suppose that p is not right cancelable in ˇS . Pick x ¤ y in ˇS such that xp D yp

and pick X 2 x and Y 2 y such that X \ Y D ;. Now xp 2 Xp and yp 2 Yp so
it follows from Theorem 3.40 that sp D zp, where s 2 X and z 2 Y or s 2 Y and
z 2 X . By (3), this implies that s �RK z and hence, by Exercise 11.0.1, that z 2 S .
This contradicts Lemma 6.28, because s ¤ z.

Theorem 11.15. Let S be a countable discrete space and let � be a left cancellative
binary operation defined on S . Suppose that p; q 2 S and that A 2 p has the
property that A � q is discrete in ˇS and that a � q ¤ b � q whenever a and b are
distinct elements of A. Then p � q 
RK q �p implies that p and q are Rudin–Keisler
comparable.

Proof. We suppose that p�q 
RK q�p, and note that we then have p˝q 
RK q�p

by Theorem 11.6 and the fact that “discrete” and “strongly discrete” are the same in
this case.

Let 
1 and 
2 denote the projection maps of S � S onto S . Then f
1.x ˝ q/ D x

and f
2.x ˝ q/ D q for every x 2 ˇS .
Let f W S ! S � S be a function for which ef .q � p/ D p ˝ q. If P 2 p and

Q 2 q, p ˝ q belongs to each of the sets c`.P ˝ q/ and c`.ef ŒQ � p�/. It follows
from Theorem 3.40 that either

(i) ef .b � p/ D x ˝ q for some b 2 Q and some x 2 P or

(ii) a˝ q D ef .z � p/ for some a 2 P and some z 2 Q.

Now if (i) holds for some P and Q, then f
2 ıef ı �b is a continuous extension of the
function s 7! 
2.f .b � s// taking p to q so that q 
RK p. We may therefore suppose
that (ii) holds for every P 2 p and every Q 2 q.

Let B D ¹b 2 S W f
1.ef .b � p// 2 Sº and define g W S ! S by stating that
g.b/ D f
1.ef .b � p// if b 2 B and defining g arbitrarily on S n B . We claim
thateg.q/ D p, so suppose instead thateg.q/ ¤ p. Pick P 2 p and Q 2 q such thategŒQ�\P D ;. By (ii) pick some a 2 P and some z 2 Q such that a˝q D ef .z�p/.
Thus a Df
1.a ˝ q/ Df
1.ef .z � p// and a is isolated so there is some R 2 z withf
1Œef ŒR � p�� D ¹aº. Pick b 2 R \Q. Then f
1.ef .b � p// D a so b 2 B and thus
g.b/ D a, a contradiction.

Corollary 11.16. Let S be a countable discrete space and let p; q 2 S�. If p˝q 
RK

q ˝ p, then p and q are Rudin–Keisler comparable.

Proof. The hypotheses of Theorem 11.15 are clearly satisfied if ˝ is regarded as a
binary operation on S via a fixed bijection between S � S and S .
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Corollary 11.17. Let S be a discrete countable cancellative semigroup and let q be
a right cancelable element of S�. If p 2 S� and pq 
RK qp, then p and q are
Rudin–Keisler comparable.

Proof. Theorem 11.15 applies by Theorem 8.11 (1).

If S is an infinite discrete semigroup, we know that ˇS is rarely commutative. In
the following corollary, we show something stronger than noncommutativity in the
case in which S is countable and cancellative. In this case, there are elements p and
q of S� for which pq and qp are not Rudin–Keisler comparable.

Corollary 11.18. Let S be a countable infinite discrete cancellative semigroup. There
are elements p; q 2 S� for which pq and qp are not Rudin–Keisler comparable.

Proof. By Theorem 6.36, there are elements p and q of S� which are not Rudin–
Keisler comparable. We may suppose that p and q are right cancelable in ˇS , because
there is an infinite subset T of S with the property that every element of T � is right
cancelable in ˇS (by Theorem 8.10). Since S can be mapped bijectively onto T , p
and q are Rudin–Keisler equivalent to elements in T �. Our claim then follows from
Corollary 11.17.

Exercise 11.1.1. Let S be a discrete space and let p; q 2 ˇS . Show that p ˝ q 2
ˇ.S � S/.

Exercise 11.1.2. Prove Lemma 11.3.

Exercise 11.1.3. We cannot normally use the most obvious function to establish a
relation of the form p ˝ q 
RK q ˝ p. Let f W N � N ! N � N be defined by
f .s; t/ D .t; s/. Show that, for any p; q 2 N�, ef .q ˝ p/ ¤ p ˝ q.

Exercise 11.1.4. Let S be an infinite cancellative semigroup. Show that there is no
element p in S� for which ¹q 2 ˇS W q �RK pº is a subsemigroup of ˇS . (Hint:
Consider the proof of Theorem 11.10.)

Exercise 11.1.5. Let S , 
1, and 
2 be as in Theorem 11.1.1. Prove that for any p
and q in ˇS , f
1.p ˝ q/ D p and f
2.p ˝ q/ D q.

11.2 Connections with Left Cancelability in N�

Because ˇS is a right topological semigroup, left cancelability in ˇS is more difficult
to handle than right cancelability. As we have seen, it is easy to derive connections
between the Rudin–Keisler order and right cancelability. However, whether the anal-
ogous results hold for left cancelability remains a difficult open question, even in ˇN.
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For example, we do not know whether q <RK pCq for every q 2 N�, whenever p is
a left cancelable element of N�. However, we shall see that there is a rich set of left
cancelable elements p in N� for which this statement is true.

Recall that, for each k 2 N, the natural homomorphism hk W Z ! Zk has a con-
tinuous extension fhk W ˇZ ! Zk which is also a homomorphism (by Theorem 4.8).
If x; y 2 ˇN and k 2 N, we may write x 	 y .mod k/ if fhk.x/ Dfhk.y/.
Theorem 11.19. Suppose that p 2 N� and that there exists A 2 p with the property
that x 	 p .mod k/ for every x 2 A� and every k 2 N. Then p <RK p C q and
q <RK p C q for every q 2 N�.

Proof. Let q 2 N�. We observe that there is at most one a 2 A for which a C q 2
A�Cq. To see this, suppose that a; b 2 A satisfy aCq 2 A�Cq and bCq 2 A�Cq.
Then hk.a/ D hk.b/ for every k 2 N and so a D b. We may replace A by A n ¹aº,
if such an element a exists. So we may suppose that AC q is disjoint from A� C q.

We claim that aCq ¤ bCq whenever a ¤ b in A and ACq is strongly discrete in
ˇN. Otherwise we should have bCq D xCq for some b 2 A and some x 2 A n ¹bº,
by Theorem 8.11. Now this cannot hold if x 2 A�; neither can it hold if x 2 A (by
Lemma 6.28). Thus our theorem follows from Theorem 11.6 and Lemma 11.2.

Comment 11.20. The set of ultrafilters p in N� which satisfy the hypotheses of The-
orem 11.19 contains a dense open subset of N�. To see this, let U be any nonempty
clopen subset of N� and let q 2 U . For each k 2 N, let Vk D ¹x 2 ˇN W x 	
q .mod k/º. Then Vk is a clopen subset of ˇN: Since q 2 U \

T1
kD1 Vk , this set is

a nonempty Gı -subset of N� and therefore has a nonempty interior in N� (by Theo-
rem 3.36). Any ultrafilter p in the interior of U \

T1
kD1 Vk satisfies the hypotheses

of Theorem 11.19.

Theorem 11.21. Let hani1nD1 be an infinite increasing sequence in N. Suppose that
either of the two following conditions is satisfied:

(i) For every n 2 N, anC1 is a multiple of an.

(ii) For every m; n 2 N with m ¤ n, an is not a multiple of am.

If A D ¹an W n 2 Nº and p 2 A�, then p <RK p C q and q <RK p C q for every
q 2 N�.

Proof. We first consider the case in which q 2
T1
nD1 nN. For each n 2 N, let

Bn D
TnC1
kD1 akN so that Bn 2 q.

If condition (i) is satisfied, we define f W N ! N by stating that

f .n/ D max¹am W amjnº if amjn for some m;

defining f arbitrarily otherwise. For every n 2 N and every b 2 Bn, f .anCb/ D an.
So am C Bm and an C Bn are disjoint if m ¤ n. Since am C Bm 2 am C q, the
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set A C q is strongly discrete in ˇN and our claim follows from Theorem 11.6 and
Lemma 11.2.

If condition (ii) is satisfied, we define g W N ! N by stating that

g.n/ D min¹am W amjnº if amjn for some m;

defining g arbitrarily otherwise. For every n 2 N and every b 2 Bn, g.anCb/ D an.
So we can again deduce thatACq is discrete and that Theorem 11.6 and Lemma 11.2
apply.

Now let q be an arbitrary element of N�. For each n 2 N, we can choose bn 2 N
satisfying bn C q 	 0 .mod k/ for every k 2 ¹1; 2; : : : ; nº. To see this, let n 2 N be
given. Then ¹c 2 N W c 	 q .mod k/ for every k 2 ¹1; 2; : : : ; nºº 2 q so pick c in this
set. Pickm 2 N such that nŠm > c and let bn D nŠm�c. LetB D ¹bn W n 2 Nº and
let r 2 B�. Then q C r 2

T1
nD1 nN since for each k, ¹b W b C q 	 0 .mod k/º 2 r .

By what we have already proved, with qCr in place of q, we know that aCqCr ¤
b C q C r when a and b are distinct members of A (by Lemma 6.28) and AC q C r
is discrete in ˇN. This is equivalent to stating that a C q C r ¤ x C q C r if a 2 A
and x 2 A n ¹aº, by Theorem 8.11. This implies that aC q ¤ x C q for every a 2 A
and every x 2 A n ¹aº and hence that A C q is strongly discrete. So Theorem 11.6
and Lemma 11.2 apply once again.

Comment 11.22. By Ramsey’s Theorem (Theorem 5.6), every infinite sequence in N
contains an infinite subsequence satisfying the hypotheses of Theorem 11.21. So the
set of ultrafilters p 2 N� to which this theorem applies also contains a dense open
subset of N�.

Theorem 11.23. Let S be a discrete countable cancellative semigroup and let p be a
P-point in S�. Then p <RK pq and q <RK pq for every q 2 S�.

Proof. Let q 2 S�. We note that there is at most one element a of S for which
aq D pq, by Lemma 6.28. Let S 0 D ¹a 2 S W aq ¤ pqº. So S 0 D S or jS nS 0j D 1.

For each b 2 S 0, let Cb D ¹x 2 S� W xq D bqº. Then Cb is a compact subset
of S�. Since p … Cb and since p is a P-point in S�, p …

S
b2S 0 Cb . It follows that

there is a member V of p such that V � S 0 and V \
S
b2S 0 Cb D ;. We claim that

for any b 2 V and any x 2 V n ¹bº, we have bq ¤ xq. To see this, note that the
equation bq D xq cannot hold if x 2 S by Lemma 6.28. Also if x 2 S�, then x … Cb
so bq ¤ xq.

It follows from Theorem 8.11 that Vq is strongly discrete in ˇS . So Theorem 11.6
and Lemma 11.2 apply.

Comment 11.24. We observe that the ultrafilters p 2 N� to which Theorems 11.19,
11.21, and 11.23 apply are left cancelable in ˇZ. This is a consequence of Corollar-
ies 8.36, 8.37, and 8.38 and Theorem 8.39.
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Question 11.25. If p is a left cancelable ultrafilter in N�, must it be true that p <RK

p C q and q <RK p C q for every q 2 N�?

11.3 Further Connections with the Algebra of ˇS

We remind the reader that a family F of subsets of a given set is said to be almost
disjoint if the intersection of any two distinct members of F is finite.

Theorem 11.26. Let A be a subset of N�. If jAj 
 c, the elements of A have a
common 
RK-successor in H.

Proof. We index A as hpxix2R, allowing repetitions if jAj < c. Let hExix2R be an
almost disjoint family of infinite subsets of ¹2n W n 2 Nº. (Such a family exists by
Theorem 3.56.) For each x 2 R, we choose qx 2 Ex \N� such that qx �RK px . For
each F 2 Pf .R/, where Pf .R/ denotes the set of nonempty finite subsets of R, we
put sF D

P
x2F qx , with the terms in the sum occurring in the order of increasing

indices. We order Pf .R/ by set inclusion and choose q to any limit point of the net
hsF iF 2Pf .R/ in ˇN, noting that q 2 H.

Recall that supp.n/ is the binary support of n. For each x 2 R, we define fx W
N ! N by stating that

fx.n/ D min.Ex \ ¹2m W m 2 supp.n/º/ if Ex \ ¹2m W m 2 supp.n/º ¤ ;

and defining fx.n/ arbitrarily otherwise.
We shall show that ef x.q/ D qx for each x 2 R. We suppose that this equation

does not hold. Then we can choose B 2 qx such that fx
�1ŒB� … q, and we can

choose Q 2 q such that fx
�1ŒB� \Q D ;.

Since q is a limit point of the net hsF iF 2Pf .R/, there exists F 2 Pf .R/ such that
x 2 F and Q 2 sF . We can choose a disjoint family hByiy2F of subsets of N
satisfying Bx � Ex\B and, for every y 2 F , By � Ey , By 2 qy , and By\Ex D ;
if y ¤ x. Let M denote the set of all integers m of the form m D

P
y2F ny , where

ny 2 By for each y 2 F . We observe that this expression for m is unique, since each
ny is a power of 2, and that fx.m/ D nx 2 B .

Suppose that F is arranged in increasing order. By Exercise 4.1.6,M 2
P
y2F qyD

sF . Thus we can choose n 2 M \ Q. Since fx.n/ 2 B , it follows that n 2
f �1x ŒB� \Q, contradicting our assumption that this set is empty.

So ef x.q/ D qx and we have px �RK qx 
RK q for every x 2 R.

Corollary 11.27. Let A be a subset of N� with jAj 
 c. The elements of A have
a common 
RK-successor in any given minimal left ideal of ˇN, and they also have
a common
RK-successor in any given minimal right ideal of ˇN. Furthermore, there
is a left ideal L of ˇN and a right ideal R of ˇN such that x <RK y for every x 2 A
and every y 2 L [R.
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Proof. By Theorem 11.26, the elements ofA have a common
RK-successor q in ˇN.
We may suppose that x <RK q for every x 2 A, by Theorem 11.9. Choose p 2
¹nŠ W n 2 Nº \N� such that p �RK q.

Now p is right cancelable in ˇN, by Corollary 8.38. So p <RK u C p for every
u 2 N�, by Theorem 11.8. We also have p <RK p C u for every u 2 N�, by
Theorem 11.21. We can choose u to lie in any given left ideal or in any given right
ideal of ˇN.

Let L D ˇN C p and R D p C ˇN. Then x <RK q �RK p 
RK y for every
x 2 A and every y 2 L [R.

Corollary 11.28. Every minimal left ideal of ˇN contains an increasing 
RK-chain
of order type cC, and so does every minimal right ideal of ˇN.

Proof. Chains of this kind can be constructed by an obvious transfinite induction,
using Corollary 11.27 and Theorem 11.9.

Theorem 11.29. There are at most c elements of N� whose 
RK-successors form a
subsemigroup of ˇN.

Proof. Suppose that p 2 N� has the property that its 
RK-successors from a sub-
semigroup of ˇN. We shall show that q 2 K.ˇN/ implies that p 
RK q.

To see this, let L be the minimal left ideal of ˇN containing q. By Corollary 11.27,
there is an element u 2 L for which p 
RK u. There is also a minimal left ideal M
of ˇN such that p 
RK v for every v 2 M . So p 
RK y for every y 2 M C u since
the successors of p form a semigroup. However, M C u is a left ideal contained in L
and thus M C u D L. Consequently p 
RK q.

The result now follows from the fact that any given element of N� can have at most
c 
RK-predecessors (by Exercise 11.0.2).

11.4 The Rudin–Frolík Order

There are other useful topological order relations on spaces of ultrafilters, one of these
being the Rudin–Frolík order.

Definition 11.30. Let S be a countable discrete space. The Rudin–Frolík order v on
ˇS is defined by stating that, if p; q 2 ˇS , p v q if there is an injective function
f W S ! ˇS for which f ŒS� is discrete in ˇS and ef .p/ D q.

If p; q 2 ˇS , we may write p @ q if p v q and q 6v p.
It is immediate that the relation v is reflexive, and we shall see in the next lemma

that it is transitive. It is not, however, anti-symmetric.
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Lemma 11.31. Let S be a countable discrete space. The relation v on ˇS is transi-
tive.

Proof. Let g W S ! ˇS be an injective function for which gŒS� is discrete in ˇS , and
let X be a countable discrete subset of ˇS . ThenegŒX� is also discrete, because it fol-
lows from Exercise 11.4.1 thateg defines a homeomorphism from ˇS onto c`ˇS gŒS�.

Suppose now that p; q; r 2 ˇS and that p v q and q v r . So there are injective
functions f and g from S to ˇS for which f ŒS� and gŒS� are discrete, ef .p/ D q,
and eg.q/ D r . Then eg ı f is injective by Exercise 11.4.1, egŒf ŒS�� is discrete, and
.Aeg ı f /.p/ Deg.ef .p// D r . So p v r .

We now observe that the assertion that p v q is stronger than the assertion that
p 
RK q.

Lemma 11.32. Let S be a countable discrete space and suppose that p; q 2 ˇS
satisfy p v q. Then p 
RK q.

Proof. This is an immediate consequence of Lemma 6.37 and the fact that this is a
purely set theoretic statement.

We now see that there are elements q 2 S� which are not right cancelable, but have
the property that p v pq for every p 2 S�. We remind the reader that an idempotent
q 2 S� is strongly right maximal if the equation xq D q has the unique solution
x D q in S�. (And strongly right maximal idempotents exist by Theorem 9.10.)

Lemma 11.33. Let G be a discrete countable group and let q be a right maximal
idempotent in G�. Let C D ¹x 2 G� W xq D qº. Then, for every p 2 ˇG, either
p 2 .ˇG/C or there exists P 2 p such that Pq is discrete in ˇG.

Proof. Suppose that p … .ˇG/C . Since C is finite (by Theorem 9.4), .ˇG/C is
compact. So we can choose P 2 p for which P \ .ˇG/C D ;.

We claim that Pq is discrete. If we assume the contrary, then aq 2 c`..P n ¹aº/q/
for some a 2 P . This implies that aq D xq for some x 2 P n ¹aº. Then a�1x 2 C
so x 2 aC , contradicting our choice of P .

Theorem 11.34. Let G be a discrete countable group and let q be a strongly right
maximal idempotent in G�. Then p v pq for every p 2 G�. In fact, for every
p 2 G�, either p @ pq and q <RK pq or p D pq.

Proof. Suppose that p 2 G� and that p ¤ pq. Let C D ¹x 2 G� W xq D qº. Then
C D ¹qº and so we are assuming that p … .ˇG/C , because p 2 .ˇG/q implies that
p D pq. It follows from Lemma 11.33 that we can choose P 2 p such that Pq is
discrete (and hence, being countable, strongly discrete) in ˇS . Further aq ¤ bq when
a and b are distinct elements of P by Lemma 6.28.

So p @ pq and q <RK pq, by Exercise 11.4.5, Lemma 11.2 and Theorem 11.6.
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Exercise 11.4.1. Let S be a countable discrete space and let f W S ! ˇS be an
injective function for which f ŒS� is discrete in ˇS . Show that ef is also injective,
where ef W ˇS ! ˇS denotes the continuous extension of f . (Hint: let x and y be
distinct elements of ˇS and letX and Y be disjoint subsets of S for which X 2 x and
Y 2 y. Observe that f ŒX� \ f ŒY � D f ŒX� \ f ŒY � D ; and apply Theorem 3.40.)

Exercise 11.4.2. Let S be a countable discrete space and let p 2 ˇS . Show that
j¹q 2 ˇS W q v pºj 
 c.

Exercise 11.4.3. Let p; q 2 ˇN. If p v q and q v p, we shall say that p and q are
Rudin–Frolík equivalent. Show that p and q are Rudin–Frolík equivalent if and only
if they are Rudin–Keisler equivalent. (Hint: Use Theorem 8.17 and Lemma 11.32)

Exercise 11.4.4. Let p be a weak P-point in N�. Show that, for any q 2 N�, q v p
implies that p 
RK q. Deduce that p is minimal in N� for the Rudin–Frolík order.

Exercise 11.4.5. Let S be a discrete countable semigroup and let p; q 2 S�. Suppose
that there is a set P 2 p such that Pq is discrete in ˇS and aq ¤ bq whenever a and
b are distinct elements of P . Show that p @ pq. (Hint: Once you have shown that
p v pq, apply Lemma 11.2, Theorem 11.6, and Lemma 11.32 to deduce that one
cannot have pq v p.)

Exercise 11.4.6. Let S be a discrete countable semigroup and let q 2 S� be right
cancelable in ˇS . Show that p @ pq for every p 2 S�. (Hint: Use Exercise 11.4.5
and Theorem 8.11.)

Exercise 11.4.7. Show that every element of N� has 2c distinct Rudin–Frolík succes-
sors. (Hint: Use Exercise 11.4.6, Theorem 6.30, and Theorem 8.11.)

Exercise 11.4.8. Let S be a discrete countable cancellative semigroup and let p 2
S�. Show that p is right cancelable in ˇS if and only if there is an injective function
f W S ! ˇS for which f ŒS� is discrete in ˇS and ef .q/ D qp for every q 2 S�.
(Hint: Use Theorem 8.11. For the sufficiency consider the proof of Lemma 6.37. For
the necessity consider �p.)

11.5 Notes

Some of the results of Sections 11.1 and 11.2 are from [164], obtained in collaboration
with S. García-Ferreira. Theorem 11.10 contrasts strongly with the situation that holds
for the Comfort order of ultrafilters. Given an ultrafilter p on a set S , a space X is
said to be p-compact if and only if whenever f W S ! X , p-lim

s2S

f .s/exists in X .
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One then defines p 
C q for p and q in ˇS if and only if every q-compact space is
p-compact. It is easy to see that p 
RK q implies that p 
C q. It is shown in [164]
that given any semigroup S and any p 2 ˇS , ¹q 2 ˇS W q 
C pº is a subsemigroup
of ˇS .

Corollary 11.27 and Exercise 11.4.8 are based on results in [70], a result of collab-
oration with A. Blass.

Exercise 11.4.4 shows that the existence of elements of N� which are Rudin–Frolík
minimal can be proved in ZFC, because the existence of weak P-points in N� can be
proved in ZFC. (See [285].) This contrasts with the Rudin–Keisler order. The exis-
tence of elements of N� which are minimal in the Rudin–Keisler order does follow
from the Continuum Hypothesis, but cannot be demonstrated in ZFC. In fact, any ul-
trafilter in N� which is minimal in the Rudin–Keisler order has to be a P-point in N�.
(See [109].)

The Rudin–Keisler order was introduced and studied by M. Rudin in [349] and
[350] and independently by H. Keisler in lectures at UCLA in 1967.

The Rudin–Frolík order was implicitly introduced by Z. Frolík in [153] and some
of its basic properties were established by M. Rudin in [350].

There are several very interesting properties of the Rudin–Keisler and Rudin–Frolík
orders that we have not presented because they do not relate to the algebra of ˇS .
Included among these is the equivalence of the following three statements for p 2 ˇS :

(a) p is minimal in the Rudin–Keisler order.

(b) p is a selective ultrafilter. (That is, given any f W S ! S , there is some A 2 p
such that the restriction of f to A is either one-to-one or constant.)

(c) p is a Ramsey ultrafilter. (That is, for every n 2 N and every partition ¹P0; P1º
of ŒS�n, there exist some A 2 p and some i 2 ¹0; 1º such that ŒA�n � Pi .)

Another interesting result is that the Rudin–Keisler equivalence classes (which are the
same as the Rudin–Frolík equivalence classes by Exercise 11.4.3) of Rudin–Frolík
predecessors of a given element of ˇN are linearly ordered by 
RK. A systematic
presentation of these and other results can be found in Sections 9 and 16 of [109].



Chapter 12

Ultrafilters Generated by Finite Sums

We have seen in Theorem 5.8 that if p is an idempotent in .ˇN;C/ and A 2 p,
then A contains FS.hxni1nD1/ for some sequence hxni1nD1 in N. However, it is not
necessarily true that FS.hxni1nD1/ 2 p. We investigate in this chapter the existence
and properties of ultrafilters satisfying the requirement that each A 2 p contains some
FS.hxni1nD1/ with FS.hxni1nD1/ 2 p.

12.1 Martin’s Axiom

We shall have several proofs in this chapter for which Martin’s Axiom is a hypothesis.
Since we expect that Martin’s Axiom may be unfamiliar to many of our readers, we
include in this section an elementary introduction.

We use the terminology which is standard when dealing with Martin’s Axiom, al-
though some of it may seem strange at first glance.

Definition 12.1. A partially ordered set is a pair .P;
/ where P is a nonempty set
and 
 is a transitive and reflexive relation, that is a partial order.

Notice that a partial order is not required here to be anti-symmetric. (However, the
partial orders that we will use are anti-symmetric.)

Definition 12.2. Let .P;
/ be a partially ordered set. A filter in P is a subset G of
P such that

(1) G ¤ ;,

(2) for every a; b 2 G, there is some c 2 G such that c 
 a and c 
 b, and

(3) for ever a 2 G and b 2 P , if a 
 b, then b 2 G.

Thus, if S is a set, a filter on S is a filter in the partially ordered set .P .S/n¹;º;�/.

Definition 12.3. Let .P;
/ be a partially ordered set. A subset D of P is dense in P
if and only if for every a 2 P there is some b 2 D such that b 
 a.

Thus, in more usual terminology, a subset of P is dense if and only if it is cofinal
downward.
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Definition 12.4. Let .P;
/ be a partially ordered set.

(a) Elements a and b of P are compatible if and only if there is some c 2 P such
that c 
 a and c 
 b. (Otherwise they are incompatible.)

(b) .P;
/ is a c.c.c. partially ordered set if and only if whenever D is a subset of
P consisting of pairwise incompatible elements, one has that D is countable.

In the above definition, “c.c.c.” stands for “countable chain condition”. However,
it actually asserts that all antichains are countable.

Definition 12.5. (a) Let � be an infinite cardinal. Then MA.�/ is the assertion that
whenever .P;
/ is a c.c.c. partially ordered set and D is a collection of at most
� dense subsets of P , there is some filter G in P such that for all D 2 D ,
G \D ¤ ;.

(b) Martin’s Axiom is the assertion that for all cardinals �, if ! 
 � < c, then
MA.�/.

We first note that Martin’s Axiom follows from the continuum hypothesis.

Theorem 12.6. MA.!/ is true.

Proof. Let .P;
/ be a partially ordered set and let ¹An W n 2 Nº be a set of dense
subsets of P . Choose a1 2 A1. Inductively, having chosen an 2 An, pick anC1 2
AnC1 such that anC1 
 an. LetG D ¹b 2 P W there is some n 2 N with an 
 bº.

Notice that, for the truth of MA.!/ one does not need that .P;
/ is a c.c.c. partial
order. However, the next theorem (together with Exercise 12.1.1) shows that the c.c.c.
requirement cannot be deleted.

Theorem 12.7. There exist a partially ordered set .P;
/ and a collection D of !1
dense subsets of P such that no filter in P meets every member of D .

Proof. Let P D ¹f W there exists A 2 Pf .N/ such that f W A! !1º. For f; g 2 P
agree that f 
 g if and only if g � f . For each ˛ < !1, let D˛ D ¹f 2 P W ˛ is in
the range of f º and let D D ¹D˛ W ˛ < !1º. Trivially each D˛ is dense in P .

Suppose now that we have a filter G such that G \ D˛ ¤ ; for each ˛ < !1.
Let g D

S
G. We claim that g is a function. To this end, let a; b; c be given with

.a; b/ 2 g and .a; c/ 2 g. Pick f; h 2 G such that .a; b/ 2 f and .a; c/ 2 h and pick
k 2 G such that k 
 f and k 
 h. Then .a; b/ 2 k and .a; c/ 2 k so b D c. But
now g is a function whose domain is contained in N and whose range is all of !1,
which is impossible.

We now illustrate a typical use of Martin’s Axiom. The partially ordered set used
is similar to those used in succeeding sections.
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Recall that a set A of subsets of a set S is an almost disjoint family if and only if
whenever A and B are distinct members of A, jA \ Bj < !.

Definition 12.8. Let S be a set. A set A of subsets of S is a maximal almost disjoint
family if and only if it is an almost disjoint family which is not properly contained in
any other almost disjoint family.

Theorem 12.9. Let A be a maximal almost disjoint family of infinite subsets of a
set S . Then A is not countably infinite.

Proof. This is Exercise 12.1.2.

As a consequence of Theorem 12.9, one sees immediately that the continuum hy-
pothesis implies that any infinite maximal almost disjoint family of subsets of N must
have cardinality c. We shall see that the same result follows from Martin’s Axiom.

Lemma 12.10. Let A be a family of infinite subsets of N with the property that, for
every F 2 Pf .A/, N n

S
F is infinite. Let jAj D �. If MA.�/, then there is an

infinite subset B of N such that A \ B is finite for every A 2 A.

Proof. Let Q D ¹.H;F / W H 2 Pf .N/ and F 2 Pf .A/º. Order Q by agreeing
that .H 0;F 0/ 
 .H;F / if and only if

(1) H � H 0,

(2) F � F 0, and

(3) .H 0 nH/ \
S

F D ;.

It is routine to verify that 
 is a partial order on Q (which is in fact antisymmetric).
Next notice that if .H;F / and .H 0;F 0/ are incompatible elements of Q, then

H ¤ H 0 (since otherwise .H;F [ F 0/ 
 .H;F / and .H;F [ F 0/ 
 .H 0;F 0/ ).
Thus, since jPf .N/j D !, it follows that .Q;
/ is a c.c.c. partially ordered set.

Now, for each A 2 A, let D.A/ D ¹.H;F / 2 Q W A 2 F º. Then given any
.H;F / 2 Q, one has .H;F [ ¹Aº/ 2 D.A/ and .H;F [ ¹Aº/ 
 .H;F /. So D.A/
is dense.

For each n 2 N, let E.n/ D ¹.H;F / 2 Q W H n ¹1; 2; : : : ; nº ¤ ;º. Given any
.H;F / 2 Q, we can choosem > n such thatm …

S
F . Then .H [¹mº;F / 2 E.n/

and .H [ ¹mº;F / 
 .H;F /. So E.n/ is dense in Q
By MA.�/, there is a filter G in Q such that G \D.A/ ¤ ; for each A 2 A and

G \E.n/ ¤ ; for each n 2 N. Let

B D
S
¹H W there is some F with .H;F / 2 Gº:

Since G \ E.n/ ¤ ; for each n 2 N, it follows that B is infinite. We shall show
that A \ B is finite for every A 2 A. To this end, let A 2 A and pick .H;F / 2
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G \D.A/. We claim that A\B � H . Let x 2 A\B and pick some .H 0;F 0/ 2 G
such that x 2 H 0. Since .H;F / 2 G and .H 0;F 0/ 2 G, pick .H 00;F 00/ 2 G
such that .H 00;F 00/ 
 .H;F / and .H 00;F 00/ 
 .H 0;F 0/. Then x 2 H 0 � H 00,
.H 00 nH/ \

S
F D ;, and A 2 F . So x 2 H as required.

Corollary 12.11. Let � < c and let hF˛i˛<� be a family of closed subsets of N�.
Assuming MA.�/, if

S
˛<� F˛ ¤ N�, then c`N�.

S
˛<� F˛/ ¤ N�.

Proof. Let x 2 N� n
S
˛<� F˛. For each ˛ < �, we can choose a clopen subset D˛

of N� such that F˛ � D˛ and x … D˛. We have D˛ D A�˛ for some A˛ � N
by Theorem 3.23. Now

S
˛<� D˛ ¤ N�. Hence, if A D ¹A˛ W ˛ < �º, then A

satisfies the hypotheses of Lemma 12.10. So there is an infinite subset B of N such
that A˛ \ B is finite for every ˛ < �. Our claim then follows from the fact that B�

is a nonempty clopen subset of N� disjoint from each D˛ and therefore disjoint from
each F˛.

Corollary 12.12. Let � < c and let hG˛i˛<� be a family of open subsets of N�.
Assuming MA.�/, if

T
˛<� G˛ ¤ ;, then intN�.

T
˛<� G˛/ ¤ ;.

Proof. This is the dual of Corollary 12.11.

Theorem 12.13. Let A be an infinite almost disjoint family of infinite subsets of N
with jAj D �. If MA.�/, then A is not a maximal almost disjoint family.

Proof. This follows immediately from Lemma 12.10.

Corollary 12.14. Let A be an infinite maximal almost disjoint family of subsets of N
and assume Martin’s Axiom. Then jAj D c.

Proof. By Theorem 12.13 one cannot have jAj < c and, since A � P .N/, jAj 
 c.

We also see as a consequence of the next corollary that Martin’s axiom is the
strongest assertion of its kind which is not simply false.

Corollary 12.15. MA.c/ is false.

Proof. Let B be an infinite set of pairwise disjoint infinite subsets of N. A routine
application of Zorn’s Lemma yields a maximal almost disjoint family A with B � A.
Necessarily jAj 
 c so Theorem 12.13 together with the assumption of MA.c/ yield
a contradiction.

Exercise 12.1.1. Prove that the partially ordered set in Theorem 12.7 is not a c.c.c.
partially ordered set.
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Exercise 12.1.2. Prove Theorem 12.9.

Exercise 12.1.3. Recall that a P-point in a topological space is a point x with the
property that any countable intersection of neighborhoods of x is again a neighbor-
hood of x. It is a consequence of Theorems 12.29, 12.35, and 12.36, that Martin’s
Axiom implies that there are P-points in N�. Provide a direct proof of this fact.
(Hint: Let hF˛i˛<c be an enumeration of all countable families of clopen subsets
of N�. Use Corollary 12.11 to construct an increasing family hD˛i˛<c of proper
clopen subsets of N� with the property that, for every ˛ < c, either

T
F˛ � D˛ or

N� n
T

F˛ � D˛.)

Exercise 12.1.4. Show that Martin’s Axiom implies that N� satisfies the following
strong form of the Baire Category Theorem: If F is a family of nowhere dense subsets
of N� with jF j < c, then

S
F is nowhere dense in N�.

(Hint: Let � < c and let hF˛i˛<� be a family of nowhere dense subsets of N�. Use
Corollary 12.11 to construct an increasing family hD˛i˛<� of proper clopen subsets
of N� for which F˛ � D˛ for every ˛ < �.)

12.2 Strongly Summable Ultrafilters – Existence

We deal in this section with the relationships among three classes of ultrafilters on N.
One of these classes, namely the idempotents, we have already investigated exten-
sively.

Definition 12.16. Let p 2 ˇN.

(a) The ultrafilter p is strongly summable if and only if for every A 2 p, there is a
sequence hxni1nD1 in N such that FS.hxni1nD1/ � A and FS.hxni1nD1/ 2 p.

(b) The ultrafilter p is weakly summable if and only if for every A 2 p, there is a
sequence hxni1nD1 in N such that FS.hxni1nD1/ � A.

Recall that � D c`¹p 2 ˇN W p C p D pº.

Theorem 12.17. The set � D ¹p 2 ˇN W p is weakly summableº. In particular,
every idempotent is weakly summable.

Proof. This is an immediate consequence of Theorem 5.12.

We set out to show that every strongly summable ultrafilter is an idempotent.

Lemma 12.18. Let p be a strongly summable ultrafilter. For each A 2 p there is an
increasing sequence hxni1nD1 in N such that FS.hxni1nD1/ � A and for each m 2 N,
FS.hxni1nDm/ 2 p.
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Proof. For i 2 ¹1; 2º, let Ci D ¹3n.3k C i/ W n; k 2 !º. (That is, Ci is the set of
positive integers whose rightmost nonzero ternary digit is i .) Pick i 2 ¹1; 2º such that
Ci 2 p.

Define f W N ! ! by f .3n.3k C j // D n for all n; k 2 ! and j 2 ¹1; 2º.
Notice that if x; y 2 Ci and f .x/ D f .y/, then x C y … Ci . Consequently, if
¹x; y; x C yº � Ci , then f .x C y/ D min¹f .x/; f .y/º.

Let A 2 p and pick a sequence hxni1nD1 such that FS.hxni1nD1/ 2 p and

FS.hxni
1
nD1/ � A \ Ci :

By the observation above, the sequence hxni1nD1 is one to one, so we may presume
that it is increasing. Let m 2 N and suppose that FS.hxni1nDm/ … p. Then m > 1.
Now

FS.hxni1nD1/ D FS.hxnim�1nD1 / [
S

F�¹1;2;:::;m�1º

�X
n2F

xn C FS.hxni1nDm/
�

where
P
n2; xn D 0. Since FS.hxnim�1nD1 / is finite and, by assumption,

P
n2; xn C

FS.hxni1nDm/ … p, pick F with ; ¤ F � ¹1; 2; : : : ; m � 1º such that
P
n2F xn C

FS.hxni1nDm/ 2 p. Given any y 2
P
n2F xn C FS.hxni1nDm/, one has that for some

G 2 Pf .¹m;mC 1;mC 2; : : :º/, y D
P
n2F xn C

P
n2G xn, where°X

n2F

xn;
X
n2G

xn;
X
n2F

xn C
X
n2G

xn

±
� Ci

so, as observed above, f .y/ 
 f .
P
n2F xn/.

Pick a sequence hyni1nD1 with FS.hyni1nD1/ �
P
n2F xn C FS.hxni1nDm/ and

FS.hyni1nD1/ 2 p. Then for each k 2 N, f .yk/ 
 f .
P
n2F xn/ so pick some k ¤ `

such that f .yk/ D f .y`/. Then yk C y` … Ci , a contradiction.

Theorem 12.19. Let p be a strongly summable ultrafilter. Then p D p C p.

Proof. Let A 2 p and pick by Lemma 12.18 a sequence hxni1nD1 in N such that
FS.hxni1nD1/ � A and for each m 2 N, FS.hxni1nDm/ 2 p. It suffices to show
that FS.hxni1nD1/ � ¹y 2 N W �y C A 2 pº, so let y 2 FS.hxni1nD1/ and pick
F 2 Pf .N/ such that y D

P
n2F xn. Let m D maxF C 1. Then FS.hxni1nDm/ 2 p

and FS.hxni1nDm/ � �y C A.

Lemma 12.20. Let p be a strongly summable ultrafilter. For every A 2 p there is a
sequence hxni1nD1 in N such that

(1) FS.hxni1nD1/ � A,

(2) for each m 2 N, FS.hxni1nDm/ 2 p, and

(3) for each n 2 N, xnC1 > 4
Pn
tD1 xt .
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Proof. Let A 2 p. For i 2 ¹0; 1; 2º let

Bi D
1S
nD0

¹23nCi ; 23nCi C 1; 23nCi C 2; : : : ; 23nCiC1 � 1º

and pick i 2 ¹0; 1; 2º such that Bi 2 p. Pick by Lemma 12.18 an increasing sequence
hxni

1
nD1 in N such that FS.hxni1nD1/ � A\Bi and for eachm 2 N, FS.hxni1nDm/ 2

p. We claim that hxni1nD1 is as required, so suppose not and pick the first n such
that xnC1 
 4

Pn
tD1 xt . Pick k 2 ! such that 23kCi 
 xn < 23kCiC1. Then in

fact
Pn
tD1 xt < 23kCiC1. (If n D 1 this is immediate. Otherwise, xn > 4

Pn�1
tD1 xt

so
Pn�1
tD1 xt < 23kCi�1 so

Pn
tD1 xt < 23kCiC1 C 23kCi�1 < 23kCiC2 and, sincePn

tD1 xt 2 Bi ,
Pn
tD1 xt < 23kCiC1.) Now xnC1 
 4

Pn
tD1 xt < 23kCiC3 and

xnC1 2 Bi so xnC1 < 23kCiC1. Since also xn < xnC1 we have that 23kCiC1 <
xn C xnC1 < 2

3kCiC2, so xn C xnC1 … Bi , a contradiction.

The following easy theorem shows that not nearly all idempotents are strongly
summable.

Theorem 12.21. Let p 2 c`K.ˇN;C/. Then p is not strongly summable.

Proof. Suppose that p is strongly summable and pick by Lemma 12.20 a sequence
hxni

1
nD1 such that FS.hxni1nD1/ 2 p, and for each n 2 N, xnC1 > 4

Pn
tD1 xt . But

then FS.hxni1nD1/ is not piecewise syndetic, contradicting Corollary 4.41.

Theorem 12.22. There is a weakly summable ultrafilter which is not an idempotent.

Proof. This was shown in Corollary 8.24.

Theorem 12.23. The set � is not a semigroup. In fact, there exist idempotents p and
q in ˇN such that p C q … � .

Proof. This was shown in Exercise 6.1.4.

We now introduce a special kind of strongly summable ultrafilter. Its definition is
somewhat complicated, but we shall prove in Section 12.4 that these idempotents can
only be written in a trivial way as sums of other ultrafilters.

Recall that for y 2 N we define the binary support of y by y D
P
n2supp.y/ 2

n. In
a similar fashion, for elements y of FS.ht Ši1tD1/ we define the factorial support of y.

Definition 12.24. (a) For y2FS.ht Ši1tD1/, fsupp.y/ is defined by yD
P
t2fsupp.y/ t Š.

(b) The ultrafilter p 2 ˇN is a special strongly summable ultrafilter if and only if

(1) for each m 2 N, FS.hnŠi1nDm/ 2 p,

(2) for each A 2 p, there is an increasing sequence hxni1nD1 such that
FS.hxni1nD1/ 2 p, FS.hxni1nD1/ � A, and for each n 2 N, xn divides
xnC1, and
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(3) for each infinite L � N, there is a sequence hxni1nD1 such that
FS.hxni1nD1/ � FS.ht Ši1tD1/, FS.hxni1nD1/ 2 p, and L n

S
¹fsupp.y/ W

y 2 FS.hxni1nD1/º is infinite.

We shall show that Martin’s Axiom implies that special strongly summable ultra-
filters exist. Indeed, we shall show that Martin’s Axiom implies that any family of
subsets of FS.hnŠi1nD1/ which is contained in an idempotent and has cardinality less
than c, is contained in a special strongly summable idempotent.

Definition 12.25. (a) S denotes the set of infinite subsets S of N with the property
thatm divides nwheneverm; n 2 S andm < n. Sf denotes the set of nonempty
finite subsets of N which have the same property.

(b) IfX is a subset of N which can be arranged as an increasing sequence hxni1nD1,
we put FSm.X/ D FS.hxni1nDm/ for each m 2 N. We put FS1.X/ DT
m2N c`ˇN.FSm.X//.

Lemma 12.26. Let F denote a family of subsets of N with the finite intersection
property, such that mN 2 F for every m 2 N. Suppose that B 2 F and that B
contains an idempotent p. Suppose also that B? D ¹b 2 B W �b C B 2 pº 2 F and
that �bCB? 2 F for every b 2 B?. Let ! 
 � < c and assume that jF j 
 �. Then
it follows from MA.�/ that there exists X 2 S such that FS.X/ � B and X \A ¤ ;
for every A 2 F .

Proof. We may suppose that F is closed under finite intersections.
Let Q D ¹F 2 Sf W FS.F / � B?º. We define a partial order on Q by stating that

F 0 
 F if F � F 0.
Since Q is countable, it is trivial that it satisfies the c.c.c. condition.
For each A 2 F , let D.A/ D ¹F 2 Q W F \ A ¤ ;º. To see that D.A/ is dense

in Q, let F 2 Q and let m D
Q
F . We can choose a 2 A \ B? \

T
b2FS.F /.�b C

B?/ \mN. Then F [ ¹aº 
 F and F 2 D.A/.
Thus it follows from Martin’s Axiom that there is a filter ˆ in Q such that ˆ \

D.A/ ¤ ; for every A 2 F . Let X D
S
ˆ.

We shall show that X has the properties required. To see that X is infinite, let
m 2 N and pick F 2 ˆ \ D.mN/. Then X \ mN ¤ ;. Since ˆ is a filter, any
two elements x and y of X belong to a set F 2 ˆ. So, if x < y, x divides y. Thus
X 2 S . Furthermore, if H is any finite subset of X , H � F for some F 2 ˆ and so
FS.H/ � B . Thus FS.X/ � B . Finally, for any A 2 F , there exists F 2 ˆ \D.A/
and so X \ A ¤ ;.

Lemma 12.27. Let p be an idempotent in N�, let F � p, and let ! 
 � < c. If
jF j 
 �, then MA.�/ implies that there existsX 2 S such that FS1.X/ �

T
A2F A.
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Proof. Let G D F [ ¹mN W m 2 Nº [ ¹B? W B 2 F º [ ¹�b C B? W B 2

F and b 2 B?º and note that by Lemmas 4.14 and 6.6, G � p. Let H be the set of
finite intersections of members of G and note that H � p and jH j 
 �.

Well order F as hA	i	�� (with repetition if jF j < �). Pick by Lemma 12.26 (with
H in place of F and A0 in place of B) some X0 2 S for which FS.X0/ � A0, and
X0 \ A ¤ ; for every A 2 H .

We then make the inductive assumption that 0 < ˇ 
 � and that we have defined
X˛ 2 S for every ˛ < ˇ so that the following conditions are satisfied:

(a) FS.X˛/ � A˛ and X˛ \ A ¤ ; for every A 2 H and

(b) if ı < ˛, then jX˛ nXı j < !.

Using condition (b) and the facts that H is closed under finite intersections and that
mN 2 H for every m 2 N one sees that

for any finite nonempty D � H [ ¹X˛ W ˛ < ˇº,
there exist A 2 H and ˛ < ˇ with A \X˛ �

T
D .

(�)

In particular, by condition (a), ¹A\X˛ W A 2 H and ˛ < ˇº has the finite intersection
property.

We apply Lemma 12.26, with ¹A \ X˛ W A 2 H and ˛ < ˇº in place of F and
Aˇ in place of B . Pick Wˇ 2 S such that FS.Wˇ / � Aˇ and Wˇ \ A \ X˛ ¤ ;
for every A 2 H and every ˛ < ˇ. By the observation (�),

T
¹Wˇ \ A \X˛ W A 2

H and ˛ < ˇº ¤ ; so by Corollary 12.12, there exists an infinite subset Xˇ of N
such that Xˇ

� � Wˇ \ A \X˛ for every A 2 H and every ˛ < ˇ. We may suppose
that Xˇ � Wˇ . We may also suppose that Xˇ 2 S , because Xˇ \mN ¤ ; for every
m 2 N, and so Xˇ contains a set in S .

It is clear that conditions (a) and (b) are satisfied with ˇ in place of ˛.
We put X D X� . If ˛ 
 �, X n X˛ is finite and so there is some n 2 N such that

FSn.X/ � FS.X˛/ and thus FS1.X/ � FS.X˛/ � A˛.

Corollary 12.28. Let F be a family of subsets of N contained in an idempotent p
for which FS.hnŠi1nD1/ 2 p. Let L be any infinite subset of N and let ! 
 � < c. If
MA.�/ and jF j 
 �, then there exists X 2 S with FS.X/ � FS.hnŠi1nD1/ such that
FS1.X/ � A for every A 2 F and L n

S
x2FS.X/ fsupp.x/ is infinite.

Proof. We may suppose that F is closed under finite intersections. By Exercise
12.2.1, we may suppose that FS.hnŠi1nDm/ 2 F for every m 2 N.

By Lemma 12.27, there exists Y 2 S such that FS1.Y / � A for every A 2 F .
We claim that Y \ FS.hnŠi1nDm/ ¤ ; for every m 2 N. To see this, let m 2 N.
Since FS1.Y / D

T
k2N FSk.Y / � .FShnŠi1nDm/, there exists k 2 N for which

FSk.Y / � FS.hnŠi1nDm/.
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Thus we can inductively choose a sequence hxni1nD1 in Y \ FS.hnŠi1nD1/ with the
property that, for each n 2 N, max fsupp.xn/ < `n <min fsupp.xnC1/ for some
`n 2 L. If X D ¹xn W n 2 Nº, then X has the properties required.

Notice that, while the previous results only use MA.�/ for a fixed � < c, the
following theorem uses the full strength of Martin’s Axiom.

Theorem 12.29. Let F be a family of subsets of N contained in some idempotent
q 2 N� for which FS.hnŠi1nD1/ 2 q. If jF j < c, Martin’s Axiom implies that there is
a special strongly summable ultrafilter p for which F � p.

Proof. We assume Martin’s Axiom. Let hY˛i˛<c be an enumeration of P .N/ and let
hL˛i˛<c be an enumeration of the infinite subsets of N.

We can choose Z0 2 ¹Y0;N nY0º such that Z0 2 q. By Corollary 12.28 applied to
F [¹Z0º, we can chooseX0 2 S with FS.X0/ � FS.hnŠi1nD1/ such that FS1.X0/ �
A \Z0 for every A 2 F and L0 n

S
x2FS.X0/fsupp.x/ is infinite. We then make the

inductive assumption that 0 < ˇ < c and that X˛ 2 S with FS.X˛/ � FS.hnŠi1nD1/
has been defined for every ˛ < ˇ so that the following conditions hold:

(a) FS1.X˛/ � Y˛ or FS1.X˛/ � N n Y˛;

(b) if ı < ˛, then FS1.X˛/ � FS1.Xı/; and

(c) L˛ n
S
x2FS.X˛/fsupp.x/ is infinite.

By Lemma 5.11, for each ˛ < ˇ, FS1.X˛/ is a compact subsemigroup of N�

and hence so is
T
˛<ˇ FS1.X˛/ which therefore contains an idempotent r . Since

FS.X0/ � FS.hnŠi1nD1/, FS.hnŠi1nD1/ 2 r . We can choose Zˇ 2 ¹Yˇ ;N n Yˇ º
satisfying Zˇ 2 r . By Corollary 12.28 (applied to ¹FSm.X˛/ W ˛ < ˇ and m 2
Nº [ ¹Zˇ º in place of F ) we can choose Xˇ 2 S with FS.X˛/ � FS.hnŠi1nD1/ such
thatLˇn

S
x2FS.Xˇ/

fsupp.x/ is infinite, FS1.Xˇ / � Zˇ , and FS1.Xˇ / � FSm.X˛/
for every ˛ < ˇ and everym 2 N. Thus FS1.Xˇ / � FS1.X˛/ for every ˛ < ˇ. So
conditions (a)–(c) are satisfied with ˇ in place of ˛.

This shows that we can define X˛ 2 S for every ˛ < c so that conditions (a)–(c)
are satisfied. We put p D ¹B � N W FS1.X˛/ � B for some ˛ < cº. It is clear that
p is a filter. For every Y � N, Y 2 p or N n Y 2 p, and so p is an ultrafilter. Since
FS1.X0/ �

T
A2F A, we have F � p.

Since FS.X0/ � FS.hnŠi1nD1/, we have by Exercise 12.2.1 that for each m 2 N,
FS.hnŠi1nDm/ 2 p. Given A 2 p, A D Y˛ for some ˛ and so FS1.X˛/ � A and thus
for some m, FSm.X˛/ � A. Condition (3) of the definition holds directly, and so we
have that p is a special strongly summable ultrafilter.

Exercise 12.2.1. Show that if p is an idempotent in N� and FS.hnŠi1nD1/ 2 p, then
for all m 2 N, FS.hnŠi1nDm/ 2 p. (Hint: Use Lemma 6.6 and consider the proof of
Lemma 12.18.)
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12.3 Strongly Summable Ultrafilters – Independence

In the last section we saw that Martin’s Axiom implies that strongly summable ultra-
filters exist. In this section we show that their existence cannot be deduced in ZFC.

Definition 12.30. U is a union ultrafilter if and only if U is an ultrafilter on Pf .N/
and for every A 2 U there is a sequence hFni1nD1 of pairwise disjoint members of
Pf .N/ such that FU.hFni1nD1/ 2 U and FU.hFni1nD1/ � A.

It would appear that union ultrafilters and strongly summable ultrafilters are essen-
tially equivalent notions. This is indeed true, as we shall shortly see. The correspon-
dence in one direction is in fact immediate.

Theorem 12.31. Let U be a union ultrafilter. Let

p D
°°X
t2F

2t�1 W F 2 A
±
W A 2 U

±
:

Then p is a strongly summable ultrafilter.

Proof. The function f W Pf .N/ ! N defined by f .F / D
P
t2F 2

t�1 is a bijec-
tion, so p is trivially an ultrafilter. To see that p is strongly summable, let A 2 p.
Let A D ¹F 2 Pf .N/ W

P
t2F 2

t�1 2 Aº. Then A 2 U so pick a sequence
hFni

1
nD1 of pairwise disjoint members of Pf .N/ such that FU.hFni1nD1/ 2 U and

FU.hFni1nD1/ � A. For each n, let xn D
P
t2Fn

2t�1. Then FS.hxni1nD1/ 2 p and
FS.hxni1nD1/ � A.

To establish the correspondence in the reverse direction, we need some purely arith-
metic lemmas. They are somewhat stronger than needed here, but they will be used in
their full strength in the next section.

Lemma 12.32. Let hxni1nD1 be a sequence in N such that, for each n 2 N, xnC1 >
4
Pn
tD1 xt . Then each member of N can be written in at most one way as a linear

combination of xn’s with coefficients from ¹1; 2; 3; 4º.

Proof. Suppose not and let z be the smallest counterexample. Then (taking as usualP
t2; xt D 0) one has

z D
X
t2F1

xt C
X
t2F2

2xt C
X
t2F3

3xt C
X
t2F4

4xt

D
X
t2G1

xt C
X
t2G2

2xt C
X
t2G3

3xt C
X
t2G4

4xt

where ¹F1; F2; F3; F4º and ¹G1; G2; G3; G4º are each pairwise disjoint and not each
Fi D Gi . Let n D max

S4
iD1.Fi [ Gi / and assume without loss of generality that
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n 2
S4
iD1 Fi . Then n …

S4
iD1Gi , since if it were we would have z � xn as a smaller

counterexample. Thus

z D
X
t2F1

xt C
X
t2F2

2xt C
X
t2F3

3xt C
X
t2F4

4xt

� xn

> 4

n�1X
tD1

xt

�
X
t2G1

xt C
X
t2G2

2xt C
X
t2G3

3xt C
X
t2G4

4xt

D z;

a contradiction.

Lemma 12.33. Let hxni1nD1 be a sequence in N such that, for each n 2 N, xnC1 >
4
Pn
tD1 xt . Then each member of Z can be written in at most one way as a linear

combination of xn’s with coefficients from ¹�2;�1; 1; 2º.

Proof. Assume that we haveX
t2F1

2xt C
X
t2F2

xt �
X
t2F3

xt �
X
t2F4

2xt D
X
t2G1

2xt C
X
t2G2

xt �
X
t2G3

xt �
X
t2G4

2xt

where ¹F1; F2; F3; F4º and ¹G1; G2; G3; G4º are each pairwise disjoint. ThenX
t2F1\G4

4xt C
X

t2.F1\G3/
[.F2\G4/

3xt C
X

t2.F1n.G3[G4//
[.G4n.F1[F2//
[.F2\G3/

2xt C
X

t2.F2n.G3[G4//
[.G3n.F1[F2//

xt

D
X

t2G1\F4

4xt C
X

t2.G1\F3/
[.G2\F4/

3xt C
X

t2.G1n.F3[F4//
[.F4n.G1[G2//
[.G2\F3/

2xt C
X

t2.G2n.F3[F4//
[.F3n.G1[G2//

xt :

Thus, by Lemma 12.32, one has

F1 \G4 D G1 \ F4;

.F1 \G3/ [ .F2 \G4/ D .G1 \ F3/ [ .G2 \ F4/;

.F1 n .G3 [G4// [ .G4 n .F1 [ F2// [ .F2 \G3/

D .G1 n .F3 [ F4// [ .F4 n .G1 [G2// [ .G2 \ F3/; and

.F2 n .G3 [G4// [ .G3 n .F1 [ F2// D .G2 n .F3 [ F4// [ .F3 n .G1 [G2//:
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It is routine to establish from these equations that Fi D Gi for each i 2 ¹1; 2; 3; 4º.

Lemma 12.34. Let hxni1nD1 be a sequence in N such that, for each n 2 N, xnC1 >
4
Pn
tD1 xt . If ¹a; b; aC bº � FS.hxni1nD1/, a D

P
t2F xt , and b D

P
t2G xt , then

F \G D ;.

Proof. Pick H 2 Pf .N/ such that aC b D
P
t2H xt . ThenX

t2H

xt D
X

t2F�G

xt C
X

t2F\G

2xt

so by Lemma 12.32, F \G D ;.

Theorem 12.35. Let p be a strongly summable ultrafilter and pick by Lemma 12.20
a sequence hxni1nD1 in N such that FS.hxni1nD1/ 2 p and for each n 2 N, xnC1 >
4
Pn
tD1 xt . Define ' W FS.hxni1nD1/! Pf .N/ by '.

P
t2F xt / D ¹xt W t 2 F º. Let

U D ¹A � Pf .N/ W '
�1ŒA� 2 pº. Then U is a union ultrafilter.

Proof. Notice first that by Lemma 12.32, the function ' is well defined. One has then
immediately that U is an ultrafilter. To see that U is a union ultrafilter, let A 2 U. Let
A D '�1ŒA�. Then A 2 p so pick a sequence hyni1nD1 such that FS.hyni1nD1/ � A
and FS.hyni1nD1/ 2 p. For n 2 N, let Fn D '.yn/. By Lemma 12.34, one has
for each H 2 Pf .N/ that '.

P
n2H yn/ D

S
n2H Fn. Consequently, one has that

FU.hFni1nD1/ � A and FU.hFni1nD1/ 2 U.

Theorem 12.36. Let U be a union ultrafilter and let q D emax.U/, where emax W
ˇ.Pf .N// ! ˇN is the continuous extension of max W Pf .N/ ! N. Then q is a
P-point of N�.

Proof. Notice that q is a nonprincipal ultrafilter because U is and the function max
is finite to one on Pf .N/. To see that q is a P-point, let hAni1nD1 be a sequence of
members of q. We need to show that there is some B 2 q such that B� �

T1
nD1An

�.
We may presume that A1 D N and that AnC1 � An and n … AnC1 for all n. (In
particular

T1
nD1An D ;.) Define f W N ! N by f .x/ D max¹n 2 N W x 2 Anº.

Let

B0 D ¹F 2 Pf .N/ W f .maxF / 
 minF º

and

B1 D ¹F 2 Pf .N/ W f .maxF / > minF º

and pick i 2 ¹0; 1º such that Bi 2 U.
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Pick a pairwise disjoint sequence hFni1nD1 in Pf .N/ such that FU.hFni1nD1/ � Bi

and FU.hFni1nD1/ 2 U. We may presume that minFn < minFnC1 for all n. Since
FU.hFni1nD1/ 2 U, we have that ¹maxG W G 2 FU.hFni1nD1/º 2 q. Since

¹maxFn W n 2 Nº D ¹maxG W G 2 FU.hFni1nD1/º;

we have ¹maxFn W n 2 Nº 2 q.
We show first that i ¤ 0, so suppose instead that i D 0. Pick k 2 N such that for all

n � k, maxFn > maxF1. Since q is nonprincipal ¹maxFn W n 2 N and n � kº 2 q.
Let ` D minF1. Now A`C1 2 q so pick n � k such that maxFn 2 A`C1. Then

`C 1 
 f .maxFn/ D f .max.Fn [ F1// 
 min.Fn [ F1/ D minF1 D `;

a contradiction.
Thus i D 1. Let B D ¹maxFn W n 2 Nº. Now, if n; k 2 N and maxFn 2 B n Ak ,

then n 
 minFn < f .maxFn/ < k so jB n Akj < k. Thus B� �
T1
nD1An

� as
required.

We have need of the following fact which it would take us too far afield to prove.

Theorem 12.37. The existence of P-points in N� cannot be established in ZFC.

Proof. [360, VI, §4].

Corollary 12.38. The existence of strongly summable ultrafilters can not be estab-
lished in ZFC.

Proof. By Theorem 12.37 it is consistent relative to ZFC that there are no P-points
in N�. Theorem 12.35 shows that if strongly summable ultrafilters exist, so do union
ultrafilters, while Theorem 12.36 shows that if union ultrafilters exist so do P-points
in N�.

Exercise 12.3.1. As in Theorem 12.31, let U be a union ultrafilter and let p D
¹¹
P
t2F 2

t�1 W F 2 Aº W A 2 Uº. Define f W Pf .N/ ! N by f .F / DP
t2F 2

t�1. Prove that ef .U/ D p.

Exercise 12.3.2. As in Theorem 12.35, let p be a strongly summable ultrafilter and
pick a sequence hxni1nD1 in N such that FS.hxni1nD1/ 2 p and for each n 2 N,
xnC1 > 4

Pn
tD1 xt . Define ' W FS.hxni1nD1/! Pf .N/ by '.

P
t2F xt / D ¹xt W t 2

F º and extend ' arbitrarily to the rest of N. Let U D ¹A � Pf .N/ W '
�1ŒA� 2 pº.

Prove thate'.p/ D U.
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12.4 Algebraic Properties of Strongly Summable
Ultrafilters

Recall that for any discrete semigroup .S;C/, an idempotent p in ˇS is strongly right
maximal in ˇS if and only if ¹q 2 ˇS W qCp D pº D ¹pº. We saw in Theorem 9.10
that strongly right maximal idempotents in ˇN exist.

Theorem 12.39. Let p 2 ˇN be a strongly summable ultrafilter. Then p is a strongly
right maximal idempotent.

Proof. By Theorem 12.19, p is an idempotent. Let q ¤ p be given. We show that
qCp ¤ p. Pick A 2 p n q and pick by Lemma 12.20 a sequence hxni1nD1 in N such
that FS.hxni1nD1/ � A, for each m 2 N, FS.hxni1nDm/ 2 p, and xnC1 > 4

Pn
tD1 xt

for all n. It suffices to show that

¹y 2 N W �y C FS.hxni
1
nD1/ 2 pº � FS.hxni

1
nD1/:

(In fact equality holds, but we do not care about that.) Indeed, one has then that
¹y 2 N W �yCFS.hxni1nD1/ 2 pº … q so FS.hxni1nD1/ … qCp and thus p ¤ qCp.

To this end, let a 2 N such that �aC FS.hxni1nD1/ 2 p. Then

.�aC FS.hxni
1
nD1// \ FS.hxni

1
nD1/ 2 p:

So pick a sequence hyni1nD1 such that

FS.hyni1nD1/ � .�aC FS.hxni1nD1// \ FS.hxni1nD1/:

Pick F and G in Pf .N/ such that y1 D
P
t2F xt and y2 D

P
t2G xt . By Lem-

ma 12.34, F \G D ;. Also, aC y1 and aC y2 are in FS.hxni1nD1/. So pick H and
K in Pf .N/ such that aC y1 D

P
t2H xt and aC y2 D

P
t2K xt . Then

a D
X
t2H

xt �
X
t2F

xt D
X
t2K

xt �
X
t2G

xt :

So
P
t2G�H xt C

P
t2G\H 2xt D

P
t2F�K xt C

P
t2F\K 2xt . Thus, by Lem-

ma 12.32 GH D FK and G \H D F \K. Since F \ G D ;, one concludes
from these equations that F � H . So a D

P
t2HnF xt and hence a 2 FS.hxni1nD1/

as required.

We saw in Corollary 7.36 that maximal groups in K.ˇN/ are as large as possible
(and highly noncommutative). That is, they all contain a copy of the free group on 2c

generators. We set out to show now that if p is strongly summable, then H.p/ is as
small (and commutative) as possible, namely a copy of Z.

The next two lemmas are technical lemmas that replace different technical lemmas
from the first edition of this book.
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Lemma 12.40. If hxt i1tD1 and hyt i1tD1 are sequences in N, FS.hyt i1tD1/ �
FS.hxt i1tD1/, and for all n 2 N, xnC1 > 4

Pn
tD1 xt , then

T1
nD1 FS.hyt i1tDn/ �T1

nD1 FS.hxt i1tDn/.

Proof. For each k 2 N pick Fk 2 Pf .N/ such that yk D
P
t2Fk

xt . Given k ¤ l ,
yk C yl 2 FS.hxt i1tD1/ so by Lemma 12.33, Fk \ Fl D ;. Consequently, for
each n 2 N, there is some l 2 N such that for all k � l , minFk � n and thus
FS.hyt i1tDl / � FS.hxt i1tDn/.

We will show after the proof of the following lemma how to weaken the assumption
that xnC1 > 4

Pn
tD1 xt to the assumption that xnC1 > 2

Pn
tD1 xt .

Lemma 12.41. Let hxt i1tD1 be a sequence in N such that for each n 2 N, xnC1 >
4
Pn
tD1 xt and letX D

T1
nD1 FS.hxt i1tDn/. If q; r 2 N�, qCr 2 X , and rCq 2 X ,

then q 2 ZCX .

Proof. We claim first that it suffices to show that q 2 Z C X under the additional
assumption that FS.hxt i1tD1/ 2 q. To see this, note that FS.hxt i1tD1/ 2 rCq so there
is somem 2 N such that�mCFS.hxt i1tD1/ 2 q. Letting q0 D mCq and r 0 D �mCr
we have by Theorem 6.54 that q0 C r 0 D q C r 2 X and r 0 C q0 D r C q 2 X so
q0 2 ZCX so q 2 ZC x.

Thus we assume that we have q; r 2 N� such that FS.hxt i1tD1/ 2 q and qCr 2 X .
(We no longer need the assumption that r C q 2 X .) Now FS.hxt i1tD1/ 2 q C r so
¹n 2 N W �nCFS.hxt i1tD1/ 2 rº 2 q and FS.hxt i1tD1/ 2 q so pick n 2 FS.hxt i1tD1/
such that �n C FS.hxt i1tD1/ 2 r . Pick F 2 Pf .N/ such that n D

P
t2F xt and

let k D maxF . Now for each l > k, FS.hxt i1tD1/ D
S
¹
P
t2H xt C FS.hxt i1tDl / W

H � ¹1; 2; : : : ; l � 1ºº, where as usual
P
t2; xt D 0. Thus we may pick Hl �

¹1; 2; : : : ; l � 1º such that
P
t2Hl

xt C FS.hxt i1tDl/ 2 q.
We claim that it suffices to show that each Hl � ¹1; 2; : : : ; kº. To see this, note

that if Hl ¤ HlC1, then by the uniqueness of finite sums of hxt i1tD1 (a consequence
of Lemma 12.33), one has that�X

t2Hl

xt C FS.hxt i
1
tDl/

�
\
� X
t2HlC1

xt C FS.hxt i
1
tDlC1/

�
D ;;

a contradiction. Thus there is some H � ¹1; 2; : : : ; kº such that Hl D H for every
l > k. Letting z D

P
t2H xt , one then has that for each l > k, FS.hxt i1tDl / 2 �zCq

so that q 2 z CX as required.
So let l > k be given. Since FS.hxt i1tDl/ 2 q C r , we have that

¹w 2 N W �w C FS.hxt i
1
tDl / 2 rº 2 q
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so pick w 2
P
t2Hl

xt C FS.hxt i1tDl/ such that �w C FS.hxt i1tDl / 2 r and pick
R 2 Pf .N/ such that minR � l and w D

P
t2Hl

xt C
P
t2R xt . Since �n C

FS.hxt i1tD1/ 2 r , pick z 2 .�n C FS.hxt i1tD1// \ .�w C FS.hxt i1tDl//. ThenP
t2F xt C z D nC z 2 FS.hxt i1tD1/ so pickK 2 Pf .N/ such that

P
t2F xt C z DP

t2K xt . Since w C z 2 FS.hxt i1tDl /, pick M 2 Pf .N/ such that minM � l and
w C z D

P
t2M xt . Then we haveX
t2M

xt D w C z D
X
t2Hl

xt C
X
t2R

xt C
X
t2K

xt �
X
t2F

xt :

Observe that .M [R/ \ .Hl [ F / D ;. Let

A D .Hl n .F [K// [ .K n .F [Hl [R// [ .R nK/ [ .F \Hl \K/;

B D .K \R/ [ ..K \Hl / n F /; and

C D F n .K [Hl /:

Then A, B , and C are pairwise disjoint andX
t2M

xt D
X
t2Hl

xt C
X
t2R

xt C
X
t2K

xt �
X
t2F

xt

D
X
t2A

xt C
X
t2B

2xt �
X
t2C

xt :

(The easiest way to see this is probably to draw the standard Venn diagram for F ,Hl ,
and K, add a circle for R using the fact that R \ .Hl [ F / D ;, and fill in each
segment with �1, 0, 1, or 2 depending on its contribution to the right-hand sum.)

By Lemma 12.33, we get that A D M and B D C D ;. Since A D M we have
minA � l so A \ Hl D ;. To complete the proof we show that Hl � F . To see
this, let x 2 Hl and suppose that x … F . If x 2 K, then x 2 B D ;. If x … K, then
x 2 A \Hl D ;.

The assumption that each xnC1 > 4
Pn
tD1 xt in Lemma 12.41 can be weakened

to the assumption that members of N can be written in at most one way as a linear
combination of xn’s with coefficients from ¹1; 2º. (This assumption in turn follows
from the assumption that each xnC1 > 2

Pn
tD1 xt , which can be seen as in the proof

of Lemma 12.32.) The first appeal to Lemma 12.33 in the proof of Lemma 12.41
is replaced directly by this weaker assumption. The conclusion that A D M and
B D C D ; follows from this weaker assumption as can be seen by adding

P
t2C xt

to both sides of the equation
P
t2M xt D

P
t2A xt C

P
t2B 2xt �

P
t2C xt .
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As a consequence of the next theorem (and Theorem 12.29) it is consistent with
ZFC that there are maximal groups of .ˇN;C/ that are just copies of Z. We do not
know whether the existence of such small maximal groups can be established in ZFC.

Theorem 12.42. Let p be a strongly summable ultrafilter. If q 2 N� and there exists
r 2 N� such that qC r D rCq D p, then q 2 ZCp. In particular,H.p/ D ZCp.

Proof. Let us notice first that since, by Theorem 4.23, Z is contained in the center of
.ˇZ;C/, Z C p is a subgroup of .ˇZ;C/. And, by Exercise 4.3.5, Z C p � ˇN.
Consequently ZC p � H.p/. The “in particular” conclusion then follows from the
first assertion immediately, because any member of H.p/ is in N� and is invertible
with respect to p.

Assume that we have q; r 2 N� such that q C r D r C q D p. Pick by Lemma
12.20 a sequence hxt i1tD1 in N such that for each n 2 N, xnC1 > 4

Pn
tD1 xt and

FS.hxt i1tDn/ 2 p. Let X D
T1
nD1 FS.hxt i1tDn/ and pick by Lemma 12.41 some

z 2 Z such that �z C q 2 X . We claim that �z C q D p. Suppose instead that we
have some A 2 p n .�z C q/ and pick by Lemma 12.20 a sequence hyt i1tD1 in N
such that FS.hyt i1tD1/ � A \ FS.hxt i1tD1/ and for each n 2 N, ynC1 > 4

Pn
tD1 yt

and FS.hyt i1tDn/ 2 p. Let Y D
T1
nD1 FS.hyt i1tDn/ and pick by Lemma 12.41 some

w 2 Z such that �w C q 2 Y . By Lemma 12.40, Y � X so �w C q 2 X .
Pick l 2 N such that xl > jw � zj and note that any two members of FS.hxt i1tDl/
differ by at least xl . Then w C FS.hxt i1tDl/ 2 q and z C FS.hxt i1tDl/ 2 q so pick
a 2 .wC FS.hxt i1tDl //\ .z C FS.hxt i1tDl //. Then a �w and a � z are members of
FS.hxt i1tDl / differing by less than xl , a contradiction.

We show in the remainder of this section that it is consistent with the usual axioms
of set theory that there exist idempotents in .ˇN;C/ which can only be written as a
sum of elements of ˇN in a trivial fashion.

Lemma 12.43. Let hxni1nD1 be an increasing sequence in N with the property that
for each n 2 N, xn divides xnC1. If a; b;m 2 N, a 
 xm, xmC1 divides b, and
aC b 2 FS.hxni1nD1/, then a 2 FS.hxni1nD1/ and b 2 FS.hxni1nD1/.

Proof. Pick F 2 Pf .N/ such that aCb D
P
t2F xt . LetG D F \¹1; 2; : : : ; mº and

letH D F n¹1; 2; : : : ; mº. Then a�
P
t2G xt D

P
t2H xt�b (where

P
t2; xt D 0).

Then xmC1 divides
P
t2H xt � b while ja �

P
t2G xt j < xmC1, so a �

P
t2G xt DP

t2H xt � b D 0.

Lemma 12.44. Let p be a special strongly summable ultrafilter, let q 2 ˇN, and let
r 2

T1
nD1 c`.Nn/. If p D q C r , then q D r D p.

Proof. By Theorem 12.39 it suffices to show that r D p. So suppose not and pick
A 2 p n r . Pick an increasing sequence hxni1nD1 such that FS.hxni1nD1/ � A,
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FS.hxni1nD1/ 2 p, and for each n 2 N, xn divides xnC1. Then FS.hxni1nD1/ 2 qC r
so pick a 2 N such that �aCFS.hxni1nD1/ 2 r . Pickm 2 N such that xm � a. Pick

b 2 .�aC FS.hxni1nD1// \NxmC1 \ .N n A/:

Then a C b 2 FS.hxni1nD1/, a 
 xm, and xmC1 divides b so by Lemma 12.43,
b 2 FS.hxni1nD1/ � A, a contradiction.

Of course, any idempotent p in ˇN can be written as .p � n/ C .p C n/ for any
n 2 Z. We see now that if p is a special strongly summable ultrafilter, then this is the
only way that p can be written as a sum.

Theorem 12.45. Let p be a special strongly summable ultrafilter and let q; r 2 ˇN.
If p D q C r , then q and r are in ZC p.

Proof. We claim that it suffices to show that r 2 ZC
T1
nD1 c`.Nn/. For assume we

have k 2 Z such that �kC r 2
T1
nD1 c`.Nn/. Then .kC q/C .�kC r/ D p so by

Lemma 12.44, k C q D �k C r D p.
Thus we suppose that r … ZC

T1
nD1 c`.Nn/, so that also q … ZC

T1
nD1 c`.Nn/.

Define

˛ W N !
1

⨉
tD1

¹0; 1; : : : ; tº

by the equation x D
P1
tD1 ˛.x/.t/ � t Š (It is easy to see that any positive integer has

a unique such factorial expansion.) Let ę be the continuous extension of ˛ to ˇN.
LetM D ¹t 2 N W ę.q/.t/ ¤ tº and letL D ¹t 2 N W ę.q/.t/ ¤ 0º. We claim that

both M and L are infinite. To see that M is infinite, suppose instead we have some
k 2 N such that for all t > k, ę.q/.t/ D t . Let z D .k C 1/Š �

Pk
tD1 ę.q/.t/ � t Š.

We claim that qC z 2
T1
nD1 c`.Nn/, a contradiction. To see this, let n 2 N be given

with n > k. We show that �z CN.nC 1/Š 2 q. Now, by the continuity of ę,

N.nC 1/ŠC
nX
tD1

ę.q/.t/ � t Š
D ¹x 2 N W for all t 2 ¹1; 2; : : : ; nº; ˛.x/.t/ D ę.q/.t/º 2 q:

We claim that

N.nC 1/ŠC
nX
tD1

ę.q/.t/ � t Š � �z CN.nC 1/Š:

To see this, let w 2 N.nC 1/ŠC
Pn
tD1 ę.q/.t/ � t Š . Then

w D a � .nC 1/ŠC

nX
tDkC1

t � t ŠC

kX
tD1

ę.q/.t/ � t Š
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so

w C z D a � .nC 1/ŠC

nX
tDkC1

t � t ŠC .k C 1/Š D .aC 1/ � .nC 1/Š

as required.
Similarly, if L is finite so that for some k, one has ę.q/.t/ D 0 for all t > k, and

z D
Pk
tD1 ę.q/.t/ � t Š , then q � z 2

T1
nD1 c`.Nn/.

Since p is a special strongly summable ultrafilter, pick a sequence hzni1nD1 such
that FS.hzni1nD1/ � FS.ht Ši1tD1/, FS.hzni1nD1/ 2 p and M n

S
¹fsupp.y/ W y 2

FS.hzni1nD1/º is infinite. Let K D
S
¹fsupp.y/ W y 2 FS.hzni1nD1/º.

Now FS.hzni1nD1/ 2 q C r so pick a 2 N such that �a C FS.hzni1nD1/ 2 r . Pick
m 2 N such that a < mŠ and pick ` > s > m such that ` 2 M nK and s 2 L. Now
FS.ht Ši1

tD`C1
/ 2 p so

¹x 2 N W �x C FS.ht Ši1tD`C1/ 2 rº \
�
N.`C 1/ŠC

X̀
tD1

ę.q/.t/ � t Š� 2 q
so pick b 2 N.`C 1/ŠC

P`
tD1 ę.q/.t/ � t Š such that �b C FS.ht Ši1

tD`C1
/ 2 r . Pick

x 2 .�b C FS.ht Ši1tD`C1// \ .�aC FS.hzni
1
nD1//:

Then b C x D
P
t2G t Š where minG � `C 1 and for some d 2 N,

b D d � .`C 1/ŠC
X̀
tD1

ę.q/.t/ � t Š:
Since s 2 L, ę.q/.s/ ¤ 0 so

sX
tD1

ę.q/.t/ � t Š � a � sŠ � a > 0
and

sX
tD1

ę.q/.t/ � t Š � a < sX
tD1

ę.q/.t/ � t Š < .s C 1/Š
so
Ps
tD1 ę.q/.t/ � t Š� a DPs

tD1 ct � t Š where each ct 2 ¹0; 1; : : : ; tº and not all ct ’s
are 0.
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Now b C x 2 FS.hzni1nD1/C .b � a/ so for some H 2 Pf .N/,X
t2G

t Š D b C x

D
X
n2H

zn C .b � a/

D
X
n2H

zn C d � .`C 1/ŠC
X̀
tD1

ę.q/.t/ � t Š � a
D
X
n2H

zn C d � .`C 1/ŠC
X̀
tDsC1

ę.q/.t/ � t ŠC sX
tD1

ę.q/.t/ � t Š � a
D
X
n2H

zn C d � .`C 1/ŠC
X̀
tDsC1

ę.q/.t/ � t ŠC sX
tD1

ct � t Š:

Pick I 2 Pf .N/ such that
P
n2H zn D

P
t2I t Š and let I1 D I \ ¹1; 2; : : : ; `º

and I2 D I n ¹1; 2; : : : ; `º. Then

X
t2G

t Š � d � .`C 1/Š �
X
t2I2

t Š D
X
t2I1

t ŠC
X̀
tDsC1

ę.q/.t/ � t ŠC sX
tD1

ct � t Š:

Now .`C 1/Š divides the left-hand side of this equation. On the other hand, ` … K so
` … I1 and ` 2M so ę.q/.`/ 
 ` � 1. Thus

0 <
X
t2I1

t ŠC
X̀
tDsC1

ę.q/.t/ � t ŠC sX
tD1

ct � t Š




`�1X
tD1

t ŠC

`�1X
tD1

t � t ŠC .` � 1/ � `Š

D

`�1X
tD2

t ŠC ` � `Š

< .`C 1/Š;

a contradiction.

12.5 Notes

The presentation of Martin’s Axiom is based on that by K. Kunen in [286]. See the
book by D. Fremlim [152] for substantial information about Martin’s Axiom.

It was shown in 1972 in [186] that the (then unproved) Finite Sums Theorem to-
gether with the continuum hypothesis implied the existence of an ultrafilter p on N
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such that, for every A 2 p, ¹x 2 N W �x C A 2 pº 2 p. And A. Taylor (unpub-
lished) showed that the continuum hypothesis could be weakened to Martin’s Axiom.
Of course, we now know that such an ultrafilter is simply an idempotent in .ˇN;C/.
(See the notes to Chapter 5 for the history of the discovery of this fact.) With this
knowledge it appeared that nothing interesting remained in [186]. Then, in 1985,
E. van Douwen noted in conversation that in fact the ultrafilter produced there had
the stronger property that it was generated by sets of the form FS.hxni1nD1/, and
wondered if the existence of such an ultrafilter could be proved in ZFC. This ques-
tion led to the investigation of strongly summable ultrafilters in ˇN, beginning with
[200]. V. Malykhyn had shown in [300] that Martin’s Axiom implies the existence of
strongly summable ultrafilters in ˇG, where G denotes a countable Boolean group.

Union ultrafilters were introduced by A. Blass in [68]. Theorem 12.37, one of four
nonelementary results used in this book that we do not prove, is due to S. Shelah.
Corollary 12.38 is due to P. Matet [301]. The proof of Corollary 12.38 presented here
is from [71], a result of collaboration with A. Blass.

Theorem 12.39 is from [70], a result of collaboration with A. Blass.
Theorem 12.42 is from [205]. In [294], L. Legette proved that Martin’s Axiom

implies that there exist trivial maximal groups in ˇS , where S is either the free semi-
group or the free group on countably many generators.

Some of the results of this chapter have been generalized in [242] (a result of col-
laboration with I. Protasov) to countably infinite Abelian groups. If G is a group of
this kind, the existence of strongly summable nonprincipal ultrafilters on G follows
from Martin’s Axiom, but cannot be demonstrated in ZFC. If G can be embedded in
the unit circle, then any strongly summable ultrafilter p 2 G� has the property that the
equation p C x D p has the unique solution x D p in G�, and so does the equation
x C p D p. It also follows from Martin’s Axiom that there are nonprincipal strongly
summable ultrafilters p 2 G� with the remarkable algebraic property that, for any
x; y 2 G�, x C y D p implies that x and y are both in G C p.

If G is a countably infinite Boolean group, the existence of a nonprincipal strongly
summable ultrafilter p on G has an interesting consequence. The ultrafilter p can be
used to define a nondiscrete extremally disconnected topology on G for which G is
a topological group, with the property that p is the only nonprincipal ultrafilter on
G converging to the identity. It is not known whether the existence of an extremally
disconnected topological group can be demonstrated in ZFC. Y. Zelenyuk showed
in [400] that any extremally disconnected topological group defined in ZFC has the
property that every countable discrete subset is closed. He proved in [391] that there
is a P-point in N� if there is a countably infinite topological group for which the set
of ultrafilters converging to the identity is finite. So a group of this kind cannot be
defined in ZFC.



Chapter 13

Multiple Structures in ˇS

We deal in this chapter with the relationships among different operations on the same
set S , as for example the semigroups .N;C/ and .N; � /. We also include a section
considering the relationships between the left continuous and right continuous exten-
sions of an operation � on S .

13.1 Sums Equal to Products in ˇZ

The earliest applications of the theory of compact right topological semigroups to
Ramsey Theory involved the semigroups .N;C/ and .N; � /. (See Chapters 5 and 17
for several examples.) In investigating these applications, the question arose whether
the equation qC p D s � r has any solutions in N�, or indeed in Z�. These questions
remain open, but we present several partial results in this section.

We begin with the only nontrivial instance of the distributive law known to hold in
ˇZ. (For more information about the distributive law see Section 13.2.)

Since we are dealing with two operations, the notations �p and �p are now am-
biguous. We adopt the convention in Sections 13.1 and 13.2 that �p.q/ D q C p and
�p.q/ D p C q and introduce the notations rp.q/ D q � p and p̀.q/ D p � q.

If p 2 ˇZ, �p denotes .�1/ � p D ¹�A W A 2 pº.

Lemma 13.1. Let n 2 Z and let p; q 2 ˇZ. Then n � .p C q/ D n � p C n � q and
.p C q/ � n D p � nC q � n.

Proof. Since, by Theorem 4.23, Z is contained in the center of .ˇZ; � /, the second
assertion follows from the first.

Now n � .p C q/ D .`n ı �q/.p/ and n � p C n � q D .�n�q ı `n/.p/ so it suffices
to show that the functions `n ı �q and �n�q ı `n agree on Z. So let m 2 Z be given.
Then

.`n ı �q/.m/ D n � .mC q/ D .`n ı �m/.q/

and
.�n�q ı `n/.m/ D n �mC n � q D .�n�m ı `n/.q/:

Since the distributive law holds in Z, the functions `n ı �m and �n�m ı `n agree
on Z.

We have occasionally used the canonical mapping from Z to Zn before. In this
chapter it will be used in several proofs, so we fix some notation for it.
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Definition 13.2. Let n 2 N. Then hn W Z! Zn denotes the canonical mapping.

Notice that the continuous extension ehn W ˇZ ! Zn of hn is a homomorphism
both from .ˇZ;C/ to (Zn;C/ and from .ˇZ; � / to .Zn; � / (by Lemma 2.14).

Definition 13.3. Let b be a real number satisfying b > 1. We define �b W N ! !

by putting �b.n/ D blogb.n/c. As usual, e�b W ˇN ! ˇ! denotes the continuous
extension of �b.

Lemma 13.4. Let p 2 N� and let b > 1.

(i) e�b.q C p/ 2 e�b.p/C ¹�1; 0; 1º for every q 2 ˇZ;

(ii) e�b.qp/ 2 e�b.q/C e�b.p/C ¹0; 1º for every q 2 ˇN.

Proof. (i) Choose � > 0 with the property that j logb.1 C t /j < 1 if t 2 .��; �/. If
m 2 Z, n 2 N, and jmj < �n, we have logb.mC n/ D logb nC logb.1C

m
n
/ and

hence �b.mC n/ 2 �b.n/C ¹�1; 0; 1º.
For each i 2 ¹�1; 0; 1º, we defineMi � Z by puttingm 2Mi if ¹n 2 N W �b.mC

n/ D �b.n/C iº 2 p. Since the sets Mi partition Z, we can choose j 2 ¹�1; 0; 1º
such thatMj 2 q. For eachm 2Mj , letNm D ¹n 2 N W �b.mCn/ D �b.n/Cj º 2
p. We have:

e�b.q C p/ D q-lim
m2Mj

p-lim
n2Nm

�b.mC n/

D q-lim
m2Mj

p- lim
n2Nm

.�b.n/C j /

D e�b.p/C j:
(ii) This follows in the same way from the observation that, for every m; n 2 N,

�b.mn/ 2 �b.m/C �b.n/C ¹0; 1º.

Theorem 13.5. Let p 2 Z�, let q 2 ˇZ, let n 2 Z and assume that n � p D q C p.
Then n D 1 and thus p D q C p. If q 2 Z, then q D 0.

Proof. We may assume that p 2 N�, since otherwise, by Lemma 13.1, we could
replace p by �p and q by �q. Now by Exercise 4.3.5, q C p 2 N�. And trivially
0 � p D 0, while n 2 �N implies that n � p 2 �N�. Thus n 2 N.

Suppose that n > 1. We can then choose b 2 R satisfying 1 < b2 < n. So
�b.n/ � 2. It follows from Lemma 13.4 that e�b.n � p/ D e�b.p/C k for some k � 2
in N. On the other hand, e�b.q C p/ 2 e�b.p/C ¹�1; 0; 1º. By Lemma 6.28, this is a
contradiction.

It is easy to find solutions to the equation qCp D n � r where n 2 Z. The next two
results are concerned with multiple solutions to such an equation for fixed p and r .
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Such multiple solutions are used in Theorem 13.9 to characterize the existence of q
and s in Z� with q C p D s � r .

Lemma 13.6. Let p; r 2 Z�, let s; t 2 ˇZ, and let m; n 2 Z. If s C p D m � r and
t C p D n � r , then m D n.

Proof. We may suppose that p 2 N�, since otherwise, by Lemma 13.1, we could
replace p, s, t , and r by �p, �s, �t , and �r respectively. This implies that s C p
and t C p are in N�, by Exercise 4.3.5, and hence that m ¤ 0 and n ¤ 0. Therefore
r , m, and n are all in ˇN or all in �ˇN. We may suppose that r;m; n 2 ˇN, since
otherwise we could replace r , m, and n by �r , �m, and �n respectively.

If n ¤ m, we may suppose without loss of generality that n > m. We can choose
b 2 R satisfying b > 1 and mb4 < n. So �b.n/ � �b.m/C 4.

By Lemma 13.4, e�b.n �r/ D e�b.m �r/Ck for some k � 3 in N. We also know thate�b.sCp/ and e�b.tCp/ are both in e�b.p/C¹�1; 0; 1º. So e�b.tCp/ D e�b.sCp/C`
for some ` 2 ¹�2;�1; 0; 1; 2º. Since ` ¤ k, this contradicts Lemma 6.28.

This establishes that n D m.

Lemma 13.7. Let p; r 2 Z� and letm; n;m0; n0 2 Z. IfmCp D n � r andm0Cp D
n0 � r , then .m; n/ D .m0; n0/.

Proof. By Lemma 13.6, n D n0. It then follows from Lemma 6.28 that m D m0.

As we remarked at the beginning of this section, we are primarily concerned with
two questions, namely whether there exist solutions to the equation q C p D s � r

in N� and whether there exist such solutions in Z�. Now, of course, an affirmative
answer to the first question implies an affirmative answer to the second. Further, the
reader is asked to show in Exercise 13.1.1 that if p; r; s 2 Z� and there exists q 2 Z�

such that qC p D s � r , then there exists q0 2 Z� such that q0C jpj D jsj � jr j, where
jpj has its obvious meaning. Thus the questions are nearly the same. However, it is
conceivable that one could have p; r; s 2 N� and q 2 �N� such that q C p D s � r

but not have any q0 2 N� such that q0 C p D s � r . Accordingly, we address both
questions.

Lemma 13.8. Let p; q; r 2 Z� and let

H D ¹m 2 Z W there exists t 2 ˇZ such that mC p D t � rº:

There exists s 2 Z� such that q C p D s � r if and only if H 2 q.

Proof. Necessity. Pick s 2 Z� such that q C p D s � r . We note that, by Lemma
13.6, there is at most one a 2 Z for which a � r 2 ˇZ C p. Thus, if S D ¹n 2 Z W
n � r … ˇZ C pº, we have S 2 s. Suppose that H … q and let B D Z n H 2 q.
Since q C p 2 c`.B C p/ and s � r 2 c`.S � r/, it follows from Theorem 3.40, that
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mC p 2 ˇZ � r for some m 2 B , or else n � r 2 ˇZC p for some n 2 S . The first
possibility can be ruled out because it implies that m 2 B \ H . The second can be
ruled out by our choice of S .

Sufficiency. We note that there is at most one m 2 H for which m C p 2 Z � r
(by Lemma 13.7). Let H 0 D ¹m 2 Z W m C p 2 Z� � rº. Then H 0 2 q and hence
q C p 2 c`ˇZ.H

0 C p/ � c`ˇZ.Z
� � r/ D Z� � r .

Theorem 13.9. Let p; r 2 Z�, let

G D ¹q 2 Z� W there exists s 2 Z�such that q C p D s � rº

and let
H D ¹m 2 Z W there exists t 2 ˇZ such that mC p D t � rº:

Then the following statements are equivalent:

(a) G ¤ ;.

(b) jH j D !.

(c) jGj D 2c.

Proof. (a) implies (b). Pick q 2 G. By Lemma 13.8, H 2 q so, since q 2 Z�,
jH j D !.

(b) implies (c). By Theorem 3.58, j¹q 2 Z� W H 2 qºj D 2c so by Lemma 13.8,
jGj D 2c.

That (c) implies (a) is trivial.

Theorem 13.10. Let p; r 2 N�, let

G D ¹q 2 N� W there exists s 2 N� such that q C p D s � rº

and let

H D ¹m 2 N W there exists t 2 ˇN such that mC p D t � rº:

Then the following statements are equivalent:

(a) G ¤ ;.

(b) jH j D !.

(c) jGj D 2c.

Proof. (a) implies (b). Pick q 2 G. By Lemma 13.8,

¹m 2 Z W there exists t 2 ˇZ such that mC p D t � rº 2 q:

Since also N 2 q, one has

¹m 2 N W there exists t 2 ˇZ such that mC p D t � rº 2 q:
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Now, givenm 2 N and t 2 ˇZ such thatmCp D t � r , one hasmCp 2 N�, so one
also must have t 2 ˇN. (Otherwise t � r 2 �N� [ ¹0º.) Thus H 2 q and therefore
jH j D !.

(b) implies (c). By Theorem 3.58, j¹q 2 N� W H 2 qºj D 2c. Further,

H � ¹m 2 Z W there exists t 2 ˇZ such that mC p D t � rº:

So by Lemma 13.8, if q 2 N� and H 2 q, then there is some s 2 Z� such that
q C p D s � r . Since r and q C p are in N�, s 2 N�, so that q 2 G.

To put Theorems 13.9 and 13.10 in context, notice that we do not know whether
the set H ever has two members, let alone infinitely many members. Notice also that
if H , p, and r are as in Theorem 13.10, then H C p � ˇN � r . Theorem 13.12
characterizes the existence of such H .

Definition 13.11. Let ; ¤ H � N. Then

TH D
°
A � N W there exists F 2 ŒH �<! such that N D

S
n2F

.�nC A/
±
:

Theorem 13.12. Let H � N with jH j > 1. Then there exist p; r 2 N� such that
H Cp � ˇN � r if and only if there is a choice of xA 2 N for each A 2 TH such that
¹xA
�1A W A 2 TH º has the infinite finite intersection property.

Proof. Sufficiency. Pick by Corollary 3.14 r 2 N� such that ¹xA�1A W A 2 TH º � r .
Recall that C.r/ D ¹A � N W for all x 2 N; x�1A 2 rº and that, by Theorem 6.18,
ˇN � r D ¹p 2 ˇN W C.r/ � pº. We claim that ¹�nC B W B 2 C.r/ and n 2 H º
has the finite intersection property. Since C.r/ is a filter, it suffices to let B 2 C.r/
and F 2 Pf .H/ and show that

T
n2F .�n C B/ ¤ ;. So suppose instead thatT

n2F .�nC B/ D ;. Let A D N n B . Then A 2 TH so xA�1A 2 r so B … C.r/, a
contradiction.

Pick p 2 ˇN such that ¹�n C B W B 2 C.r/ and n 2 H º � p. Then for each
n 2 H , C.r/ � nCp so by Theorem 6.18, nCp 2 ˇN � r . Since, by Corollary 4.33,
ˇN � r � N�, it follows that p 2 N�.

Necessity. Pick p and r in N� such that H C p � ˇN � r . Given A 2 TH , it
suffices to show that there is some xA 2 N such that xA�1A 2 r . So let A 2 TH and
pick F 2 ŒH �<! such that N D

S
n2F .�nCA/. Pick n 2 F such that �nCA 2 p

and pick s 2 ˇN such that n C p D s � r . Then A 2 n C p D s � r so ¹x 2 N W
x�1A 2 rº 2 s so pick xA 2 N such that x�1A A 2 r .

By Lemma 13.8 and Theorem 13.10, if there exist p, q, r , and s in N� with qCp D
s � r , then ¹q 2 N� W q C p D s � r for some p; s; r 2 N�º has nonempty interior
in N�. By way of contrast, the set of points occupying any of the other positions of
such an equation must be topologically small.
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Theorem 13.13. Let

P D ¹p 2 N� W q C p D s � r for some q; s; r 2 N�º;

S D ¹s 2 N� W q C p D s � r for some q; p; r 2 N�º; and

R D ¹r 2 N� W q C p D s � r for some q; p; s 2 N�º:

Then each of P , S , and R is nowhere dense in N�.

Proof. To see that P is nowhere dense in N�, we show that P � ZCN� �N�. (We
have that N� �N� is nowhere dense in N� by Theorem 6.35 and so ZCN� �N� is
nowhere dense in N� by Corollary 3.37.) Let p 2 P and pick q, s, and r in N� such
that q C p D s � r . By Lemma 13.8, ¹m 2 N W mC p 2 ˇN � rº 2 q and by Lemma
13.7 at most one m 2 N has mC p 2 N � r . Thus p 2 ZCN� �N� as claimed.

To see that S is nowhere dense in N�, suppose instead that there is an infinite subset
B of N such thatB� � c`ˇN S and choose x 2 B�. Choose a sequence hbni1nD1 inB
with the property that hm.bn/ D fhm.x/ for every n 2 N and everym 2 ¹1; 2; : : : ; nº.
Let A D ¹bn W n 2 Nº. Then for every s 2 A� and every m 2 N, fhm.s/ D fhm.x/.

Pick s 2 A� \ S and pick q, p, and r in N� such that q C p D s � r . By Lemma
13.6, there is at most one n 2 N for which n � r 2 ˇN C p. If such an n exists, let
C D A n ¹nº, and if not let C D A. Let D D ¹m 2 N W m C p 2 C� � rº. We
claim that D 2 q so suppose instead that N n D 2 q. Then q C p 2 .N nD/C p
and s � r 2 C � r so by Theorem 3.40 either n � r 2 .N nD/C p for some n 2 C or
mCp D s0 �r for somem 2 N nD and some s0 2 C �. Both possibilities are excluded
and so D 2 q as claimed. Choose m; k 2 D with k < m. Now fhm is constant on
C � � r , so fhm.mC p/ D fhm.k C p/ and so hm.m/ D hm.k/, a contradiction.

To see thatR is nowhere dense in N� we show first thatR �
S
n2N `n

�1ŒZCN� �
N��. Let r 2 R and let q C p D s � r , where q; p; s 2 N�. By Lemma 13.8, we can
choosem < m0 in N such thatmCp D x � r andm0Cp D y � r for some x; y 2 ˇN.
Putting a D m0 � m, we have a C x � r D y � r . Now a C x � r 2 aCN � r and
y � r 2 N � r . So it follows from Theorem 3.40 that we may suppose that the equation
aC x � r D y � r holds with x 2 N or y 2 N. By Lemma 13.7, this equation cannot
hold with x and y both in N. (Let p D x � r . If aC x � r D y � r , then aC p D y � r
and 0 C p D x � r .) So there exists n 2 N for which n � r 2 Z C N� � N�. Thus
R �

S
n2N `

�1
n ŒZCN� �N�� as claimed.

As we have observed, Z C N� � N� is nowhere dense in N�. Now if M is a
nowhere dense subset of N� and n 2 N, then `�1n ŒM � is also nowhere dense in N�.
Otherwise, if `�1n ŒM � were dense in A� for some infinite subset A of N, M would be
dense in `nŒA�� D .n �A/�. So

S
n2N `

�1
n ŒZCN� �N�� is nowhere dense in N� by

Corollary 3.37.

The following result establishes that one cannot find p, q, r , and s in Z� with
q C p D s � r in the most familiar places.
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Theorem 13.14. Let p; q; r; s 2 Z�. If j¹a 2 N W aZ 2 rºj D !, then q C p ¤ s � r .

Proof. Suppose instead that q C p D s � r . By Theorem 13.9, pick m ¤ n in Z
such that m C p 2 ˇZ � r and n C p D ˇZ � r . Pick a > max¹jmj; jnjº such that
aZ 2 r . Then eha.r/ D 0 and so eha.m C p/ D eha.n C p/ D 0. This implies that
ha.m/ D ha.n/, a contradiction.

Corollary 13.15. K.ˇN; � / \K.ˇN;C/ D ;.

Proof. Suppose one has some r 2 K.ˇN; � / \K.ˇN;C/. Pick a minimal left ideal
L of .ˇN; � / such that r 2 L. Then by Lemma 1.52, L D Lr so r D s � r for some
s 2 L � N�. Similarly r D q C r for some q 2 N�. But

T1
nD1 nN is an ideal of

.ˇN; � /. Thus K.ˇN; � / �
T1
nD1 nN and consequently r 2

T1
nD1 nN. But then by

Theorem 13.14, q C r ¤ s � r , a contradiction.

By way of contrast with Corollary 13.15, it is a consequence of Corollary 5.21 that
K.ˇN; � / \ c`K.ˇN;C/ ¤ ;.

We conclude this section with a result in a somewhat different vein, showing that a
certain linear equation cannot be solved.

Lemma 13.16. Let u ¤ v in Z n ¹0º. There do not exist p 2
T
n2N nN and q 2 N�

such that
uq C p D vq C p:

Proof. Suppose we have such elements p and q and pick a prime r > juj C jvj. For
i 2 ¹1; 2; : : : ; r � 1º, let Ci D ¹rn.rk C i/ W n; k 2 !º. Then Ci is the set of x 2 N
whose rightmost nonzero digit in the base r expansion is i . Pick i such that Ci 2 q.

For eachm 2 N, let f .m/ denote the largest integer in ! for which rf .m/ is a factor
ofm. Since rf .m/C1N 2 p, it follows from Theorem 4.15 that ¹umCs W m 2 Ci and
s 2 rf .m/C1Nº 2 uqCp and ¹vnC t W n 2 Ci and t 2 rf .n/C1Nº 2 vqCp. Thus
there existm; n 2 Ci , s 2 rf .m/C1N, and t 2 rf .n/C1N such that umC s D vnC t .
We observe that f .um C s/ D f .m/, because rf .m/ is a factor of um C s, but
rf .m/C1 is not. Similarly, f .vnC t / D f .n/. So f .m/ D f .n/ D k, say.

We have m 	 irk .mod rkC1/ and n 	 irk .mod rkC1/. So um C s 	 uirk

.mod rkC1/ and vn C t 	 virk .mod rkC1/: This implies that u 	 v .mod r/, a
contradiction.

Theorem 13.17. Let u ¤ v in Z n ¹0º. There do not exist p; q 2 N� such that

uq C p D vq C p:

Proof. Suppose we have such elements p and q. Pick r 2 K.ˇN;C/. Then p C r 2
K.ˇN;C/ so by Theorem 1.64 there is some maximal group G in K.ˇN;C/ with
p C r 2 G. Let e be the identity of G and let s be the (additive) inverse of p C r
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in G. Then adding r C s on the right in the equation uq C p D vq C p, one obtains
uq C e D vq C e. This contradicts Lemma 13.16, because ehn.e/ D 0 for every
n 2 N, and so e 2

T
n2N nN.

Exercise 13.1.1. Given p 2 ˇZ, define

jpj D

´
p if p 2 ˇN

�p if p 2 ˇZ n ˇN:

Prove that if p; r; s 2 Z� and there exists q 2 Z� such that q C p D s � r , then there
exists q0 2 Z� such that q0 C jpj D jsj � jr j.

13.2 The Distributive Laws in ˇZ

We saw in Lemma 13.1 that if n 2 Z and p; q 2 ˇZ, then n � .pC q/ D n �pC n � q.
This is the only nontrivial instance of the distributive law known to hold involving
members of Z�. We establish in this section that any other instances, if they exist, are
rare indeed.

Theorem 13.18. Let n 2 Z n ¹0º and let k;m 2 Z. The following statements are
equivalent.

(a) There exists p 2 Z� such that m � p C n � p D k � p.

(b) k D n and either m D 0 or m D n.

Proof. (a) implies (b). Assume that we have p 2 Z� such that m � p C n � p D k � p.
As in the proof of Theorem 13.5 and Lemma 13.6, we can assume that p 2 N� and
n; k 2 N. We show first that k D n so suppose instead that k ¤ n. Choose a
real number b > 1 for which nb3 < k or kb3 < n. So je�b.n/ � e�b.k/j � 3. By
Lemma 13.4, e�b.m � p C n � p/ 2 �b.n/ C e�b.p/ C ¹�1; 0; 1; 2º and e�b.k � p/ 2
�b.k/C e�b.p/C¹0; 1º. It follows from Lemma 6.28, that j�b.m/��b.n/j 
 2. This
contradiction shows that k D n.

Suppose now that m ¤ 0. Let r 2 N be a prime satisfying r > jmj C n. For any
a 2 N, we have hra.m/ehra.p/ C hra.n/ehra.p/ D hra.n/ehra.p/. Since r is not a
factor of jmj, it follows that ehra.p/ D 0. That is, raN 2 p for each a 2 N.

For i 2 ¹1; 2; : : : ; r � 1º, let

Ai D ¹r
l .t r C i/ W l; t 2 !º:

(Thus Ai is the set of positive integers whose rightmost nonzero digit in the base r
expansion is i .) Pick i 2 ¹1; 2; : : : ; r � 1º for which Ai 2 p.

For each x 2 N, let f .x/ denote the largest integer in ! for which rf .x/ is a factor
of x. We have ¹mxCs W x 2 Ai and s 2 rf .x/C1Nº 2 m �pCn �p (by Theorem 4.15)
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and nAi 2 n � p. Thus there exist x; y 2 Ai and s 2 rf .x/C1N for which mx C s D
ny. We note that f .mxC s/ D f .x/ and f .ny/ D f .y/. So f .x/ D f .y/ D `, say.
Now x 	 ir` .mod r`C1/ and y 	 ir l .mod r`C1/. SomxC s 	 mir` .mod r`C1/
and ny 	 nir l .mod r`C1/. It follows that m 	 n .mod r/ and hence that m D n.

(b) implies (a). Assume that k D n. If m D 0, then m � p C n � p D k � p for all
p 2 ˇZ. Ifm D n and pCp D p, then by Lemma 13.1, n �pCn �p D n � .pCp/ D
n � p.

Corollary 13.19. Let p 2 N�. Then p ¤ .�p/C p.

Proof. This is immediate from Theorem 13.18.

Corollary 13.20. Let p 2 Z� and let n;m 2 Zn¹0º. Then .nCm/ �p ¤ n �pCm �p
and p � .nCm/ ¤ p � nC p �m.

Proof. Since, by Theorem 4.23, Z is contained in the center of .ˇZ; � /, it suffices to
show that .nCm/ �p ¤ n �pCm �p. Suppose instead that .nCm/ �p D n �pCm �p.
Then by Theorem 13.18, nCm D m, so n D 0, a contradiction.

Theorem 13.18 has special consequences for the semigroup H.

Theorem 13.21. Let q; r 2 H and let p 2 Z�. Then p � .q C r/ ¤ p � q C p � r and
.pC q/ � r ¤ p � r C q � r . In particular there are no instances of the validity of either
distributive law in H.

Proof. By Lemma 6.8, q C r 2 H, so by Theorem 13.14, p � .q C r/ … Z� C Z�.
Since .Zn¹0º; � / is cancellative, we have by Corollary 4.33 that Z� is a subsemigroup
of .ˇZ; � / and so p � q C p � r 2 Z� C Z�.

Similarly .p C q/ � r … Z� C Z� and p � r C q � r 2 Z� C Z�.

We now set out to establish the topological rarity of instances of a distributive law
in N�, if indeed any such instances exist at all.

Definition 13.22. Let A � N. A is a doubly thin set if and only if A is infinite and
whenever .m; n/ and .k; l/ are distinct elements of N � !, one has j.n C mA/ \
.l C kA/j < !.

Lemma 13.23. Let B be an infinite subset of N. There is a doubly thin set A � B .

Proof. Enumerate N � ! as h.m.k/; n.k//i1
kD1

and pick s1 2 B . Inductively let
k 2 N and assume that s1; s2; : : : ; sk have been chosen. Pick skC1 > sk such that

skC1 2 B n
°st �m.l/C n.l/ � n.i/

m.i/
W i; l; t 2 ¹1; 2; : : : ; kº

±
:
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Let A D ¹sk W k 2 Nº. Then A is infinite. Suppose that one has some l ¤ i such that

j.n.l/Cm.l/A/ \ .n.i/Cm.i/A/j D !:

Now, since .m.l/; n.l// ¤ .m.i/; n.i//, there is at most one x 2 A such that n.l/C
m.l/x D n.i/Cm.i/x. If there is such an x D sv, let b D max¹v; i; lº, and otherwise
let b D max¹i; lº.

Pick z 2 .n.l/ C m.l/A/ \ .n.i/ C m.i/A/ with z > n.l/ C m.l/sb and z >
n.i/Cm.i/sb and pick t; k 2 N such that z D n.l/Cm.l/st D n.i/Cm.i/sk and
notice that t > b and k > b. Then st ¤ sk so assume without loss of generality that
t < k. But then

sk D
n.l/Cm.l/st � n.i/

m.i/
;

a contradiction.

Lemma 13.24. Let A be a doubly thin subset of N, let p 2 A�, and let B � N � !.
Then c`¹nCm � p W .m; n/ 2 Bº \ c`¹nCm � p W .m; n/ 2 .N � !/ n Bº D ;.

Proof. Suppose that q 2 c`¹n C m � p W .m; n/ 2 Bº \ c`¹n C m � p W .m; n/ 2
.N � !/ n Bº. Order N � ! by � in order type !. (That is, � linearly orders N � !
so that each element has only finitely many predecessors.) Let

C D
[

.m;n/2B

..nCmA/ n
[

.m0;n0/�.m;n/

.n0 Cm0A//

and let

D D
[

.m;n/2.N	!/nB

..nCmA/ n
[

.m0;n0/�.m;n/

.n0 Cm0A//:

Notice that C \D D ;. Thus without loss of generality we have N n C 2 q. Pick
.m; n/ 2 B such that nCm �p 2 N n C . Now nCmA 2 nCm �p, nCm �p 2 N�,
and for every .n0; m0/ � .n;m/, j.n0Cm0A/\ .nCmA/j < ! since A is doubly thin.
Thus

.nCmA/ n
[

.m0;n0/�.m;n/

.n0 Cm0A/ 2 nCm � p

so C 2 nCm � p, a contradiction.

We have one final preliminary.

Lemma 13.25. Let A be a doubly thin subset of N and let p 2 A�. Then N� � p,
N� CN� � p, and N� � .N� C p/ have pairwise disjoint closures.
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Proof. By Lemma 13.24, it suffices to observe that

N� � p � c`¹0Cm � p W m 2 Nº;

N� CN� � p � c`¹nCm � p W n;m 2 N and n < mº; and

N� � .N� C p/ � c`¹nCm � p W n;m 2 N and n � mº:

The first observation is immediate. For the second, just notice that if q; r 2 N�, then

q C r � p D q-lim
n2N

.r-lim
m2N

.nCm � p/:

For the last observation, let q; r 2 N�, let B 2 q � .r C p/, and pick m 2 N such
that m�1B 2 r C p. Then ¹n 2 N W �n C m�1B 2 pº 2 r so pick n such that
�nCm�1B 2 p. Then m � nCm � p D m � .nC p/ 2 B .

Theorem 13.26. The set ¹p 2 N� W N� � p;N� CN� � p; and N� � .N� C p/ have
pairwise disjoint closuresº has dense interior in N�.

Proof. Let B be an infinite subset of N. Pick by Lemma 13.23 a doubly thin subset
A of B . Then apply Lemma 13.25.

Corollary 13.27. The set ¹p 2 N� W for all q; r 2 N�, .q C r/ � p ¤ q � p C r � p

and r � .q C p/ ¤ r � q C r � pº has dense interior in N�.

Proof. Given p; q; r 2 N�,

.q C r/ � p 2 N� � p;

q � p C r � p 2 N� CN� � p;

r � .q C p/ 2 N� � .N� C p/; and

r � q C r � p 2 N� CN� � p;

so Theorem 13.26 applies.

13.3 Ultrafilters on R near 0

We have dealt throughout this book with the Stone–Čech compactification of a dis-
crete space, especially a discrete semigroup. One may naturally wonder why we
restrict our attention to discrete spaces, especially given that the Stone–Čech com-
pactification exists for a much larger class of spaces. We shall see in Theorem 21.47
that for many nondiscrete semigroups S , including .R;C/, the Stone–Čech compact-
ification of S cannot be made into a semigroup compactification of S .

Of course, if S is a topological semigroup, one can give the set S the discrete
topology and proceed as we always have. It would seem that by doing that, one would
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lose any information about the original topological semigroup. We shall see however
in Section 17.5 that we can get information about partitions of the real interval .0;1/,
every member of which is measurable, or every member of which is a Baire set, by first
giving .0;1/ the discrete topology and passing to its Stone–Čech compactification.
Because of these interesting applications, we shall investigate the algebra of .ˇRd ;C/
and .ˇRd ; � /, where Rd is the set R with the discrete topology. We shall be primarily
concerned with .ˇRd ;C/.

Definition 13.28. (a) Given a topological space X , Xd is the set X endowed with
the discrete topology.

(b) Let ˛ W ˇRd ! Œ�1;1� be the continuous extension of the identity function.

(c) B.R/ D ¹p 2 ˇRd W ˛.p/ … ¹�1;1ºº.

(d) Given x 2 R,

xC D ¹p 2 B.R/ W ˛.p/ D x and .x;1/ 2 pº and

x� D ¹p 2 B.R/ W ˛.p/ D x and .�1; x/ 2 pº:

(e) U D
S
x2R x

C and D D
S
x2R x

�.

The set B.R/ is the set of “bounded” ultrafilters on R. That is, an ultrafilter p 2
ˇRd is in B.R/ if and only if there is some n 2 N with Œ�n; n� 2 p. We collect some
routine information about the notions defined above.

Lemma 13.29. (a) Let x 2 R and let p 2 ˇRd . Then p 2 xC if and only if for
every � > 0, .x; x C �/ 2 p. Also, p 2 x� if and only if for every � > 0,
.x � �; x/ 2 p.

(b) Let p; q 2 B.R/, let x D ˛.p/, and let y D ˛.q/. If p 2 xC, then p C q 2
.x C y/C. If p 2 x�, then p C q 2 .x C y/�.

(c) B.R/ n R D U [ D and U and D are disjoint right ideals of .B.R/;C/. In
particular, B.R/ is not commutative.

(d) The set 0C is a compact subsemigroup of .B.R/;C/.

(e) If x 2 R and p 2 ˇRd , then x C p D p C x.

(f) The set 0C is a two sided ideal of the semigroup .ˇ.0; 1/d ; � /.

Proof. The proof of (a) is a routine exercise, (e) is a consequence of Theorem 4.23,
and (c) and (d) follow from (b). We establish (b) and (f).

To verify (b) assume first that p 2 xC. To see that p C q 2 .x C y/C, let � > 0

be given and let A D .x C y; x C y C �/. To see that A 2 p C q, we show that
.x; xC�/ � ¹z 2 R W �zCA 2 qº. So let z 2 .x; xC�/. Let ı D min¹z�x; xC��zº.
Since ˛.q/ D y, we have .y�ı; yCı/ 2 q and .y�ı; yCı/ � �zCA so�zCA 2 q
as required. The proof that p C q 2 .x C y/� if p 2 x� is nearly identical.
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To verify (f), let p 2 0C and let q 2 ˇ.0; 1/d . To see that p �q 2 0C and q �p 2 0C,
let � > 0 be given. Since .0; �/ � .0; 1/ D .0; �/, we have .0; �/ � ¹x 2 .0; 1/ W
x�1.0; �/ 2 qº (so that .0; �/ 2 p � q) and .0; 1/ � ¹x 2 .0; 1/ W x�1.0; �/ 2 pº (so
that .0; �/ 2 q � p).

We shall restrict our attention to 0C, and it is natural to ask why. On the one
hand, it is a subsemigroup of .ˇRd ;C/ and for any other x 2 R, xC and x� are not
semigroups. On the other hand we see in the following theorem that 0C holds all of
the algebraic structure of .B.R/;C/ not already revealed by R.

Theorem 13.30. (a) .0C;C/ and .0�;C/ are isomorphic.

(b) The function ' W Rd � .¹0º [ 0
C [ 0�/! B.R/ defined by '.x; p/ D x C p

is a continuous isomorphism onto .B.R/;C/.

Proof. (a) Define 	 W 0C ! 0� by 	.p/ D �p, where �p D ¹�A W A 2 pº. It
is routine to verify that 	 takes 0C one-to-one onto 0�. Let p; q 2 0C. To see that
	.pCq/ D 	.p/C	.q/ it suffices, since 	.pCq/ and 	.p/C	.q/ are both ultrafilters,
to show that 	.p C q/ � 	.p/C 	.q/. So let A 2 	.p C q/. Then �A 2 p C q so

B D ¹x 2 R W �x C�A 2 qº 2 p

and hence �B 2 	.p/. Then �B � ¹x 2 R W �x C A 2 	.q/º so A 2 	.p/C 	.q/
as required.

(b) To see that ' is a homomorphism, let .x; p/ and .y; q/ be in Rd � .¹0º [
0C [ 0�/. Since p C y D y C p, we have '.x; p/C '.y; q/ D '.x C y; p C q/.

To see that ' is one-to-one, assume we have '.x; p/ D '.y; q/. By Lemma
13.29 (b) we have x D ˛.x C p/ D ˛.y C q/ D y. Then x C p D x C q so
p D �x C x C q D q.

To see that ' is onto B.R/, let q 2 B.R/ and let x D ˛.q/. Let p D �xCq. Then
q D x C p D '.x; p/.

To see that ' is continuous, let .x; p/ 2 Rd � .¹0º [ 0
C [ 0�/ and let A 2 x C p.

Then �x CA 2 p so ¹xº � .c`ˇRd .�x CA// is a neighborhood of .x; p/ contained
in '�1Œc` ˇRdA�.

As we have remarked, 0C has an interesting and useful multiplicative structure. But
much is known of this structure because, by Lemma 13.29 (f), 0C is a two sided ideal
of .ˇ.0; 1/d ; � /, so K.ˇ.0; 1/d ; � / � 0C and hence by Theorem 1.65, K.0C; � / D
K.ˇ.0; 1/d ; � /.

On the other hand, 0C is far from being an ideal of .B.S/;C/, so no general results
apply to .0C;C/ beyond those that apply to any compact right topological semigroup.
We first give an easy characterization of idempotents in .0C;C/, whose proof we
leave as an exercise.
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Theorem 13.31. There exists p D pCp in 0C withA 2 p if and only if there is some
sequence hxni1nD1 in .0; 1/ such that

P1
nD1 xn converges and FS.hxni1nD1/ � A.

Proof. This is Exercise 13.3.1.

As a compact right topological semigroup, 0C has a smallest two sided ideal by
Theorem 2.8. We now turn our attention to characterizing the smallest ideal of 0C

and its closure.
If .S;C/ is a discrete semigroup we know from Theorem 4.39 that a point p 2 ˇS

is in the smallest ideal of ˇS if and only if, for each A 2 p, ¹x 2 S W �x C A 2 pº
is syndetic (and also if and only if for all q 2 ˇS , p 2 ˇS C q C p). We obtain in
Theorem 13.33 a nearly identical characterization of K.0C;C/.

Definition 13.32. A subsetB of .0; 1/ is syndetic near 0 if and only if for every � > 0
there exist some F 2 Pf ..0; �// and some ı > 0 such that .0; ı/ �

S
t2F .�t C B/.

Theorem 13.33. Let p 2 0C. The following statements are equivalent:

(a) p 2 K.0C;C/.

(b) For all A 2 p, ¹x 2 .0; 1/ W �x C A 2 pº is syndetic near 0.

(c) For all r 2 0C, p 2 0C C r C p.

Proof. (a) implies (b). Let A 2 p, let B D ¹x 2 .0; 1/ W �x C A 2 pº, and suppose
that B is not syndetic near 0. Pick � > 0 such that for all F 2 Pf ..0; �// and all
ı > 0, .0; ı/ n

S
t2F .�t C B/ ¤ ;.

Let G D ¹.0; ı/n
S
t2F .�tCB/ W F 2 Pf ..0; �// and ı > 0º. Then G has the finite

intersection property so pick r 2 ˇ.0; 1/d with G � r . Since ¹.0; ı/ W ı > 0º � r we
have r 2 0C.

Pick a minimal left ideal L of 0C with L � 0CC r , by Corollary 2.6. SinceK.0C/
is the union of all of the minimal right ideals of 0C by Theorem 2.8, pick a minimal
right ideal R of 0C with p 2 R. Then L \ R is a group by Theorem 2.7, so let q
be the identity of L \ R. Then R D q C 0C, so p 2 q C 0C so p D q C p so
B 2 q. Also q 2 0C C r so pick w 2 0C such that q D w C r . Then .0; �/ 2 w
and ¹t 2 .0; 1/ W �t C B 2 rº 2 w so pick t 2 .0; �/ such that �t C B 2 r . But
.0; 1/ n .�t C B/ 2 G � r , a contradiction.

(b) implies (c). Let r 2 0C. For eachA 2 p, letB.A/ D ¹x 2 .0; 1/ W �xCA 2 pº
and let C.A/ D ¹t 2 .0; 1/ W �t C B.A/ 2 rº. Observe that for any A1; A2 2 p, one
has B.A1 \ A2/ D B.A1/ \ B.A2/ and C.A1 \ A2/ D C.A1/ \ C.A2/.

We claim that for every A 2 p and every � > 0, C.A/ \ .0; �/ ¤ ;. To see
this, let A 2 p and � > 0 be given and pick F 2 Pf ..0; �// and ı > 0 such that
.0; ı/ �

S
t2F .�t C B.A//. Since .0; ı/ 2 r we have

S
t2F .�t C B.A// 2 r and

hence there is some t 2 F with �t C B.A/ 2 r . Then t 2 C.A/ \ .0; �/.
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Thus ¹.0; �/ \ C.A/ W � > 0 and A 2 pº has the finite intersection property so
pick q 2 ˇ.0; 1/d with ¹.0; �/ \ C.A/ W � > 0 and A 2 pº � q. Then q 2 0C. We
claim that p D qC rCp for which it suffices (since both are ultrafilters) to show that
p � qC rCp. Let A 2 p be given. Then ¹t 2 .0; 1/ W �t CB.A/ 2 rº D C.A/ 2 q
so B.A/ 2 q C r , so A 2 q C r C p as required.

(c) implies (a). Pick r 2 K.0C/.

If .S;C/ is any discrete semigroup, we know from Corollary 4.41 that, given any
discrete semigroup S and any p 2 ˇS , p is in the closure of the smallest ideal of
ˇS if and only if each A 2 p is piecewise syndetic. We obtain a similar result in
0C. Modifying the definition of “piecewise syndetic” to apply to 0C is somewhat less
straightforward than was the case with “syndetic”.

Definition 13.34. A subset A of .0; 1/ is piecewise syndetic near 0 if and only if there
exist sequences hFni1nD1 and hıni1nD1 such that

(1) for each n 2 N, Fn 2 Pf ..0; 1=n// and ın 2 .0; 1=n/ and

(2) for all G 2 Pf ..0; 1// and all � > 0 there is some x 2 .0; �/ such that for all
n 2 N, .G \ .0; ın//C x �

S
t2Fn

.�t C A/.

Theorem 13.35. Let A � .0; 1/. Then K.0C/ \ c`ˇ.0;1/d A ¤ ; if and only if A is
piecewise syndetic near 0.

Proof. Necessity. Pick p 2 K.0C/ \ c`ˇ.0;1/d A and let B D ¹x 2 .0; 1/ W �x C
A 2 pº. By Theorem 13.33, B is syndetic near 0. Inductively for n 2 N pick
Fn 2 Pf ..0; 1=n// and ın 2 .0; 1=n/ (with ın 
 ın�1 if n > 1) such that .0; ın/ �S
t2Fn

.�t C B/.
Let G 2 Pf ..0; 1// be given. If G \ .0; ı1/ D ;, the conclusion is trivial, so

assume G \ .0; ı1/ ¤ ; and let H D G \ .0; ı1/. For each y 2 H , let

m.y/ D max¹n 2 N W y < ınº:

For each y 2 H and each n 2 ¹1; 2; : : : ; m.y/º, we have y 2
S
t2Fn

.�t C B/

so pick t .y; n/ 2 Fn such that y 2 �t .y; n/ C B . Then given y 2 H and n 2
¹1; 2; : : : ; m.y/º, one has �.t.y; n/C y/C A 2 p.

Now let � > 0 be given. Then .0; �/ 2 p so pick

x 2 .0; �/ \
T
y2H

m.y/T
nD1

.�.t.y; n/C y/C A/:

Then given n 2 N and y 2 G \ .0; ın/, one has y 2 H and n 
 m.y/ so t .y; n/C
y C x 2 A so

y C x 2 �t .y; n/C A �
S
t2Fn

.�t C A/:
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Sufficiency. Pick hFni1nD1 and hıni1nD1 satisfying (1) and (2) of Definition 13.34.
Given G 2 Pf ..0; 1// and � > 0, let

C.G;�/ D
°
x 2 .0; �/ W for all n 2 N; .G \ .0; ın//C x �

S
t2Fn

.�t C A/
±
:

By assumption each C.G;�/ ¤ ;. Further, given G1 and G2 in Pf ..0; 1// and
�1; �2 > 0, one has C.G1 [G2;min¹�1; �2º/ � C.G1; �1/ \ C.G2; �2/ so

¹C.G;�/ W G 2 Pf ..0; 1// and � > 0º

has the finite intersection property so pick p 2 ˇ.0; 1/d with ¹C.G;�/ W G 2
Pf ..0; 1// and � > 0º � p. Note that since each C.G;�/ � .0; �/, one has p 2 0C.

Now we claim that for each n 2 N, 0C C p � c`ˇ.0;1/d .
S
t2Fn

.�t C A//, so let
n 2 N and let q 2 0C. To show that

S
t2Fn

.�t C A/ 2 q C p, we show that

.0; ın/ �
°
y 2 .0; 1/ W �y C

S
t2Fn

.�t C A/ 2 p
±
:

So let y 2 .0; ın/. Then C.¹yº; ın/ 2 p and C.¹yº; ın/ � �y C
S
t2Fn

.�t C A/.
Now pick r 2 .0C C p/ \ K.0C/ (since 0C C p is a left ideal of 0C). Given

n 2 N,
S
t2Fn

.�t C A/ 2 r so pick tn 2 Fn such that �tn C A 2 r . Now each
tn 2 Fn � .0; 1=n/ so lim

n!1
tn D 0 so pick q 2 0C \ c`ˇ.0;1/d ¹tn W n 2 Nº. Then

q C r 2 K.0C/ and ¹tn W n 2 Nº � ¹t 2 .0; 1/ W �t C A 2 rº so A 2 q C r .

Since .0C;C/ is a compact right topological semigroup, the closure of any right
ideal is again a right ideal. Consequently c`0C K.0

C/ D c`ˇ.0;1/d K.0
C/ is a right

ideal of 0C. On the other hand, if S is any discrete semigroup, we know from Theorem
4.44 that the closure of K.ˇS/ is a two sided ideal of ˇS . We do not know whether
c`0C K.0

C/ is a left ideal of 0C, but would conjecture that it is not.

Exercise 13.3.1. Prove Theorem 13.31. (Hint: Consider Lemma 5.11 and either proof
of Theorem 5.8.)

13.4 The Left and Right Continuous Extensions of One
Operation

Throughout this book, we have taken the operation � on ˇS to be the operation making
.ˇS; � / a right topological semigroup with S contained in its topological center.

Of course, the extension can also be accomplished in the reverse order to that used
in Section 4.1. That is, given x 2 S and p 2 ˇS we can define p ˘ x D p-lim

y2S

y � x

(so that if p 2 S , then p ˘ x D p � x) and given p; q 2 ˇS ,

p ˘ q D q-lim
x2S

p ˘ x D q-lim
x2S

.p-lim
y2S

y � x/:
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Then .ˇS;˘/ is a compact left topological semigroup and for each x 2 S , the function
rx W ˇS ! ˇS defined by rx.p/ D p ˘ x is continuous. Further, Theorems 2.7
through 2.11 apply to .ˇS;˘/ with “left” and “right” interchanged.

Notice that, given p; q 2 ˇS and A � S ,

A 2 p ˘ q if and only if ¹x 2 S W Ax�1 2 pº 2 q; where Ax�1 D ¹y 2 S W yx 2 Aº:

Definition 13.36. Let .S; � / be a semigroup. Then ˘ is the extension of � to ˇS with
the property that for each p 2 ˇS , the function p̀ is continuous, and for each x 2 S ,
the function rx is continuous, where for q 2 ˇS , p̀.q/ D p ˘ q and rx.q/ D q ˘ x.

We see that if S is commutative, then there is no substantive difference between
.ˇS; � / and .ˇS;˘/.

Theorem 13.37. Let .S; � / be a commutative semigroup. Then for all p; q 2 ˇS ,
p ˘ q D q � p. In particular, K.ˇS; � / D K.ˇS;˘/ and, if H is a subset of ˇS , then
H is a subsemigroup of .ˇS; � / if and only if H is a subsemigroup of .ˇS;˘/.

Proof. This is Exercise 13.4.1.

We show now that if S is not commutative, then both of the “in particular” conclu-
sions may fail.

Theorem 13.38. Let S be the free semigroup on countably many generators. Then
there is a subset H of ˇS such that

(1) H is a subsemigroup of .ˇS; � / and

(2) for every p; q 2 ˇS , p ˘ q … H .

Proof. Let the generators of S be ¹yn W n 2 Nº. For each k 2 N, let

Mk D ¹yn.1/yn.2/ � � �yn.l/ W l 2 N and k 
 n.1/ < n.2/ < � � � < n.l/º;

and let H D
T1
kD1 c`Mk .

To see thatH is a subsemigroup of .ˇS; � /, let p; q 2 H and let k 2 N. We need to
show that Mk 2 p � q. To see this, we show that Mk � ¹x 2 S W x

�1Mk 2 qº, so let
x 2 Mk and pick l 2 N and n.1/; n.2/; : : : ; n.l/ 2 N such that k 
 n.1/ < n.2/ <

� � � < n.l/ and x D yn.1/yn.2/ : : : yn.l/. Then Mn.l/C1 2 q and Mn.l/C1 � x
�1Mk .

To verify conclusion (2), let p; q 2 ˇS . For each k 2 N, let

Rk D ¹ykº [ Syk [ ykS [ SykS D ¹x 2 S W yk occurs in xº:

Then Rk is an ideal of S so by (the left-right switch of) Corollary 4.18, Rk is an
ideal of .ˇS;˘/. Since Rk \ MkC1 D ; for each k, one has that p ˘ q … H if
p 2

S1
kD1Rk .
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So assume that p …
S1
kD1Rk . We claim that M1 … p ˘ q, so suppose instead that

M1 2 p ˘ q and let B D ¹x 2 S W M1x
�1 2 pº. Then B 2 q so B ¤ ; so pick

x 2 B and pick k 2 N such that yk occurs in x. Then M1x
�1 n

Sk
tD1Rt 2 p so

pick z 2M1x
�1 n

Sk
tD1Rt and pick j 2 N such that yj occurs in z. Then j > k so

zx …M1, a contradiction.

For the left-right switch of Theorem 13.38, see Exercise 13.4.2.
We see now that we can have K.ˇS;˘/ ¤ K.ˇS; � /. Recall that after Defini-

tion 4.38 we noted that there are really two notions of “piecewise syndetic”, namely
the notion of right piecewise syndetic which was defined in Definition 4.38, and the
notion of left piecewise syndetic. A subset A of the semigroup S is left piecewise
syndetic if and only if there is some G 2 Pf .S/ such that for every F 2 Pf .S/ there
is some x 2 S with x � F �

S
t2G At

�1.

Lemma 13.39. Let S be the free semigroup on two generators. There is a subset A
of S which is left piecewise syndetic but is not right piecewise syndetic.

Proof. Let the generators of S be a and b. For each n 2 N, let Wn D ¹x 2 S W
l.x/ 
 nº, where l.x/ is the length of x. Let A D

S1
nD1 b

nWna.
Suppose that A is right piecewise syndetic and pick G 2 Pf .S/ such that for every

F 2 Pf .S/ there is some x 2 S with F � x �
S
t2G t

�1A. Let m D max¹l.t/ W
t 2 Gº C 1 and let F D ¹amº. Pick x 2 S such that amx 2

S
t2G t

�1A and pick
t 2 G such that tamx 2 A. Pick n 2 N such that tamx 2 bnWna. Then t D bnv for
some v 2 S[¹;º so n 
 l.t/. But now, the length of tamx is at least nCmC1 while
the length of any element of bnWna is at most 2nC 1. Since m � l.t/C 1 � nC 1,
this is a contradiction.

To see that A is left piecewise syndetic, let G D ¹aº and let F 2 Pf .S/ be given.
Pick n 2 N such that F � Wn and let x D bn. Then x � F � a � bnWna � A so
x � F � Aa�1 as required.

For a contrast to Lemma 13.39, see Exercise 13.4.3

Theorem 13.40. Let S be the free semigroup on two generators. Then K.ˇS;˘/ n
c`K.ˇS; � / ¤ ; and K.ˇS; � / n c`K.ˇS;˘/ ¤ ;.

Proof. We establish the first statement, leaving the second as an exercise. Pick by
Lemma 13.39 a set A � S which is left piecewise syndetic but not right piecewise
syndetic. Then by Theorem 4.40, A\K.ˇS; � / D ; so A\ c`K.ˇS; � / D ;. On the
other hand, by the left-right switched version of Theorem 4.40,A\K.ˇS;˘/ ¤ ;.

Theorem 13.40.2 below is stronger than Theorem 13.40. It was obtained after the
publication of the first edition of this book.
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Lemma 13.40.1. Let S be the free semigroup on two generators, let x 2 S , and let
q 2 ˇS .

(1) If p 2 K.ˇS; � /, then x � p ¤ p ˘ q.

(2) If p 2 K.ˇS;˘/, then p ˘ x ¤ q � p.

Proof. We shall prove (1), the other proof being a left-right switch. Suppose that
x � p D p ˘ q. Let a and b be the generators of S and for w 2 S , let `.w/ be the
length of w. We may assume that x … ¹bn W n 2 Nº. (Otherwise replace b by a in the
argument below.)

Let

B D ¹x2nv W n 2 !; v 2 S; v … xS [ ¹xº; and `.v/ � `.x/º

D D ¹x2nC1v W n 2 !; v 2 S; v … xS [ ¹xº, and `.v/ � `.x/º:

Let I D ¹z 2 S W b2`.x/ occurs in zº. Trivially I is an ideal of S . We claim that I
is contained in B[D. To see this, let w 2 I . If w … xS [¹xº, then w D x0w. Since
`.w/ � 2`.x/, w 2 B . Suppose w 2 xS [ ¹xº. Pick m 2 N such that w D xm or
w D xmv where v … xS [ ¹xº. We have that b2`.x/ occurs in w. Let x D l1l2 � � � lt
where each li 2 ¹a; bº. Since x … ¹bn W n 2 Nº, then lj D a for at least one
j 2 ¹1; 2; : : : ; tº. Then the number of b’s between successive a’s in xm is less than
`.x/. In particular, w ¤ xm so w D xmv. So b`.x/ occurs in v and thus `.v/ � `.x/
so w 2 B [D.

Since I is an ideal of S , we have by Corollary 4.18 that I is an ideal of ˇS and
hence K.ˇS; � / � I . Therefore p 2 I . Since I 2 p and I � B [D, we have that
either B 2 p or D 2 p.

Suppose B 2 p. Then x � B 2 x � p D p ˘ q and x � B � D so D 2 p ˘ q. Thus,
¹y 2 S W Dy�1 2 pº 2 q. Pick y 2 S such that Dy�1 2 p and pick z 2 Dy�1 \B .
Then z D x2nv where n 2 !, v … xS [¹xº, and `.v/ � `.x/. So z �y D x2nvy 2 B
and vy … xS [ ¹xº because v … xS [ ¹xº and `.v/ � `.x/. This contradicts the fact
that zy 2 D.

The case D 2 p is handled similarly.

Theorem 13.40.2. Let S be the free semigroup on two generators. Then K.ˇS; � / \
K.ˇS;˘/ D ;.

Proof. Suppose we have p 2 K.ˇS; � / \ K.ˇS;˘/. Pick a minimal left ideal L of
.ˇS; � / and a minimal right ideal R of .ˇS;˘/ such that p 2 L \ R. Then ˇS � p is
a left ideal of .ˇS; � / and ˇS � p � L so ˇS � p D L. Similarly, p ˘ ˇS D R. Then
; ¤ ˇS � p \ p ˘ ˇS D c`.S � p/ \ c`.p ˘ S/. By Theorem 3.40, either there is
some x 2 S and q 2 ˇS such that x � p D p ˘ q, contradicting Lemma 13.40.1 (1),
or there is some x 2 S and q 2 ˇS such that q � p D p ˘ x, contradicting Lemma
13.40.1 (2).
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The following theorem tells us that the two smallest ideals are not too far apart.

Theorem 13.41. Let S be any semigroup. Then K.ˇS;˘/ \ c`K.ˇS; � / ¤ ; and
c`K.ˇS;˘/ \K.ˇS; � / ¤ ;.

Proof. We establish the first statement only, the other proof being nearly identical.
Let p 2 K.ˇS; � / and let q 2 K.ˇS;˘/. Then p ˘ q 2 K.ˇS;˘/. We show that
p ˘ q 2 c`K.ˇS; � /. Given s 2 S , the continuous functions �s and rs agree on S ,
hence on ˇS , so p ˘ s D rs.p/ D �s.p/ D p � s. Thus

p ˘ q D p̀.q-lim
s2S

s/

D q-lim
s2S

p ˘ s

D q-lim
s2S

p � s:

For each s 2 S , p � s 2 K.ˇS; � / � c`K.ˇS; � /, so p ˘ q 2 c`K.ˇS; � /.

Exercise 13.4.1. Prove Theorem 13.37.

Exercise 13.4.2. Let S be the free semigroup on countably many generators. Prove
that there is a subset H of ˇS such that

(1) H is a subsemigroup of .ˇS;˘/ and

(2) for every p; q 2 ˇS , p � q … H .

Exercise 13.4.3. Let S be any semigroup and assume that r 2 N and S D
Sr
iD1Ai .

Prove that there is some i 2 ¹1; 2; : : : ; rº such that Ai is both left piecewise syndetic
and right piecewise syndetic. (Hint: Use Theorems 4.40 and 13.41.)

13.5 Notes

Most of the material in Section 13.1 is based on results from [193], except for The-
orem 13.17 which is based on a result of B. Balcar and P. Kalášek in [21] and on a
personal communication from A. Maleki. In [193] it was also proved that the equa-
tion q C p D q � p has no solutions in N�. That proof is quite complicated so is not
included here.

It is a consequence of Corollary 5.21 that K.ˇN; � / \ K.ˇN;C/ ¤ ; and that
this fact has significant Ramsey theoretic applications. Corollary 13.15 says that
K.ˇN; � / \ K.ˇN;C/ D ;. A stronger result holds: It was shown in [372] that
K.ˇN; � / \K.ˇN;C/ D ;. Indeed, K.ˇN; � / does not meet N� CN�.
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Theorem 13.18, Corollary 13.20, and Theorem 13.21 are from [207] and Corollary
13.19 is from [186]. Theorem 13.26 and Corollary 13.27 are due to E. van Douwen
in [127].

Most of the material in Section 13.3 is from [220], results obtained in collaboration
with I. Leader.

Theorem 13.38 is from [135], a result of collaboration with A. El-Mabhouh and
J. Pym. Theorems 13.40 and 13.41 are due to P. Anthony in [8]. Theorem 13.40.2 is
due to S. Burns in [87] where she also establishes the same result for the free group
on two generators.
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Chapter 14

The Central Sets Theorem

In this chapter we derive the powerful Central Sets Theorem and some of its conse-
quences. Other consequences will be obtained in later chapters. (Recall that a subset
A of a semigroup S is central if and only if A is a member of some minimal idem-
potent in ˇS .) The notion of “central” originated in topological dynamics, and its
connection with concepts in this field will be discussed in Chapter 19. We shall intro-
duce the ideas of the proof gently by proving progressively stronger theorems.

14.1 Van der Waerden’s Theorem

Our first introduction to the idea of the proof of the Central Sets Theorem is via van
der Waerden’s Theorem.

Recall from Theorem 4.40 that given a subset A of a discrete semigroup S , A \
K.ˇS/ ¤ ; if and only if A is piecewise syndetic. Thus, in particular, any central set
is piecewise syndetic.

Theorem 14.1. Let .S;C/ be a commutative semigroup, letA be a piecewise syndetic
subset of S , and let ` 2 N. There exist a; d 2 S such that

¹a; aC d; aC 2d; : : : ; aC `dº � A:

Proof. Let Y D ⨉`tD0 ˇS . Then by Theorem 2.22, .Y;C/ is a compact right topo-
logical semigroup and if Ex 2 ⨉`tD0 S , then �Ex is continuous. Consequently Y is a
semigroup compactification of ⨉`tD0 S .

For each p 2 ˇS , put p D .p; p; : : : ; p/ 2 Y . Let

IG D ¹.a; aC d; aC 2d; : : : ; aC `d/ W a; d 2 Sº

and let
EG D IG [ ¹a W a 2 Sº:

Let E D c`Y EG and let I D c`Y IG.
Observe that EG is a subsemigroup of ⨉`tD0 S and that IG is an ideal of EG. Thus

by Theorem 4.17 E is a subsemigroup of Y and I is an ideal of E.
By Theorem 2.23, K.Y / D ⨉`tD0K.ˇS/. We now claim that E \ K.Y / ¤ ; so

that by Theorem 1.65, K.E/ D E \K.Y /. In fact we show that

if p 2 K.ˇS/, then p 2 E. (�)
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To establish (�), let U be a neighborhood of p and for t 2 ¹0; 1; : : : ; `º pick At 2 p
such that ⨉`tD0At � U . Then

T`
tD0At 2 p so

T`
tD0At ¤ ; so pick a 2

T`
tD0At .

Then .a; a; : : : ; a/ 2 U \E.
Since K.E/ D E \ K.Y / D E \ ⨉`tD0K.ˇS/ and I is an ideal of E, we have

E \ ⨉`tD0K.ˇS/ � I . Now since A is piecewise syndetic, pick by Theorem 4.40
some p 2 A \K.ˇS/. Then by (�), p 2 E \ ⨉`tD0K.ˇS/ � I . Let U D ⨉`tD0 A.
Then U is a neighborhood of p and so U \ IG ¤ ;. Hence there exist a; d 2 S such
that .a; aC d; aC 2d; : : : ; aC `d/ 2 U .

The above proof already illustrates the most startling fact about the Central Sets
Theorem proof, namely how much one gets for how little. That is, one establishes the
statement (�) based on the trivial fact that EG contains the diagonal of ⨉`tD0 S . Then
one concludes immediately that p 2 I and hence all members of p contain interesting
configurations. It is enough to make someone raised on the work ethic feel guilty.

Note that if r 2 N and N D
Sr
iD1Ai , then some Ai is piecewise syndetic. This

can be seen in at least two ways. One can verify combinatorially that the union of
two sets which are not piecewise syndetic is not piecewise syndetic. Somewhat easier
from our point of view is to note that ˇN D

Sr
iD1Ai so some Ai \K.ˇN/ ¤ ; so

Theorem 4.40 applies.

Corollary 14.2 (van der Waerden [382]). Let r 2 N and let N D
Sr
iD1Ai . For each

` 2 N there exist i 2 ¹1; 2; : : : ; rº and a; d 2 N such that ¹a; aC d; : : : ; aC `dº �
Ai .

Proof. Some Ai is piecewise syndetic so Theorem 14.1 applies.

In Exercise 5.1.1 the reader was asked to show that the above version of van der
Waerden’s Theorem implies the apparently stronger version wherein one i is chosen
which “works” for all `. In fact the current method of proof yields the stronger version
directly.

Corollary 14.3 (van der Waerden [382]). Let r 2 N and let N D
Sr
iD1Ai . There

exists i 2 ¹1; 2; : : : ; rº such that for each ` 2 N there exists a; d 2 N such that
¹a; aC d; : : : ; aC `dº � Ai .

Proof. Some Ai is piecewise syndetic so Theorem 14.1 applies.

One may make the aesthetic objection to the proof of Theorem 14.1 that one re-
quires a different space Y for each length of arithmetic progression. In fact, one may
do the proof once for all values of ` by starting with an infinite product. (See Exer-
cise 14.1.2.)

As a consequence of van der Waerden’s Theorem, we establish the existence of a
combinatorially interesting ideal of .ˇN;C/ and of .ˇN; � /, namely the set of ultra-
filters every member of which contains arbitrarily long arithmetic progressions.
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Definition 14.4. AP D ¹p 2 ˇN W for every A 2 p and every ` 2 N, there exist
a; d 2 N such that ¹a; aC d; aC 2d; : : : ; aC `dº � Aº.

Theorem 14.5. AP is an ideal of .ˇN;C/ and of .ˇN; � /.

Proof. By Theorems 4.40 and 14.1 K.ˇN;C/ � AP so AP ¤ ;. To complete the
proof, let p 2 AP and let q 2 ˇN. Given A 2 q C p and ` 2 N, pick x 2 N such
that �xCA 2 p. Pick a; d 2 N such that ¹a; aCd; aC2d; : : : ; aC`dº � �xCA.
Then ¹x C a; x C a C d; x C a C 2d; : : : ; x C a C `dº � A. Given A 2 p C q
and ` 2 N, pick a; d 2 N such that ¹a; a C d; a C 2d; : : : ; a C `dº � ¹x 2 N W

�xCA 2 qº. Then
T`
tD0.�.aC td /CA/ 2 q so pick x 2

T`
tD0.�.aC td /CA/.

Then ¹x C a; x C aC d; x C aC 2d; : : : ; x C aC `dº � A.
Given A 2 qp and ` 2 N, pick x 2 N such that x�1A 2 p. Pick a; d 2 N such

that ¹a; a C d; a C 2d; : : : ; a C `dº � x�1A. Then ¹xa; xa C xd; xa C 2xd; : : : ;
xa C `xdº � A Given A 2 pq and ` 2 N, pick a; d 2 N such that ¹a; a C d;
aC 2d; : : : ; aC `dº � ¹x 2 N W x�1A 2 qº. Then

T`
tD0.aC td /

�1A 2 q so pick

x 2
T`
tD0.aC td /

�1A. Then ¹xa; xaC xd; xaC 2xd; : : : ; xaC `xdº � A.

Exercise 14.1.1. Using compactness (see Section 5.5) and Corollary 14.2 prove that
given any r; ` 2 N there exists n 2 N such that whenever ¹1; 2; : : : ; nº is r-colored,
there must be a length ` monochromatic arithmetic progression.

Exercise 14.1.2. Prove Theorem 14.1 as follows. Let Y D ⨉1tD0 ˇN. Let EG D
¹.a; a C d; a C 2d; : : : / W a 2 N and d 2 N [ ¹0ºº and let IG D ¹.a; a C d;

a C 2d; : : : / W a; d 2 Nº. Let E D c`Y EG and let I D c`Y IG. Prove that E is a
subsemigroup of Y and that I is an ideal of E. Then prove

if p 2 K.ˇN/ and p D .p; p; p; : : : /, then p 2 E. (�)

Pick p 2 K.ˇN/ \ A, let p D .p; p; p; : : : /, and show that p 2 I . Given ` 2 N
let U D ¹Eq 2 Y W for all i 2 ¹0; 1; : : : ; `º, qi 2 Aº and show that U \ IG ¤ ;.

14.2 The Hales–Jewett Theorem

In this section we prove the powerful generalization of van der Waerden’s theorem
which is due to A. Hales and R. Jewett [182]. In this case it is worth noting that even
though we work with a very noncommutative semigroup, namely the free semigroup
on a finite alphabet, the proof is nearly identical to the proof of van der Waerden’s
Theorem. (There is a much more significant contrast between the commutative and
noncommutative versions of the Central Sets Theorem.)

Definition 14.6. Let S be the free semigroup on the alphabetA and let v be a variable
which is not a member of A.
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(a) A variable word w.v/ is a member of the free semigroup on the alphabetA[¹vº
in which v occurs.

(b) S.v/ D ¹w.v/ W w.v/ is a variable wordº.

(c) Given a variable word w.v/ and a member a of A, w.a/ is the word in which
each occurrence of v is replaced by an occurrence of a.

Recall that the free semigroup on the alphabet A was formally defined (Definition
1.3) as the set of functions with domain ¹0; 1; : : : ; nº for some n 2 ! and range
contained in A. Given a member w of the free semigroup on an alphabet A and a
“letter” a 2 A, when we say that a occurs in w we mean formally that a is in the
range of (the function) w. Given w.v/ 2 S.v/, and a 2 A, one then has formally that
w.a/ is the function with the same domain as w.v/ such that for i in this domain,

w.a/i D

´
w.v/i if w.v/i ¤ v

a if w.v/i D v:

Informally, ifA D ¹1; 2; 3; 4; 5º andw.v/ D 13vv3251v4, thenw.3/ D 1333325134
and w.2/ D 1322325124.

Theorem 14.7. Let A be a finite nonempty alphabet, let S be the free semigroup
over A, and let B be a piecewise syndetic subset of S . Then there is a variable word
w.v/ such that ¹w.a/ W a 2 Aº � B .

Proof. Let ` D jAj and write A D ¹a1; a2; : : : ; a`º. Let Y D ⨉`tD1 ˇS . Denote the
operation of Y (as well as that of S ) by juxtaposition. Then by Theorem 2.22, Y is a
compact right topological semigroup and if Ex 2 ⨉`tD1 S , then �Ex is continuous. Thus
Y is a semigroup compactification of ⨉`tD1 S .

Let IG D ¹.w.a1/; w.a2/; : : : ; w.a`// W w.v/ 2 S.v/º and let

EG D IG [ ¹.w;w; : : : ; w/ W w 2 Sº:

Let E D c`Y EG and let I D c`Y IG.
Observe that EG is a subsemigroup of ⨉`tD1 S and that IG is an ideal of EG. Thus

by Theorem 4.17 E is a subsemigroup of Y and I is an ideal of E.
By Theorem 2.23 we haveK.Y / D ⨉`tD1K.ˇS/. We now claim thatE\K.Y / ¤
; so that by Theorem 1.65, K.E/ D E \K.Y /. In fact we show that

if p 2 K.ˇS/ and p D .p; p; : : : ; p/, then p 2 E. (�)

To establish (�), let U be a neighborhood of p and for t 2 ¹1; 2; : : : ; `º pick Bt 2 p
such that⨉`tD1Bt � U . Then

T`
tD1Bt 2 p so

T`
tD1Bt ¤ ; so pickw 2

T`
tD1Bt .

Then .w;w; : : : ; w/ 2 U \E.
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SinceK.E/ D E\K.Y / D E\⨉`tD1K.ˇS/ and I is an ideal ofE, we haveE\
⨉
`
tD1K.ˇS/ � I . Now since B is piecewise syndetic, pick by Theorem 4.40 some

p 2 B \K.ˇS/ and let p D .p; p; : : : ; p/. Then by (�) p 2 E \⨉`tD1K.ˇS/ � I .
Let U D ⨉`tD1B . Then U is a neighborhood of p so U \ IG ¤ ; so pick w.v/ 2
S.v/ such that .w.a1/; w.a2/; : : : ; w.a`// 2 U .

Corollary 14.8 (Hales–Jewett [182]). Let A be a finite nonempty alphabet, let S be
the free semigroup over A, let r 2 N and let S D

Sr
iD1Bi . Then there exist i 2

¹1; 2; : : : ; rº and a variable word w.v/ such that ¹w.a/ W a 2 Aº � Bi .

Proof. Some Bi is piecewise syndetic so Theorem 14.7 applies.

Exercise 14.2.1. Using compactness (see Section 5.5) and Corollary 14.8 prove that
given any finite nonempty alphabet A and any r 2 N there is some n 2 N such that
whenever the length n words over A are r-colored there must be a variable wordw.v/
such that ¹w.a/ W a 2 Aº is monochromatic.

We shall need the following lemma in Section 14.4.

Lemma 14.8.1. Let A be a finite nonempty alphabet and let r 2 N. There is some
m 2 N such that whenever the length m words over A are r-colored, there is a
variable word w.v/ such that w.v/ begins and ends with a constant, w.v/ has no
successive occurrences of v, and ¹w.a/ W a 2 Aº is monochromatic.

Proof. Let S be the free semigroup overA and let T D S[¹w.v/ W w.v/ is a variable
word over Aº. Pick c 2 A and define ' W T ! T as follows. For x D b1b2 � � � bk
where each bi 2 A[¹vº, '.x/ D cb1cb2c � � � cbkc. Pick n as guaranteed by Exercise
14.2.1 and let m D 2nC 1.

Let  W S ! ¹1; 2; : : : ; rº and pick a length n variable word w.v/ such that
 ı ' is constant on ¹w.a/ W a 2 Aº. Let u.v/ D '.w.v//. Then u.v/ begins and
ends with a constant, u.v/ has no successive occurrences of v, and  is constant on
¹u.a/ W a 2 Aº.

Exercise 14.2.2. Derive van der Waerden’s Theorem (Corollary 14.2) from the
Hales–Jewett Theorem (Corollary 14.8). (Hint: Consider for example the alphabet
¹0; 1; 2; 3; 4º and the following length 5 arithmetic progression written in base 5:
20100010134, 20111011134, 20122012134, 20133013134, 20144014134.)

14.3 The Commutative Central Sets Theorem

In this section we derive the Central Sets Theorem for commutative semigroups, as
well as some of its immediate corollaries. (One is Corollary 14.13 and two more are
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exercises.) It is, of course, a corollary to the noncommutative Central Sets Theorem,
but has a much simpler proof. Recall that NS is the set of functions from N to S .

Definition 14.8.1. Let .S;C/ be a commutative semigroup and let A � S . Then A
is a J-set if and only if whenever F 2 Pf .

NS/, there exist a 2 S and H 2 Pf .N/
such that for each f 2 F , aC

P
t2H f .t/ 2 A.

We see easily that J -sets satisfy a superficially stronger property.

Lemma 14.8.2. Let .S;C/ be a commutative semigroup and let A be a J -set in S .
Whenever m 2 N and F 2 Pf .

NS/, there exist a 2 S and H 2 Pf .N/ such that
minH > m and for each f 2 F , aC

P
t2H f .t/ 2 A.

Proof. Let m 2 N and let F 2 Pf .
NS/. For each f 2 F define gf 2 NS by, for

t 2 N, gf .t/ D f .t C m/. Pick a 2 S and K 2 Pf .N/ such that for each f 2 F ,
aC

P
t2K gf .t/ 2 A and let H D mCK.

We remind the reader that we have been using the notation x for a function con-
stantly equal to x.

Theorem 14.8.3. Let .S;C/ be a commutative semigroup and let A be a piecewise
syndetic subset of S . Then A is a J -set.

Proof. Let F 2 Pf .
NS/, let l D jF j, and enumerate F as ¹f1; f2; : : : ; flº. Let

Y D ⨉ltD1 ˇS . Then by Theorem 2.22, Y is a compact right topological semigroup
and if s 2 ⨉ltD1 S , then �s is continuous. For i 2 N, let

Ii D
°�
aC

X
t2H

f1.t/; : : : ; aC
X
t2H

fl .t/
�
W a 2 S;H 2 Pf .N/, and minH > i

±
and let Ei D Ii [ ¹.a; a; : : : ; a/ W a 2 Sº.

Let E D
T1
iD1Ei and let I D

T1
iD1 Ii . We claim that E is a subsemigroup of

Y and I is an ideal of E. To this end, let p; q 2 E. We show that p C q 2 E
and if either p 2 I or q 2 I , then p C q 2 I . Let U be an open neighborhood
of p C q and let i 2 N. Since �q is continuous, pick a neighborhood V of p such
that V C q � U . Pick x 2 Ei \ V with x 2 Ii if p 2 I . If x 2 Ii so that
x D .aC

P
t2H f1.t/; : : : ; aC

P
t2H fl .t// for some a 2 S and someH 2 Pf .N/

with minH > i , let j D maxH . Otherwise, let j D i . Since �x is continuous, pick
a neighborhood W of q such that x C W � U . Pick y 2 Ej \ W with y 2 Ij if
q 2 I . Then x C y 2 Ei \ U and if either p 2 I or q 2 I , then x C y 2 Ii \ U .

By Theorem 2.23, K.Y / D ⨉ltD1K.ˇS/. Pick by Theorem 4.40 some p 2
K.ˇS/ \ A. Then p D .p; p; : : : ; p/ 2 K.Y /. We claim that p 2 E. To see
this, let U be a neighborhood of p, let i 2 N, and pick C1; C2; : : : ; Cl 2 p such
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that ⨉ltD1 Ct � U . Pick a 2
Tl
tD1 Ct . Then a D .a; a; : : : ; a/ 2 U \ Ei . Thus

p 2 K.Y / \ E and consequently K.Y / \ E ¤ ;. Then by Theorem 1.65, we have
that K.E/ D K.Y / \ E and so p 2 K.E/ � I . Then I1 \ ⨉ltD1 A ¤ ; so pick
z 2 I1 \⨉

l
tD1A and pick a 2 S and H 2 Pf .N/ such that

z D
�
aC

X
t2H

f1.t/; : : : ; aC
X
t2H

fl .t/
�
:

We are now ready to prove the Central Sets Theorem (for commutative semi-
groups).

Theorem 14.8.4 (Central Sets Theorem). Let .S;C/ be a commutative semigroup
and let A be a central subset of S . There exist functions ˛ W Pf .

NS/ ! S and

H W Pf .
NS/! Pf .N/ such that

(1) if F;G 2 Pf .
NS/ and F ¨ G, then maxH.F / < minH.G/ and

(2) whenever m 2 N, G1; G2; : : : ; Gm 2 Pf .
NS/, G1 ¨ G2 ¨ � � � ¨ Gm, and for

each i 2 ¹1; 2; : : : ; mº, fi 2 Gi , one has
Pm
iD1.˛.Gi /C

P
t2H.Gi /

fi .t// 2 A.

Proof. Pick a minimal idempotent p of ˇS such that A 2 p. Let

A? D ¹x 2 A W �x C A 2 pº:

Since p C p D p, A? 2 p. Also by Lemma 4.14, if x 2 A?, then �x C A? 2 p.
We define ˛.F / 2 S and H.F / 2 Pf .N/ for F 2 Pf .

NS/ by induction on jF j
satisfying the following inductive hypotheses:

(1) if ; ¤ G ¨ F , then maxH.G/ < minH.F / and

(2) if n 2 N, ; ¤ G1 ¨ G2 ¨ � � � ¨ Gn D F , and hfi iniD1 2 ⨉
n
iD1Gi , thenPn

iD1.˛.Gi /C
P
t2H.Gi /

fi .t// 2 A
?.

Assume first that F D ¹f º. Since A? is piecewise syndetic, pick by Theorem
14.8.3, a 2 S and L 2 Pf .N/ such that aC

P
t2L f .t/ 2 A

?. Let ˛.¹f º/ D a and
H.¹f º/ D L. Both hypotheses are satisfied, (1) vacuously.

Now assume that jF j > 1 and ˛.G/ and H.G/ have been defined for all proper
subsets G of F . Let K D

S
¹H.G/ W ; ¤ G ¨ F º and let m D maxK. Let

M D
° nX
iD1

�
˛.Gi /C

X
t2H.Gi /

fi .t/
�
W n 2 N;; ¤ G1 ¨ � � � ¨ Gn ¨ F;

and hfi i
n
iD1 2

n

⨉
iD1

Gi

±
:
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Then M is finite and by hypothesis (2), M � A?. Let B D A? \
T
x2M .�x CA

?/.
Then B 2 p so pick by Theorem 14.8.3 and Lemma 14.8.2, a 2 S and L 2 Pf .N/
such that minL > m and for each f 2 F , a C

P
t2L f .t/ 2 B . Let ˛.F / D a and

H.F / D L.
Since minL > m we have that hypothesis (1) is satisfied. To verify hypothesis

(2), let n 2 N, let ; ¤ G1 ¨ G2 ¨ � � � ¨ Gn D F , and let hfi iniD1 2 ⨉
n
iD1Gi If

n D 1, then
Pn
iD1.˛.Gi / C

P
t2H.Gi /

f1.t// D a C
P
t2L f1.t/ 2 B � A?. So

assume that n > 1 and let y D
Pn�1
iD1.˛.Gi / C

P
t2H.Gi /

fi .t//. Then y 2 M so
a C

P
t2L f1.t/ 2 B � .�y C A?/ and thus

Pn
iD1.˛.Gi / C

P
t2H.Gi /

fi .t// D

y C aC
P
t2L f1.t/ 2 A

? as required.

We introduce a name for sets satisfying the conclusion of the Central Sets Theorem.

Definition 14.8.5. Let .S;C/ be a commutative semigroup and let A � S . Then A
is a C -set if and only if there exist functions ˛ W Pf .

NS/! S and H W Pf .
NS/!

Pf .N/ such that

(1) if F;G 2 Pf .
NS/ and F ¨ G, then maxH.F / < minH.G/ and

(2) whenever m 2 N, G1; G2; : : : ; Gm 2 Pf .
NS/, G1 ¨ G2 ¨ � � � ¨ Gm, and for

each i 2 ¹1; 2; : : : ; mº, fi 2 Gi , one has
Pm
iD1..˛.Gi /C

P
t2H.Gi /

fi .t// 2 A.

The Central Sets Theorem is thus the assertion that each central set is a C -set. We
shall see that C -sets satisfy an apparently stronger condition.

Definition 14.8.6. LetD be a directed set. Then P lin
f
.D/ is the set of nonempty finite

linearly ordered subsets of D.

Theorem 14.8.7. Let .S;C/ be a commutative semigroup and let A � S . Then A is
a C -set if and only if whenever D is a directed set with no largest element, there exist
functions ˛ W Pf .

DS/! S and H W Pf .
DS/! P lin

f
.D/ such that

(1) if F;G 2 Pf .
DS/ and F ¨ G, then maxH.F / < minH.G/ and

(2) whenever m 2 N, G1; G2; : : : ; Gm 2 Pf .
DS/, G1 ¨ G2 ¨ � � � ¨ Gm, and for

each i 2 ¹1; 2; : : : ; mº, fi 2 Gi , one has
Pm
iD1..˛.Gi /C

P
t2H.Gi /

fi .t// 2 A.

Proof. The sufficiency is trivial since one may let D D N. So assume that A is a
C -set and pick ˛1 W Pf .

NS/ ! S and H1 W Pf .
NS/ ! Pf .N/ as guaranteed by

Definition 14.8.5.
Pick a strictly increasing sequence hani1nD1 in D. Define ' W DS ! NS by, for

f 2 DS and n 2 N, '.f /.n/ D f .an/.
We define � W Pf .DS/! Pf .

NS/ so that

(1) for all G 2 Pf .
DS/, 'ŒG� � �.G/ and

(2) if F;G 2 Pf .
DS/ and F ¨ G, then �.F / ¨ �.G/.
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We do this for G 2 Pf .
DS/ inductively on jGj. For f 2 DS , let �.¹f º/ D ¹'.f /º.

Now let G 2 Pf .
DS/ with jGj � 2 and assume that �.F / has been defined for all F

with ; ¤ F ¨ G. Let K D 'ŒG� [
S
¹�.F / W ; ¤ F ¨ Gº, pick f 2 NS nK, and

let �.G/ D K [ ¹f º.
Now define ˛2 W Pf .DS/ ! S and H2 W Pf .DS/ ! P lin

f
.D/ as follows. Given

G 2 Pf .
DS/, let ˛2.G/ D ˛1.�.G// andH2.G/ D ¹at W t 2 H1.�.G//º. If F;G 2

Pf .
DS/ and F ¨ G, then �.F / ¨ �.G/, so maxH1.�.F // < minH1.�.G// and

thus maxH2.F / < minH2.G/.
Now assume that m 2 N, G1; G2; : : : ; Gm 2 Pf .

DS/, G1 ¨ G2 ¨ � � � ¨ Gm and
for each i 2 ¹1; 2; : : : ; mº, fi 2 Gi . Then �.G1/ ¨ �.G2/ ¨ � � � ¨ �.Gm/ and for
each i 2 ¹1; 2; : : : ; mº, '.fi / 2 �.Gi / so

mX
iD1

.˛2.Gi /C
X

s2H2.Gi /

fi .s// D

mX
iD1

.˛2.Gi /C
X

t2H1.�.Gi //

fi .at //

D

mX
iD1

.˛1.�.Gi //C
X

t2H1.�.Gi //

'.fi /.t//

2 A:

The next lemma will not be needed until the next section. (In the first edition of this
book, it was used in the proof of Theorem 14.11, which was the strongest version of
the Central Sets Theorem known at that time.) Further, it is more general than needed
in the next section because it will be used again in Chapter 18. We keep it in its current
location in order to not disturb the numbering from the original edition.

Lemma 14.9. Let J be a set, let .D;
/ be a directed set, and let .S; � / be a semi-
group. Let hTi ii2D be a decreasing family of nonempty subsets of S such that for
each i 2 D and each x 2 Ti there is some j 2 D such that x � Tj � Ti . Let
Q D

T
i2D c`ˇS Ti . Then Q is a compact subsemigroup of ˇS . Let hEi ii2D and

hIi ii2D be decreasing families of nonempty subsets of ⨉t2J S with the following
properties:

(a) for each i 2 D, Ii � Ei � ⨉t2J Ti ,

(b) for each i 2 D and each Ex 2 Ii there exists j 2 D such that Ex �Ej � Ii , and

(c) for each i 2 D and each Ex 2 Ei n Ii there exists j 2 D such that Ex � Ej � Ei
and Ex � Ij � Ii .

Let Y D ⨉t2J ˇS , let E D
T
i2D c`Y Ei , and let I D

T
i2D c`Y Ii . Then E is

a subsemigroup of ⨉t2J Q and I is an ideal of E. If, in addition, either

(d) for each i 2 D, Ti D S and ¹a 2 S W a … Eiº is not piecewise syndetic, or

(e) for each i 2 D and each a 2 Ti , a 2 Ei ,

then given any p 2 K.Q/, one has p 2 E \K.⨉t2J Q/ D K.E/ � I .
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Proof. It follows from Theorem 4.20 that Q is a subsemigroup of ˇS .
By condition (a) and the fact that hIi ii2D is decreasing we have ; ¤ I � E �

⨉t2J Q. To complete the proof that E is a subsemigroup of ⨉t2J Q and I is an ideal
of E, we let Ep; Eq 2 E and show that Ep � Eq 2 E and if either Ep 2 I or Eq 2 I , then
Ep � Eq 2 I . To this end, let U be an open neighborhood of Ep � Eq and let i 2 D be
given. We show that U \ Ei ¤ ; and if Ep 2 I or Eq 2 I , then U \ Ii ¤ ;. Pick a
neighborhood V of Ep such that V � Eq � U and pick Ex 2 Ei \V with Ex 2 Ii if Ep 2 I .
If Ex 2 Ii pick j 2 D such that Ex � Ej � Ii . If Ex 2 Ei n Ii , pick j 2 D such that
Ex �Ej � Ei and Ex � Ij � Ii . Now Ex � Eq 2 U so pick a neighborhood W of Eq such that
Ex �W � U and pick Ey 2 W \ Ej with Ey 2 Ij if Eq 2 I . Then Ex � Ey 2 U \ Ei and if
either Ep 2 I or Eq 2 I , then Ex � Ey 2 U \ Ii .

To complete the proof, assume that (d) or (e) holds. It suffices to establish

if p 2 K.Q/, then p 2 E. (�)

Indeed, assume we have established (�). Then p2E \⨉t2JK.Q/ and ⨉t2JK.Q/D
K.⨉t2J Q/ by Theorem 2.23. Then by Theorem 1.65,K.E/ D E\K.⨉t2J Q/ and,
since I is an ideal of E, K.E/ � I .

To establish (�), let p 2 K.Q/ be given. To see that p 2 E, let i 2 D be given
and let U be a neighborhood of p. Pick F 2 Pf .J / and for each t 2 F pick some
At 2 p such that

T
t2F 


�1
t Œc`ˇS At � � U .

Assume now that (d) holds. Since p 2 K.ˇS/ and ¹a 2 S W a … Eiº is not
piecewise syndetic, we have by Theorem 4.40 that ¹a 2 S W a … Eiº … p and hence
¹a 2 S W a 2 Eiº 2 p. Pick a 2 .

T
t2F At / \ ¹a 2 S W a 2 Eiº. Then a 2 U \Ei .

Finally assume that (e) holds. Since p 2 c`Ti , pick a 2 .
T
t2F At / \ Ti . Then

a 2 U \Ei .

Definition 14.10. ˆ is the set of all functions f W N ! N for which f .n/ 
 n for
all n 2 N.

The following theorem was the strongest version of the Central Sets Theorem for
commutative semigroups known at the time of the publication of the first edition.

Theorem 14.11. Let .S;C/ be an infinite commutative semigroup, let A be a C -set
in S , and for each ` 2 N, let hy`;ni

1
nD1 be a sequence in S . There exist a sequence

hani
1
nD1 in S and a sequence hHni1nD1 in Pf .N/ such that maxHn < minHnC1 for

each n 2 N and such that for each f 2 ˆ,

FS
�D
an C

X
t2Hn

yf .n/;t

E1
nD1

�
� A:

In particular, the above conclusion applies if A is a central set in S .
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Proof. Pick ˛ and H as guaranteed by Definition 14.8.5. We may assume that the
sequences hy`;ni1nD1 are distinct. (If ` ¤ 1, then y`;1 cannot be involved in the
conclusion of the definition, so its value can be changed.)

For n 2 N, let Fn D ¹hy1;t i1tD1; hy2;t i
1
tD1; : : : ; hyn;t i

1
tD1º and let an D ˛.Fn/

andHn D H.Fn/. Let f 2 ˆ be given. To see that FS.hanC
P
t2Hn

yf .n/;t i
1
nD1/ �

A, let K 2 Pf .N/. Let K D ¹n1; n2; : : : ; nmº where n1 < n2 < � � � < nm. Then
Fn1 ¨ Fn2 ¨ � � � ¨ Fnm and for each i 2 ¹1; 2; : : : ; mº, hyf .ni /;t i

1
tD1 2 Fni soP

n2K.an C
P
t2Hn

yf .n/;t / D
Pm
iD1.˛.Fni /C

P
t2H.Fni /

yf .ni /;t / 2 A.
The “in particular” conclusion follows from Theorem 14.8.4, which says that any

central set is a C -set.

Of course we have the corresponding partition result.

Corollary 14.12. Let .S;C/ be a commutative semigroup and for each ` 2 N, let
hy`;ni

1
nD1 be a sequence in S . Let r 2 N and let S D

Sr
iD1Ai . There exist

i 2 ¹1; 2; : : : ; rº, a sequence hani1nD1 in S and a sequence hHni1nD1 in Pf .N/
such that maxHn < minHnC1 for each n 2 N and for each f 2 ˆ, FS.han CP
t2Hn

yf .n/;t i
1
nD1/ � Ai .

Proof. Some Ai is central.

A special case of the Central Sets Theorem is adequate for many applications. See
Exercise 14.3.2.

It is not surprising, since the proof uses an idempotent, that one gets the Finite
Products Theorem (Corollary 5.9) as a corollary to the Central Sets Theorem (in the
case S is commutative). For a still simple, but more interesting, corollary consider
the following extension of van der Waerden’s Theorem, in which the increment can
be chosen from the finite sums of any prespecified sequence.

Corollary 14.13. Let hxni1nD1 be a sequence in N and let A be a central subset of N.
Then for all ` 2 N there exist a 2 N and d 2 FS.hxni1nD1/ with ¹a; a C d; a C
2d; : : : ; aC `dº � A. In particular, if r 2 N and N D

Sr
iD1Ai , then there is some

i 2 ¹1; 2; : : : ; rº such that for all ` 2 N there exist a 2 N and d 2 FS.hxni1nD1/ with
¹a; aC d; aC 2d; : : : ; aC `dº � Ai .

Proof. Note that A is also central in .!;C/. For each k; n 2 N, let yk;n D .k � 1/ �

xn. Pick sequences hani1nD1 and hHni1nD1 as guaranteed by Theorem 14.11. Given
` 2 N, pick any m > ` and let a D am and let d D

P
t2Hm

xt . Now, given
k 2 ¹0; 1; : : : ; `º, pick any f 2 ˆ such that f .m/ D k C 1. Then

aC kd D am C
X
t2Hm

yf .m/;t 2 FS
�D
an �

X
t2Hn

yf .n/;t

E1
nD1

�
� Ai :

For the in particular conclusion, pick i 2 ¹1; 2; : : : ; rº such that Ai is central.
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Exercise 14.3.1. Let hxni1nD1 be a sequence in N, let r 2 N, and let N D
Sr
iD1Ai .

Prove that there is some i 2 ¹1; 2; : : : ; rº such that for all ` 2 N there exist a 2 N
and d 2 FS.hxni1nD1/ and c 2 FS.hx2ni

1
nD1/ with ¹a; aC d; aC 2d; : : : ; aC `dº [

¹aC c; aC 2c; : : : ; aC `cº � Ai .

Exercise 14.3.2. Let .S;C/ be a commutative semigroup, let A be a C -set in S , let
k 2 N, and for each ` 2 ¹1; 2; : : : ; kº, let hy`;ni1nD1 be a sequence in S . Prove
(as a corollary to Theorem 14.11) that there exist a sequence hani1nD1 and for each
` 2 ¹1; 2; : : : ; kº a sum subsystem hz`;ni1nD1 of hy`;ni1nD1 such that for each ` 2
¹1; 2; : : : ; kº, FS.han C z`;ni

1
nD1/ � A. Show in fact that the sum subsystems can

be chosen in a uniform fashion. That is, there is a sequence hHni1nD1 in Pf .N/ with
maxHn < minHnC1 for each n such that for each ` 2 ¹1; 2; : : : ; kº and each n 2 N,
z`;n D

P
t2Hn

y`;t .

Exercise 14.3.3. Let A be a J -set in .N;C/. Prove that A contains arbitrarily long
arithmetic progressions.

14.4 The Noncommutative Central Sets Theorem

In this section we generalize the Central Sets Theorem (Theorem 14.8.4) to arbitrary
semigroups. The statement of the Central Sets Theorem in this generality is consid-
erably more complicated, because the “˛.F /” in the conclusion must be split up into
many parts.

Definition 14.14. Let m 2 N. Then

Im D ¹.H1;H2; : : : ;Hm/ 2 Pf .N/
m W if m > 1 and t 2 ¹1; 2; : : : ; m � 1º;

then maxHt < minHtC1º and

Jm D ¹.t.1/; t.2/; : : : ; t .m// 2 Nm W t .1/ < t.2/ < � � � < t.m/º:

Definition 14.14.1. Let .S; � / be a semigroup.

(a) Given m 2 N, a 2 SmC1, t 2 Jm, and f 2 NS ,

x.m; a; t; f / D
� mY
jD1

a.j / � f .t.j //
�
� a.mC 1/:

(b) A � S is a J -set if and only if for each F 2 Pf .
NS/ there exist m 2 N,

a 2 SmC1, and t 2 Jm such that for each f 2 F , x.m; a; t; f / 2 A.

(c) J.S/ D ¹p 2 ˇS W for all A 2 p, A is a J -setº.
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(d) A � S is a C -set if and only if there exist

m W Pf .
NS/! N; ˛ 2 ⨉

F 2Pf .NS/

Sm.F /C1; and 	 2 ⨉
F 2Pf .NS/

Jm.F /

such that

(1) if F;G 2 Pf .
NS/ and F ¨ G, then 	.F /.m.F // < 	.G/.1/ and

(2) whenever n 2 N, G1; G2; : : : ; Gn 2 Pf .
NS/, G1 ¨ G2 ¨ � � � ¨ Gn, and

for each i 2 ¹1; 2; : : : ; nº, fi 2 Gi , one has

nY
iD1

x.m.Gi /; ˛.Gi /; 	.Gi /; fi / 2 A:

We note at this point that if S is commutative, the definitions of J -set and C -set
given here agree with those given earlier. If A � S is a J -set as defined by Definition
14.14.1 it is clearly also a J -set as defined by Definition 14.8.1. The converse is
not quite so trivial because, given that a �

Q
t2H f .t/ 2 A, one does not know that

a 2 S � S .

Lemma 14.14.2. Let .S; � / be a commutative semigroup and let A � S . Then A is a
J -set as defined by Definition 14.8.1 if and only ifA is a J -set as defined by Definition
14.14.1. Also A is a C -set as defined by Definition 14.8.5 if and only if A is a C -set
as defined by Definition 14.14.1.

Proof. We have already remarked that the sufficiency of the statement for J -sets is
trivial. Assume that A is a J -set as defined by Definition 14.8.1. Let F 2 Pf .

NS/.

Pick c 2 S and for f 2 F , define gf 2 NS by gf .n/ D f .n/ � c. Pick b 2 S
and H 2 Pf .N/ such that for each f 2 F , b �

Q
t2H gf .t/ 2 A. Let m D jH j,

let t D .t.1/; t.2/; : : : ; t .m// enumerate H in increasing order, let a.1/ D b and for
j 2 ¹2; 3; : : : ; mC 1º, let a.j / D c.

For the statement about C -sets the sufficiency is again trivial. For the necessity,
pick ˛ W Pf .

NS/ ! S and H W Pf .
NS/ ! Pf .N/ as guaranteed by Definition

14.8.5 (written multiplicatively). As above, pick c 2 S and for f 2 NS define
gf 2

NS by, for n 2 N, gf .n/ D f .n/ � c. For F 2 Pf .
NS/ we define inductively

on jF j a set K.F / 2 Pf .
NS/ such that

(1) ¹gf W f 2 F º � K.F / and

(2) if ; ¤ G ¨ F , then K.G/ ¨ K.F /.
(If c is a cancellable element of S , one can simply let K.F / D ¹gf W f 2 F º.) If
F D ¹f º, let K.F / D ¹gf º. Now assume that jF j > 1 and K.G/ has been defined

for all proper nonempty subsets of F . Pick h 2 NS n
S
¹K.G/ W ; ¤ G ¨ F º and

let K.F / D ¹hº [ ¹gf W f 2 F º [
S
¹K.G/ W ; ¤ G ¨ F º.
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Now we define

m W Pf .
NS/! N; ˛0 2 ⨉

F 2Pf .NS/

Sm.F /C1; and 	 2 ⨉
F 2Pf .NS/

Jm.F /:

Let F 2 Pf .
NS/ be given. Let m.F / D

ˇ̌
H.K.F //

ˇ̌
. Define ˛0.F / 2 Sm.F /C1 by,

for j 2 ¹1; 2; : : : ; m.F /C 1º,

˛0.F /.j / D

´
˛.K.F // if j D 1

c if j > 1:

Let 	.F / D .	.F /.1/; 	.F /.2/; : : : ; 	.F /.m.F /// enumerate H.K.F // in increas-
ing order. We need to show that

(1) if F;G 2 Pf .
NS/ and F ¨ G, then 	.F /.m.F // < 	.G/.1/ and

(2) whenever n 2 N, G1; G2; : : : ; Gn 2 Pf .
NS/, G1 ¨ G2 ¨ � � � ¨ Gn, and for

each i 2 ¹1; 2; : : : ; nº, fi 2 Gi , one has
Qn
iD1 x.m.Gi /; ˛

0.Gi /; 	.Gi /; fi / 2 A.

To verify (1), let F;G 2 Pf .
NS/ with F ¨ G. Then K.F / ¨ K.G/ so

	.F /.m.F // D maxH.K.f // < minH.K.G// D 	.G/.1/.
To verify (2), let n 2 N, let G1; G2; : : : ; Gn 2 Pf .

NS/ with G1 ¨ G2 ¨
� � � ¨ Gn, and for each i 2 ¹1; 2; : : : ; nº, let fi 2 Gi . Then K.G1/ ¨ K.G2/ ¨
� � � ¨ K.Gn/, and for each i 2 ¹1; 2; : : : ; nº, gfi 2 K.Gi / so

Qn
iD1.˛.K.Gi // �Q

t2H.K.Gi //
gfi .t// 2 A and

nY
iD1

�
˛.K.Gi // �

Y
t2H.K.Gi //

gfi .t/
�

D

nY
iD1

�
˛.K.Gi // �

m.Gi /Y
jD1

.fi .	.Gi /.j // � c/
�

D

nY
iD1

�m.Gi /Y
jD1

.˛0.Gi /.j / � fi .	.Gi /.j /// � ˛
0.Gi /.m.Gi /C 1/

�
D

nY
iD1

x.m.Gi /; ˛
0.Gi /; 	.Gi/; fi /:

We also observe that J -sets satisfy an apparently stronger condition.

Lemma 14.14.3. Let S be a semigroup and let A be a J -set in S . Then for each
F 2 Pf .

NS/ and each n 2 N there exist m 2 N, a 2 SmC1, and t 2 Jm such that
t .1/ > n and for each f 2 F , x.m; a; t; f / 2 A.

Proof. Let F 2 Pf .
NS/ and n 2 N and for each f 2 F define gf 2 NS by, for

i 2 N, gf .i/ D f .i C n/. Pick m 2 N, a 2 SmC1 and s 2 Jm such that for each
f 2 F , x.m; a; s; gf / 2 A. Define t 2 Jm by, for i 2 ¹1; 2; : : : ; mº, t .i/ D nC s.i/.
Then t .1/ > n and for each f 2 F , x.m; a; t; f / 2 A.
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Theorem 14.14.4. Let S be a semigroup. Then J.S/ is a compact two sided ideal
of ˇS .

Proof. Trivially J.S/ is topologically closed in ˇS . Let p 2 J.S/ and let q 2 ˇS .
We show that q � p 2 J.S/ and p � q 2 J.S/.

To see that q �p 2 J.S/, let A 2 q �p and let F 2 Pf .
NS/. Then ¹b 2 S W b�1A 2

pº 2 q so pick b 2 S such that b�1A 2 p. Pickm 2 N, a 2 SmC1, and t 2 Jm such
that for each f 2 F , x.m; a; t; f / 2 b�1A. Define c 2 SmC1 by c.1/ D ba.1/ and
c.j / D a.j / for j 2 ¹2; 3; : : : ; mC 1º. Then for each f 2 F , x.m; c; t; f / 2 A.

To see that p�q 2 J.S/, letA 2 p�q and letB D ¹x 2 S W x�1A 2 qº. ThenB 2 p
so pick m 2 N, a 2 SmC1, and t 2 Jm such that for each f 2 F , x.m; a; t; f / 2 B .
Then

T
f 2F x.m; a; t; f /

�1A 2 q so pick b 2
T
f 2F x.m; a; t; f /

�1A. Define
c 2 SmC1 by c.mC 1/ D a.mC 1/b and c.j / D a.j / for j 2 ¹1; 2; : : : ; mº. Then
for each f 2 F , x.m; c; t; f / 2 A.

We shall see in Theorem 14.14.7 that J -sets stand in the same relationship to the
ideal J.S/ as piecewise syndetic sets do to the ideal c`K.ˇS/ and in Theorem 14.15.1
that C -sets stand in the same relationship to the ideal J.S/ as central sets do to the
ideal K.ˇS/.

We noted in the paragraph before Corollary 14.2 that piecewise syndeticity is a
partition regular property, and it is not difficult to establish this by a combinatorial
argument. We establish the corresponding fact about J -sets in the Lemma 14.14.6.
For this, we need the following technical lemma.

Lemma 14.14.5. Let S be a semigroup. Let m; r 2 N, let a 2 SmC1, let t 2 Jm,
and for each y 2 N, let cy 2 SrC1 and zy 2 Jr be such that for each y 2 N,
zy.r/ < zyC1.1/. Then there exist u 2 N, d 2 SuC1, and q 2 Ju such that for each

f 2 NS , .
Qm
jD1 a.j / � x.r; ct.j /; zt.j /; f // � a.mC 1/ D x.u; d; q; f /.

Proof. If one considers the form of .
Qm
jD1 a.j / � x.r; ct.j /; zt.j /; f // � a.m C 1/,

namely products of values of f in increasing order of indices separated by constants
not depending on f , this is reasonably obvious. The details are, however, simple
enough.

Let u D m � r . For j 2 ¹1; 2; : : : ; mº and p 2 ¹1; 2; : : : ; rº, let q..j �1/ � rCp/ D
zt.j /.p/. Let d.1/ D a.1/ � ct.1/.1/, let d.u C 1/ D ct.m/.r C 1/ � a.m C 1/, for
j 2 ¹1; 2; : : : ; m� 1º, let d.j � r C 1/ D ct.j /.r C 1/ � a.j C 1/ � ct.jC1/.1/, and for
j 2 ¹1; 2; : : : ; mº and p 2 ¹2; 3; : : : ; rº, let d..j � 1/ � r C p/ D ct.j /.p/.

Lemma 14.14.6. Let S be a semigroup, let A be a J -set in S , and let A D A1 [A2.
Then either A1 is a J -set in S or A2 is a J -set in S .

Proof. Suppose not and pick F1 and F2 in Pf .
NS/ such that for each i 2 ¹1; 2º,

each u 2 N, each d 2 SuC1, and each q 2 Ju, there is some f 2 Fi such that
x.u; d; q; f / … Ai .
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Let F D F1 [ F2, let k D jF j, and write F D ¹f1; f2; : : : ; fkº. Pick by
Lemma 14.8.1, some n 2 N such that whenever the length n words over the alphabet
¹1; 2; : : : ; kº are 2-colored, there is a variable word w.v/ beginning and ending with a
constant and without successive occurrences of v such that ¹w.l/ W l 2 ¹1; 2; : : : ; kºº
is monochromatic.

Let W be the set of length n words over ¹1; 2; : : : ; kº. For w D b1b2 � � � bn 2 W

(where each bi 2 ¹1; 2; : : : ; kº), define gw W N ! S by, for y 2 N, gw.y/ DQn
iD1 fbi .ny C i/. Since A is a J -set, pick m 2 N, a 2 SmC1, and t 2 Jm

such that for all w 2 W , x.m; a; t; gw/ 2 A. Define ' W W ! ¹1; 2º by '.w/ D
1 if x.m; a; t; gw/ 2 A1 and '.w/ D 2 otherwise. Pick a variable word w.v/,
beginning and ending with a constant and without successive occurrences of v such
that ' is constant on ¹w.l/ W l 2 ¹1; 2; : : : ; kºº. Assume without loss of generality that
'.w.l// D 1 for all l 2 ¹1; 2; : : : ; kº. That is, for all l 2 ¹1; 2; : : : ; kº, .

Qm
jD1 a.j / �

gw.l/.t.j /// � a.mC 1/ D x.m; a; t; gw.l// 2 A1.
Let w.v/ D b1b2 � � � bn where each bi 2 ¹1; 2; : : : ; kº[¹vº, some bi D v, b1 ¤ v,

bn ¤ v, and if bi D v, then biC1 ¤ v. Let r be the number of occurrences of v in
w.v/ and pickL 2 IrC1 and s 2 Jr such that for each p 2 ¹1; 2; : : : ; rº, maxL.p/ <
s.p/ < minL.p C 1/,

SrC1
pD1L.p/ D ¹i 2 ¹1; 2; : : : ; nº W bi 2 ¹1; 2; : : : ; kºº and

¹s.1/; s.2/; : : : ; s.r/º D ¹i 2 ¹1; 2; : : : ; nº W bi D vº. (For example, if w.v/ D
12v131v2v1121v32, then r D 4, L D .¹1; 2º; ¹4; 5; 6º; ¹8º; ¹9; 10; 11; 12º; ¹14; 15º/,
and s D .3; 7; 9; 14/.)

We shall show now that, given y 2 N, there exist cy 2 S rC1 and zy 2 Jr such
that for all l 2 ¹1; 2; : : : ; kº, gw.l/.y/ D x.r; cy ; zy ; fl/ and further, for each y,
zy.r/ < zyC1.1/. So let y 2 N be given. For p 2 ¹1; 2; : : : ; r C 1º, let cy.p/ DQ
i2L.p/ fbi .ny C i/ and for p 2 ¹1; 2; : : : ; rº, let zy.p/ D ny C s.p/. To see

that these are as required, first note that zy.r/ 
 ny C n < zyC1.1/. Now let l 2
¹1; 2; : : : ; kº be given. Then w.l/ D d1d2 � � � dn where for i 2 ¹1; 2; : : : ; nº,

di D

´
bi if i 2

SrC1
pD1L.p/

l if i 2 ¹s.1/; s.2/; : : : ; s.r/º:

Therefore

gw.l/.y/ D

nY
iD1

fdi .ny C i/

D
� rY
pD1

� Y
i2L.p/

fbi .ny C i/
�
� fl .ny C s.p//

�
�

Y
i2L.rC1/

fbi .ny C i/

D
� rY
pD1

cy.p/ � fl .zy.p//
�
� cy.r C 1/

D x.r; cy ; zy ; fl /

as required.
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Now pick by Lemma 14.14.5, u 2 N, d 2 SuC1, and q 2 Ju such that for
each f 2 NS , .

Qm
jD1 a.j / � x.r; ct.j /; zt.j /; f // � a.m C 1/ D x.u; d; q; f /. Pick

l 2 ¹1; 2; : : : ; kº such that fl 2 F1 and x.u; d; q; fl / … A1. But

x.u; d; q; fl / D
� mY
jD1

a.j / � x.r; ct.j /; zt.j /; fl /
�
� a.mC 1/

D
� mY
jD1

a.j / � gw.l/.t.j //
�
� a.mC 1/

D x.m; a; t; gw.l// 2 A1;

a contradiction.

Recall from Theorem 4.40 that A \ K.ˇS/ ¤ ; if and only if A is piecewise
syndetic.

Theorem 14.14.7. Let S be a semigroup and let A � S . Then A \ J.S/ ¤ ; if and
only if A is a J -set.

Proof. The necessity is trivial. By Lemma 14.14.6 J -sets are partition regular. So, if
A is a J -set, then by Theorem 3.11, there is some p 2 ˇS such that A 2 p and for
every B 2 p, B is a J -set.

We notice now that Theorem 14.8.3 generalizes to noncommutative semigroups.

Corollary 14.14.8. Let .S; � / be a semigroup and letA be a piecewise syndetic subset
of S . Then A is a J -set.

Proof. By Theorem 4.40, A \ K.ˇS/ ¤ ;. By Theorem 14.14.4, K.ˇS/ � J.S/,
and so A \ J.S/ ¤ ; so by Theorem 14.14.7, A is a J -set.

Theorem 14.14.9. Let S be a semigroup and let A � S . If there is an idempotent in
A \ J.S/, then A is a C -set.

Proof. Pick p D p � p 2 J.S/ \ A. Recall that A? D ¹x 2 A W x�1A 2 pº and,
by Lemma 4.14, if x 2 A?, then x�1A? 2 p. We define m.F /, ˛.F / and 	.F / for
F 2 Pf .

NS/ by induction on jF j so that

(1) if ; ¤ G ¨ F , then 	.G/.m.G// < 	.F /.1/ and

(2) whenever n 2 N, ; ¤ G1 ¨ G2 ¨ � � � ¨ Gn D F and for each i 2
¹1; 2; : : : ; nº, fi 2 Gi , then

Qn
iD1 x.m.Gi /; ˛.Gi /; 	.Gi /; fi / 2 A

?.
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Assume first that F D ¹f º. Then A? is a J -set so pick m.F / 2 N, ˛.F / 2
Sm.F /C1, and 	.F / 2 Jm.F / such that x.m.F /; ˛.F /;H.F /; f / 2 A?

Now assume that jF j > 1 and that m.G/, ˛.G/, and H.G/ have been defined for
all proper subsets G of F . Let k D max¹	.G/.m.G// W ; ¤ G ¨ F º. Let

M D
° nY
iD1

x.m.Gi /; ˛.Gi /;H.Gi /; fi / W n 2 N;; ¤ G1 ¨ G2 ¨ � � � ¨ Gn ¨ F;
and fi 2 Gi for each i 2 ¹1; 2; : : : ; nº

±
:

Let B D A? \
T
b2M b�1A?. Since M is a finite subset of A?, B 2 p and therefore

B is a J -set. Pick by Lemma 14.14.3, m.F / 2 N, ˛.F / 2 Sm.F /C1, and 	.F / 2
Jm.F / such that 	.F /.1/ > k and for each f 2 F , x.m.F /; ˛.F /; 	.F /; f / 2 B .

Hypothesis (1) is satisfied directly. To verify hypothesis (2), let n 2 N, let ; ¤
G1 ¨ G2 ¨ � � � ¨ Gn D F , and for each i 2 ¹1; 2; : : : ; nº, let fi 2 Gi . If
n D 1, then x.m.G1/; ˛.G1/; 	.G1/; fi / 2 B � A?, so assume that n > 1. Let b DQn�1
iD1 x.m.Gi /; ˛.Gi /; 	.Gi /; fi /. Then b 2 M so x.m.Gn/; ˛.Gn/; 	.Gn/; fi / 2

B � b�1A? so
Qn
iD1 x.m.Gi /; ˛.Gi /; 	.Gi /; fi / 2 A

? as required.

The following corollary is currently the strongest version of the Central Sets Theo-
rem.

Corollary 14.14.10. Let S be a semigroup and let A be a central set in S . Then A is
a C -set.

Proof. By Theorem 14.14.4, J.S/ is an ideal of ˇS so any idempotent in K.S/ is
also in J.S/.

The following theorem was the most general version of the Central Sets Theorem
known at the time of the publication of the first edition of this book.

Theorem 14.15. Let S be a semigroup, let A be a central subset of S , and for each
` 2 N, let hy`;ni

1
nD1 be a sequence in S . Given `;m 2 N, a 2 SmC1, and H 2 Im,

let

w.a;H; `/ D
� mY
iD1

�
a.i/ �

Y
t2H.i/

y`;t

��
� a.mC 1/:

There exist sequences hm.n/i1nD1, hani1nD1, and hHni1nD1 such that

(1) for each n 2 N, m.n/ 2 N, an 2 Sm.n/C1, Hn 2 Im.n/, and maxHn;m.n/ <
minHnC1;1, and

(2) for each f 2 ˆ, FP.hw.an;Hn; f .n//i1nD1/ � A.
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Proof. As in the proof of Theorem 14.11, we may assume that the sequences hy`;ni1nD1
are all distinct. Pick m0 W Pf .

NS/ ! N, ˛ 2 ⨉F 2Pf .NS/ S
m0.F /C1, and 	 2

⨉F 2Pf .NS/ Jm0.F / as guaranteed by the fact that A is a C -set. For each n 2 N, let
Fn D ¹hy1;t i

1
tD1; hy2;t i

1
tD1; : : : ; hyn;t i

1
tD1º. Given n 2 N, letm.n/ D m0.Fn/, anD

.˛.Fn/.1/;˛.Fn/.2/; : : : ;˛.Fn/.m.n/ C 1//, and Hn D .¹	.Fn/.1/º;¹	.Fn/.2/º;

: : : ; ¹	.Fn/.m.n//º/.
To see that m.n/, an, and Hn are as required, let f 2 ˆ and let K 2 Pf .N/.

Enumerate K in order as n.1/; n.2/; : : : ; n.l/. For i 2 ¹1; 2; : : : ; lº, let gi D
hyf .n.i//;t i

1
tD1. Then

Y
n2K

w.an;Hn; f .n// D

lY
iD1

x.m0.Fn.i//; ˛.Fn.i//; 	.Fn.i//; gi / 2 A:

Theorem 14.15.1. Let S be a semigroup and let A � S . Then A is a C -set if and
only if there is an idempotent in A \ J.S/.

Proof. The sufficiency is Theorem 14.14.9.
Necessity. Pick

m W Pf .
NS/! N; ˛ 2 ⨉

F 2Pf .NS/

Sm.F /C1, and 	 2 ⨉
F 2Pf .NS/

Jm.F /

as guaranteed by the fact that A is a C -set. For F 2 Pf .
NS/ define

TF D
° nY
iD1

x.m.Fi /; ˛.Fi /; 	.Fi /; fi / W n 2 N; each Fi 2 Pf .
NS/;

F ¨ F1 ¨ F2 ¨ � � � ¨ Fn;
and for each i 2 ¹1; 2; : : : ; nº; fi 2 Fi

±
:

Note that if F;G 2 Pf .
NS/, then TF[G � TF \ TG , so Q D

T
F 2Pf .NS/

TF ¤ ;.
We claim that Q is a subsemigroup of ˇS . For this it suffices by Theorem 4.20 to
show that for all F 2 Pf .

NS/ and all u 2 TF , there is some G 2 Pf .
NS/ such

that u � TG � TF . So let F 2 Pf .
NS/ and u 2 TF be given. Pick n 2 N,

strictly increasing hFiiniD1 in Pf .
NS/ such that F ¨ F1, and f 2 ⨉niD1 Fi such that

u D
Qn
iD1 x.m.Fi /; ˛.Fi /;H.Fi /; fi /. Then u � TFn � TF .

Now we claim that K.Q/ � A \ J.S/ so that any idempotent in K.Q/ establishes
the theorem. We have that each TF � A so Q � A. Let p 2 K.Q/. We need
to show that p 2 J.S/, so let B 2 p. We shall show that B is a J -set. So let
F 2 Pf .

NS/. We shall produce v 2 N, c 2 SvC1, and t 2 Jv such that for each
f 2 F , x.v; c; t; f / 2 B .

We shall apply Lemma 14.9 with J D F andD D ¹G 2 Pf .
NS/ W F � Gº. Note

that Q D
T
G2D TG as in Lemma 14.9. For G 2 D we shall define a subset IG of
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⨉f 2F TG as follows. Let w 2 ⨉f 2F TG . Then w 2 IG if and only if there is some
n 2 N n ¹1º such that there exist C1, C2, hGi iniD1, and � such that

(1) C1 and C2 are disjoint nonempty sets and ¹1; 2; : : : ; nº D C1 [ C2,

(2) hGi iniD1 is strictly increasing in Pf .
NS/ with G ¨ G1, and

(3) � 2 ⨉i2C1 Gi and for each f 2 F , if �f 2 ⨉niD1Gi is defined by

�
f .i/ D

´
�i if i 2 C1
f if i 2 C2

then w.f / D
Qn
iD1 x.m.Gi /; ˛.Gi /; 	.Gi /;

�
f .i//.

For G 2 D, note that IG ¤ ; and let EG D IG [ ¹b W b 2 TGº.
We claim that hEGiG2D and hIGiG2D satisfy statements (a), (b), (c), and (e) of

Lemma 14.9. Statements (a) and (e) hold trivially.
To verify (b), let G 2 D and let w 2 IG . Pick n, C1, C2, hGi iniD1 and � as

guaranteed by the fact that w 2 IG . We claim that w �EGn � IG . So let z 2 EGn .
Assume first that z D b for some b 2 TGn . Pick n0 2 N, strictly increasing hFi in

0

iD1

in Pf .
NS/ with Gn ¨ F1, and �0 2 ⨉n

0

iD1 Fi such that

b D

n0Y
iD1

x.m.Fi /; ˛.Fi /; 	.Fi /; �
0.i//:

Let C 001 D C1 [ ¹nC 1; nC 2; : : : ; nC n
0º and for i 2 ¹1; 2; : : : ; nC n0º, let

Li D

´
Gi if i 
 n

Fi�n if i > n:

Define �00 2 ⨉i2C 001 Li by, for i 2 C 001 ,

�00.i/ D

´
�.i/ if i 
 n

�0.i � n/ if i > n:

Then nC n0, C 001 , C2, hLi i
nCn0

iD1 , and �00 establish that w � z 2 IG .
Now assume that z 2 IGn . Pick n0, C 01, C 02, hFi in

0

iD1 and �0 as guaranteed by the
fact that z 2 IGn . Let C 001 D C1 [ ¹nC i W i 2 C

0
1º, let C 002 D C2 [ ¹nC i W i 2 C

0
2º,

and for i 2 ¹1; 2; : : : ; nC n0º let

Li D

´
Gi if i 
 n

Fi�n if i > n:
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Define �00 2 ⨉i2C 00
1
Li by, for i 2 C 001 ,

�00.i/ D

²
�.i/ if i 
 n

�0.i � n/ if i > n:

Then nC n0, C 001 , C 002 , hLi i
nCn0

iD1 , and �00 establish that w � z 2 IG .
To verify (c) let G 2 D and let w 2 EG n IG . Pick b 2 TG such that w D b. Pick

n 2 N, strictly increasing hGi iniD1 in Pf .
NS/ with G ¨ G1, and � 2 ⨉niD1Gi such

that b D
Qn
iD1 x.m.Gi /; ˛.Gi /; 	.Gi /; �.i//. Then as above one has that w �EGn �

EG and w � IGn � IG .
We then have by Lemma 14.9 that p 2 I D

T
G2D IG . Now ⨉f 2F B is a neigh-

borhood of p so pickw 2 IF \⨉f 2F B . Pick n, C1, C2, hGi iniD1, and � 2 ⨉i2C1 Gi
as guaranteed by the fact that w 2 IF . Let r D jC2j and let h1; h2; : : : ; hr be the
elements of C2 listed in increasing order. Let v D

Pr
iD1m.Ghi /. If h1 D 1, let

c.1/ D ˛.G1/.1/. If h1 > 1, let

c.1/ D

h1�1Y
iD1

.x.m.Gi /; ˛.Gi /; 	.Gi/; �.i/// � ˛.Gh1/.1/:

For 1 < j 
 m.Gh1/ let c.j / D ˛.Gh1/.j / and for 1 
 j 
 m.Gh1/ let �.j / D
	.Gh1/.j /.

Now let s 2 ¹1; 2; : : : ; r � 1º and let u D
Ps
iD1m.Ghi /. If hsC1 D hs C 1 let

c.uC 1/ D ˛.Ghs /.m.Ghs /C 1/ � ˛.GhsC1/.1/. If hsC1 > hs C 1, let

c.uC 1/ D ˛.Ghs /.m.Ghs /C 1/

�
�hsC1�1Y
iDhsC1

x.m.Gi /; ˛.Gi /; 	.Gi /; �.i//
�
� ˛.GhsC1/.1/:

And for u < j 

PsC1
iD1 m.Ghi /, let �.j / D 	.GhsC1/.j � u/.

If hr D n, let c.v C 1/ D ˛.Gn/.m.Gn/ C 1/. If hr < n, let c.v C 1/ D

˛.Ghr /.m.Ghr / C 1/ �
Qn
iDhrC1

.x.m.Gi /; ˛.Gi /; 	.Gi /; �.i///. Then c 2 SvC1,
M 2 Iv and for each f 2 F , x.v; c; �; f / 2 B as required.

Exercise 14.4.1. Derive the Hales–Jewett Theorem (Theorem 14.7) as a corollary to
the noncommutative Central Sets Theorem (Corollary 14.14.10 or Theorem 14.15).

Exercise 14.4.2. State and prove an appropriate noncommutative version of Theorem
14.8.7.
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14.5 A Combinatorial Characterization of Central Sets

Recall from Theorem 5.12 that members of idempotents in ˇS are completely char-
acterized by the fact that they contain FP.hxni1nD1/ for some sequence hxni1nD1. Ac-
cordingly, it is natural to ask whether the Central Sets Theorem characterizes members
of minimal idempotents. That is, is every C -set a central set? We shall show now that
this is not true.

Lemma 14.16. Let n;m; k 2 N and for each i 2 ¹1; 2; : : : ; nº, let hyi;t i1tD1 be a
sequence in N. Then there exists H 2 Pf .N/ with min H > m such that for each
i 2 ¹1; 2; : : : ; nº,

P
t2H yi;t 2 N2k .

Proof. Choose an infinite setG1�N such that for all t; s2G1, y1;t 	 y1;s .mod 2k/.
Inductively, given i 2 ¹1; 2; : : : ; n � 1º and Gi , choose an infinite subset GiC1 of
Gi such that for all t; s 2 GiC1, yiC1;t 	 yiC1;s .mod 2k/. Then for all i 2
¹1; 2; : : : ; nº and all t; s 2 Gn one has yi;t 	 yi;s .mod 2k/. Now pick H � Gn
with min H > m and jH j D 2k .

Recall from Definition 6.2 that given n 2 N, supp.n/ 2 Pf .!/ is defined by
n D

P
i2supp.n/ 2

i .

Lemma 14.17. There is a set A � N such that

(a) A is not piecewise syndetic in .N;C/.

(b) For all x 2 A there exists n 2 N such that ; ¤ A \N2n � �x C A.

(c) For each n 2 N, A \N2n is a J -set.

Proof. For each k 2 N let Bk D ¹2k ; 2k C 1; 2k C 2; : : : ; 2kC1 � 1º and let A D
¹n 2 N W for each k 2 N, Bk n supp.n/ ¤ ;º. Then one recognizes that n 2 A by
looking at the binary expansion of n and noting that there is at least one 0 between
positions 2k and 2kC1 for each k 2 N.

To show thatA is not piecewise syndetic we need to show that for each g 2 N there
is some b 2 N such that for any x 2 N there is some y 2 ¹x C 1; x C 2; : : : ; x C bº
with ¹yC1; yC2; : : : ; yCgº\A D ;. To this end let g 2 N be given and pick k 2 N

such that 22
k

> g. Let b D 22
kC1

. Let x 2 N be given and pick the least a 2 N such
that a � 22

kC1

� 22
k

> x and let y D a � 22
kC1

� 22
k

. Then x < y 
 x C b and for
each t 2 ¹1; 2; : : : ; 22

k

�1º one has ¹2k ; 2kC1; 2kC2; : : : ; 2kC1�1º � supp.yC t /
so y C t … A.

To verify conclusion (b), let x 2 A and pick k 2 N such that 22
k�1 > x. Let

n D 2k . Then ; ¤ A \N2n � �x C A.
Finally, to verify (c) let n 2 N and let F 2 Pf .

NN/ be given. Let m D
max¹n; jF jº. We shall show that we can choose H 2 Pf .N/ and a 2 N such
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that for each f 2 F , a C
P
t2F f .t/ 2 A \N2m. We first observe that by Lemma

14.16 we can choose H 2 Pf .N/ such that for each f 2 F ,
P
t2H f .t/ 2 N2mC1.

Next we observe that given any hzf if 2F in N and any k with 2k > m, there exists
r 2 Bk such that Bk n supp.2r C zf / ¤ ; for each f 2 F . Indeed, if r 2 Bk and
Bk � supp.2r C z/ then supp.z/\Bk D Bk n ¹rº. Consequently j¹r 2 Bk W there is
some f 2 F with Bk � supp.2r C zf /ºj 
 jF j.

For f 2 F , let zf;0 D
P
t2H f .t/. Pick the least ` such that 2` > m. Now given

f 2 F we have 2mC1jzf;0 and 2`�1 < m C 1 so 2`�1 2 B`�1 n supp.zf;0/. Pick
r0 2 B` such that B`nsupp.2r0Czf;0/ ¤ ; for each f 2 F and let zf;1 D zf;0C2r0 .
Inductively choose rj 2 B`Cj such that B`Cj n supp.2rj C zf;j / ¤ ; for each
f 2 F and let zf;jC1 D zf;j C 2

rj . Continue the induction until `C j D k where

22
k

>
P
t2H f .t/ for each f 2 F and let a D 2r0 C 2r1 C � � � C 2rk�` .

Theorem 14.18. There is a set A � N such that A is a C -set for .N;C/ but
K.ˇN;C/ \ c`A D ;.

Proof. LetA be as in Lemma 14.17. By conclusion (a) of Lemma 14.17 and Theorem
4.40 we have that K.ˇN;C/ \ c`A D ;.

Let T D J.N/ \
T1
nD1A \ 2

nN. By Theorem 14.14.4, J.N/ is a compact semi-
group. By Lemma 14.17 (b) and Theorem 4.20,

T1
nD1A \ 2

nN is a semigroup. By
Lemma 14.17 (c) and Theorem 14.14.7, J.N/ \ A \ 2nN ¤ ; for each n so T ¤ ;.
Thus T is a compact semigroup which therefore has an idempotent. By Theorem
14.14.9, A is a C -set.

We now proceed to derive a combinatorial characterization of central sets. This
characterization involves the following generalization of the notion of a piecewise
syndetic set.

Definition 14.19. Let .S; � / be a semigroup and let A � P .S/. Then A is collec-
tionwise piecewise syndetic if and only if there exist functions G W Pf .A/! Pf .S/

and x W Pf .A/ � Pf .S/ ! S such that for all F 2 Pf .S/ and all F and H in
Pf .A/ with F � H one has F � x.H ; F / �

S
t2G.F / t

�1.
T

F /.

Note that a subset A is piecewise syndetic if and only if ¹Aº is collectionwise
piecewise syndetic. An alternate characterization is: A is collectionwise piecewise
syndetic if and only if there exists a function G W Pf .A/! Pf .S/ such that°

y�1.G.F //�1
�\

F
�
W y 2 S and F 2 Pf .A/

±
has the finite intersection property. Here

y�1.G.F //�1
�\

F
�
D
S
t2G.F / y

�1t�1
�T

F
�
:

(See Exercise 14.5.1.)
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In the event that the family and the semigroup are both countable, we have a con-
siderably simpler characterization of collectionwise piecewise syndetic.

Lemma 14.20. Assume the semigroup S D ¹an W n 2 Nº and ¹An W n 2 Nº �
P .S/. The family ¹An W n 2 Nº is collectionwise piecewise syndetic if and only if
there exist a sequence hg.n/i1nD1 in N and a sequence hyni1nD1 in S such that for all
n;m 2 N with m � n,

¹a1ym; a2ym; : : : ; amymº �
g.n/S
jD1

aj
�1
� nT
iD1

Ai

�
:

Proof. For the necessity, pick functions G and x as guaranteed by Definition 14.19.
Given n 2 N, let

g.n/ D min¹k 2 N W G.¹A1; A2; : : : ; Anº/ � ¹a1; a2; : : : ; akºº

and yn D x.¹A1; A2; : : : ; Anº; ¹a1; a2; : : : ; anº/. Then if m � n, letting

F D ¹A1; A2; : : : ; Anº; H D ¹A1; A2; : : : ; Amº; and F D ¹a1; a2; : : : ; amº;

one has F � H and

¹a1ym; a2ym; : : : ; amymº D F � x.H ; F /

�
S

t2G.F /

t�1.
T

F /

�
g.n/S
jD1

aj
�1
� nT
iD1

Ai

�
:

For the sufficiency, let hg.n/i1nD1 and hyni1nD1 be as in the statement of the lemma.
Given F 2 Pf .¹An W n 2 Nº/, let m D max¹k 2 N W Ak 2 F º and let G.F / D
¹a1; a2; : : : ; ag.m/º. Given H 2 Pf .¹An W n 2 Nº/ and F 2 Pf .S/, let m D
max¹k 2 N W Ak 2 H or ak 2 F º and let x.H ; F / D ym. Then if F ;H 2

Pf .¹An W n 2 Nº/, F 2 Pf .S/, F � H , m D max¹k 2 N W Ak 2 H or ak 2 F º,
and n D max¹k 2 N W Ak 2 F º, then n 
 m so

F � x.H ; F / � ¹a1ym; a2ym; : : : ; amymº

�
g.n/S
jD1

aj
�1
� nT
iD1

Ai

�
�

S
t2G.F /

t�1.
T

F /:

Theorem 14.21. Let .S; � / be an infinite semigroup and let A � P .S/. There exists
p 2 K.ˇS/ with A � p if and only if A is collectionwise piecewise syndetic.
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Proof. Necessity. Pick p 2 K.ˇS/ such that A � p. For each F 2 Pf .A/,T
F 2 p, so by Theorem 4.39, B.F / D ¹t 2 S W t�1.

T
F / 2 pº is syndetic.

Pick G.F / 2 Pf .S/ such that S D
S
t2G.F / t

�1B.F /. For each y 2 S and
each F 2 Pf .A/, pick t .y;F / 2 G.F / such that y 2 .t.y;F //�1B.F / (so that
.t.y;F / � y/�1.

T
F / 2 p). Given H 2 Pf .A/ and F 2 Pf .S/, ¹.t.y;F / �

y/�1.
T

F / W y 2 F and ; ¤ F � Hº is a finite subset of p so pick

x.H ; F / 2
T®
.t.y;F / � y/�1.

T
F / W y 2 F and ; ¤ F � H

¯
:

To see that the functions G and x are as required, let F 2 Pf .S/ and let F ;H 2

Pf .A/ with F � H . To see that F � x.H ; F / �
S
t2G.F / t

�1.
T

F /, let y 2 F .
Then x.H ; F / 2 .t.y;F / � y/�1.

T
F /, so

y � x.H ; F / 2 .t.y;F //�1.
T

F / �
S
t2G.F / t

�1.
T

F /:

Sufficiency. Pick G W Pf .A/! Pf .S/ and x W Pf .A/ � Pf .S/! S as guaran-
teed by the definition. For each F 2 Pf .A/ and each y 2 S , let

D.F ; y/ D ¹x.H ; F / W H 2 Pf .A/; F 2 Pf .S/; F � H ; and y 2 F º:

Then ¹D.F ; y/ W F 2 Pf .A/ and y 2 Sº has the finite intersection property so pick
u 2 ˇS such that ¹D.F ; y/ W F 2 Pf .A/ and y 2 Sº � u. We claim that

for each F 2 Pf .A/, S � u �
S
t2G.F / t

�1.
T

F /. (�)

To this end, let F 2 Pf .A/ and let y 2 S . Then D.F ; y/ � ¹x W y � x 2S
t2G.F / t

�1.
T

F /º so
S
t2G.F / t

�1.
T

F / 2 y � u as required.

By (�) we have that for each F 2 Pf .A/, ˇS � u �
S
t2G.F / t

�1.
T

F /. Since
ˇS � u is a left ideal of ˇS , pick a minimal left ideal L of ˇS such that L � ˇS � u
and pick q 2 L. Then for each H 2 Pf .A/ we have

S
t2G.H/ t

�1.
T

H / 2 q so
pick t .H / 2 G.H / such that .t.H //�1.

T
H / 2 q.

For each F 2 Pf .A/, let E.F / D ¹t .H / W H 2 Pf .A/ and F � Hº. Then
¹E.F / W F 2 Pf .A/º has the finite intersection property. So pick w 2 ˇS such
that ¹E.F / W F 2 Pf .A/º � w. Let p D w � q. Then p 2 L � K.ˇS/. To see
that A � p, let A 2 A. Since E.¹Aº/ 2 w, it suffices to show that E.¹Aº/ � ¹t 2
S W t�1A 2 qº, so let H 2 Pf .A/ with ¹Aº � H . Then .t.H //�1.

T
H / 2 q and

.t.H //�1.
T

H / � .t.H //�1A, so .t.H //�1A 2 q.

Our combinatorial characterization of central is based on an analysis of the proofs
of Theorem 5.8. The important thing to notice about these proofs is that when one
chooses xn one in fact has a large number of choices. That is, one can draw a tree,
branching infinitely often at each node, so that any path through that tree yields a
sequence hxni1nD1 with FP.hxni1nD1/ � A. (Recall that in FP.hxni1nD1/, the products
are taken in increasing order of indices.)
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We formalize the notion of “tree” below. We recall that each ordinal is the set of
its predecessors. (So 3 D ¹0; 1; 2º and 0 D ; and, if f is the function ¹.0; 3/; .1; 5/;
.2; 9/; .3; 7/; .4; 5/º, then fj3 D ¹.0; 3/; .1; 5/; .2; 9/º.)

Definition 14.22. T is a tree in A if and only if T is a set of functions and for each
f 2 T , domain.f / 2 ! and range.f / � A and if domain.f / D n > 0, then
fjn�1 2 T . T is a tree if and only if for some A, T is a tree in A.

The last requirement in the definition is not essential. Any set of functions with
domains in ! can be converted to a tree by adding in all restrictions to initial segments.
We include the requirement in the definition for aesthetic reasons – it is not nice for
branches at some late level to appear from nowhere.

Definition 14.23. (a) Let f be a function with domain.f / D n 2 ! and let x be
given. Then f _x D f [ ¹.n; x/º.

(b) Given a tree T and f 2 T , Bf D Bf .T / D ¹x W f_x 2 T º.

(c) Let .S; � / be a semigroup and let A � S . Then T is a �-tree in A if and only if
T is a tree in A and for all f 2 T and all x 2 Bf , Bf_x � x�1Bf .

(d) Let .S; � / be a semigroup and let A � S . Then T is an FP-tree in A if and only
if T is a tree in A and for all f 2 T , Bf D ¹

Q
t2F g.t/ W g 2 T and f ¨ g

and ; ¤ F � dom.g/ n dom.f /º.

The idea of the terminology is that an FP-tree is a tree of finite products. It is this
notion which provides the most fundamental combinatorial characterization of the
notion of “central”. A �-tree arises more directly from the proof outlined above.

Lemma 14.23.1. Let .S; � / be an infinite semigroup, let A � S , and let T be an
FP-tree in A. Then T is a �-tree in A.

Proof. Let T be an FP-tree. Then given f 2 T and x 2 Bf , we claim that Bf_x �
x�1Bf . To this end let y 2 Bf_x and pick g 2 T and F � dom.g/ n dom.f_x/
such that f _x ¨ g and y D

Q
t2F g.t/. Let n D dom.f / and let G D F [ ¹nº.

Then x � y D
Q
t2G g.t/ and G � dom.g/ n dom.f /, so x � y 2 Bf as required.

Lemma 14.24. Let .S; � / be an infinite semigroup and let A � S . Let p be an
idempotent in ˇS with A 2 p. There is an FP-tree T in A such that for each f 2 T ,
Bf 2 p.

Proof. We shall define the initial segments Tn D ¹f 2 T W dom.f / D nº inductively.
Let T0 D ¹;º (of course) and let C; D A?. Then C; 2 p by Theorem 4.12. Let
T1 D ¹¹.0; x/º W x 2 C;º.

Inductively assume that we have n 2 N and have defined Tn so that for each
f 2 Tn one has FP.hf .t/in�1tD0/ � A

?. Given f 2 Tn, write Pf D FP.hf .t/in�1tD0/,
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let Cf D A? \
T
x2Pf

x�1A?, and note that by Lemma 4.14, Cf 2 p. Let TnC1 D
¹f _y W f 2 Tn and y 2 Cf º. Then given g 2 TnC1, one has FP.hg.t/intD0/ � A

?.
The induction being complete, let T D

S1
nD0 Tn. Then T is a tree in A. One

sees immediately from the construction that for each f 2 T , Bf D Cf . We need
to show that for each f 2 T one has Bf D ¹

Q
t2F g.t/ W g 2 T and f ¨ g and

; ¤ F � dom.g/ n dom.f /º. Given f 2 T and x 2 Bf , let g D f_x and let
F D dom.g/ n dom.f / (which is a singleton). Then x D

Q
t2F g.t/.

For the other inclusion we first observe that if f; h 2 T with f � h then Pf � Ph
so Bh � Bf . Let f 2 Tn and let x 2 ¹

Q
t2F g.t/ W g 2 T and f ¨ g and

; ¤ F � dom.g/ n dom.f /º. Pick g 2 T with f ¨ g and pick F with ; ¤ F �

dom.g/ n dom.f / such that x D
Q
t2F g.t/. First assume F D ¹mº. Then m � n.

Let h D gjm. Then f � h and h_x D gjmC1 2 T . Hence x 2 Bh � Bf as
required. Now assume jF j > 1, let m D maxF , and let G D F n ¹mº. Let h D gjm,
let w D

Q
t2G g.t/, and let y D g.m/. Then y 2 Bh. Let Pf D FP.hf .t/in�1tD0/ and

Ph D FP.hh.t/im�1tD0 /. We need to show that w � y 2 Bf . That is, we need w � y 2 A?

and for all z 2 Pf , w � y 2 z�1A?. Now w 2 Ph and y 2 Bh so y 2 w�1A? so
w � y 2 A?. Let z 2 Pf . Then z � w 2 Ph and y 2 Bh so y 2 .z � w/�1A? and so
w � y 2 z�1A?.

Theorem 14.25. Let .S; � / be an infinite semigroup and let A � S . Statements (a),
(b), (c), and (d) are equivalent and are implied by statement (e). If S is countable,
then all five statements are equivalent.

(a) A is central.

(b) There is an FP-tree T in A such that ¹Bf W f 2 T º is collectionwise piecewise
syndetic.

(c) There is a �-tree T in A such that ¹Bf W f 2 T º is collectionwise piecewise
syndetic.

(d) There is a downward directed family hCF iF 2I of subsets of A such that

(i) for each F 2 I and each x 2 CF there exists G 2 I with CG � x�1CF
and

(ii) ¹CF W F 2 I º is collectionwise piecewise syndetic.

(e) There is a decreasing sequence hCni1nD1 of subsets of A such that

(i) for each n 2 N and each x 2 Cn, there exists m 2 N with Cm � x�1Cn
and

(ii) ¹Cn W n 2 Nº is collectionwise piecewise syndetic.
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Proof. (a) implies (b). Pick an idempotent p 2 K.ˇS/ with A 2 p. By Lemma
14.24 pick an FP-tree with ¹Bf W f 2 T º � p. By Theorem 14.21 ¹Bf W f 2 T º is
collectionwise piecewise syndetic.

(b) implies (c). By Lemma 14.23.1 any FP-tree is a �-tree.
(c) implies (d). Let T be the given �-tree. Since ¹Bf W f 2 T º is collectionwise

piecewise syndetic, so is ¹
T
f 2F Bf W F 2 Pf .T /º. (This can be seen directly or by

invoking Theorem 14.21.) Let I D Pf .T / and for each F 2 I , let CF D
T
f 2F Bf .

Then ¹CF W F 2 I º is collectionwise piecewise syndetic, so (ii) holds. Let F 2 I
and let x 2 CF . Let G D ¹f_x W f 2 F º. Then G 2 I . Now for each f 2 F we
have Bf_x � x

�1Bf so CG � x�1CF .
(d) implies (a). Let M D

T
F 2I c`CF . By Theorem 4.20 M is a subsemigroup of

ˇS . Since ¹CF W F 2 I º is collectionwise piecewise syndetic, we have by Theorem
14.21 that M \ K.ˇS/ ¤ ; so we may pick a minimal left ideal L of ˇS with
L \M ¤ ;. Then L \M is a compact subsemigroup of ˇS which thus contains an
idempotent, and this idempotent is necessarily minimal.

That (e) implies (d) is trivial.
Finally assume that S is countable. We show that (c) implies (e). So let T be the

given �-tree in A. Then T is countable so enumerate T as hfni1nD1. For each n 2 N,
let Cn D

Tn
kD1Bfk . Then ¹Cn W n 2 Nº is collectionwise piecewise syndetic. Let

n 2 N and let x 2 Cn. Pick m 2 N such that ¹fk_x W k 2 ¹1; 2; : : : ; nºº � ¹ft W
t 2 ¹1; 2; : : : ; mºº. Then Cm D

Tm
tD1Bft �

Tn
kD1Bfk

_
x �

Tn
kD1 x

�1Bfk D

x�1Cn.

We point out a Ramsey-Theoretic consequence of the characterization.

Corollary 14.26. Let S be an infinite semigroup, let r 2 N, and let S D
Sr
iD1Ai .

There exist i 2 ¹1; 2; : : : ; rº and an FP-tree T in Ai such that ¹Bf W f 2 T º is
collectionwise piecewise syndetic.

Proof. Pick an idempotent p 2 K.ˇS/ and pick i 2 ¹1; 2; : : : ; rº such that Ai 2 p.
Apply Theorem 14.25.

There is a very similar combinatorial characterization of C -sets. However, it is
much easier to work with than the characterization of central sets, because the (quite
complicated) notion of collectionwise piecewise syndetic is replaced by the (very sim-
ple) notion of J -set.

Theorem 14.27. Let .S; � / be an infinite semigroup and let A � S . Statements (a),
(b), (c), and (d) are equivalent and are implied by statement (e). If S is countable,
then all five statements are equivalent.

(a) A is a C -set.

(b) There is an FP-tree T in A such that for each F 2 Pf .T /,
T
f 2F Bf is a J -set.
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(c) There is a �-tree T in A such that for each F 2 Pf .T /,
T
f 2F Bf is a J -set.

(d) There is a downward directed family hCF iF 2I of subsets of A such that

(i) for each F 2 I and each x 2 CF there exists G 2 I with CG � x�1CF
and

(ii) for each F 2 Pf .I /,
T
F 2F CF is a J -set.

(e) There is a decreasing sequence hCni1nD1 of subsets of A such that

(i) for each n 2 N and each x 2 Cn, there exists m 2 N with Cm � x�1Cn
and

(ii) for each n 2 N, Cn is a J -set.

Proof. (a) implies (b). By Theorem 14.15.1, pick an idempotent p 2 A \ J.S/.
By Lemma 14.24 pick an FP-tree with ¹Bf W f 2 T º � p. Given F 2 Pf .T /,T
f 2F Bf 2 p so, since p 2 J.S/,

T
f 2F Bf is a J -set.

(b) implies (c). By Lemma 14.23.1 any FP-tree is a �-tree.
(c) implies (d). Let T be the given �-tree. Let I D Pf .T / and for each F 2 I ,

let CF D
T
f 2F Bf . Then directly each CF is a J -set. Given F 2 Pf .I /, if

G D
S

F , then
T
F 2F CF D CG , and is therefore a J -set. To verify (i), let F 2 I

and let x 2 CF . Let G D ¹f_x W f 2 F º. For each f 2 F , Bf_x � x
�1Bf and

so CG � x�1CF .
(d) implies (a). Let M D

T
F 2I CF . By Theorem 4.20, M is a subsemigroup of

ˇS . Let R D ¹B � S W B is a J -setº. By Lemma 14.14.6 and Theorem 3.11, there
is some p 2 ˇS such that ¹CF W F 2 I º � p � R. ThereforeM \J.S/ ¤ ; and by
Theorem 14.14.4, J.S/ is an ideal of ˇS and soM\J.S/ is a compact subsemigroup
of ˇS . Thus there is an idempotent p 2 M \ J.S/ and so by Theorem 14.14.9, A is
a C -set.

It is trivial that (e) implies (d). Assume now that S is countable. We shall show that
(c) implies (e). So let T be as guaranteed by (c). Then T is countable so enumerate
T as ¹fn W n 2 Nº. For n 2 N, let Cn D

Tn
kD1 Bfk . Then each Cn is a J -set. Let

n 2 N and let x 2 Cn. Pick m 2 N such that

¹fk
_x W k 2 ¹1; 2; : : : ; nºº � ¹f1; f2; : : : ; fmº:

Then Cm � x�1Cn.

Exercise 14.5.1. Let S be a semigroup. Prove that a family A � P .S/ is collection-
wise piecewise syndetic if and only if there exists a function G W Pf .A/ ! Pf .S/

such that ¹y�1.G.F //�1.
T

F / W y 2 S and F 2 Pf .A/º has the finite intersection
property. (Where y�1.G.F //�1.

T
F / D

S
t2G.F / y

�1t�1.
T

F /.)
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14.6 Geoarithmetic Progressions

Van der Waerden’s Theorem for the set of positive integers can be strengthened. We
show in Corollary 14.32 that, for any piecewise syndetic subset A of .N; � / and any
k 2 N, there exist a; d 2 N and r 2 N n ¹1º such that rj .a C id/ 2 A for every
i; j 2 ¹0; 1; 2; : : : ; kº. In Corollary 14.37, we show that there exist a; b; d 2 N
such that b.a C id/j 2 A for every i; j 2 ¹0; 1; 2; : : : ; kº. Sets of this form, which
combine additive and multiplicative structure, are called geoarithmetic progressions.

Theorem 14.28. Let S be a set and let � be a binary operation defined on S . Let
F and G be weakly partition regular families of subsets of S . If either F or G is a
family of finite sets, then ¹F � G W F 2 F and G 2 G º is weakly partition regular,
where F �G D ¹s � t W s 2 F and t 2 Gº.

Proof. Suppose first that F is a family of finite sets. By Theorem 4.1, � extends to
a binary operation on ˇS with the property that for each q 2 ˇS , �q is continuous
and for each x 2 S , �x is continuous. By Theorem 5.7, we can choose p; q 2 ˇS
such that every member of p contains a set in F and every member of q contains a
set in G .

We claim that every member of p � q contains a set in ¹F � G W F 2 F ; G 2 G º.
To see this, let A 2 p � q. Pick B 2 p such that �qŒB� � A and pick F 2 F such
that F � B . For each x 2 F , �x.q/ 2 A so pick Cx 2 q such that �x ŒCx� � A. Pick
G 2 G such that G �

T
x2F Cx .

If G is a family of finite sets, we replace � by the binary operation �0 defined by
s �0 t D t � s. Then, for every F;G � S , F �0 G D G � F .

Lemma 14.29. Let S be a semigroup and let F be a weakly partition family of sub-
sets of S . For each b 2 S , ¹bF W F 2 F º is weakly partition regular.

Proof. Let b 2 S and r 2 N and let S D
Sr
iD1Ai . Then S D

Sr
iD1 b

�1Ai so pick
i 2 ¹1; 2; : : : ; rº and F 2 F such that F � b�1Ai . Then bF � Ai .

Given b 2 S , ¹¹bºº is weakly partition regular so Lemma 14.29 is a consequence
of Theorem 14.28. But that is a bit like shooting mice with cannon.

Theorem 14.30. Let S be a semigroup and let F be a weakly partition regular family
of subsets of S . Then there is minimal idempotent q 2 ˇS such that every member
of q contains a set of the form bF for some b 2 S and some F 2 F . In the case
in which S is commutative and F is a family of finite sets, every piecewise syndetic
subset of S contains a set of this form.

Proof. Let L D ¹p 2 ˇS W .8A 2 p/.9F 2 F /.9b 2 S/.bF � A/º. Then L is
closed and sL � L for every s 2 S . Therefore, for every p 2 L, ˇSp D c`.Sp/ � L.
Also by Theorem 5.7 and Lemma 14.29, L is nonempty and is therefore a left ideal
of ˇS . It follows from Corollary 2.6 that L contains a minimal idempotent of ˇS .
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Now assume that S is commutative and that every member of F is finite. We
shall show that L is an ideal of ˇS . To see this, let p 2 L, let q 2 ˇS and let
A 2 pq. Then ¹s 2 S W s�1A 2 qº 2 p so pick F 2 F and b 2 S such that
bF � ¹s 2 S W s�1A 2 qº. Then

T
s2F .bs/

�1A 2 q so pick t 2
T
s2F .bs/

�1A.
Then tbF D bF t � A, so pq 2 L and L is an ideal of ˇS as claimed. Consequently
K.ˇS/ � L and so, if A is a piecewise syndetic subset of S , then A \ L ¤ ;.

Corollary 14.31. Let S be a commutative semigroup, let n2N, and let F1;F2; : : : ;Fn
be weakly partition regular families of finite subsets of S . Then every piecewise syn-
detic subset of S contains a set of the form bF1F2 � � �Fn for some b 2 S and some
.F1; F2; : : : ; Fn/ 2 ⨉

n
iD1 Fi .

Proof. By Theorem 14.28 ¹F1F2 � � �Fn W for each i 2 ¹1; 2; : : : ; nº, Fi 2 Fiº is
weakly partition regular. Apply Theorem 14.30.

Corollary 14.32. LetA be a piecewise syndetic subset of .N; � / and let k 2 N. There
exist a; d 2 N and r 2 N n ¹1º such that ¹rj .aC id/ W i; j 2 ¹0; 1; : : : ; kºº[ ¹drj W
j 2 ¹0; 1; : : : ; kºº � A.

Proof. Let F D Œ¹brj W j 2 ¹0; 1; : : : ; kºº W b 2 N and r 2 N n ¹1º� and let
G D ¹¹dº [ ¹a C id W i 2 ¹0; 1; : : : ; kºº W a; d 2 Nº. By Theorem 14.1 applied to
the semigroup .N n ¹1º; � /, F is weakly partition regular. By Corollary 14.13, G is
weakly partition regular. (Given that N D

Sl
iD1 Ci , choose i such that Ci is central

and pick a sequence hxni1nD1 such that FS.hxni1nD1/ � Ci .) Therefore by Theorem
14.28, H D ¹F � G W F 2 F and G 2 G º is weakly partition regular. By Theorem
14.30 applied to H , pick c 2 N, F 2 F , and G 2 G such that c � F � G � A.
Pick b; a1; d1 2 N and r 2 N n ¹1º such that F D ¹brj W j 2 ¹0; 1; : : : ; kºº and
G D ¹d1º [ ¹a1 C id1 W i 2 ¹0; 1; : : : ; kºº. Let a D a1bc and d D d1bc.

Theorem 14.33. Let S be a semigroup and let F and G be weakly partition regular
families of subsets of S . Suppose that every member of F is finite. Then there is a
minimal idempotent q 2 ˇS such that every member of q contains a set of the form
bFG for some b 2 S , some F 2 F and some G 2 G .

Proof. By Theorem 14.28 ¹FG W F 2 F and G 2 G º is weakly partition regular.
Apply Theorem 14.30.

Lemma 14.34. Let .S; � / be a commutative semigroup with an identity 1, let k 2 N,
and let C be a central subset of S . Then there exist b; r 2 C such that brj 2 C for
every j 2 ¹1; 2; : : : ; kº.

Proof. By Theorem 5.8, we can choose an infinite sequence hxni1nD1 for which
FP.hxni1nD1/ � C . For each j 2 ¹1; 2; : : : ; k C 1º we define a sequence hyj;t i1tD1 in
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S as follows. For t 2 N, y1;t D 1. For j 2 ¹1; 2; : : : ; kº and t 2 N, yjC1;t D x
j
t .

Pick sequences hani1nD1 and hHni1nD1 as guaranteed by Theorem 14.11 for C . Let
b D akC1 and let r D

Q
t2HkC1

xt . Then r 2 C , b D akC1
Q
t2HkC1

y1;t 2 C , and

for j 2 ¹1; 2; : : : ; kº, brj D akC1
Q
t2HkC1

yjC1;t 2 C .

Theorem 14.35. Let .S; � / be a commutative semigroup with an identity 1, let C be a
central subset of S , let k 2 N, and let F be a weakly partition regular family of finite
subsets of S . Then there exist b 2 C , r 2 S and F 2 F such that rF [ ¹b.rx/j W
x 2 F and j 2 ¹1; 2; : : : ; kºº � C .

Proof. Let q be a minimal idempotent of ˇS for which C 2 q. We define � W S2 !
SkC2 by �.b; r/ D .b; r; br; br2; : : : ; brk/ and observe that � is a homomorphism.
By Corollary 4.22 the continuous extension e� W ˇ.S2/ ! .ˇS/kC2 is a homomor-
phism. Let q D .q; q; : : : ; q/ 2 .ˇS/kC2. Then by Theorem 2.23, q is an idempotent
in K..ˇS/kC2/. Let T D e�Œˇ.S2/�. We claim that q 2 T . To see this, let A 2 q.
By Lemma 14.34, pick b; r 2 A such that brj 2 A for each j 2 ¹1; 2; : : : ; kº. Then
�.b; r/ 2 A � A � � � � � A. Thus every neighborhood of q meets T so q 2 T .

Since q 2 T \ K..ˇS/kC2/, we have by Theorem 1.65 that q 2 K.T /. By
Exercise 1.7.3, K.T / D e�ŒK.ˇ.S2//�. Pick a minimal left ideal L of ˇ.S2/ such
that q 2 e�ŒL�. Then L \e��1Œ¹qº� is a compact subsemigroup of ˇ.S2/ so pick an
idempotent p 2 L \e��1Œ¹qº�.

Now C � C � � � � � C is a neighborhood of q and e�.p/ D q so pick D 2 p
such that e�ŒD� � C � C � � � � � C . Let G D ¹¹1º � F W F 2 F º. Then G is
a weakly partition regular family of finite subsets of S2 and D is central in S2, so
in particular is piecewise syndetic. Pick by Theorem 14.30 some .b; r/ 2 S2 and
F 2 F such that ¹bº � rF D .b; r/.¹1º � F / � D. Then given x 2 F , .b; rx/ 2 D
so ¹b; rx; brx; b.rx/2; : : : ; b.rx/kº � C .

Corollary 14.36. Let C be a central subset of .N; � / and let k 2 N. Then there
exist a; b; d 2 C such that ¹b.a C id/j W i; j 2 ¹0; 1; : : : ; kºº [ ¹bd j W j 2

¹0; 1; : : : ; kºº � C .

Proof. Let F D ¹¹a; d; aCd; aC2d; : : : ; aCkdº W a; d 2 Nº. By Corollary 14.13,
F is weakly image partition regular. Now, by Theorem 14.35 pick b 2 C , r 2 N and
F 2 F such that rF [ ¹b.rx/j W x 2 F and j 2 ¹1; 2; : : : ; kºº � C . Pick u; v 2 N
such that F D ¹u; v; uC v; uC 2v; : : : ; uC kvº. Let a D ru and let d D rv.

Corollary 14.37. LetA be a piecewise syndetic subset of .N; � / and let k 2 N. There
exist a; b; d 2 N such that

¹bd j W j 2 ¹0; 1; : : : ; kºº [ ¹b.aC id/j W i; j 2 ¹0; 1; : : : ; kºº � A:

Proof. Let F D Œ¹bd j W j 2 ¹0; 1; : : : ; kºº [ ¹b.a C id/j W i; j 2 ¹0; 1; : : : ; kºº W

a; b; d 2 N�. By Corollary 14.36, F is weakly partition regular. By Theorem 14.30
pick F 2 F and r 2 N such that rF � A.
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Exercise 14.6.1. Let k 2 N. Prove that, in every finite partition of N, some set
in the partition contains both an arithmetic progression of length k and a geometric
progression of length k. (Hint: Apply Corollary 5.21.)

Exercise 14.6.2. Show that the conclusion of Theorem 14.28 need not hold if F and
G are both infinite. (Hint: Choose p; q 2 ˇN for which p 2

T1
mD1 FSh22ni1nDm

and q 2
T1
mD1 FSh22nC1i1nDm. Then N can be partitioned into two sets, neither of

which contains any set of the form F CG with F 2 p and G 2 q.)

14.7 Notes

The fact that the notion of piecewise syndeticity is partition regular is due to T. Brown
in [83].

The original Central Sets Theorem is due to Furstenberg [156, Proposition 8.21]
and applied to the semigroup .N;C/. It used a different but equivalent definition of
central. See Theorem 19.27 for a proof of the equivalence of the notions of central.
This original version also allowed the (finitely many) sequences hy`;ni1nD1 to take
values in Z. Since any idempotent minimal in .ˇN;C/ is also minimal in .ˇZ;C/,
and hence any central set in .N;C/ is central in .Z;C/, the original version follows
from Theorem 14.11.

The idea for the proof of the Central Sets Theorem (as well as the proofs in this
chapter of van der Waerden’s Theorem and the Hales–Jewett Theorem) is due to
Furstenberg and Katznelson in [158], where it was developed in the context of en-
veloping semigroups. The idea to convert this proof into a proof in ˇS is due to
V. Bergelson, and the construction in this context first appeared in [42].

Theorem 14.8.4 is from [120], a result of collaboration with D. De. Theorem
14.14.4, Lemma 14.14.6, Theorem 14.15.1, and Corollary 14.14.10 are due to J. John-
son in [277] and generalize results from [120]. It was shown in [120] that Corollary
14.14.10 is strictly stronger than Theorem 14.15. We do not know whether Theorem
14.8.4 is strictly stronger than Theorem 14.11. Theorem 14.8.7 is from [121], a result
of collaboration with D. De.

Corollary 14.13 can in fact be derived from the Hales–Jewett Theorem (Corollary
14.8). See for example [43, p. 434].

Lemma 14.14.6 and Theorem 14.14.7 are from [268].
Theorem 14.25 is from [232], a result of collaboration with A. Maleki. Theorem

14.21 is from [231], a result of collaboration with A. Lisan. Theorem 14.27 is due to
J. Johnson in [277] and generalizes a result from [263].

In [33], V. Bergelson showed that, for every k 2 N, every piecewise syndetic subset
of .N; � / contains a set of the form ¹b.a C id/j W i; j 2 ¹0; 1; 2; : : : ; kºº for some
a; b; d 2 N. Most of the results of Section 14.6 are from [26], a paper written in
collaboration with M. Beiglböck and V. Bergelson.



Chapter 15

Partition Regularity of Matrices

In this chapter we present several applications of the Central Sets Theorem (Theorem
14.11) and of its proof.

15.1 Image Partition Regular Matrices

Many of the classical results of Ramsey Theory are naturally stated as instances of the
following problem. Given u; v 2 N and a u � v matrix A with nonnegative integer
entries, is it true that whenever N is finitely colored there must exist some Ex 2 Nv

such that the entries of AEx are monochrome?
Consider for example van der Waerden’s Theorem (Corollary 14.2). The arithmetic

progression ¹a; aC d; aC 2d; aC 3dº is precisely the set of entries of0BB@
1 0

1 1

1 2

1 3

1CCA � � a

d

	
:

Also Schur’s Theorem (Theorem 5.3) and the casem D 3 of Hilbert’s Theorem (The-
orem 5.2) guarantee an affirmative answer in the case of the following two matrices:

0@ 1 0

0 1

1 1

1A;
0BBBBBBBB@

1 1 0 0

1 0 1 0

1 1 1 0

1 0 0 1

1 1 0 1

1 0 1 1

1 1 1 1

1CCCCCCCCA
:

This suggests the following natural definition. We remind the reader that for n 2 N
and x in a semigroup .S;C/, nx means the sum of x with itself n times, i.e. the
additive version of xn. We use additive notation here because it is most convenient
for the matrix manipulations. Note that the requirement that S have an identity is not
substantive since one may be added to any semigroup. We add the requirement so that
0x will make sense. (See also Exercise 15.1.1, where the reader is asked to show that
the central sets in S are not affected by the adjoining of a 0.)
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Definition 15.1. Let .S;C/ be a semigroup with identity 0, let u; v 2 N, and let A
be a u � v matrix with entries from !. Then A is image partition regular over S if
and only if whenever r 2 N and S D

Sr
iD1Ei , there exist i 2 ¹1; 2; : : : ; rº and

Ex 2 .S n ¹0º/v such that AEx 2 Ei u.

It is obvious that one must require in Definition 15.1 that the vector Ex not be con-
stantly 0. We make the stronger requirement because in the classical applications one
wants all of the entries to be nonzero. (Consider van der Waerden’s Theorem with
increment 0.)

We have restricted our matrix A to have nonnegative entries, since in an arbitrary
semigroup �x may not mean anything. In Section 15.4 where we shall deal with
image partition regularity over N we shall extend the definition of image partition
regularity to allow entries from Q.

Definition 15.2. Let u; v 2 N and let A be a u� v matrix with entries from Q. Then
A satisfies the first entries condition if and only if no row ofA is E0 and whenever i; j 2
¹1; 2; : : : ; uº and k D min¹t 2 ¹1; 2; : : : ; vº W ai;t ¤ 0º D min¹t 2 ¹1; 2; : : : ; vº W
aj;t ¤ 0º, then ai;k D aj;k > 0. An element b of Q is a first entry of A if and only
if there is some row i of A such that b D ai;k where k D min¹t 2 ¹1; 2; : : : ; vº W
ai;t ¤ 0º.

If A satisfies the first entries condition, we call A a first entries matrix.
Given any family R of subsets of a set S , one can define the set R� of all sets that

meet every member of R. We shall investigate some of these in Chapter 16. For now
we need the notion of central* sets.

Definition 15.3. Let S be a semigroup and let A � S . Then

(a) A is a central* set of S if and only if A \ C ¤ ; for every central set C of S
and

(b) A is a C � set of S if and only if A \ C ¤ ; for every C -set of S .

Lemma 15.4. Let S be a semigroup and let A � S . Then the following statements
are equivalent:

(a) A is a central* set.

(b) A is a member of every minimal idempotent in ˇS .

(c) A \ C is a central set for every central set C of S .

Proof. (a) implies (b). Let p be a minimal idempotent in ˇS . If A … p then S n A is
a central set of S which misses A.

(b) implies (c). Let C be a central set of S and pick a minimal idempotent p in ˇS
such that C 2 p. Then also A 2 p so A \ C 2 p.

That (c) implies (a) is trivial.
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In the following theorem we get a conclusion far stronger than the assertion that
matrices satisfying the first entries condition are image partition regular. The stronger
conclusion is of some interest in its own right. More importantly, the stronger conclu-
sion is needed as an induction hypothesis in the proof.

Theorem 15.5. Let .S;C/ be an infinite commutative semigroup with identity 0, let
u; v 2 N, and let A be a u � v matrix with entries from ! which satisfies the first
entries condition. LetC be central in S . If, for every first entry c ofA, cS is a central*
set, then there exist sequences hx1;ni1nD1; hx2;ni

1
nD1; : : : ; hxv;ni

1
nD1 in S such that for

every F 2 Pf .N/, ExF 2 .S n ¹0º/
v and AExF 2 Cu, where

ExF D

0BBB@
P
n2F x1;nP
n2F x2;n
:::P

n2F xv;n

1CCCA:
Proof. If 0 were a minimal idempotent, then ˇS D 0 C ˇS D ˇS C 0 would be a
minimal left ideal and a minimal right ideal, hence a group by Theorem 1.61. In par-
ticular, S would be cancellative so by Corollary 4.33, S� would be an ideal properly
contained in ˇS , a contradiction. Thus we may presume that 0 … C . We proceed
by induction on v. Assume first v D 1. We can assume A has no repeated rows,
so in this case we have A D .c/ for some c 2 N such that cS is a central* set.
Then C \ cS is a central set so pick by Exercise 14.3.2 (with the sequence y1;n D 0
for each n) some sequence hkni1nD1 with FS.hkni1nD1/ � C \ cS . (In fact here we
could get by with an appeal to Theorem 5.8.) For each n 2 N pick some x1;n 2 S
such that kn D cx1;n. The sequence hx1;ni1nD1 is as required. (Given F 2 Pf .N/,P
n2F kn ¤ 0 so

P
n2F x1;n ¤ 0.)

Now let v 2 N and assume the theorem is true for v. Let A be a u � .v C 1/
matrix with entries from ! which satisfies the first entries condition, and assume that
whenever c is a first entry of A, cS is a central* set. By rearranging the rows of
A and adding additional rows to A if need be, we may assume that we have some
r 2 ¹1; 2; : : : ; u � 1º and some d 2 N such that

ai;1 D

´
0 if i 2 ¹1; 2; : : : ; rº

d if i 2 ¹r C 1; r C 2; : : : ; uº:

Let B be the r � v matrix with entries bi;j D ai;jC1. Pick sequences hz1;ni1nD1,
hz2;ni

1
nD1, : : :,hzv;ni1nD1 in S as guaranteed by the induction hypothesis for the matrix

B . For each i 2 ¹r C 1; r C 2; : : : ; uº and each n 2 N, let

yi;n D

vC1X
jD2

ai;j � zj�1;n

and let yr;n D 0 for all n 2 N.
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Now C \ dS is a central set, so pick by Exercise 14.3.2 sequences hkni1nD1 in
S and hHni1nD1 in Pf .N/ such that maxHn < minHnC1 for each n and for each
i 2 ¹r; r C 1; : : : ; uº,

FS
�D
kn C

X
t2Hn

yi;t

E1
nD1

�
� C \ dS:

Note in particular that each kn D kn C
P
t2Hn

yr;t 2 C \ dS , so pick x1;n 2 S
such that kn D dx1;n. For j 2 ¹2; 3; : : : ; vC 1º, let xj;n D

P
t2Hn

zj�1;t . We claim
that the sequences hxj;ni1nD1 are as required. To see this, let F 2 Pf .N/ be given.
We need to show that for each j 2 ¹1; 2; : : : ; v C 1º,

P
n2F xj;n ¤ 0 and for each

i 2 ¹1; 2; : : : ; uº,
vC1X
jD1

ai;j
X
n2F

xj;n 2 C:

For the first assertion note that if j > 1, then
P
n2F xj;n D

P
t2G zj�1;t where

G D
S
n2F Hn. If j D 1, then d

P
n2F x1;n D

P
n2F .kn C

P
t2Hn

yr;t / 2 C .
To establish the second assertion, let i 2 ¹1; 2; : : : ; uº be given.
Case 1. i 
 r . Then

vC1X
jD1

ai;j
X
n2F

xj;n D

vC1X
jD2

ai;j
X
n2F

X
t2Hn

zj�1;t

D

vX
jD1

bi;j
X
t2G

zj;t 2 C

where G D
S
n2F Hn.

Case 2. i > r . Then

vC1X
jD1

ai;j
X
n2F

xj;n D d
X
n2F

x1;n C

vC1X
jD2

ai;j
X
n2F

xj;n

D
X
n2F

dx1;n C
X
n2F

vC1X
jD2

ai;j
X
t2Hn

zj�1;t

D
X
n2F

dx1;n C
X
n2F

X
t2Hn

vC1X
jD2

ai;j zj�1;t

D
X
n2F

�
kn C

X
t2Hn

yi;t

�
2 C:

We shall show that the natural analogue of Theorem 15.5 holds for C -sets. To do
this, we need the following lemma.
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Lemma 15.5.1. Let .S;C/ be a commutative semigroup with identity 0.

(a) For each a 2 S , j¹b 2 S W aC b D 0ºj 
 1.

(b) There is an injective sequence hyni1nD1 in S such that 0 … FS.hyni1nD1/.

(c) 0 … J.S/.

Proof. (a) Let a; b; c 2 S and assume that a C b D a C c D 0. Then b D 0C b D

aC c C b D aC b C c D 0C c D c.
(b) Pick y1 2 S n¹0º. Let n 2 N and assume that we have chosen injective hyt intD1

such that 0 … FS.hyt intD1/. Let B D FS.hyt intD1/ and pick ynC1 2 S n .¹0º [ ¹yt W
t 2 ¹1; 2; : : : ; nºº [

S
a2B¹b 2 S W aC b D 0º/.

(c) Suppose that 0 2 J.S/. (Recall that we identify 0 with the principal ultrafilter
e.0/.) Then ¹0º is a J -set. Let xn D 0 for each n 2 N and choose by (b) a sequence
hyni

1
nD1 such that 0 … FS.hyni1nD1/. Since ¹0º is a J -set, pick a 2 S and H 2

Pf .N/ such that aC
P
t2H xt D aC

P
t2H yt D 0. Then a D 0 so

P
t2H yt D 0,

a contradiction.

Theorem 15.5.2. Let .S;C/ be an infinite commutative semigroup with identity 0, let
u; v 2 N, and let A be a u � v matrix with entries from ! which satisfies the first
entries condition. Let C be a C -set in S . If, for every first entry c of A, cS is a C �

set, then there exist sequences hx1;ni1nD1; hx2;ni
1
nD1; : : : ; hxv;ni

1
nD1 in S such that for

every F 2 Pf .N/, ExF 2 .S n ¹0º/
v and AExF 2 Cu, where

ExF D

0BBB@
P
n2F x1;nP
n2F x2;n
:::P

n2F xv;n

1CCCA:
Proof. Pick by Theorem 14.15.1 an idempotent p 2 J.S/ such that C 2 p. By
Lemma 15.5.1, p ¤ 0 so we may assume that 0 … C . The rest of the proof may
be taken verbatim from the proof of Theorem 15.5, replacing occurrences of “central
set" by “C -set” and “central* set” by “C� set".

We now present an obvious partition regularity corollary. But note that with a little
effort a stronger result (Theorem 15.10) follows.

Corollary 15.6. Let .S;C/ be an infinite commutative semigroup and letA be a finite
matrix with entries from ! which satisfies the first entries condition. If for each first
entry c of A, cS is a central* set, then A is image partition regular over S .

Proof. Let S D
Sr
iD1Ei . Then some Ei is central in S . If S has a two sided

identity, then Theorem 15.5 applies directly. Otherwise, adjoin an identity 0. Then,
by Exercise 15.1.1, Ei is central in S [ ¹0º. Further, given any first entry c of A,
c.S [ ¹0º/ is central* in S [ ¹0º so again Theorem 15.5 applies.
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Some common, well behaved, semigroups fail to satisfy the hypothesis that cS is
a central* set for each c 2 N. For example, in the semigroup .N; � /, ¹x2 W x 2 Nº
(the multiplicative analogue of 2S ) is not even a central set. (See Exercise 15.1.2.)
Consequently B D N n ¹x2 W x 2 Nº is a central* set and A D .2/ is a first entries
matrix. But there does not exist a 2 N with a2 2 B .

To derive the stronger partition result, we need the following immediate corollary.
For it, one needs only to recall that for any n 2 N, nN is central*. (In fact it is an IP*
set; that is nN is a member of every idempotent in .ˇN;C/ by Lemma 6.6.)

Corollary 15.7. Any finite matrix with entries from ! which satisfies the first entries
condition is image partition regular over N.

Corollary 15.8. Let A be a finite matrix with entries from ! which satisfies the
first entries condition and let r 2 N. There exists k 2 N such that whenever
¹1; 2; : : : ; kº is r-colored, there exists Ex 2 ¹1; 2; : : : ; kºv such that the entries of
AEx are monochrome.

Proof. This is a standard compactness argument using Corollary 15.7. (See Sec-
tion 5.5 or the proof that (b) implies (a) in Theorem 15.30.) See also Exercise
15.1.3.

As we remarked after Definition 15.1, in the definition of image partition regularity
we demand that the entries of Ex are all nonzero because that is the natural version
for the classical applications. However, one may reasonably ask what happens if one
weakens the conclusion. (As we shall see, the answer is “nothing”.) Likewise, one
may strengthen the definition by requiring that all entries of AEx be nonzero. Again,
we shall see that we get the same answer.

Definition 15.9. Let .S;C/ be a semigroup with identity 0, let u; v 2 N, and let A
be a u � v matrix with entries from !.

(a) The matrix A is weakly image partition regular over S if and only if whenever
r 2 N and S D

Sr
iD1Ei , there exist i 2 ¹1; 2; : : : ; rº and Ex 2 .Sv n ¹E0º/ such

that AEx 2 Ei u.

(b) The matrix A is strongly image partition regular over S if and only if whenever
r 2 N and S n ¹0º D

Sr
iD1Ei , there exist i 2 ¹1; 2; : : : ; rº and Ex 2 .S n ¹0º/v

such that AEx 2 Ei u.

Theorem 15.10. Let .S;C/ be a commutative semigroup with identity 0. The follow-
ing statements are equivalent:

(a) Whenever A is a finite matrix with entries from ! which satisfies the first entries
condition, A is strongly image partition regular over S .
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(b) Whenever A is a finite matrix with entries from ! which satisfies the first entries
condition, A is image partition regular over S .

(c) Whenever A is a finite matrix with entries from ! which satisfies the first entries
condition, A is weakly image partition regular over S .

(d) For each n 2 N, nS ¤ ¹0º.

Proof. That (a) implies (b) and (b) implies (c) is trivial.
(c) implies (d). Let n 2 N and assume that nS D ¹0º. Let

A D

0@ 1 1

1 n

0 n

1A :
Then A satisfies the first entries condition. To see that A is not weakly image partition
regular over S , let E1 D ¹0º and let E2 D S n ¹0º. Suppose we have some Ex D�
x1
x2

�
2 S2 n ¹E0º and some i 2 ¹1; 2º such that AEx 2 .Ei /3. Now 0 D nx2 so i D 1.

Thus x1 D x1Cnx2 D 0 so that x2 D x1Cx2 D 0 and hence Ex D E0, a contradiction.
(d) implies (a). Let A be a finite matrix with entries from ! which satisfies the first

entries condition. To see that A is strongly image partition regular over S , let r 2 N
and let S n ¹0º D

Sr
iD1Ei . Pick by Corollary 15.8 some k 2 N such that whenever

¹1; 2; : : : ; kº is r-colored, there exists Ex 2 .¹1; 2; : : : ; kº/v such that the entries of AEx
are monochrome.

There exists z 2 S such that ¹z; 2z; 3z; : : : ; kzº \ ¹0º D ;. Indeed, otherwise one
would have kŠ S D ¹0º. So pick such z and for i 2 ¹1; 2; : : : ; rº, let Bi D ¹t 2
¹1; 2; : : : ; kº W tz 2 Eiº. Pick i 2 ¹1; 2; : : : ; rº and Ey 2 .¹1; 2; : : : ; kº/v such that
A Ey 2 .Bi /

u. Let Ex D Eyz. Then AEx 2 .Ei /u.

Exercise 15.1.1. Let .S;C/ be a semigroup without a two sided identity, and let C
be central in S . Adjoin an identity 0 to S and prove that C is central in S [ ¹0º.

Exercise 15.1.2. Prove that ¹x2 W x 2 Nº is not piecewise syndetic (and hence not
central) in .N; � /.

Exercise 15.1.3. Prove Corollary 15.8.

Exercise 15.1.4. Let u; v 2 N and let A be a u� v matrix with entries from ! which
is image partition regular over N. Let T denote the set of ultrafilters p 2 ˇN with
the property that, for every E 2 p, there exists Ex 2 Nv for which all the entries of
AEx are in E. Prove that T is a closed subsemigroup of ˇN.
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15.2 Kernel Partition Regular Matrices

If one has a group .G;C/ and a matrix C with integer entries, one can define C to be
kernel partition regular overG if and only if wheneverGn¹0º is finitely colored there
will exist Ex with monochromatic entries such that C Ex D E0. Thus in such a situation,
one is saying that monochromatic solutions to a given system of homogeneous linear
equations can always be found. On the other hand, in an arbitrary semigroup we know
that �x may not mean anything, and so we generalize the definition.

Definition 15.11. Let u; v 2 N and let C be a u � v matrix with entries from Z.
Then CC and C� are the u � v matrices with entries from ! defined by cCi;j D
.jci;j j C ci;j /=2 and c�i;j D .jci;j j � ci;j /=2.

Thus, for example, if

C D

�
1 �3 0

0 �2 2

	
; then CC D

�
1 0 0

0 0 2

	
and C� D

�
0 3 0

0 2 0

	
:

Note that C D CC � C�.

Definition 15.12. Let .S;C/ be a semigroup with identity 0, let u; v 2 N and let C
be a u � v matrix with entries from Z. Then C is kernel partition regular over S if
and only if whenever r 2 N and S n¹0º D

Sr
iD1Di , there exist i 2 ¹1; 2; : : : ; rº and

Ex 2 .Di /
v such that CC Ex D C� Ex.

The condition which guarantees kernel partition regularity over most semigroups
is known as the columns condition. It says that the columns of the matrix can be
gathered into groups so that the sum of each group is a linear combination of columns
from preceding groups (and in particular the sum of the first group is E0).

Definition 15.13. Let u; v 2 N, let C be a u � v matrix with entries from Q, and let
Ec1; Ec2; : : : ; Ecv be the columns of C . Let R D Z or R D Q. The matrix C satisfies the
columns condition over R if and only if there exist m 2 N and I1; I2; : : : ; Im such
that

(1) ¹I1; I2; : : : ; Imº is a partition of ¹1; 2; : : : ; vº.

(2)
P
i2I1

Eci D E0.

(3) If m > 1 and t 2 ¹2; 3; : : : ; mº, let Jt D
St�1
jD1 Ij . Then there exist hıt;iii2Jt

in R such that
P
i2It

Eci D
P
i2Jt

ıt;i � Eci .

Observe that one can effectively check whether a given matrix satisfies the columns
condition. (The problem is, however, NP complete because it implies the ability to
determine whether a subset of a given set sums to 0.)
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Lemma 15.14. Suppose that C is a u � m matrix with entries from Z which sat-
isfies the first entries condition. Let k D max¹jci;j j W .i; j / 2 ¹1; 2; : : : ; uº �
¹1; 2; : : : ; mºº C 1, and let E be the m � m matrix whose entry in row t and col-
umn j is

et;j D

´
kj�t if t 
 j

0 if t > j:

ThenCE is a matrix with entries from ! which also satisfies the first entries condition.

Proof. LetD D CE. To see thatD satisfies the first entries condition and has entries
from !, let i 2 ¹1; 2; : : : ; uº and let s D min¹t 2 ¹1; 2; : : : ; mº W ci;t ¤ 0º. Then for
j < s, di;j D 0 and di;s D ci;s . If j > s, then

di;j D

jX
tD1

ci;tk
j�t

D

jX
tDs

ci;tk
j�t

� kj�s �

jX
tDsC1

jci;t jk
j�t

� kj�s �

jX
tDsC1

.k � 1/kj�t

D 1:

A connection between matrices satisfying the columns condition and those satisfy-
ing the first entries condition is provided by the following lemma.

Lemma 15.15. Let u; v 2 N and let C be a u � v matrix with entries from Q which
satisfies the columns condition over Q. There exist m 2 ¹1; 2; : : : ; vº and a v � m
matrix B with entries from ! that satisfies the first entries conditions such that CB D
O, where O is the u � m matrix with all zero entries. If C satisfies the columns
condition over Z, then the matrix B can be chosen so that its only first entry is 1.

Proof. Pick m 2 N, hIt imtD1, hJt imtD2, and hhıt;i ii2Jt i
m
tD2 as guaranteed by the

columns condition for C . Let B 0 be the v � m matrix whose entry in row i and
column t is given by

b0i;t D

8̂<̂
:
�ıt;i if i 2 Jt
1 if i 2 It
0 if i …

St
jD1 Ij :
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We observe that B 0 satisfies the first entries condition, with the first nonzero entry
in each row being 1. We also observe that CB 0 D O. (Indeed, let j 2 ¹1; 2; : : : ; uº
and t 2 ¹1; 2; : : : ; mº. If t D 1, then

Pv
iD1 cj;i � b

0
i;t D

P
i2I1

cj;i D 0 and if t > 1,
then

Pv
iD1 cj;i � b

0
i;t D

P
i2Jt

�ıt;i � cj;i C
P
i2It

cj;i D 0.)
We can choose a positive integer d for which dB 0 has entries in Z . Then dB 0 also

satisfies the first entries condition and the equation C.dB 0/ D O. If all of the numbers
ıi;j are in Z, let d D 1.

Let k D max¹jdb0i;j j W .i; j / 2 ¹1; 2; : : : ; vº � ¹1; 2; : : : ; mºº C 1, and let E be the
m �m matrix whose entry in row i and column j is

ei;j D

´
kj�i if i 
 j

0 if i > j:

By Lemma 15.14, B D dB 0E has entries in ! and satisfies the first entries condition.
Clearly, CB D O.

Now, given i 2 ¹1; 2; : : : ; vº, choose s 2 ¹1; 2; : : : ; mº such that i 2 Is . If t < s,
then b0i;t D 0 while if t > j , then et;j D 0. Thus if j < s, then bi;j D 0 while

if j � s, then bi;j D
Pj
tDs db

0
i;tk

j�t . In particular the first nonzero entry of row i

is d .

We see that, not only is the columns condition over Q sufficient for kernel partition
regularity over most semigroups, but also that in many cases we can guarantee that
solutions to the equations CC Ex D C� Ex can be found in any central set.

Theorem 15.16. Let .S;C/ be an infinite commutative semigroup with identity 0, let
u; v 2 N, and let C be a u � v matrix with entries from Z.

(a) If C satisfies the columns condition over Z, then for any central subset D of S ,
there exists Ex 2 Dv such that CC Ex D C� Ex.

(b) If C satisfies the columns condition over Q and for each d 2 N, dS is a
central*-set in S , then for any central subset D of S , there exists Ex 2 Dv such
that CC Ex D C� Ex.

(c) If C satisfies the columns condition over Q and for each d 2 N, dS ¤ ¹0º,
then C is kernel partition regular over S .

Proof. (a) Pick a v � m matrix B as guaranteed for C by Lemma 15.15. Then the
only first entry of B is 1 (and 1S D S is a central* set) so by Theorem 15.5 we
may pick some Ez 2 Sm such that BEz 2 Dv. Let Ex D BEz. Now CB D O so
CCB D C�B (and all entries of CCB and of C�B are nonnegative) so CC Ex D
CCBEz D C�BEz D C� Ex.

(b) This proof is nearly identical to the proof of (a).
(c) Pick a matrix B as guaranteed for C by Lemma 15.15. Let r 2 N and let

S n ¹0º D
Sr
iD1Di . By Theorem 15.10 choose a vector Ez 2 .S n ¹0º/m and i 2
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¹1; 2; : : : ; rº such that BEz 2 .Di /v, and let Ex D BEz. As above, we conclude that
CC Ex D CCBEz D C�BEz D C� Ex.

Exercise 15.2.1. Note that the matrix .2 �2 1/ satisfies the columns condition. Show
that there is a set which is central in .N; � / but contains no solution to the equation
x1
2 � x3 D x2

2. (Hint: Consider Exercise 15.1.2.)

15.3 Kernel Partition Regularity over N – Rado’s Theorem

In this section we show that matrices satisfying the columns condition over Q are pre-
cisely those which are kernel partition regular over .N;C/ (which is Rado’s Theorem)
and are also precisely those which are kernel partition regular over .N; � /.

We extend Definition 15.12 for the semigroups .N;C/ and .N; � / to apply to ma-
trices with rational entries.

Definition 15.16.1. Let C be a u � v matrix with rational entries.

(a) Let Ex 2 Nv and Ey 2 Qv. Then ExC D Ey if and only if for each i 2 ¹1; 2; : : : ; uº,Qv
jD1 xj

ci;j D yi .

(b) The matrix C is kernel partition regular over .N;C/ if and only if whenever
r 2 N and N D

Sr
iD1Di , there exist i 2 ¹1; 2; : : : ; rº and Ex 2 .Di /v such

that C Ex D E0.

(c) The matrix C is kernel partition regular over .N; � / if and only if whenever
r 2 N and N n ¹1º D

Sr
iD1Di , there exist i 2 ¹1; 2; : : : ; rº and Ex 2 .Di /v

such that ExC D E1.

Theorem 15.17. Let u; v 2 N and let C be a u � v matrix with entries from Z. The
following statements are equivalent.

(a) The matrix C is kernel partition regular over .N;C/.

(b) The matrix C is kernel partition regular over .N; � /.

Proof. (a) implies (b). Let r 2 N and let N n ¹1º D
Sr
iD1Di . For each i 2

¹1; 2; : : : ; rº, let Ai D ¹n 2 N W 2n 2 Diº. Pick i 2 ¹1; 2; : : : ; rº and Ey 2 .Ai /v

such that C Ey D E0. For each j 2 ¹1; 2; : : : ; uº, let xj D 2yj . Then ExC D E1.
(b) implies (a). Let hpi i1iD1 denote the sequence of prime numbers. Each q 2 QC

can be expressed uniquely as q D
Q1
iD1 p

ei
i , where ei 2 Z for every i . We define

� W QC ! Z by putting �.q/ D
P1
iD1 ei . (Thus if q 2 N, �.q/ is the length

of the prime factorization of q.) We extend � to a function  W .QC/v ! Zv by
putting  .Ex/i D �.xi / for each Ex 2 .QC/v and each i 2 ¹1; 2; : : : ; vº. Since �
is a homomorphism from .QC; � / to .Z;C/, it follows easily that  .ExC / D C .Ex/

for every Ex 2 .QC/v. Let ¹EiºkiD1 be a finite partition of N. Then ¹��1ŒEi � \ N W
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i 2 ¹1; 2; : : : ; kºº is a finite partition of N n ¹1º, because �ŒN n ¹1º� � N. So pick
i 2 ¹1; 2; : : : ; kº and Ex 2 .��1ŒEi � \ N/v such that ExC D E1. Then  .Ex/ 2 .Ei /v

and C .Ex/ D  .ExC / D  .E1/ D E0.

Definition 15.18. Let u; v 2 N, let C be a u � v matrix with entries from Z, and let
J and I be disjoint nonempty subsets of ¹1; 2; : : : ; vº. Denote the columns of C as
Ec1; Ec2; : : : ; Ecv.

(a) If there exist hzj ij2J in Q such that
P
j2I Ecj D

P
j2J zj Ecj , thenE.C; J; I /D;.

(b) If there do not exist hzj ij2J in Q such that
P
j2I Ecj D

P
j2J zj Ecj , then

E.C; J; I / D
°
q W q is a prime and there exist hzj ij2J in !,

a 2 ¹1; 2; : : : ; q � 1º; d 2 !; and Ey 2 Zu

such that
X
j2J

zj Ecj C aq
d
X
j2I

Ecj D q
dC1 Ey

±
:

Lemma 15.19. Let u; v 2 N, let C be a u � v matrix with entries from Z, and let J
and I be disjoint nonempty subsets of ¹1; 2; : : : ; vº. Then E.C; J; I / is finite.

Proof. If (a) of Definition 15.18 applies, the result is trivial so we assume that (a) does
not apply. Let Eb D

P
j2I Ecj . Then Eb is not in the vector subspace of Qu spanned by

hEcj ij2J so pick some Ew 2 Qu such that Ew � Ecj D 0 for each j 2 J and Ew � Eb ¤ 0.
By multiplying by a suitable member of Z we may assume that all entries of Ew are
integers and that Ew � Eb > 0. Let s D Ew � Eb. We show now that if q 2 E.C; J; I /, then
q divides s.

Let q 2 E.C; J; I / and pick hzj ij2J in !, a 2 ¹1; 2; : : : ; q � 1º, d 2 !, and
Ey 2 Zu such that

P
j2J zj Ecj C aq

d
P
j2I Ecj D q

dC1 Ey. ThenX
j2J

zj Ecj C aq
d Eb D qdC1 Ey so

X
j2J

zj . Ew � Ecj /C aq
d . Ew � Eb/ D qdC1. Ew � Ey/:

Since Ew � Ecj D 0 for each j 2 J we then have that aqd s D qdC1. Ew � Ey/ and hence
as D q. Ew � Ey/. Since a 2 ¹1; 2; : : : ; q � 1º, it follows that q divides s as claimed.

Lemma 15.19.1. Let C be a u � v matrix with entries from Q and let d 2 N.

(1) The matrix C satisfies the columns condition over Q if and only if the matrix
dC satisfies the columns condition over Q.

(2) The matrix C is kernel partition regular over .N;C/ if and only if the matrix
dC is kernel partition regular over .N;C/.

(3) The matrix C is kernel partition regular over .N; � / if and only if the matrix dC
is kernel partition regular over .N; � /.
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Proof. Statement (1) is trivial. For the necessity of (2), let r 2 N and let N DSr
iD1Di . Pick i 2 ¹1; 2; : : : ; rº and Ex 2 .Di /v such that C Ex D E0. Then dC Ex D E0.
For the sufficiency of (2), let r 2 N and let N D

Sr
iD1Di . For each i 2

¹1; 2; : : : ; rº, let Ei D ¹x 2 N W dx 2 Diº. Pick i 2 ¹1; 2; : : : ; rº and Ex 2 .Ei /v

such that dC Ex D E0. Then d Ex 2 .Di /v and Cd Ex D E0.
The proof of (3) is essentially identical to the proof of (2) except that for the suffi-

ciency, one lets Ei D ¹x 2 N W xd 2 Diº.

The equivalence of (a) and (c) in the following theorem is Rado’s Theorem. Note
that Rado’s Theorem provides an effective computation to determine whether a given
system of linear homogeneous equations is kernel partition regular.

Theorem 15.20. Let u; v 2 N and let C be a u � v matrix with entries from Q. The
following statements are equivalent:

(a) The matrix C is kernel partition regular over .N;C/.

(b) The matrix C is kernel partition regular over .N; � /.

(c) The matrix C satisfies the columns condition over Q.

Proof. We may pick d 2 N such that the entries of dC come from Z. Therefore, by
Lemma 15.19.1, we may assume that the entries of C come from Z.

The equivalence of (a) and (b) is Theorem 15.17.
(a) implies (c). By Lemma 15.19, whenever J and I are disjoint nonempty subsets

of ¹1; 2; : : : ; vº, E.C; J; I / is finite. Consequently, we may pick a prime q such that
q > max¹j

P
j2J ci;j j W i 2 ¹1; 2; : : : ; uº and ; ¤ J � ¹1; 2; : : : ; vºº and whenever

J and I are disjoint nonempty subsets of ¹1; 2; : : : ; vº, q … E.C; J; I /.
Given x 2 N, pick a.x/ 2 ¹1; 2; : : : ; q � 1º and `.x/ and b.x/ in ! such that

x D a.x/ � q`.x/ C b.x/ � q`.x/C1. That is, in the base q expansion of x, `.x/ is the
number of rightmost zeros and a.x/ is the rightmost nonzero digit.

For each a 2 ¹1; 2; : : : ; q � 1º let Aa D ¹x 2 N n ¹1º W a.x/ D aº. Pick
a 2 ¹1; 2; : : : ; q � 1º and x1; x2; : : : ; xv 2 Aa such that C Ex D E0.

Partition ¹1; 2; : : : ; vº according to `.xj /. That is, pick m 2 N, sets I1; I2; : : : ; Im
and numbers `1 < `2 < : : : < `m such that ¹I1; I2; : : : ; Imº is a partition of
¹1; 2; : : : ; vº and for each t 2 ¹1; 2; : : : ; mº and each j 2 It , `.xj / D `t . For
n 2 ¹2; 3; : : : ; mº, if any, let Jn D

Sn�1
tD1 It .

We now show that

(1)
P
j2I1

Ecj D E0 and

(2) given n 2 ¹2; 3; : : : ; mº,
P
j2In

Ecj is a linear combination over Q of h Ecj ij2Jn ,

so that C satisfies the columns condition over Q.
To establish (1), let d D `1. Then for any j 2 I1 let ej D b.xj / and note that

xj D a�q
dCej �q

dC1. For j 2 ¹1; 2; : : : ; vºnI1 we have `.xj / > d so xj D ej �qdC1
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for some ej 2 N. Then

E0 D

vX
jD1

xj � Ecj

D
X
j2I1

a � qd � Ecj C

vX
jD1

ej � q
dC1 � Ecj :

Suppose that
P
j2I1
Ecj ¤ E0 and pick some i 2 ¹1; 2; : : : ; uº such that

P
j2I1

ci;j ¤

0. Then

0 D
X
j2I1

a � qd � ci;j C

vX
jD1

ej � q
dC1 � ci;j

so, since q − a we have qj
P
j2I1

ci;j , contradicting our choice of q.
Now consider (2). Let n 2 ¹2; 3; : : : ; mº be given and let d D `n. For j 2 In, let

ej D b.xj / and note that xj D a � qd C ej � q
dC1. For j 2

Sm
iDnC1 Ii , if any, pick

ej 2 N such that xj D ej � qdC1. Thus

E0 D

vX
jD1

xj � Ecj D
X
j2Jn

xj � Ecj C
X
j2In

a � qd � Ecj C
X

j2
Sm
iDn Ii

ej � q
dC1 � Ecj :

Let Ey D
P
j2
Sm
iDn Ii

.�ej / � Ecj . Then

qdC1 Ey D
X
j2Jn

xj � Ecj C
X
j2In

a � qd � Ecj :

Since q … E.C; Jn; In/ we have that
P
j2In

Ecj is a linear combination of h Ecj ij2Jn as
required.

(c) implies (a). This follows from Theorem 15.16 (c).

To illustrate the use of Theorem 15.20 we establish the case ` D 4 of van der
Waerden’s Theorem. That is, we show that whenever N is finitely colored we can get
some a; d 2 N with a; aCd; aC2d; aC3d monochrome. So one lets x1 D a, x2 D
aC d , x3 D aC 2d , and x4 D aC 3d . Then x2� x1 D d so x3 D x1C 2.x2� x1/
and x4 D x1 C 3.x2 � x1/. That is we have the equations

x1 � 2x2 C x3 D 0

2x1 � 3x2 C x4 D 0

so we are asking to show that the matrix�
1 �2 1 0

2 �3 0 1
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is kernel partition regular. Indeed it satisfies the columns condition because the sum
of its columns is E0.

But there is a problem! The assignment x1 D x2 D x3 D x4 D 1 (or any other
number) solves the equations. That is, these equations allow d D 0. So we strengthen
the problem by asking that d also be the same color as the terms of the progression.
Let x1 D a, x2 D d , x3 D aC d , x4 D aC 2d , and x5 D aC 3d . Then we get the
equations

x3 D x1 C x2

x4 D x1 C 2x2

x5 D x1 C 3x2

so we need to show that the matrix0@ 1 1 �1 0 0

1 2 0 �1 0

1 3 0 0 �1

1A
is kernel partition regular. For this, let I1 D ¹1; 3; 4; 5º, I2 D ¹2º, ı2;1 D 0, ı2;3 D
�1, ı2;4 D �2, and ı2;5 D �3.

Exercise 15.3.1. Derive the finite version of the Finite Sums Theorem as a con-
sequence of Rado’s Theorem. That is, show that for each n; r 2 N, whenever
N D

Sr
iD1Ai , there exist i 2 ¹1; 2; : : : ; rº and hxt intD1 such that FS.hxt intD1/ � Ai .

For example, the case n D 3 requires that one show that the matrix0BB@
1 1 0 �1 0 0 0

1 0 1 0 �1 0 0

0 1 1 0 0 �1 0

1 1 1 0 0 0 �1

1CCA
is kernel partition regular.

15.4 Image Partition Regularity over N

We concluded the last section with a verification of the length 4 version of van der
Waerden’s Theorem via Rado’s Theorem. To do this we had to figure out a set of
equations to solve and had to strengthen the problem. On the other hand, we have
already seen that the original problem is naturally seen as one of determining that the
matrix 0BB@

1 0

1 1

1 2

1 3

1CCA
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is image partition regular. (And the strengthened problem clearly asks that the matrix0BBBB@
0 1

1 0

1 1

1 2

1 3

1CCCCA
be image partition regular.)

Since many problems in Ramsey Theory are naturally stated as deciding whether
certain matrices are image partition regular, it is natural to ask for a determination
of precisely which matrices are image partition regular. We do this in this section in
Theorem 15.24.

Since we are now dealing with the semigroup .N;C/, we extend Definition 15.1 to
allow entries from Q.

Definition 15.21. Let u; v 2 N, and let A be a u � v matrix with entries from Q.
Then A is image partition regular over N if and only if whenever r 2 N and N DSr
iD1Ei , there exist i 2 ¹1; 2; : : : ; rº and Ex 2 Nv such that AEx 2 Ei u.

We need several preliminary lemmas, the first of which deals with a specialized
notion from linear algebra.

Definition 15.22. Let u; v 2 N, let Ec1; Ec2; : : : ; Ecv be in Qu, and let I � ¹1; 2; : : : ; vº.
The I -restricted span of . Ec1; Ec2; : : : ; Ecv/ is

° vX
iD1

˛i � Eci W each ˛i 2 R and if i 2 I , then ˛i � 0
±
:

Lemma 15.23. Let u; v 2 N, let Ec1; Ec2; : : : ; Ecv be in Qu, and let I � ¹1; 2; : : : ; vº.
Let S be the I -restricted span of . Ec1; Ec2; : : : ; Ecv/.

(a) S is closed in Ru.

(b) If Ey 2 S \Qu, then there exist ı1; ı2; : : : ; ıv in Q such that Ey D
Pv
iD1 ıi � Eci

and ıi � 0 for each i 2 I .

Proof. (a) We proceed by induction on jI j (for all v). If I D ;, this is simply the
assertion that any vector subspace of Ru is closed. So we assume I ¤ ; and as-
sume without loss of generality that 1 2 I . Let T be the .I n ¹1º/-restricted span of
. Ec2; Ec3; : : : ; Ecv/. By the induction hypothesis, T is closed.

To see that S is closed, let Eb 2 c`S . We show Eb 2 S . If Ec1 D E0, then Eb 2 c`S D
c`T D T D S , so assume that Ec1 ¤ E0. For each n 2 N, pick h˛i .n/iviD1 such that

˛i .n/ � 0 for each i 2 I and kEb �
Pv
iD1 ˛i .n/ � Ecik < 1=n.
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Assume first that ¹˛1.n/ W n 2 Nº is bounded. Pick a limit point ı of the sequence
h˛1.n/i

1
nD1 and note that ı � 0. We claim that Eb � ı � Ec1 2 T . To see this we

show that Eb � ı � Ec1 2 c`T . So let � > 0 be given and pick n > 2=� such that
j˛1.n/ � ıj < �=.2k Ec1k/. Then


Eb � ı � Ec1 � vX

iD2

˛i .n/ � Eci




 
 


Eb � vX
iD1

˛i .n/ � Eci




C k˛1.n/ Ec1 � ı Ec1k < �:
Since Eb � ı � Ec1 2 T , we have Eb 2 ı � Ec1 C T � S .

Now assume that ¹˛1.n/ W n 2 Nº is unbounded. To see that S is closed, it
suffices to show that � Ec1 2 T . For then S is in fact the .I n ¹1º/-restricted span of
. Ec1; Ec2; : : : ; Ecv/ which is closed by the induction hypothesis.

To see that � Ec1 2 T , we show that � Ec1 2 c`T . Let � > 0 be given and pick n 2 N

such that ˛1.n/ > .1C kEbk/=�. For i 2 ¹2; 3; : : : ; vº let ıi D ˛i .n/=˛1.n/ and note
that for i 2 I n ¹1º, ıi � 0. Then


� Ec1 � vX

iD2

ıi � Eci




 
 


Eb=˛1.n/ � Ec1 � vX
iD2

.˛i .n/=˛1.n// � Eci




C kEb=˛1.n/k
D .1=˛1.n// �




Eb � vX
iD1

˛i .n/ � Eci




C kEbk=˛1.n/
< 1=.n � ˛1.n//C kEbk=˛1.n/

< .1C kEbk/=˛1.n/

< �:

(b) Again we proceed by induction on jI j. The case I D ; is immediate, being
merely the assertion that a rational vector in the linear span of some other rational
vectors is actually in their linear rational span (which is true because one is solving
linear equations with rational coefficients).

So assume I ¤ ;. Let X D ¹Ex 2 Rv W
Pv
iD1 xi � Eci D Eyº. Thus X is an affine

subspace of Rv, and we are given (by the fact that Ey 2 S ) that there is some Ex 2 X
such that xi � 0 for all i 2 I . Also (by the case I D ;) there is some Ez 2 X such that
zi 2 Q for all i 2 ¹1; 2; : : : ; vº. If zi � 0 for all i 2 I , then we are done, so assume
there is some i 2 I such that zi < 0. Given i 2 I , ¹t 2 Œ0; 1� W .1 � t /xi C tzi � 0º
is Œ0; 1� if zi � 0 and is Œ0; xi=.xi � zi /� if zi < 0. Let t be the largest member of
Œ0; 1� such that the vector Ew D .1 � t / � Ex C t � Ez satisfies wi � 0 for all i 2 I .
Then for some i 2 I we have that wi D 0. We assume without loss of generality
that 1 2 I and w1 D 0. Then Ey D

Pv
iD2wi � Eci so Ey is in the .I n ¹1º/-restricted

span of . Ec2; Ec3; : : : ; Ecv/ so by the induction hypothesis we may pick ı2; ı3; : : : ; ıv in
Q such that Ey D

Pv
iD2 ıi � Eci and ıi � 0 for each i 2 I n ¹1º. Letting ı1 D 0, we are

done.
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Lemma 15.23.1. Let Ec1; Ec2; : : : ; Ecm be vectors in Qv and let P;Q � ¹1; 2; : : : ; mº
be disjoint. Let C D ¹x1Ec1 C x2Ec2 C : : :C xmEcm W each xi 2 R, xi � 0 if i 2 P ,
and xi 
 0 if i 2 Qº. Then C is closed in Rv.

Proof. Let I D P [Q. For i 2 ¹1; 2; : : : ; mº nQ, let Ebi D Eci and for i 2 Q, let
Ebi D �Eci . Then C is the I -restricted span of .Eb1; Eb2; : : : ; Ebm/ in Rv so is closed by
Lemma 15.23.

In the following lemma, ˛ �p refers to multiplication in .ˇQd ; � /, where Qd is the
set of rationals with the discrete topology.

Lemma 15.23.2. Let p be a minimal idempotent in .ˇN;C/ and let ˛ 2 Q with
˛ > 0. Then ˛ � p is also a minimal idempotent in ˇN. Consequently, if C is central
in .N;C/, then so is .˛C / \N.

Proof. The function l˛ W N ! Q defined by l˛.x/ D ˛ � x is a homomorphism,
hence so is its continuous extension el˛ W ˇN ! ˇQd by Corollary 4.22. Further
˛ � p D el˛.p/. Thus ˛ � p is an idempotent and ˛ � p 2 el˛ŒK.ˇN/� D K.˛N/.
(The latter equality holds by Exercise 1.7.3.) Assume that ˛ D a

b
with a; b 2 N.

Then bN � ˛�1aN and thus aN 2 ˛ � p because bN 2 p by Lemma 6.6. In
particular, ˛ � p 2 ˇN. Also ˛ � p 2 K.˛N/ \ aN and aN � ˛N and consequently
K.aN/ D K.˛N/ \ aN by Theorem 1.65. Since every idempotent in ˇN is in
aN by Lemma 6.6, we have that aN \ K.ˇN/ ¤ ; and consequently K.aN/ D
aN \K.ˇN/, again by Theorem 1.65. Thus ˛ � p 2 K.ˇN/ as required.

For the second assertion, let C be central in .N;C/ and pick a minimal idempotent
p with C 2 p. Then ˛C \N 2 ˛ � p.

Lemma 15.23.3. Let A be a u � v matrix with entries from Z, define ' W Nv ! Zu

by '.Ex/ D AEx, and lete' W ˇ.Nv/ ! .ˇZ/u be its continuous extension. Let p be a
minimal idempotent in ˇN with the property that for every C 2 p there exists Ex 2 Nv

such that AEx 2 C u and let p D .p; p; : : : ; p/T . Then there is a minimal idempotent
q 2 ˇ.Nv/ such thate'.q/ D p.

Proof. By Exercise 4.3.8, p 2 K.ˇZ/ and so by Theorem 2.23, p 2 K..ˇZ/u/. By
Corollary 4.22,e' W ˇ.Nv/! .ˇZ/u is a homomorphism.

We claim that p 2 e'Œˇ.Nv/� so suppose instead that p … e'Œˇ.Nv/�, which is
closed, and pick a neighborhood U of p such that U \e'Œˇ.Nv/� D ;. Pick D 2 p
such thatD

u
� U and pick Ex 2 Nv such thatAEx 2 Du. Then '.Ex/ 2 U \e'Œˇ.Nv/�,

a contradiction.
LetM D ¹q 2 ˇ.Nv/ We'.q/ D pº. ThenM is a compact subsemigroup of ˇ.Nv/,

so pick an idempotent w 2 M by Theorem 2.5. By Theorem 1.60, pick a minimal
idempotent q 2 ˇ.Nv/ with q 
 w. Sincee' is a homomorphism,e'.q/ 
 e'.w/ D p
so, since p is minimal in .ˇZ/u, we have thate'.q/ D p.
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Lemma 15.23.4. Let � > 0. There is a finite coloring of N such that, if y and z are
positive integers with the same color and y > z, then either y

z
< 1C � or y

z
> 1

�
.

Proof. Choose ˛ 2 .1; 1 C �/ and r 2 N satisfying r > 1 C log˛
1
� . For each i 2

¹0; 1; 2; : : : ; r � 1º, let Pi D ¹n 2 N W blog˛ nc 	 i.mod r/º. Let i 2 ¹1; 2; : : : ; rº
and let y; z 2 Pi with y > z. Then blog˛ yc � blog˛ zc.

If blog˛ yc > blog˛ zc, then blog˛ yc � blog˛ zcCr and thus y > z �˛r�1 > z � 1
�

.
If blog˛ yc D blog˛ zc, then y < ˛ � z < .1C �/ � z.

Lemma 15.23.5. LetA be a u�v image partition regular matrix with entries from Q.
There existm 2 N and a partition ¹I1; I2; : : : ; Imº of ¹1; 2; : : : ; uº with the following
property: for every � > 0, there exists Ex 2 Nv such that Ey D AEx 2 Nu and, if i 2 Ir
and j 2 Is , then 1 � � < yj

yi
< 1C � if r D s and yj

yi
< � if r < s.

Proof. We may assume that 0 < � < 1
4

. Choose a coloring of N guaranteed by
Lemma 15.23.4 and a vector Ex 2 Nv for which the entries of Ey D AEx are monochro-
matic positive integers. We define a relation � on ¹1; 2; : : : ; uº by putting i � j if
and only if 1 � � < yj

yi
< 1C �. By Exercise 15.4.3, � is an equivalence relation. It

therefore defines a partition P .�/ D ¹I1.�/; I2.�/; : : : ; Im.�/.�/º of ¹1; 2; : : : ; uº. We
can arrange the sets in this partition so that, if yi 2 Ir.�/, yj 2 Is.�/, and r < s, then
yj < yi and so yj

yi
< �. Since there are only finitely many partitions of ¹1; 2; : : : ; uº,

by the pigeon hole principle, there is an infinite sequence of values of � converging to
0 for which the partitions P .�/ are all the same.

Lemma 15.23.6. Let Ec1; Ec2; : : : ; Ecm be vectors in Qv. Suppose that the equation
E0 D

Pm
iD1 xi Eci holds for real numbers x1; x2; : : : ; xm. Then we also have E0 DPm

iD1 ri Eci , for rational numbers r1; r2; : : : ; rm, with the property that, for every i 2
¹1; 2; : : : ; mº, ri > 0 if xi > 0, ri < 0 if xi < 0, and ri D 0 if xi D 0.

Proof. Let P D ¹i 2 ¹1; 2; : : : ; mº W xi > 0º and Q D ¹i 2 ¹1; 2; : : : ; mº W xi < 0º.
Let B denote the row reduced echelon matrix obtained by applying elementary row
operations to the matrix whose columns are the vectors Eci with i 2 P [ Q. Let I
denote the set of pivot columns, that is the values of i 2 P [ Q for which the i th

column of B contains the first nonzero entry of some row, and let J D .P [Q/ n I .
Assume that the pivot entries are all equal to 1. If J D ;, then the only solution to
E0 D

P
i2P[Q yi Eci has each yi D 0. But then P D Q D ; and we are done. So

assume that J ¤ ;. Then the equation E0 D
P
i2P[Q yi Eci holds if and only if, for

every i 2 I , yi D �
P
j2J bi;jyj .

We are assuming that there exists hyj ij2J 2 RJ , such that yj > 0 if j 2 J \ P ,
yj < 0 if j 2 J \ Q, �

P
j2J bi;jyj > 0 if i 2 I \ P and �

P
j2J bi;jyj < 0

if i 2 I \Q. These inequalities define a neighborhood of hxj ij2J in RJ , and this
contains an element hrj ij2J of QJ . For i 2 I , let ri D �

P
j2J bi;j rj and for
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i 2 ¹1; 2; : : : ; mº n .P [Q/, let ri D 0. We then have E0 D
Pm
iD1 ri Eci , where ri > 0

if i 2 P , ri < 0 if i 2 Q, and ri D 0 if i … P [Q.

Corollary 15.23.7. Let Ed; Ec1; Ec2; : : : ; Ecm be vectors in Qv. Suppose that the equation
Ed D

Pm
iD1 xi Eci holds for real numbers x1; x2; : : : ; xm. Then we also have Ed DPm

iD1 ri Eci , for rational numbers r1; r2; : : : ; rm, with the property that, for every i 2
¹1; 2; : : : ; mº, ri > 0 if xi > 0, ri < 0 if xi < 0, and ri D 0 if xi D 0.

Proof. This follows by applying Lemma 15.23.6 to the equation E0D� EdC
Pm
iD1xi Eci .

Theorem 15.24. Let u; v 2 N and let A be a u � v matrix with entries from Q. The
following statements are equivalent:

(a) A is image partition regular over N.

(b) Let Ec1; Ec2; : : : ; Ecv be the columns of A. There exist t1; t2; : : : ; tv 2 QC such that
the matrix

M D

0BB@t1 � Ec1 t2 � Ec2 � � � tv � Ecv

�1 0 � � � 0

0 �1 � � � 0
:::

:::
: : :

:::

0 0 � � � �1

1CCA
is kernel partition regular over N.

(c) There exist m 2 N and a u � m matrix B with entries from Q which satisfies
the first entries condition such that given any Ey 2 Nm there is some Ex 2 Nv

with AEx D B Ey.

(d) There existm 2 N and a u�m matrix C with entries from Z which satisfies the
first entries condition such that given any Ey 2 Nm there is some Ex 2 Nv with
AEx D C Ey.

(e) There existm 2 N and a u�m matrixD with entries from ! which satisfies the
first entries condition such that given any Ey 2 Nm there is some Ex 2 Nv with
AEx D D Ey.

(f) There exist m 2 N, a u�m matrix E with entries from !, and c 2 N such that
E satisfies the first entries condition, c is the only first entry ofE, and given any
Ey 2 Nm there is some Ex 2 Nv with AEx D E Ey.

(g) There exist m 2 N, a v �m matrix G with entries from ! and no row equal to
E0, a u �m first entries matrix B with entries from !, and c 2 N such that c is
the only first entry of B and AG D B .

(h) For every central set C in N, there exists Ex 2 Nv such that AEx 2 C u.

(i) For every central set C in N, ¹Ex 2 Nv W AEx 2 C uº is central in Nv.
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(j) For each Er 2 Qv n ¹E0º there exists b 2 Q n ¹0º such that�
bEr

A

	
is image partition regular over N.

(k) Given any column Ec 2 Qu, the matrix .A c/ is image partition regular over N.

(l) Whenever m 2 N, �1; �2; : : : ; �m are nonzero linear mappings from Qv to Q,
and C is a central subset of N, there exist b1; b2; : : : ; bm in Q n ¹0º such that
¹Ex 2 Nv W AEx 2 C u and for each i 2 ¹1; 2; : : : ; mº; bi�i .Ex/ 2 C º is central
in Nv.

(m) Whenever C is a central subset of N, ¹Ex 2 Nv W AEx 2 Cu, all entries of Ex are
distinct, and entries of AEx corresponding to distinct rows of A are distinctº is
central in Nv.

Proof. We first show that statements (a), (g), (c), (d), (e), (f), (h), and (i) are equiv-
alent. (The somewhat awkward ordering of the proof cycle is necessary to preserve
statements (a) through (f) from the first edition of this book.)

(a) implies (g). Let Ec1; Ec2; : : : ; Ecv denote the columns of A and let Eei denote the
i th unit vector in Ru. Let ¹I1; I2; : : : ; Imº be the partition of ¹1; 2; : : : ; uº guaranteed
by Lemma 15.23.5. By reordering the rows of A if necessary, we shall assume that
we have max Ii < min IiC1 for each i 2 ¹1; 2; : : : ; m � 1º. We claim that for each
k 2 ¹1; 2; : : : ; mº,

X
n2Ik

Een 2 c`
° vX
jD1

j̨ Ecj �

k�1X
iD1

X
n2Ii

ınEen W each j̨ > 0 and each ın > 0
±
: (�)

To see this, let k 2 ¹1; 2; : : : ; mº and let � > 0. Choose Ex 2 Nv such that Ey D
AEx 2 Nu and, if i 2 Ir and j 2 Is , then 1 � � < yj

yi
< 1 C � if r D s and

yj
yi

< � if r < s. Pick l 2 Ik . For j 2 ¹1; 2; : : : ; vº, let j̨ D
xj
yl

, noting that

j̨ > 0. For n 2
Sk�1
iD1 Ii , let ın D

yn
yl

. Observe that
Pv
jD1 j̨ Ecj D

1
yl
AEx D 1

yl
Ey

and that
Pk�1
iD1

P
n2Ii

ınEen D
1
yl
hy1; y2; : : : ; yr ; 0; 0; : : : ; 0i where r D max Ik�1.

So
Pk�1
iD1

P
n2Ii

ınEen D
Pv
jD1 j̨ Ecj �

Pk�1
iD1

P
n2Ii

ınEen �
P
n2Ik

Een D Ez where

zn D

8̂̂<̂
:̂
yn
yl

if n 2
Sm
iDkC1 Ii

yn
yl
� 1 if n 2 Ik

0 if n 2
Sk�1
iD1 Ii :

Since jznj < � for each n 2 ¹1; 2; : : : ; uº, we have established (�).
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By Corollary 15.23.7 and Lemma 15.23.1, (�) implies that there exist nonnegative
gj;k 2 Q for j 2 ¹1; 2; : : : ; vº and nonnegative bn;k for n 2

Sk�1
iD1 Ii such that

X
n2Ik

Een D

vX
jD1

gj;k Ecj �

k�1X
iD1

X
n2Ii

bn;k Een: (��)

For n 2 Ik , let bn;k D 1 and for n 2
Sm
iDkC1 Ii , let bn;k D 0. LetB denote the u�m

matrix whose entry in row n and column k is bn;k . Then, for each k 2 ¹1; 2; : : : ; mº,
the entries in the kth column of B are 1 in the rows indexed by integers in Ik and 0 in
subsequent rows. So B is a first entries matrix over Q with nonnegative entries and
all first entries equal to 1.

Let G denote the v�mmatrix whose entry in row j and column k is gj;k . Then G
is a matrix over Q with nonnegative entries. For each k 2 ¹1; 2; : : : ; mº,

Pv
jD1 gj;k Ecj

is the kth row of the matrix AG. Since
Pk�1
iD1

P
n 2 Iibn;k Een C

P
n2Ik

Een is the kth

column of B , it follows from (��) that AG D B . Now pick c 2 N such that all
entries of cG and all entries of cB are integers and replace G by cG and replace B
by cB . It may happen that G has some row equal to E0. In this case, pick Ed 2 Nv such
that the entries of A Ed are all positive integers (which one may do since A is image
partition regular over N). Letting G 0 D .G Ed/ and B 0 D AG0 we have that B 0 is a
first entries matrix with all first entries equal to c.

(g) implies (c). Let G and B be as guaranteed by (g). Given Ey 2 Nm, let Ex D G Ey.
Since the entries of G come from ! and no row of G is E0, we have that Ex 2 Nv .

(c) implies (d). Given B , let d 2 N be a common multiple of the denominators
in entries of B and let C D Bd . Given Ey, let Ez D d Ey and pick Ex such that AEx D
BEz D C Ey.

(d) implies (e). Let C be given as guaranteed by (d). By Lemma 15.14, there is an
m � m matrix E for which D D CE has entries from ! and also satisfies the first
entries condition. Given Ey 2 Nm, we define Ez 2 Nm by Ez D E Ey. Pick Ex 2 Nv such
that AEx D C Ez. Then C Ez D CE Ey D D Ey.

(e) implies (f). Let D be given as guaranteed by (e). For each j 2 ¹1; 2; : : : ; mº,
pick wj 2 N such that for any i 2 ¹1; 2; : : : ; vº if

j D min¹t 2 ¹1; 2; : : : ; mº W di;t ¤ 0º;

then di;j D wj . (That is, wj is the first entry associated with column j , if there are
any first entries in column j .) Let c be a common multiple of ¹w1; w2; : : : ; wmº.
Define the u � m matrix E by, for .i; j / 2 ¹1; 2; : : : ; uº � ¹1; 2; : : : ; mº, ei;j D
.c=wj /di;j . Now, given Ey 2 Nm, we define Ez 2 Nm by, for j 2 ¹1; 2; : : : ; mº,
zj D .c=wj /yj . Then DEz D E Ey.

(f) implies (h). Let E be as guaranteed by (f) and let C be a central set in N. Pick
by Theorem 15.5 some Ey 2 Nm such that E Ey 2 Cu and pick Ex 2 Nv such that
AEx D E Ey.
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(h) implies (i). Pick d 2 N such that all entries of dA are in Z. We claim that
for every central set C in N, there exists Ex 2 Nv such that dAEx 2 C u. By Lemma
15.23.2, . 1

d
C \ N/ is central, so pick Ex 2 Nv such that AEx 2 . 1

d
C \ N/u. Then

dAEx 2 C u.
Let C be a central subset of N and pick a minimal idempotent p 2 ˇN such that

C 2 p. Define ' W Nv ! Zu by '.Ex/ D dAEx and let e' W ˇ.Nv/ ! .ˇZ/u

be its continuous extension. Now dp is a minimal idempotent by Lemma 15.23.2.
Define dp D .dp; dp; : : : ; dp/T and pick by Lemma 15.23.3, a minimal idempotent
q 2 ˇ.Nv/ such that e'.q/ D dp. Now ⨉uiD1 dC is a neighborhood of dp so pick
B 2 q such thate'ŒB� � ⨉uiD1 dC .

Then B � ¹Ex 2 Nv W AEx 2 C uº, so ¹Ex 2 Nv W AEx 2 C uº is central in Nv.
(i) implies (a). This is trivial.
Next we show that statements (b) and (j) can be added to the list of equivalent

statements.
(g) implies (b). LetG, B , and c be as guaranteed by (g). For each i 2 ¹1; 2; : : : ; vº,

let ki be the first nonzero entry in row i of G, let si D c
ki

and ti D 1
si

. Let

S D

0BBB@
s1 0 � � � 0

0 s2 � � � 0
:::

:::
: : :

:::

0 0 � � � sv

1CCCA
and let I be the u � u identity matrix. Then M D .AS�1 �I / and

M

�
SG

B

	
D B � B D O:

Also SG is a first entries matrix with all first entries equal to c and so
�
SG
B

�
is a

.uC v/ �m first entries matrix. To see that M is kernel partition regular, let r 2 N
and let N D

Sr
iD1 Ci . Pick i 2 ¹1; 2; : : : ; rº such that Ci is central and pick by

Theorem 15.5 some Ex 2 Nm such that

Ey D

�
SG

B

	
Ex 2 C uCvi :

Then M Ey D E0.
(b) implies (c). By Theorem 15.20M satisfies the columns condition over Q. Thus

by Lemma 15.15, there exist somem 2 ¹1; 2; : : : ; uC vº and a .uC v/�m matrix F
with entries from ! which satisfies the first entries condition such that MF D O, the
u�mmatrix whose entries are all zero. Let S denote the diagonal v�v matrix whose
diagonal entries are t1; t2; : : : ; tv. Then M can be written in block form as .AS �I /
and F can be written in block form as

�
G
H

�
, where I denotes the u�u identity matrix
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and G and H denote v �m and u �m matrices respectively. We observe that G and
H are first entries matrices and that ASG D H , because MF D O. We can choose
d 2 N such that all the entries of dSG are in !. Let B D dH . Then B is a first
entries matrix. Let Ey 2 Nm be given and let Ex D dSG Ey. ThenAEx D B Ey as required.

(g) implies (j). Let G, B , and c be as guaranteed by (g) and let Er 2 Qv n ¹E0º. If
ErG ¤ E0, we can choose b 2 Q such that the first entry of bErG is c. If ErG D E0, we
can choose Ec 2 Nv such that Er � Ec ¤ 0 and add Ec to G as a new final column. In this
case, we choose b 2 Q such that bEr � Ec D c. In either case, let C D

�
bEr
A

�
G. Then C is

a first entries matrix with rational entries and all first entries equal to c. Pick d 2 N
such that all entries of dC are integers. Pick by Lemma 15.14, a first entries matrix E
such that dCE is a first entries matrix with entries from !. Then

�bEr
A

�
dGE D dCE

so
�
bEr
A

�
satisfies statement (g).

(j) implies (a). This is trivial.
Finally, we show that we can add statements (k), (l), and (m) to the list of equivalent

statements.
(c) implies (k). Let B be as guaranteed by (c) and let Ec 2 Qu be given. Let

A0 D .A Ec/. Let B 0 D .B Ec/. Then B 0 is a first entries matrix. We claim that for each
Ez 2 NmC1 there exists Ew in NvC1 such that A0 Ew D B 0Ez. So let Ez 2 NmC1 be given
and let Ey consist of the first m entries of Ez. Pick Ex in Nv such that AEx D B Ey, let the
first v entries of Ew consist of the entries of Ex and let wvC1 D zmC1. Thus A0 satisfies
statement (c).

(k) implies (a). This is trivial.
(a) implies (l). Let m 2 N be given and let �1; �2; : : : ; �m be nonzero linear

mappings from Qv to Q, For each i 2 ¹1; 2; : : : ; mº, pick Eri 2 Qv n ¹E0º such that
for each Ex 2 Qv, �i .Ex/ D Eri � Ex. Applying the fact that statements (a) and (j) are
equivalent m times in succession, pick b1; b2; : : : ; bm in Q n ¹0º such that

B D

0BBB@
bm Erm
:::

b1 Er1
A

1CCCA
is image partition regular over N. Now let C be a central subset of N. By the fact that
statement (a) implies statement (i), we have that ¹Ex 2 Nv W B Ex 2 C uCmº is central
in Nv .

(l) implies (m). For i ¤ j in ¹1; 2; : : : ; vº, let �i;j be the linear mapping from Qv

to Q taking Ex to xi�xj . For i ¤ j in ¹1; 2; : : : ; uº, if row i of A is not equal to row j
of A, let  i;j be the linear mapping from Qv to Q taking Ex to

Pv
tD1.ai;t � aj;t / � xt .

Applying statement (l) to the set ¹�i;j W i ¤ j in ¹1; 2; : : : ; vºº [ ¹ i;j W i ¤ j

in ¹1; 2; : : : ; uº and row i of A is not equal to row j of Aº, we reach the desired
conclusion.

(m) implies (a). This is trivial.
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Notice that a matrix like
�
1 2
2 1

�
is trivially image partition regular because the row

sums are constant. Statement (m) of Theorem 15.24 guarantees that any such matrix
is also nontrivially image partition regular.

Statement (b) of Theorem 15.24 is a computable condition. We illustrate its use by
determining whether the matrices

�
3 1

2 3

	
and

0@ 1 �1

3 2

4 6

1A
are image partition regular over N.

Consider the matrix �
3s1 1s2 �1 0

2s1 3s2 0 �1

	
where s1 and s2 are positive rationals. One quickly sees that the only possible choice
for a set I1 of columns summing to E0 is I1 D ¹1; 2; 3; 4º and then, solving the equa-
tions

3s1 C s2 D 1

2s1 C 3s2 D 1

one gets s1 D 2=7 and s2 D 1=7 and one has established that�
3 1

2 3

	
is image partition regular.

Now consider the matrix0@ 1s1 �1s2 �1 0 0

3s1 2s2 0 �1 0

4s1 6s2 0 0 �1

1A
where again s1 and s2 are positive rationals. By a laborious consideration of cases
one sees that the only non zero choices for s1 and s2 which make this matrix satisfy
the columns condition are s1 D 3=5 and s2 D �2=5. Consequently,0@ 1 �1

3 2

4 6

1A
is not image partition regular.
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Exercise 15.4.1. Prove that the matrix0@ 2 0 0

4 1 �9

2 �2 3

1A
is image partition regular.

Exercise 15.4.2. Let A be a u � v matrix with entries from !. Prove that A is image
partition regular over .N;C/ if and only if A is image partition regular over .N; � /.
(Hint: Consider the proof of Theorem 15.17.)

Exercise 15.4.3. Let u 2 N, let 0 < � < 1
4

, let Ey 2 Nu, and assume that if i; j 2
¹1; 2; : : : ; uº and yj > yi , then either yj

yi
< 1C �, or yj

yi
> 1
�

. Define a relation� on

¹1; 2; : : : ; uº by putting i � j if and only if 1 � � < yj
yi
< 1C �. Prove that � is an

equivalence relation. (Hint: � < .1 � �/2 and .1C �/2 < 1
�

.)

15.5 Matrices with Entries from Fields

In the general situation where one is dealing with arbitrary commutative semigroups,
we restricted our coefficients to have entries from !. In the case of .N;C/, we allowed
the entries of matrices to come from Q. There is another natural setting in which
the entries of a coefficient matrix can be allowed to come from other sets. This is
the case in which the semigroup is a vector space over a field. We show here that
the appropriate analogue of the first entries condition is sufficient for image partition
regularity in this case, and that the appropriate analogue of the columns condition is
sufficient for kernel partition regularity. We also show that in the case of a vector
space over a finite field, the columns condition is also necessary for kernel partition
regularity.

We begin by generalizing the notion of the first entries condition from Defini-
tion 15.2.

Definition 15.25. Let F be a field, let u; v 2 N, and let A be a u � v matrix with
entries from F . Then A satisfies the first entries condition over F if and only if no
row of A is E0 and whenever i; j 2 ¹1; 2; : : : ; uº and

k D min¹t 2 ¹1; 2; : : : ; vº W ai;t ¤ 0º D min¹t 2 ¹1; 2; : : : ; vº W aj;t ¤ 0º;

then ai;k D aj;k . An element b of F is a first entry of A if and only if there is some
row i of A such that b D ai;k where k D min¹t 2 ¹1; 2; : : : ; vº W ai;t ¤ 0º, in which
case b is the first entry of A from column k.
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Notice that the notion of “first entries condition” from Definition 15.2 and the spe-
cial case of Definition 15.25 in which F D Q are not exactly the same since there
is no requirement in Definition 15.25 that the first entries be positive (as this has no
meaning in many fields).

We now consider vector spaces V over arbitrary fields. We shall be dealing with
vectors (meaning ordered v-tuples) each of whose entries is a vector (meaning a mem-
ber of V ). We shall use bold face for the members of V and continue to represent
v-tuples by an arrow above the letter.

The following theorem is very similar to Theorem 15.5 and so is its proof. (The
main difference is that given a vector space V over a field F and d 2 F n ¹0º, one
has dV D V so that dV is automatically central* in .V;C/.) Accordingly, we leave
the proof as an exercise.

Theorem 15.26. Let F be a field and let V be an infinite vector space over F . Let
u; v 2 N and let A be a u � v matrix with entries from F which satisfies the first
entries condition over F . Let C be central in .V;C/. Then there exist sequences
hx1;ni1nD1; hx2;ni

1
nD1; : : : ; hxv;ni

1
nD1 in V such that for every G 2 Pf .N/, ExG 2

.V n ¹0º/v and AExG 2 C u, where

ExG D

0BBB@
P
n2G x1;nP
n2G x2;n
:::P

n2G xv;n

1CCCA :
Proof. This is Exercise 15.5.1.

The assertion that V is an infinite vector space over F reduces, of course, to the
assertion that either F is infinite and V is nontrivial or V is infinite dimensional
over F .

Corollary 15.27. Let F be a field and let V be an infinite vector space over F . Let
u; v 2 N and let A be a u � v matrix with entries from F which satisfies the first
entries condition over F . Then A is strongly image partition regular over V . That
is, whenever r 2 N and V n ¹0º D

Sr
iD1Ei , there exist i 2 ¹1; 2; : : : ; rº and

Ex 2 .V n ¹0º/v such that AEx 2 Ei u.

Proof. We first observe that ¹0º is not central in .V;C/. To see this, note that by
Corollary 4.33, V � is an ideal of .ˇV;C/ so that all minimal idempotents are in V �.
Consequently one may choose i 2 ¹1; 2; : : : ; rº such that Ei is central in .V;C/.
Pick, by Theorem 15.26 some Ex 2 .V n ¹0º/v with AEx 2 Ei u.

Now we turn our attention to kernel partition regularity. We extend the definition
of the columns condition to apply to matrices with entries from an arbitrary field.
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Definition 15.28. Let F be a field, let u; v 2 N, let C be a u � v matrix with en-
tries from F , and let Ec1; Ec2; : : : ; Ecv be the columns of C . The matrix C satisfies the
columns condition over F if and only if there exist m 2 N and I1; I2; : : : ; Im such
that

(1) ¹I1; I2; : : : ; Imº is a partition of ¹1; 2; : : : ; vº.

(2)
P
i2I1

Eci D E0.

(3) If m > 1 and t 2 ¹2; 3; : : : ; mº, let Jt D
St�1
jD1 Ij . Then there exist hıt;iii2Jt

in F such that
P
i2It

Eci D
P
i2Jt

ıt;i � Eci .

Note that Definitions 15.13 and 15.28 agree in the case that F D Q.

Theorem 15.29. Let F be a field, let V be an infinite vector space over F , let
u; v 2 N, and let C be a u � v matrix with entries from F that satisfies the columns
condition over F . Then C is kernel partition regular over V . That is, whenever r 2 N
and V n ¹0º D

Sr
iD1Ei , there exist i 2 ¹1; 2; : : : ; rº and Ex 2 Evi such that C Ex D E0.

Proof. Pick m 2 N, I1; I2; : : : ; Im, and for t 2 ¹2; 3; : : : ; mº, Jt and hıt;iii2Jt as
guaranteed by the definition of the columns condition.

Define the v �m matrix B by, for .i; t/ 2 ¹1; 2; : : : ; vº � ¹1; 2; : : : ; mº,

bi;t D

8̂<̂
:
�ıt;i if i 2 Jt
1 if i 2 It
0 if i …

St
jD1 Ij :

We observe thatB satisfies the first entries condition. We also observe thatCBDO.
(Indeed, let j 2 ¹1; 2; : : : ; uº and t 2 ¹1; 2; : : : ; mº. If t D 1, then

Pv
iD1 cj;i �

bi;t D
P
i2I1

cj;i D 0 and if t > 1 then
Pv
iD1 cj;i � bi;t D

P
i2Jt
�ıt;i � cj;i CP

i2It
cj;i D 0.)

Now let r 2 N and let V n ¹0º D
Sr
iD1Ei . Pick by Corollary 15.27 some i 2

¹1; 2; : : : ; rº and Ey 2 .V n ¹0º/m such that BEy 2 Ei v. Let Ex D BEy. Then C Ex D
CBEy D OEy D E0.

We see that in the case that F is a finite field, we in fact have a characterization of
kernel partition regularity.

Theorem 15.30. Let F be a finite field, let u; v 2 N, and let C be a u�v matrix with
entries from F . The following statements are equivalent:

(a) For each r 2 N there is some n 2 N such that whenever V is a vector space
of dimension at least n over F and V n ¹0º D

Sr
iD1Ei there exist some i 2

¹1; 2; : : : ; rº and some Ex 2 Ei v such that C Ex D E0.

(b) The matrix C satisfies the columns condition over F .
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Proof. (a) implies (b). Let r D jF j � 1 and pick n 2 N such that whenever V is a
vector space of dimension at least n over F and V n ¹0º D

Sr
iD1Ei there exist some

i 2 ¹1; 2; : : : ; rº and some Ex 2 Ei v such that C Ex D E0.
Let V D ⨉niD1 F . Since in this case we will be working with v-tuples of n-tuples,

let us establish our notation. Given Ex 2 V v, we write

Ex D

0BBB@
x1
x2
:::

xv

1CCCA
and given i 2 ¹1; 2; : : : ; vº, xi D .xi .1/; xi .2/; : : : ; xi .n//.

We color V according to the value of its first nonzero coordinate. For each x 2
V n ¹0º, let �.x/ D min¹i 2 ¹1; 2; : : : ; nº W x.i/ ¤ 0º. For each ˛ 2 F n ¹0º, let
E˛ D ¹x 2 V n ¹0º W x.�.x// D ˛º. Pick some ˛ 2 F n ¹0º and some Ex 2 E˛v such
that C Ex D E0.

Let D D ¹�.xi / W i 2 ¹1; 2; : : : ; vºº and let m D jDj. Enumerate D in increasing
order as ¹d1; d2; : : : ; dmº. For each t 2 ¹1; 2; : : : ; mº, let It D ¹i 2 ¹1; 2; : : : ; vº W
�.xi / D dt º. For t 2 ¹2; 3; : : : ; mº, let Jt D

St�1
jD1 Ij and for i 2 Jt , let ıt;i D

�xi .dt / � ˛�1.
To see that these are as required for the columns condition, we first show thatP
i2I1
Eci D E0. To this end, let j 2 ¹1; 2; : : : ; uº be given. We show that

P
i2I1

cj;i D

0. Now C Ex D E0 so
Pv
iD1 cj;i �xi D 0 so in particular,

Pv
iD1 cj;i �xi .d1/ D 0. Now if

i 2 ¹1; 2; : : : ; vºnI1, then d1 < �.xi / so xi .d1/ D 0. Thus 0 D
P
i2I1

cj;i �xi .d1/ D
˛ �
P
i2I1

cj;i so
P
i2I1

cj;i D 0.
Now assume m > 1 and t 2 ¹2; 3; : : : ; mº. To see that

P
i2It
Eci D

P
i2Jt

ıt;i � Eci ,
we again let j 2 ¹1; 2; : : : ; uº be given and show that

P
i2It

cj;i D
P
i2Jt

ıt;i � cj;i .
Then

Pv
iD1 cj;i � xi D 0 so in particular,

Pv
iD1 cj;i � xi .dt / D 0. If i 2 ¹1; 2; : : : ; vº n

.It [ Jt /, then xi .dt / D 0 so 0 D
P
i2It

cj;i � xi .dt / C
P
i2Jt

cj;i � xi .dt / DP
i2It

cj;i � ˛C
P
i2Jt

cj;i � .�ıt;i � ˛/. Thus ˛ �
P
i2It

cj;i D ˛ �
P
i2Jt

cj;i � ıt;i and
so
P
i2It

cj;i D
P
i2Jt

cj;i � ıt;i as required.
(b) implies (a). We use a standard compactness argument. Let r 2 N and suppose

the conclusion fails. For each n 2 N let Vn D ¹x 2 ⨉1iD1 F W for each i > n, x.i/ D
0º. Then for each n, Vn is an n-dimensional vector space over F and Vn � VnC1.

Now given any n 2 N, there is a vector space V of dimension at least n over F
for which there exist E1; E2; : : : ; Er with V n ¹0º D

Sr
iD1Ei such that for each

i 2 ¹1; 2; : : : ; rº and each Ex 2 Ei v, C Ex ¤ E0. The same assertion holds for any
n-dimensional subspace of V as well. Thus we can assume that we have some 'n W
Vn n¹0º ! ¹1; 2; : : : ; rº such that for any i 2 ¹1; 2; : : : ; rº and any Ex 2 .'n�1Œ¹iº�/v,
C Ex ¤ E0.
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Choose an infinite subset A1 of N so that for n;m 2 A1 one has 'njV1n¹0º D
'mjV1n¹0º. Inductively, givenAt�1, choose an infinite subsetAt ofAt�1 with minAt � t
such that for n;m 2 At one has 'njVtn¹0º D 'mjVtn¹0º. For each t pick n.t/ 2 At .

Let V D
S1
nD1 Vn. Then V is an infinite vector space over F . For x 2 V n ¹0º

pick the first t such that x 2 Vt . Then x 2 Vt � Vn.t/ because n.t/ 2 At and
minAt � t . Define '.x/ D 'n.t/.x/. By Theorem 15.29 pick i 2 ¹1; 2; : : : ; rº and

Ex 2 .'�1Œ¹iº�/v such that C Ex D E0. Pick t 2 N such that ¹x1; x2; : : : ; xvº � Vt .
We claim that for each j 2 ¹1; 2; : : : ; vº one has 'n.t/.xj / D i . To see this, let

j 2 ¹1; 2; : : : ; vº be given and pick the least s such that xj 2 Vs . Then n.s/; n.t/ 2 As
so 'n.t/.xj / D 'n.s/.xj / D '.xj / D i . Thus Ex 2 .'n.t/�1Œ¹iº�/v and C Ex D E0,
a contradiction.

Of course any field is a vector space over itself. Thus Corollary 15.27 implies that,
if F is an infinite field, any matrix with entries from F which satisfies the first entries
condition over F is strongly image partition regular over F .

Exercise 15.5.1. Prove Theorem 15.26 by suitably modifying the proof of Theo-
rem 15.5.

15.6 Infinite Image Partition Regular Matrices

In this section we shall discuss infinite image partition regular matrices. We begin by
extending the definition of image partition regularity to certain infinite matrices.

Definition 15.31. Let u and v be countable ordinals and letM be a u�v matrix with
entries from Q such that the number of nonzero entries in each row ofM is finite. We
say that M is image partition regular if, given any finite coloring of N, there exists
Ex 2 Nv such that all the entries of M Ex are monochromatic.

A simple example of an infinite partition regular matrix is

A D

0BBBBBBBBBBB@

1 0 0 0 � � �

0 1 0 0 � � �

1 1 0 0 � � �

0 0 1 0 � � �

1 0 1 0 � � �

0 1 1 0 � � �

1 1 1 0 � � �
:::
:::
:::
:::
: : :

1CCCCCCCCCCCA
:
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Here A is a finite sums matrix. Its rows are all rows with entries from ¹0; 1º with
finitely many 1’s (and at least one 1). That is, the assertion that the entries of AEx are
monochromatic is the same as the assertion that FS.hxni1nD1/ is monochromatic.

It may be that a matrixM is image partition regular for trivial reasons. For example,
if all rows have the same sum, then any Ex with constant entries will have the entries
of M Ex monochromatic. We introduce the following stronger concept to avoid such
trivialities. (We would call this notion strongly image partition regular but that would
conflict with Definition 15.9.)

Definition 15.32. Let u and v be countable ordinals and letM be a u�v matrix with
entries from Q such that the number of nonzero entries in each row ofM is finite. We
say that M is essentially image partition regular if, given any finite coloring of N,
there exists Ex 2 Nv such that all the entries of M Ex are monochromatic and any two
entries are distinct if they correspond to unequal rows of M .

For finite matrices, image partition regularity and essential image partition regular-
ity are equivalent, as shown in Theorem 15.24 (m). We shall see in Example 15.47
that this is not the case for infinite matrices.

The theory of infinite image partition regular matrices is far is less complete than
that of finite image partition regular matrices. While Theorem 15.24 includes some
useful characterizations of finite image partition regular matrices, one of which is
computable, no useful characterization of infinite image partition regular matrices is
known.

We know that, if A is a finite u � v image partition regular matrix, then, given any
central subset C of N, there exists Ex 2 Nv such that all the entries of AEx are in C .
We also know methods for generating new finite image partition regular matrices from
others. For example, if A is a finite image partition regular matrix and if Er 2 Qv n¹E0º,
then by Theorem 15.24 (j), there exists b 2 Q such that

�
bEr
A

�
is image partition regular.

If A and B are finite image partition regular matrices, then the matrix
�
A O
O B

�
is image

partition regular. We shall see in Examples 15.44, 15.45, and 15.46 that none of these
assertions remains true for infinite matrices.

Nevertheless, we shall see that it is possible to give a simple criterion guaranteeing
that certain infinite matrices are image partition regular, as well as a simple criterion
guaranteeing that some of these have solutions in every central subset of N.

Theorem 15.33. Let ha0; a1; : : : ; aki be a finite sequence in Z n ¹0º and let a 2 N.
Let h W .ˇZ/kC1 ! ˇZ be defined by h.p0; p1; : : : ; pk/ D a0 �p0C a1 �p1C : : :C
ak � pk . Let p be an idempotent in N�, let q D h.p; p; : : : ; p/, let Q 2 q, and let
P 2 p. Then we can choose a sequence hxni1nD0 in P such that xn > 2a

Pn�1
iD0 jxi j

for every n 2 N and whenever F0; F1; : : : ; Fk 2 Pf .!/ satisfy maxFi < minFiC1
for every i 2 ¹0; 1; : : : ; k�1º, we have h.

P
t2F0

xt ;
P
t2F1

xt ; : : : ;
P
t2Fk

xt / 2 Q.
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Proof. For each A 2 p, we put A? D ¹n 2 A W nCp 2 Aº. By Lemma 4.14, A? 2 p
and, for each n 2 A?, �nC A? 2 p.

For each m 2 ¹0; 1; 2; : : : ; k � 1º, let

Cm D ¹hx0; x1; x2; : : : ; xmi 2 P
mC1 W h.x0; x1; x2; : : : ; xm; p; : : : ; p/ 2 Qº:

For each m 2 ¹0; 1; 2; : : : ; k � 2º and hx0; x1; x2; : : : ; xmi 2 Cm, put

B.x0; x1; x2; : : : ; xm/ D ¹x 2 P W h.x0; x1; : : : ; xm; x; p; : : : ; pº 2 Qº

and if hx0; x1; x2; : : : ; xk�1i 2 Ck�1, put

B.x0; x1; x2; : : : ; xk�1/ D ¹x 2 P W h.x0; x1; : : : ; xk�1; xº 2 Qº:

Let �x and �x refer to addition on the right and left by x respectively in ˇZ and let
�0x denote multiplication on the left by x. Observe that C0 2 p because the function
x 7! h.x; p; p; : : : ; p/ is �akp ı �ak�1p ı : : : ı �a1p ı �

0
a0

, which is continuous
and takes p to q. Also, if m 2 ¹0; 1; : : : ; k � 2º and hx0; x1; : : : ; xmi 2 Cm, then
B.x0; x1; x2; : : : ; xm/ 2 p because the function x 7! h.x0; x1; : : : ; xm; x; p; : : : ; p/

is �akpı�ak�1pı: : :ı�amC2pı�a0x0ı�a1x1ı: : :ı�amxmı�
0
amC1

which is continuous
and takes p to q. Similarly, if hx0; x1; : : : ; xk�1i 2 Ck�1, then B.x0; x1; x2; : : : ;
xk�1/ 2 p.

We construct the sequence hxni1nD0 inductively. Choose any x0 2 C ?0 . Now let n �
0 and assume that we have chosen x0; x1; x2; : : : ; xn 2 N satisfying the following
conditions:

(1) xm > 2a
Pm�1
iD0 jxi j for every m 2 ¹1; 2; : : : ; nº;

(2) for each F 2 Pf .¹0; 1; : : : ; nº/,
P
t2F xt 2 C

?
0 ;

(3) whenever m 2 ¹1; 2; : : : ; k � 1º and F0; F1; : : : ; Fm 2 Pf .¹0; 1; 2; : : : ; nº/

satisfy maxFi < minFiC1 for every i 2 ¹0; 1; : : : ; m � 1º, then h
P
t2F0

xt ;P
t2F1

xt ; : : : ;
P
t2Fm

xt i 2 Cm; and

(4) whenever m 2 ¹1; 2; : : : ; kº and F0; F1; : : : ; Fm 2 Pf .¹0; 1; 2; : : : ; nº/ sat-
isfy maxFi < minFiC1 for every i 2 ¹0; 1; : : : ; m � 1º, then

P
t2Fm

xt 2

B.
P
t2F0

xt ;
P
t2F1

xt ; : : : ;
P
t2Fm�1

xt /
?.

The hypotheses are satisfied at n D 0, (1), (3), and (4) vacuously. We claim that

(a) ¹x 2 N W x > 2a
Pn
iD1 jxi jº 2 p;

(b) C ?0 2 p;

(c)
T
¹�
P
t2F xt C C

?
0 W F 2 Pf .¹0; 1; : : : ; nº/º 2 p;
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(d) if m 2 ¹0; 1; : : : ; k � 1º and F0; F1; : : : ; Fm 2 Pf .¹0; 1; : : : ; nº/ satisfy
maxFi < minFiC1 whenever 0 
 i < m, then B.

P
t2F0

xt ;
P
t2F1

xt ; : : : ;P
t2Fm

xt /
? 2 p; and

(e) if m 2 ¹1; 2; : : : ; kº and F0; F1; : : : ; Fm 2 Pf .¹0; 1; : : : ; nº/ satisfy maxFi <
minFiC1 whenever 0 
 i < m, then �

P
t2Fm

xt C B.
P
t2F0

xt ;
P
t2F1

xt ;

: : : ;
P
t2Fm�1

xt /
? 2 p.

Indeed, the set in (a) is cofinite and we have seen that C0 2 p. The set in (c) is
in p by hypothesis (2). If m D 0 and F0 2 Pf .¹0; 1; : : : ; nº/, then the set in (d)
is in p by hypothesis (2). If m > 0 and F0; F1; : : : ; Fm are as in (d), then that set is
in p by hypothesis (3). If m and F0; F1; : : : ; Fm are as in (e), then that set is in p by
hypothesis (4).

Since there are finitely many pairs
˝
m; hF0; F1; : : : ; Fmi

˛
satisfying the hypotheses

of (d) and (e), we may choose xnC1 in the sets mentioned in (a), (b), and (c) and in
each of the sets described in (d) and (e).

We claim that x0; x1; x2; : : : ; xnC1 satisfy hypotheses (1), (2), (3), and (4) with
n replaced by n C 1. Hypothesis (1) holds trivially. To verify hypothesis (2), let
F 2 Pf .¹0; 1; : : : ; n C 1º/. If n C 1 … F , the conclusion holds by assumption, so
assume n C 1 2 F . If F D ¹n C 1º, the conclusion holds since xnC1 2 C ?0 . So
assume F ¤ ¹nC 1º and let G D F n ¹nC 1º. Then xnC1 2 �

P
t2G xt C C

?
0 soP

t2F xt 2 C
?
0 .

To verify hypothesis (3), let m 2 ¹1; 2; : : : ; k � 1º and let F0; F1; : : : ; Fm 2
Pf .¹0; 1; 2; : : : ; nC 1º/ satisfy maxFi < minFiC1 for every i 2 ¹0; 1; : : : ; m � 1º.
If nC 1 … Fm, then (3) holds by assumption, so assume that nC 1 2 Fm. Then we
have

P
t2Fm

xt 2 B.
P
t2F0

xt ;
P
t2F1

xt ; : : : ;
P
t2Fm�1

xt /. (If Fm D ¹nC1º, this
holds since xnC1 is in the set described in (d) for F0; F1; : : : ; Fm�1. If ¹nC1º ¨ Fm
andG D Fmn¹nC1º, this holds since xnC1 2 �

P
t2G xtCB.

P
t2F0

xt ;
P
t2F1

xt ;

: : : ;
P
t2Fm�1

xt /.) The statement thatX
t2Fm

xt 2 B
�X
t2F0

xt ;
X
t2F1

xt ; : : : ;
X

t2Fm�1

xt

�
is exactly the same as the statement that h

P
t2F0

xt ;
P
t2F1

xt ; : : : ;
P
t2Fm

xt i2Cm.
To verify hypothesis (4), let m 2 ¹1; 2; : : : ; kº and let F0; F1; : : : ; Fm 2 Pf .¹0; 1;

2; : : : ; n C 1º/ satisfy maxFi < minFiC1 for every i 2 ¹0; 1; : : : ; m � 1º. Again
we may assume that n C 1 2 Fm. If Fm D ¹n C 1º, we have that xnC1 2
B.
P
t2F0

xt ;
P
t2F1

xt ; : : : ;
P
t2Fm�1

xt /
?. If ¹nC1º ¨ Fm andG D Fmn¹nC1º,

we have that xnC1 2 �
P
t2G xt C B.

P
t2F0

xt ;
P
t2F1

xt ; : : : ;
P
t2Fm�1

xt /
?.

The construction being complete, let F0; F1; : : : ; Fk 2 Pf .!/ satisfy maxFi <
minFiC1 for every i 2 ¹0; 1; : : : ; k � 1º. Then by hypothesis (4),

P
t2Fk

xt 2

B.
P
t2F0

xt ;
P
t2F1

xt ; : : : ;
P
t2Fk�1

xt /, so

h
�X
t2F0

xt ;
X
t2F1

xt ; : : : ;
X
t2Fk

xt

�
2 Q:
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Lemma 15.34. Let a 2 N and let hxni1nD0 be a sequence in N for which xn >
2a
Pn�1
iD1 xi for every n 2 N.

(a) LetH 2Pf .!/ and for each t 2H , let dt 2Z with jdt j
2a. If
P
t2H dtxt D0,

then for each t 2 H , dt D 0.

(b) Let F;G 2 Pf .!/, for each t 2 F let bt 2 Z n ¹0º with jbt j 
 a, and for each
t 2 G let ct 2 Zn¹0º with jct j 
 a. If

P
t2F btxt D

P
t2G ctxt , then F D G

and bt D ct for every t 2 F .

Proof. (a) Suppose not and let r D max¹t 2 H W dt ¤ 0º. Let K D ¹t 2 H n ¹rº W
dt ¤ 0º. Since drxr ¤ 0, we have K ¤ ;. But then xr D

P
t2K

�ct
cr
xt 
Pr�1

tD0 2axt < xr , a contradiction.
(b) Let H D F [G and for t 2 K, let

dt D

8̂<̂
:
�ct if t 2 G n F

bt if t 2 F nG

bt � ct if t 2 F \G:

Then by (a), each dt D 0 so the conclusion follows.

Definition 15.35. Let Ea be a finite or infinite sequence in Q with only finitely many
nonzero entries. Then c.Ea/ is the sequence obtained from Ea by first deleting all oc-
currences of 0 and then deleting any term equal to its predecessor. We call c.Ea/ the
compressed form of Ea.

For example, if Ea D h1; 0; 0; 1; 1;�2; 0;�2; 0; 3; 0; 0; 0; 0; : : : i, then c.Ea/ D

h1;�2; 3i.

Theorem 15.36. Let ha0; a1; : : : ; aki be a finite sequence in Zn¹0º with ak > 0. Let
M be an !�! matrix with entries from Z and only a finite number of nonzero entries
in each row. Assume that the compressed form of each row is ha1; a2; : : : ; aki. If p
is any idempotent in ˇN, q D a0 � p C a1 � p C � � � C ak � p, P 2 p, and Q 2 q,
then q 2 N� and there is a sequence hxni1nD0 in N such that all entries of M Ex are in
Q and entries corresponding to distinct rows of M are unequal. In particular M is
essentially image partition regular.

Proof. Let a D max¹jai j W i 2 ¹0; 1; : : : ; kºº. We have that q 2 N� by Exercise
4.3.5. GivenQ 2 q and P 2 p, let hxni1nD0 be a sequence as guaranteed by Theorem
15.33. Then, if Ex D hxni1nD0, all the entries of M Ex are in Q. Furthermore, by
Lemma 15.34 (b), two entries can only be equal if they correspond to rows which are
equal.
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Recall that by Theorem 15.24 (h) any finite image partition regular matrix has im-
ages in any central subset of N.

Definition 15.37. Let u and v be countable ordinals and let M be an infinite u � v
matrix with entries from Q and finitely many nonzero entries in each row. We say
that M is centrally image partition regular if, given any central subset C of N, there
exists Ex 2 Nv such that all the entries of M Ex are in C . We say that M is essentially
centrally image partition regular if, in addition, Ex can be chosen so that any two
entries of M Ex are distinct if they correspond to unequal rows of M .

By adding one more requirement, we get a stronger version of Theorem 15.36.

Theorem 15.38. Let k 2 N and let ha0; a1; : : : ; aki be a sequence in Z n ¹0º with
ak > 0. Let M be an ! � ! matrix with entries from Z and only a finite of nonzero
entries in each row. Assume that the compressed form of each row is ha1; a2; : : : ; aki.
Suppose in addition that there exists m 2 Z n ¹0º such that the sum of the entries in
each row of A is equal to m. Then M is essentially centrally image partition regular.

Proof. Let L denote the set of elements q 2 ˇN such that, for every A 2 q, there
exists a sequence Ex in N such that all the entries of M Ex are in A, with entries being
distinct if they correspond to rows which are unequal. Then L is clearly closed.

Let C be a central subset of N and pick a minimal idempotent r 2 ˇN such that
C 2 r . It suffices to show that r 2 L. Let p D 1

ak
� r . Then r D ak � p and by

Lemma 15.23.2, p is an idempotent in ˇN. Let q D a0 � p C a1 � p C � � � C ak � p.
By Theorem 15.36 q 2 L. By Lemma 6.6, for each n 2 N, nN 2 p so nZ 2 p.
Further, by Corollary 4.18, for each n, nZ is an ideal of .ˇZ; � / and a subsemigroup
of .ˇZ;C/ so nZ 2 q and thus nN 2 q. In particular, jmjN 2 q.

We claim that ˇ.jmjN/ C q � L. To see this it suffices to show that for each
n 2 N, jmjn C q 2 L. To this end, let A 2 jmjn C q so that �jmjn C A 2 q. Let
P D ¹y 2 N W y > nº. By Theorem 15.36, we can choose a sequence Ex D hxi i1iD0
in P such that all the entries of M Ex are in �jmjnC A, with entries being distinct if
they correspond to different rows. Let s D 1 if m > 0 and let s D �1 if m < 0. For
each j 2 ! let uj D snC xj and note that uj 2 N. Denote as usual the entry in row
i and column j of M by mi;j . We claim that all entries of M Eu are in A and entries
corresponding to distinct rows are equal. To this end, let i 2 ! be given and let yi be
the i th entry of M Ex. Then the i th entry of M Eu is

P1
jD0mi;jxj C

P1
jD0mi;j sn D

yi C msn D yi C jmjn 2 A and entries corresponding to distinct rows are distinct.
Our claim is established.

Now q 2 ˇZ C r D ˇZ C r C r � ˇN C r , where the inclusion holds by
Exercise 4.3.5. So q D v C r for some v 2 ˇN. (Note that v may not equal
a0p C a1p C � � � C ak�1p, since that sum is not in ˇN if ak�1 < 0.) Since jmjN 2
q and jmjN 2 r , we have that jmjN 2 v and thus q 2 ˇ.jmjN/ C r . Now r

is a minimal idempotent in ˇ.jmjN/ (by Theorem 1.65), and so ˇ.jmjN/ C r is a
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minimal left ideal of ˇ.jmjN/ (by Theorem 1.59). Since ˇ.jmjN/C q is a left ideal
of ˇ.jmjN/which is contained in ˇ.jmjN/Cr , we have ˇ.jmjN/Cr D ˇ.jmjN/Cq
so r 2 ˇ.jmjN/C q � L.

As a consequence of Theorem 15.38, given any central subset C of N, there are,
for example, injective sequences hxni1nD0 and hyni1nD0 in N such that all numbers of
the form 2xm C 19xn or �ym C 7yn, with n > m are in C .

We shall see in Example 15.44 that the requirement that m ¤ 0 in Theorem 15.38
is necessary.

We show in Theorem 15.39 that if the number of patterns in any finite set of
columns is finite and the row sums are constant and positive, then one can extend
the given matrix by adding on multiples of any finite set of nonzero rows. We speak
of adding finitely many rows, rather than adding rows one at a time as in Theorem
15.24 (j), because we cannot simply iterate the procedure. (If the row sums of A are
all m and the sum of row Er is not 0, one can multiply Er by b so that its sum is m and
iterate. However, some or all of the added rows may sum to 0.)

Theorem 15.39. Let k 2 N, let m 2 Q with m > 0, and let A be an ! � ! matrix
with entries from Q such that

(i) the sum of each row of A is m and

(ii) for each l 2 !, ¹hai;0; ai;1; : : : ; ai;l i W i 2 !º is finite.

Let Er.1/; Er.2/; : : : ; Er.k/ 2 Q! n ¹E0º be such that each Er.i/ has only finitely many
nonzero entries. Then there exist b1; b2; : : : ; bk 2 Q n ¹0º such that0BBBBB@

b1Er
.1/

b2Er
.2/

:::

bkEr
.k/

A

1CCCCCA
is centrally image partition regular.

Proof. Pick l 2 N such that for every j 2 ¹1; 2; : : : ; kº and every i � l , r.j /i D 0.

For each j 2 ¹1; 2; : : : ; kº, let s.j / D hr .j /0 ; r
.j /
1 ; : : : ; r

.j /

l
i. Enumerate ¹hai;0; ai;1;

: : : ; ai;l�1i W i 2 !º as Ew.0/; Ew.1/; : : : ; Ew.u/. For each i 2 ¹0; 1; : : : ; uº, let di D

m �
Pl�1
jD0w

.i/
j . Let E be the .uC 1/ � .l C 1/ matrix with entries

ei;j D

´
w
.i/
j if j 2 ¹0; 1; : : : ; l � 1º

di if j D l:
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Then E has constant row sums, so is image partition regular. By applying Theorem
15.24 (j) k times, pick b1; b2; : : : ; bk 2 Q n ¹0º such that the matrix

H D

0BBBBB@
b1Es

.1/

b2Es
.2/

:::

bkEs
.k/

E

1CCCCCA
is image partition regular, hence, by Theorem 15.24 (h), centrally image partition reg-
ular.

Let C be a central set in N and pick hz0; z1; : : : ; zli 2 NlC1 such that all entries
of H Ez are in C . For n 2 ¹0; 1; : : : ; l � 1º, let xn D zn. For n 2 ¹l; l C 1; l C 2; : : : º,
let xn D zl . We claim that all entries of0BBBBB@

b1Er
.1/

b2Er
.2/

:::

bkEr
.k/

A

1CCCCCA Ex

are in C . Given i 2 ¹1; 2; : : : ; kº, bi Er.i/ Ex D bi Es.i/Ez 2 C . Now consider row s of A.
Pick i 2 ¹0; 1; : : : ; uº such that has;0; as;1; : : : ; as;l�1i D hw

.i/
0 ; w

.i/
1 ; : : : ; w

.i/

l�1
i.

Then
P1
jD0 as;jxj D

Pl�1
jD0 as;jxj C

P1
jDl as;jxj D

Pl�1
jD0w

.i/
j zj C zl .m �Pl�1

jD0 as;j / D
Pl
jD0 ei;j zj 2 C .

We shall see in Example 15.46 that the requirement that m > 0 in Theorem 15.39
cannot be replaced by the requirement that m ¤ 0.

The proof of the following lemma is Exercise 15.6.1.

Lemma 15.40. If p 2 ˇN and �p D .�1/ � p, then nN 2 �pC p for every n 2 N.

Definition 15.41. Let n 2 N. We define a block of n to be a maximal set of consecu-
tive integers contained in supp.n/. And b.n/ denotes the number of blocks of n.

For example, if n, written in binary, is 1110010110 then the blocks of n are ¹1; 2º,
¹4º, and ¹7; 8; 9º and b.n/ D 3.

Lemma 15.42. Let B D ¹n 2 N W b.n/ is evenº. Then B is an IP� set in N and if
p 2 H, then �p C p … B . Consequently, c`E.ˇN/ \ c`¹�p C p W p 2 Hº D ;.
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Proof. We claim that, if q 2 E.ˇN/, then B 2 q so B is an IP� set. To see this,
observe that, ifm; n 2 N are integers for which max supp.m/C1 < min supp.n/, then
b.mC n/ D b.m/C b.n/. It follows that b.mC n/ is even if b.m/ 	 b.n/ .mod 2/.
Since q D q C q and q 2 H, it follows that B 2 q.

Now let p 2 H. Let D0 D ¹n 2 N W min supp.n/ C 1 … supp.n/º and let
D1 D ¹n 2 N W min supp.n/C 1 2 supp.n/º.

Let m; n 2 N satisfy max supp.m/C 1 < min supp.n/. Observe that b.n �m/ D
b.n/C b.m/ � 1 if m and n are both in D0, and that b.n �m/ D b.n/C b.m/C 1

if m and n are both in D1. (To see this, consider the arithmetic done in binary. For
example, ifm D 11100101 and n D 11001000000000, both members ofD0, then n�
m D 11000100011011.) So, in either case, if b.m/ 	 b.n/ .mod 2/, then n�m … B .
Pick i 2 ¹0; 1º such that Bi 2 p. Then ¹n � m W m; n 2 Di ;max supp.m/ C 1 <
min supp.n/, and b.m/ 	 b.n/ .mod 2/º 2 �p C p. So B … �p C p.

Definition 15.43. Let u and v be countable ordinals and letM be a u�v matrix with
entries from Q and only a finite number of nonzero entries in each row. C.M/ D

¹p 2 ˇN W every member of p contains all the entries of M Ex for some Ex 2 Nvº.

Observe that M is image partition regular if and only if C.M/ ¤ ; (by Theo-
rem 3.11), and that M is centrally image partition regular if and only if C.M/ con-
tains all the minimal idempotents of ˇN. (For the necessity of the latter assertion,
notice that C.M/ is closed, so if p is a minimal idempotent not in C.M/, then there
is a set A 2 p such that A \ C.M/ D ;.)

Example 15.44. Let M be an ! � ! matrix which contains all possible rows whose
nonzero entries are 1, �1, �1 ,1, in that order. Then C.M/ � c`¹�q C q W q 2 Hº
and C.M/ does not contain any idempotent. In particular, the requirement thatm ¤ 0
cannot be deleted from the hypotheses of Theorem 15.38.

Proof. To see that C.M/ � c`¹�qC q W q 2 Hº, let u 2 C.M/ and let A 2 u. Then
there exists Ex D hxni1nD0 such that all the entries of M Ex are in A. This means that
xk � xl � xm C xn 2 A whenever k; l;m; n 2 ! with k < l < m < n. At most
three of the entries of hxni1nD1 can be equal, since otherwise one would have 0 as an
entry of M Ex. Thus we may pick p 2 ¹xn W n 2 !º�. Then p � p � p C p 2 A,
because p�p�pCp D limxk!p limxl!p limxm!p limxn!p.xk�xl �xmCxn/.
Let q D �p C p. Then q 2 H by Lemma 15.40. By Lemma 13.1, �q C q D
p � p � p C p 2 A.

Now suppose that there is some idempotent u 2 C.M/ and let B D ¹n 2 N W b.n/
is evenº. Then, by Lemma 15.42, B 2 u so pick q 2 H such that �q C q 2 B . This
is a contradiction to Lemma 15.42.

Example 15.45. There exist ! � ! essentially image partition regular matrices M1

and M2 for which
�
M1 O
O M2

�
is not image partition regular.
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Proof. Let M1 be a finite sums matrix. This is an ! � ! matrix which contains
all possible rows whose entries are 0 or 1, subject to the condition that the number
of nonzero entries in each row is finite and no row is zero. Let M2 be a matrix as
described in Example 15.44 and letM D

�
M1 O
O M2

�
. We claim thatC.M/ D ;. To see

this, suppose instead we have some u 2 C.M/. Since u 2 C.M1/, u 2 c`.E.ˇN//
by Lemma 5.19. Since u 2 C.M2/, u 2 c`¹�q C q W q 2 Hº by Example 15.44.
However, by Lemma 15.42, c`E.ˇN/ \ c`¹�p C p W p 2 Hº D ;.

Example 15.46. LetM be a matrix whose rows are all the sequences whose first entry
is �1 and with exactly two more nonzero entries which are �1 and 1 in that order.
Then M is essentially centrally image partition regular but if Er D h1; 0; 0; 0; : : : i,
then there is no b 2 Q such that the matrix

�bEr
M

�
is image partition regular.

Proof. By Theorem 15.38,M is essentially centrally image partition regular. Suppose
that b 2 Q and that

�bEr
M

�
is image partition regular. This implies that b >0. Let b D m

n

where m and n are relatively prime positive integers. We consider three cases.
Case 1. m > 1. For x 2 N, define 	.x/ D max¹t 2 ! W mt divides xº. For

i 2 ¹0; 1º, let Ai D ¹x 2 N W 	.x/ 	 i .mod 2/º. Pick i 2 ¹0; 1º and a sequence
Ex D hxt i

1
tD0 such that all entries of M Ex are in Ai . Note that hxt i1tD1 is increasing.

(If 1 
 r < s and xs 
 xr , then �x0 � xr C xs < 0.) Let t D 	.bx0/. Then
m
n
x0 D mtk where m does not divide k and t 	 i .mod 2/. Pick r and s such that

1 
 r < s, xr 	 xs .mod mt /, and xs � xr > x0. Then xs � xr D mtw for some
w 2 N so �x0�xrCxs D mt�1.mw�nk/ andm does not dividemw�nk because
m and n are relatively prime andm does not divide k. Therefore �x0�xrCxs … Ai ,
a contradiction.

Case 2. n > 1. For x 2 N, define 	.x/ D max¹t 2 ! W nt divides xº. For
i 2 ¹0; 1º, let Ai D ¹x 2 N W 	.x/ 	 i .mod 2/º. Pick i 2 ¹0; 1º and a sequence
Ex D hxt i

1
tD0 such that all entries of M Ex are in Ai . As above, hxt i1tD1 is increasing.

Let t D 	.bx0/. Then m
n
x0 D ntk where n does not divide k and t 	 i .mod 2/.

Pick r and s such that 1 
 r < s, xr 	 xs .mod ntC2/, and xs � xr > x0. Then
xs � xr D n

tC2w for some w 2 N so �x0 � xr C xs D ntC1.nw � l/ where l D k
m

is an integer because x0 2 N. Therefore �x0 � xr C xs … Ai , a contradiction.
Case 3. b D 1. For i 2 ¹1; 2º let Ai D ¹3lC1k C 3l i W l; k 2 !º. (Thus Ai is the

set of positive integers whose least significant digit in base 3 is i .) Pick i 2 ¹1; 2º and
a sequence Ex D hxt i1tD0 such that all entries of M Ex are in Ai . Again we note that
hxt i

1
tD1 is increasing. Pick j; k 2 ! such that x0 D 3lC1k C 3l i . Pick r and s such

that 1 
 r < s, xr 	 xs .mod 3lC1/, and xs � xr > x0. Then xs � xr D 3lC1w

for some w 2 N and �x0 � xr C xs D 3lC1.w � k � 1/ C 3l .3 � i/. Therefore
�x0 � xr C xs … Ai , a contradiction.

Example 15.47. There is an ! � ! matrix which is image partition regular but not
essentially image partition regular.
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Proof. Let M denote an ! � ! matrix whose rows are all possible sequences with
nonzero entries 1 and 4, in that order, as well as all possible sequences whose nonzero
entries are 4 and 1, in that order. Since the sum of the entries in each row is 5, M is
image partition regular.

Define � W N ! ! by �.n/ D max supp.n/. For i 2 ¹0; 1; 2; 3º, let Ai D
¹n 2 N W �.n/ 	 i .mod 4/º. Let Ex D hxni1nD0 be a sequence in N with the
property that, for some i 2 ¹0; 1; 2; 3; º, all the entries of M Ex are in Ai . Observe
that, if x < y in N, then �.x C y/ 2 ¹�.y/; �.y/ C 1º. Hence, if xn > 4x1,
�.x1C 4xn/ 2 ¹�.xn/C 2; �.xn/C 3º and �.4x1C xn/ 2 ¹�.xn/; �.xn/C 1º. So
�.x1 C 4xn/ 6	 �.4x1 C xn/.mod4/. It follows that xn 
 4x1 for every n 2 N, and
so Ex can only have a finite number of distinct entries.

Exercise 15.6.1. Prove Lemma 15.40.

Exercise 15.6.2. Let M be an image partition regular matrix and let C.M/ be as in
Definition 15.43. Show that C.M/ is a left ideal of .ˇN; � / and that, if M is finite,
C.M/ is an ideal of .ˇN; � /.

Exercise 15.6.3. Let M1 and M2 be image partition regular matrices. Show that, if
M1 is finite, then

�
M1 O
O M2

�
is image partition regular. (Hint: Use Exercise 15.6.2.)

Exercise 15.6.4. For each n 2 N, let Mn be a strongly centrally image partition
matrix. Let

M D

0BBB@
M1 O O � � �

O M2 O � � �

O O M3 � � �
:::

:::
:::

: : :

1CCCA:
Show thatM is strongly centrally image partition regular. (Hint: Use Corollary 9.27.2.)

Exercise 15.6.5. Let M be an ! � ! matrix with entries from Z and a finite number
of nonzero entries in each row such that, for some m 2 N, the sum of the entries is
each row is equal to m. Show that M is centrally image partition regular.

15.7 Notes

The terminology “image partition regular” and “kernel partition regular” was sug-
gested by W. Deuber. Matrices satisfying the first entries condition are based on
Deuber’s .m; p; c/ sets [122].

The columns condition was introduced by Rado [343] and he showed there that a
matrix is kernel partition regular over .N;C/ if and only if it satisfies the columns con-
dition over Q. Other generalizations of this result were obtained in [343] and [344].
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The proof that (a) and (c) are equivalent in Theorem 15.20 is based on Rado’s
original arguments [343]. It is shown in [273], a result of collaboration with W. Woan,
that there are solutions to the system of equations ExC D E1 in any central set in .N; � /
if and only if C satisfies the columns condition over Z.

The proof given here of the sufficiency of the columns condition using the image
partition regularity of matrices satisfying the first entries condition is based on Deu-
ber’s proof that the set of subsets of N containing solutions to all kernel partition
regular matrices is partition regular [122].

The material from Section 15.4 is taken from [218], [222], and [241], results of
collaboration with I. Leader and I. Moshesh. The characterization of the image par-
tition regular matrices is relatively recent. Whereas Rado’s Theorem was proved in
1933 [343] and .m; p; c/ sets (on which the first entries condition was based) were
introduced in 1973 [122], the characterization of image partition regular matrices was
not obtained until 1993 [218].

Theorems 15.26, 15.29, and 15.30 are from [35], written in collaboration with
V. Bergelson and W. Deuber, except that there the field F was required to be count-
able and the vector space V was required to be of countable dimension. (At the time
[35] was written, the Central Sets Theorem was only known to hold for countable
commutative semigroups.)

Most of the material in Section 15.6 is from [223], which was written in collabora-
tion with I. Leader.
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IP, IP*, Central, and Central* Sets

We saw in Chapter 14 that in any semigroup S , central sets have rich combinatorial
content. And our introduction to the combinatorial applications of the algebraic struc-
ture of ˇS came through the Finite Products Theorem (Corollary 5.9). We shall see in
this chapter that sets which intersect FP.hxni1nD1/ for every sequence hxni1nD1 (that
is, the IP* sets) have very rich combinatorial structure, especially in the semigroups
.N;C/ and .N; � /. Further, by means of the old and often studied combinatorial no-
tion of spectra of numbers, we exhibit a large class of examples of these special sets
in .N;C/.

16.1 IP, IP*, Central, and Central* Sets in Arbitrary
Semigroups

Recall that we have defined a central set in a semigroup S as one which is a member
of a minimal idempotent in ˇS (Definition 4.42). As one of our main concerns in this
chapter is the presentation of examples, we begin by describing a class of sets that are
central in an arbitrary semigroup.

Theorem 16.1. Let S be a semigroup and for each F 2 Pf .S/, let xF 2 S . ThenS
F 2Pf .S/

.F � xF / is central in S .

Proof. Let A D
S
F 2Pf .S/

.F � xF /. For each F 2 Pf .S/, let

BF D ¹xH W H 2 Pf .S/ and F � H º:

Then ¹BF W F 2 Pf .S/º is a set of subsets of S with the finite intersection property
so choose (by Theorem 3.8) some p 2 ˇS such that ¹BF W F 2 Pf .S/º � p.

We claim that ˇS �p � A for which it suffices, since �p is continuous, to show that
S � p � A. To this end, let s 2 S . Then B¹sº � s�1A so s�1A 2 p so by Theorem
4.12 A 2 sp. By Corollary 2.6, there is a minimal idempotent q 2 ˇS � p and so
A 2 q.

In the event that S is countable, the description given by Theorem 16.1 can be
simplified.

Corollary 16.2. Let S D ¹an W n 2 Nº be a countable semigroup and let hxni1nD1 be
a sequence in S . Then ¹an � xm W n;m 2 N and n 
 mº is central in S .

Proof. This is Exercise 16.1.1.
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We now introduce some terminology which is due to Furstenberg [156] and is com-
monly used in Topological Dynamics circles.

Definition 16.3. Let S be a semigroup. A subset A of S is an IP set if and only if
there is a sequence hxni1nD1 in S such that FP.hxni1nD1/ � A.

Actually, as defined by Furstenberg, an IP set is a set which can be written as
FP.hxni1nD1/ for some sequence hxni1nD1. We have modified the definition because
we already have a notation for FP.hxni1nD1/ and because of the nice characterization
of IP set obtained in Theorem 16.4 below.

The terminology may be remembered because of the intimate relationship between
IP sets and idempotents. However, the origin as described in [156] is as an “infinite
dimensional parallelepiped”. To see the idea behind that term, consider the elements
of FP.hxi i3iD1/ which we have placed at seven of the vertices of a cube (adding an
identity e at the origin).

�
�
�

�
�
�

�
�
�

�
�
�

e x1

x3

x2
x1x2

x1x3

x2x3 x1x2x3

Theorem 16.4. Let S be a semigroup and let A be a subset of S . Then A is an IP set
if and only if there is some idempotent p 2 ˇS such that A 2 p.

Proof. This is a reformulation of Theorem 5.12.

In general, given a class R of subsets of a set S , one may define the class R� of
sets that meet ever member of R. We have already done so (in Definition 15.3) for
central sets.

Definition 16.5. Let S be a semigroup and let A � S . Then A is an IP* set if and
only if for every IP set B � S , A \ B ¤ ;.

Recall from Lemma 15.4 that a set is a central* set if and only if it is a member of
every minimal idempotent. A similar characterization is valid for IP* sets.

Theorem 16.6. Let S be a semigroup and let A � S . The following statements are
equivalent:

(a) A is an IP* set.

(b) A is a member of every idempotent of ˇS .

(c) A \ B is an IP set for every IP set B of S .
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Proof. (a) implies (b). Let p be an idempotent of ˇS and suppose that A … p. Then
S n A 2 p so by Theorem 5.8 there is a sequence hxni1nD1 in S with FP.hxni1nD1/ �
S n A. That is, S n A is an IP set which misses A, a contradiction.

(b) implies (c) Let B be an IP set and pick by Lemma 5.11 an idempotent p of ˇS
such that B 2 p. Then A \ B 2 p so A \ B is an IP set by Theorem 5.8.

That (c) implies (a) is trivial.

As a trivial consequence of Lemma 15.4, Theorems 16.4 and 16.6, and the defini-
tion of central, one has that

IP*) central*) central) IP:

One also sees immediately the following:

Remark 16.7. Let S be a semigroup and let A and B be subsets of S .

(a) If A and B are IP* sets, then A \ B is an IP* set.

(b) If A and B are central* sets, then A \ B is a central* set.

We see now that in most reasonable semigroups, it is easy to produce a specific
central* set which is not an IP* set.

Theorem 16.8. Let S be a semigroup and assume that hxni1nD1 is a sequence in S
such that FP.hxni1nD1/ is not piecewise syndetic. Then S n FP.hxni1nD1/ is a central*
set which is not an IP* set.

Proof. Trivially S n FP.hxni1nD1/ is not an IP* set. Since FP.hxni1nD1/ is not piece-
wise syndetic, we have by Theorem 4.40 FP.hxni1nD1/ \ K.ˇS/ D ; so for every
minimal idempotent p, S n FP.hxni1nD1/ 2 p.

Of course, since the notions of central and IP are characterized by membership in
an idempotent, they are partition regular notions. In trivial situations (see Exercises
16.1.2 and 16.1.3) the notions of central* and IP* may also be partition regular.

Lemma 16.9. Let S be a semigroup.

(a) The notion of IP* is partition regular in S if and only if ˇS has a unique idem-
potent.

(b) The notion of central* is partition regular in S if and only ifK.ˇS/ has a unique
idempotent.

Proof. We establish (a) only, the other proof being very similar.
Necessity. Suppose that ˇS has two idempotents p and q and pick A 2 p nq. Then

A [ .S n A/ is an IP* set while neither A nor S n A is an IP* set.
Sufficiency. Let p be the unique idempotent of ˇS . Then a subset A of S is an IP*

set if and only if A 2 p.
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As a consequence of Lemma 16.9 we have the following.

Remark 16.10. Let S be a semigroup. If the notion of IP* is partition regular in S ,
then so is the notion of central*.

Exercise 16.1.3 shows that one may have the notion of central* partition regular
when the notion of IP* is not.

We see now that in more civilized semigroups, the notions of IP* and central* are
not partition regular. (Theorem 16.11 is in fact a corollary to Corollary 6.43 and
Lemma 16.9, and is also a corollary to Theorem 6.34.4, but it has a simple self con-
tained proof, so we present it.)

Theorem 16.11. Let S be an infinite weakly left cancellative semigroup. There exist
disjoint central subsets of S . Consequently, neither the notions of central* nor IP*
are partition regular in S .

Proof. Let � D jS j and enumerate Pf .S/ as hF˛i˛<� . Observe that wheneverB � S
and jBj < � and F 2 Pf .S/ there is some x 2 S such that .F � x/ \ B D ;. (For
each u 2 F and v 2 B , ¹x 2 S W ux D vº is finite by the definition of weakly left
cancellative so j

S
u2F

S
v2B¹x 2 S W ux D vºj < �.)

Choose x0 2 S and choose y0 2 S such that .F0 �y0/\ .F0 �x0/ D ;. Inductively,
let ˛ < � and assume we have chosen hx� i�<˛ and hy�i�<˛ in S so that� S

�<˛
F� � x�

�
\
� S
�<˛

F� � y�

�
D ;:

Let B D .
S
�<˛ F� � x� /[ .

S
�<˛ F� �y� / and choose x˛ 2 S such that .F˛ � x˛/\

B D ; and choose y˛ 2 S such that .F˛ � y˛/ \ .B [ F˛ � x˛/ D ;.
By Theorem 16.1 we have that .

S
�<� F� � x� / and .

S
�<� F� � y� / are disjoint

central subsets of S .

In any semigroup, we see that IP* sets satisfy a significantly stronger combinatorial
conclusion than that given by their definition.

Theorem 16.12. Let S be a semigroup, let A be an IP* set in S , and let hxni1nD1
be a sequence in S . There is a product subsystem hyni1nD1 of hxni1nD1 such that
FP.hyni1nD1/ � A.

Proof. Pick by Lemma 5.11 an idempotent p 2 ˇS such that FP.hxni1nDm/ 2 p for
every m 2 N. Then A 2 p by Theorem 16.6, so Theorem 5.14 applies.

Exercise 16.1.1. Prove Corollary 16.2.

Exercise 16.1.2. Let S be a set and let a 2 S . Define xy D a for all x and y in S .
Show that a subset A of S is an IP set if and only if a 2 A and consequently that the
notions of IP* and central* are partition regular for this semigroup.
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Exercise 16.1.3. Recall the semigroup .N;^/ where n ^ m D min¹n;mº. (See
Exercise 4.1.11.) Verify each of the following assertions.

(a) In .ˇN;^/ every element is idempotent and K.ˇN;^/ D ¹1º.

(b) The IP sets in .N;^/ are the nonempty subsets of N and the central sets in
.N;^/ are the subsets A of N with 1 2 A.

(c) The only IP* set in .N;^/ is N, while the central* sets in .N;^/ are the same
as the central sets. Consequently, the notion of IP* is not partition regular in
.N;^/ while the notion of central* is partition regular in .N;^/.

Exercise 16.1.4. Recall the semigroup .N;_/ where n _ m D max¹n;mº. (See
Exercise 4.1.11.) Verify each of the following assertions.

(a) In .ˇN;_/ every element is idempotent and K.ˇN;_/ D N�.

(b) The IP sets in .N;_/ are the nonempty subsets of N and the central sets in
.N;_/ are the infinite subsets of N.

(c) The only IP* set in .N;_/ is N, while the central* sets in .N;_/ are the cofi-
nite subsets of N. Consequently, neither the notions of IP* nor the notions of
central* are partition regular in .N;_/.

16.2 IP* and Central Sets in N

In this section we compare the additive and multiplicative structures of N. We begin
with a trivial observation.

Lemma 16.13. Let n 2 N. Then Nn is an IP* set in .N;C/.

Proof. This is an immediate consequence of Theorem 16.6 and Lemma 6.6.

Now we establish that central sets in .N;C/ have a richer structure than that guar-
anteed to an arbitrary commutative semigroup (and in fact richer than that possessed
by central sets in .N; � / ).

Theorem 16.14. Let B be central in .N;C/, let A be a u � v matrix with entries
from Q.

(a) If A is image partition regular, then there exists Ey 2 Nv such that all entries of
A Ey are in B .

(b) If A is kernel partition regular, then there exists Ey 2 Bv such that A Ey D E0.

Proof. (a) This is Theorem 15.24 (h).
(b) Let d 2 N be a common multiple of all of the denominators of entries of A.

Then dA is a matrix with entries from Z which is kernel partition regular. (If N D
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Sr
iD1 Ci , pick i 2 ¹1; 2; : : : ; rº and Ex 2 Ci v such that AEx D E0. Then .dA/Ex D E0.)

Thus by Rado’s Theorem (Theorem 15.20) dA satisfies the columns condition over Q
so, by Lemma 15.15, pick m 2 N and a v � m matrix C with entries from ! which
satisfies the first entries condition such that dAC D O. As in part (a), pick Ex 2 Nm

such that all entries of C Ex are in B and let Ey D C Ex. Then dA Ey D dAC Ex D OEx D E0
so A Ey D E0.

In fact, central sets in .N;C/ not only contain images of all image partition regular
matrices, but all finite sums choosing at most one term from each such image as well.

Definition 16.15. Let .S;C/ be a semigroup and let hYni1nD1 be a sequence of subsets
of S . Then FS.hYni1nD1/ D ¹

P
n2F an W F 2 Pf .N/ and for all n 2 F; an 2 Ynº.

We define FS.hYnimnD1/ and FS.hYni1nDm/ analogously.

Theorem 16.16. Let B be central in .N;C/. Let hA.n/i1nD1 enumerate the finite
image partition regular matrices with entries from Q and for each n, let m.n/ be the
number of columns of A.n/. There exists for each n 2 N a choice of Ex.n/ 2 Nm.n/

such that, if Yn is the set of entries of A.n/Ex.n/, then FS.hYni1nD1/ � B .

Proof. Pick a minimal idempotent in .ˇN;C/ such that B 2 p. Pick by Theorem
16.14 some Ex.1/ 2 Nm.1/ such that all entries of A.1/Ex.1/ are in B? D ¹a 2 B W
�aC B 2 pº. Let Y1 be the set of entries of A.1/Ex.1/.

Inductively, let n 2 N and assume that we have chosen Ex.k/ 2 Nm.k/ for each k 2
¹1; 2; : : : ; nº so that, with Yk as the set of entries ofA.k/Ex.k/, one has FS.hYki

n
kD1

/�

B?. By Lemma 4.14, for each a 2 B?, �aC B? 2 p so

B? \
T
¹�aC B� W a 2 FS.hYki

n
kD1

/º 2 p

so pick Ex.nC 1/ 2 Nm.nC1/ such that all entries of A.nC 1/Ex.nC 1/ are in

B? \
T
¹�aC B� W a 2 FS.hYkinkD1/º:

Letting YnC1 be the set of entries ofA.nC1/Ex.nC1/ one has FS.hYki
nC1
kD1

/ � B?.

A similar result applies to kernel partition regular matrices.

Theorem 16.17. Let B be central in .N;C/. Let hA.n/i1nD1 enumerate the kernel
partition regular matrices with entries from Q and for each n, letm.n/ be the number
of columns of A.n/. There exists for each n 2 N a choice of Ex.n/ 2 Nm.n/ such that
A.n/Ex.n/ D E0 and, if Yn is the set of entries of Ex.n/, then FS.hYni1nD1/ � B .

Proof. This can be copied nearly verbatim from the proof of Theorem 16.16.
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The contrast with Theorems 16.14, 16.16, and 16.17 in the case of sets central, in
fact central* in .N; � / is striking. Recall from Section 15.3 the notation ExA D E1which
represents the multiplicative analogue of the equation AEx D E0.

Theorem 16.18. Let C D N n ¹x2 W x 2 Nº, let A D .2/ and let B D .2 �2 1/.
Then C is central* in .N; � /, A is image partition regular in .N; � /, and B is kernel
partition regular in .N; � /. However, for no x 2 N is x2 2 C and for no Ex 2 C 3 is
ExB D 1.

Proof. The reader was asked to show in Exercise 15.1.2 that ¹x2 W x 2 Nº is not
central in .N; � /. Consequently, its complement must be central*. Trivially A is
image partition regular in .N; � / and B satisfies the columns condition over Q, so is
kernel partition regular in .N; � / by Theorem 15.20.

The following lemma establishes that multiplication preserves IP* sets and central*
sets in .N;C/.

Lemma 16.19. Let A � N and let n 2 N. Statements (a), (b) and (c) are equivalent,
and statements (e), (d) and (f) are equivalent.

(a) A is an IP* set in .N;C/.

(b) n�1A is an IP* set in .N;C/.

(c) nA is an IP* set in .N;C/.

(e) A is a central* set in .N;C/.

(d) n�1A is a central* set in .N;C/.

(f) nA is a central* set in .N;C/.

Proof. Recall that by Lemma 15.23.2, if p is an idempotent in .ˇN;C/, then so are
n �p and 1

n
�p and if p is a minimal idempotent, then so are n �p and 1

n
�p, where the

multiplication is computed in ˇQd .
(a) implies (b). Assume that A is an IP* set in .ˇN;C/, and let p 2 E.ˇN;C/.

Then A 2 n � p and so n�1A 2 p.
(b) implies (a). Assume that n�1A is an IP* set in .ˇN;C/ and that p 2 E.ˇN;C/.

Then n�1A 2 1
n � p so .1n /

�1.n�1A/ 2 p. Since .1n /
�1.n�1A/ � A, we have that

A 2 p.
Since n�1.nA/ D A, the equivalence of (a) with (c) follows from the equivalence

of (a) with (b).
The proof that (d), (e), and (f) are equivalent is essentially identical.

There is a subtle point in the proof that (b) implies (a) above. On the one hand,
n�1A D ¹m 2 N W n � m 2 Aº. But 1

n
� p is computed in ˇQd so .1

n
/�1.n�1A/ D
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¹x 2 Q W 1
n
� x 2 n�1Aº. Thus if there is any element of A which is not divisible by

n, then . 1n /
�1.n�1A/ ¤ A

We see now that IP* sets in .N;C/ are guaranteed to have substantial multiplicative
structure.

Theorem 16.20. Let S be the set of finite sequences in N (including the empty se-
quence) and let f W S ! N. Let hyni1nD1 be a sequence in N and let A be an IP*
set in .N;C/. Then there is a sum subsystem hxni1nD1 of hyni1nD1 such that whenever
F 2 Pf .N/, ` D f .hxki

minF�1
kD1

/, and t 2 ¹1; 2; : : : ; `º, one has t �
P
n2F xn 2 A.

Proof. Pick by Lemma 5.11 some p D pCp in ˇN such that FS.hyni1nDm/ 2 p for
each m 2 N. Then by Lemma 16.19, we have for each t 2 N that t�1A is an IP*
set in .N;C/ and hence is in p. Let B1 D FS.hyni1nD1/ \

Tf .;/
tD1 t

�1A and note that
B1 2 p. Pick x1 2 B1? and pick H1 2 Pf .N/ such that x1 D

P
t2H1

yt .
Inductively, let n 2 N and assume that we have chosen hxi iniD1, hHi iniD1, and
hBi i

n
iD1 such that for each i 2 ¹1; 2; : : : ; nº:

(1) xi D
P
t2Hi

yt ,

(2) if i > 1, then minHi > maxHi�1,

(3) Bi 2 p,

(4) if ; ¤ F � ¹1; 2; : : : ; iº and m D minF , then
P
j2F xj 2 Bm

?, and

(5) if i > 1, then Bi �
Tf .hxj i

i�1
jD1

/

tD1 t�1A.

Only hypotheses (1), (3), and (4) apply at n D 1 and they hold trivially. Let
k D maxHnC1. By assumption FS.hyt i1tDk/ 2 p. Again we have by Lemma 16.19
that for each t 2 N, t�1A is an IP* set in .N;C/ and is thus in p.

For each m 2 ¹1; 2; : : : ; nº let

Em D
°X
j2F

xj W ; ¤ F � ¹1; 2; : : : ; nº and m D minF
±
:

By hypothesis (4) we have for eachm 2 ¹1; 2; : : : ; nº and each a 2 Em that a 2 Bm?

and hence, by Lemma 4.14, �aC Bm? 2 p. Let

BnC1 D FS.hyt i1tDk/ \
f .hxj i

n
jD1

/T
tD1

t�1A \
nT

mD1

T
a2Em

.�aC Bm
?/:

Then BnC1 2 p. Choose xnC1 2 BnC1?. Since xnC1 2 FS.hyt i1tDk/, choose
HnC1 2 Pf .N/ such that minHnC1 � k and xnC1 D

P
t2HnC1

yt . Then hypothe-
ses (1), (2), (3), and (5) are satisfied directly.

To verify hypothesis (4), let ; ¤ F � ¹1; 2; : : : ; n C 1º and let m D minF .
If n C 1 … F , the conclusion holds by hypothesis, so assume that n C 1 2 F . If
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F D ¹n C 1º, then
P
j2F xj D xnC1 2 BnC1

?, so assume F ¤ ¹n C 1º and let
G D F n ¹n C 1º. Let a D

P
j2G xj . Then a 2 Em so xnC1 2 �a C Bm? soP

j2F xj D aC xnC1 2 Bm
? as required.

We thus have that hxni1nD1 is a sum subsystem of hyni1nD1. To complete the proof,
let F 2 Pf .N/, let ` D f .hxki

minF�1
kD1

/, and let t 2 ¹1; 2; : : : ; `º. Let m D minF .
Then by hypotheses (4) and (5),

P
j2F xj 2 Bm � t

�1A so t �
P
n2F xn 2 A.

Corollary 16.21. Let A be a IP* set in .N;C/ and let hyni1nD1 be a sequence in N.
There is a sum subsystem hxni1nD1 of hyni1nD1 such that

FS.hxni1nD1/ [ FP.hxni1nD1/ � A:

Proof. Let S be the set of finite sequences in N. Define f .;/ D 1 and given hxj injD1
define f .hxj injD1/ D

Qn
jD1 xj . Choose hxni1nD1 as guaranteed by Theorem 16.20.

Letting t D 1, one sees that FS.hxni1nD1/ � A. To see that FP.hxni1nD1/ � A,
let F 2 Pf .N/ and let n D maxF . If jF j D 1, then

Q
j2F xj D xn 2 A, so

assume jF j > 1 and let G D F n ¹nº. Let t D
Q
j2G xj . Then t 
 f .hxj in�1jD1/ soQ

j2F xj D t � xn 2 A.

Theorem 16.20 and Corollary 16.21 establish that an IP* set in .N;C/ must have
substantial multiplicative structure. One may naturally ask whether similar results
apply to central* or central sets. On the one hand, we shall see in Theorem 16.21.1 and
Corollary 16.26 that sets which are central* in .N;C/ have significant multiplicative
structure, in fact are central in .N; � /, and we shall see in Theorem 16.26.1 that sets
which are central* in .N; � /must be central in .N;C/. On the other hand, central sets
in .N;C/ need have no multiplicative structure at all (Theorem 16.27) while central
sets in .N; � / must have a significant amount of additive structure (Theorem 16.28).

Theorem 16.21.1. Let A be a central* set in .N;C/. Then there exists hxni1nD1 in N
such that FS.hxni1nD1/ [ FP.hxni1nD1/ � A.

Proof. Choose p 2 A \ E.K.ˇN;C//. Let A? D ¹a 2 A W �a C A 2 pº. By
Lemma 4.14, A? 2 p and, for every a 2 A?, �aC A? 2 p.

Choose x1 2 A?. Now assume that n 2 N and we have chosen x1; x2; : : : ; xn
such that FS.hxminmD1/ � A

? and FP.hxminmD1/ � A. For every y 2 FS.hxminmD1/,
�y C A? 2 p. By Lemma 16.19, for every z 2 FP.hxminmD1/, z

�1A 2 p. Choose
xnC1 2 A

?\
T
¹�yCA? W y 2 FS.hxminmD1/º\

T
¹z�1A W z 2 FP.hxminmD1/º.

Definition 16.22. M D ¹p 2 ˇN W for each A 2 p; A is central in .N;C/º.
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As an immediate consequence of the definition of central we have the following.

Remark 16.23. M D c`E.K.ˇN;C//.

Theorem 16.24. M is a left ideal of .ˇN; � /.

Proof. Remark 16.23 and Theorem 5.20.

We saw in Corollary 13.15 that K.ˇN; � / \K.ˇN;C/ D ;. We pause to observe
now that these objects are nonetheless close.

Corollary 16.25. K.ˇN; � / \ c`K.ˇN;C/ ¤ ;.

Proof. Corollary 5.21.

Corollary 16.26. Let A be central* in .N;C/. Then A is central in .N; � /.

Proof. By Lemma 15.4, E.K.ˇN;C// � A so M � A. Since M is a left ideal of
.ˇN; � /, M \E.K.ˇN; � // ¤ ; by Corollary 2.6 so A is central in .N; � /.

In this case, the same result holds in the opposite direction.

Theorem 16.26.1. Let A be central* in .N; � /. Then A is central in .N;C/.

Proof. Pick p 2 E.K.ˇN; � //\ c`.E.K.ˇN;C/// by Corollary 5.21. Since A 2 p,
pick q 2 A \E.K.ˇN;C//.

Theorem 16.27. There is a set A � N which is central in .N;C/ such that for no y
and z in N is ¹y; z; yzº � A. In particular for no y 2 N is ¹y; y2º � A.

Proof. Let x1 D 2 and inductively for n 2 N choose xnC1 � .xn C n/
2. Notice

in particular that for each n, xn > n. Let A D ¹xn C k W n; k 2 N and k 
 nº.
By Corollary 16.2 A is central in .N;C/. Suppose now we have y 
 z in N with
¹y; z; yzº � A and pick n 2 N such that z 2 ¹xn C 1; xn C 2; : : : ; xn C nº. Then
y > 2 so yz > 2z > 2xn > xn C n so yz � xnC1 C 1 > .xn C n/

2 � z2 � yz, a
contradiction.

We see now that sets which are piecewise syndetic in .N; � /, in particular the central
sets, must contain large finite additive structure.

Theorem 16.28. Let A � N be piecewise syndetic in .N; � /. For each m 2 N there
exists a finite sequence hxt imtD1 such that FS.hxt imtD1/ � A.

Proof. Letm 2 N and let F D ¹FS.hxt imtD1/ W hxt i
m
tD1 is a sequence in Nº. Then F

is weakly partition regular by Corollary 5.10 so pick by Theorem 14.30 some b 2 N
and a sequence hxt imtD1 in N such that FS.hbxt imtD1/ D b � FS.hxt imtD1/ � A.
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It is natural, in view of the above theorem, to ask whether one can extend the
conclusion to infinite sequences. We see now that one cannot.

Theorem 16.29. There is a set A � N which is central in .N; � / such that for no
sequence hyni1nD1 does one have FS.hyni1nD1/ � A.

Proof. Let x1 D 1 and for n 2 N pick some xnC1 > nxn. Let

A D ¹kxn W n; k 2 N and k 
 nº:

By Corollary 16.2 A is central in .N; � /.
Suppose we have a sequence hyni1nD1 with FS.hyni1nD1/ � A. We may pre-

sume that the sequence hyni1nD1 is increasing since in any event an increasing sum
subsystem of hyni1nD1 can be chosen. Pick m, n, and r in N such that n < r ,
ym 2 ¹xn; 2xn; 3xn; : : : ; nxnº, and ymC1 2 ¹xr ; 2xr ; 3xr ; : : : ; rxrº.

Pick k 2 ¹1; 2; : : : ; rº such that ymC1 D kxr . Then

kxr < ymC1 C ym 
 kxr C nxn < kxr C xr D .k C 1/xr

so ymC1 C ym … A.

Given any central set A in .N;C/, one has by definition that there is a minimal
idempotent p in .ˇN;C/ such that A 2 p. Since p D p C p, one has that

¹x 2 N W �x C A 2 pº 2 p

and so, in particular, ¹x 2 N W �x CA is centralº is central. That is, every central set
often translates down to a central set.

Recall that for any p 2 ˇN, �p D .�1/ � p 2 ˇZ. Since by Exercise 4.3.5,
�N� is a left ideal of .ˇZ;C/, one cannot have p D p C .�p/ for any p 2 N�.
If one had p D .�p/ C p for some minimal idempotent p in .ˇN;C/ one would
have as above that for any A 2 p, ¹x 2 N W x C A 2 pº 2 p and hence ¹x 2 N W
x C A is centralº is central. However, according to Corollary 13.19 such an equation
cannot hold. Nonetheless, we are able to establish that for any central setA in .N;C/,
¹x 2 N W x C A is centralº is central.

Theorem 16.30. Let p 2 K.ˇN;C/ and let L be a minimal left ideal of .ˇN;C/.
There is an idempotent q 2 L such that p D .�q/C p.

Proof. Let T D ¹q 2 L W .�q/ C p D pº. Given q; r 2 ˇN, �.q C r/ D

.�q/C .�r/ by Lemma 13.1, so if q; r 2 T , then q C r 2 T . Define ` W ˇZ! ˇZ
by `.p/ D �p. (That is, in the semigroup .ˇZ; � /, ` D ��1.) Then ` is continuous
and T D L \ .�p ı `/

�1Œ¹pº� so T is compact. Therefore, it suffices to show that
T ¤ ;. For then, T is a compact subsemigroup of ˇN, hence contains an idempotent
by Theorem 2.5.
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Since p 2 K.ˇN;C/, pick a minimal left ideal L0 of ˇN such that p 2 L0. Now
N� is a left ideal of ˇZ by Exercise 4.3.5 so by Lemma 1.43 (c), L and L0 are left
ideals of ˇZ. In particular �L C p � L0. We claim that �L C p is a left ideal of
ˇN so that �L C p D L0. To see this, let q 2 �L and let r 2 ˇN. We show that
r C q C p 2 �LC p. Now �q 2 L so �r C�q 2 L. Since �r C�q D �.r C q/
by Lemma 13.1 we have r C q 2 �L so r C q C p 2 �LC p. Since �LC p D L0

and p 2 L0 we have T ¤ ; as required.

Corollary 16.31. Let A � N be central in .N;C/. Then ¹x 2 N W x C A is centralº
is central.

Proof. Pick a minimal idempotent p in .ˇN;C/ such that A 2 p and pick, by The-
orem 16.30, a minimal idempotent q in .ˇN;C/ such that p D .�q/ C p. Then
¹x 2 N W xCA 2 pº 2 q so ¹x 2 N W xCA 2 pº � ¹x 2 N W xCA is centralº.

We do not know whether every central* set often translates either up or down to
another central* set. However we do have the following strong contrast with Corol-
lary 16.31 for IP* sets.

Theorem 16.32. There is an IP* set A of .N;C/ such that for all n 2 N, neither
nC A nor �nC A is an IP* set.

Proof. Let hDnin2Z be a sequence of pairwise disjoint infinite sets of positive even
integers such that for each n, minDn > j2nj. For each n 2 Z enumerate Dn in in-
creasing order as ha.n; k/i1

kD1
and for each k 2 N, let yn;k D 2a.n;2k/C 2a.n;2k�1/.

For each n 2 Z n ¹0º, let Bn D FS.hyn;ki1kD1/. Let C D ¹n C z W n 2 Z n ¹0º
and z 2 Bnº. Notice that if n 2 Z n ¹0º and z 2 Bn, then jnj < z so C � N. Let
A D N nC . Then given any n 2 Z n ¹0º, .AC n/\B�n D ;, so AC n is not an IP*
set.

We now claim that A is an IP* set, so suppose instead we have a sequence hxni1nD1
with FS.hxni1nD1/\A D ;. That is, FS.hxni1nD1/ � C . By passing to a suitable sum
subsystem we may presume that the sequence hxni1nD1 is increasing.

We first observe that if n 2 Z n ¹0º, u 2 n C Bn, and u D
P
t2F 2

t , then
maxF 2 Dn. Indeed u D nCz where z 2 Bn and z D

P
t2H 2

t whereH � Dn and
H has at least two members (because each yn;k has two binary digits). Thus, if n < 0,
borrowing will not reach maxH . Since then minH > j2nj one has maxF D maxH .

We now show that one cannot have n 2 Z n ¹0º and i < j with ¹xi ; xj º � nCBn,
so suppose instead that we do. Now xj D

P
t2F 2

t where maxF 2 Dn. Let k D
maxF . Since xi < xj we have that xj C xi D

P
t2H 2

t where either maxH D k

or maxH D k C 1. But as we have just seen, given any member of C , the largest
element of its binary support is even, so the latter case is impossible. The former case
tells us that xj C xi 2 nC Bn. But now ¹xi � n; xj � n; xi C xj � nº � Bn, so if
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` D minDn we have that 2` divides each of xi � n, xj � n, and xi C xj � n, and
hence 2` divides n, a contradiction.

Consequently, we may choose for each i 2 N some n.i/ 2 Z n ¹0º such that
xi 2 n.i/C Bn.i/ and n.i/ ¤ n.j / for i ¤ j . Choose i such that jn.i/j > x1. Then
xi D

P
t2F 2

t and xi C x1 D
P
t2G 2

t where maxF D maxG and consequently,
xi Cx1 2 n.i/CBn.i/. But now x1 D .xi Cx1/�xi is a difference of two members
of Bn.i/ and is hence divisible by 2`, where ` D minDn.i/. This is a contradiction
because ` > j2n.i/j > x1.

We now see that IP� subsets of Rd play a role in the study of values (mod 1)
assumed by real polynomials.

Theorem 16.32.1. Let T denote the unit circle, regarded as R=Z, and let 
 W R! T
denote the natural homomorphism. Let Rd denote the real line with the discrete
topology. Then, for any real polynomial P with zero constant term, any idempotent
p 2 .ˇRd ;C/ and any q 2 ˇRd , e
P .p/ D 0 and e
P .q C p/ D e
P .q/, where
e
P W ˇRd ! T denotes the continuous extension of 
P .

Proof. The claim is clearly true if P D 0. So assume that P has degree n � 1 and
that the claim holds for all polynomials of smaller degree. For any s and t in R, let
Qs.t/ D P.sCt /�P.s/�P.t/. Then for any fixed s,Qs.t/ is a polynomial in t with
zero constant term and degree less than n. By the inductive hypothesis, e
Qs.p/ D 0.
Further,

e
P .s C p/ D lim
t!p


.P.s C t // D 
.P.s//C lim
t!p

e
Qs.t/C lim
t!p

e
P .t/

since addition in T is jointly continuous. Also, lim
t!p

e
Qs.t/ D e
Qs.p/ D 0 so

e
P .sCp/ D 
.P.s//Ce
P .p/. Thuse
P .p/ De
P .pCp/ D lim
s!p

e
P .sCp/ D

lim
s!p


.P.s//Ce
P .p/ De
P .p/Ce
P .p/ and so e
P .p/ D 0. Alsoe
P .qCp/ D

lim
s!q

e
P .s C p/ D lim
s!q


.P.s//Ce
P .p/ De
P .q/.

Corollary 16.32.1. Let P be a real polynomial with zero constant term and let U be
a neighbourhood of 0 in T . Let A D ¹s 2 R W 
.P.s// 2 U º. Then A is an IP�

subset of R.

Proof. Let B be an IP set in R and pick by Theorem 16.4 an idempotent p 2 ˇRd
such that B 2 p. Then by Theorem 16.32.1, e
P .p/ D 0 so A 2 p and thus A \
B ¤ ;.
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Corollary 16.32.2. Let v 2 N, let P1; P2; : : : ; Pv be real polynomials with zero
constant term and let U be a neighbourhood of 0 in Tv. Let

A D ¹s 2 R W .
.P1.s//; 
.P2.s//; : : : ; 
.Pv.s/// 2 U º:

Then A is an IP� subset of R.

Proof. For each i 2 ¹1; 2; : : : ; vº, we can choose a neighbourhood Ui of 0 in T such
that U1 �U2 � : : :�Uv � U . By Corollary 16.32.1, for each i , ¹s 2 R W 
.Pi .s// 2
Uiº is IP� in ˇR. Since the intersection of a finite number of IP� sets is also IP�, our
claim follows.

The set A defined in the following corollary may be empty. However, if it is
nonempty, it is large.

Corollary 16.32.3. Let v 2 N, let P1; P2; : : : ; Pv be real polynomials with zero
constant term and let U be an open subset of Tv. Let

A D ¹s 2 R W .
.P1.s//; 
.P2.s//; : : : ; 
.Pv.s/// 2 U º:

If a 2 A, then �aC A is IP� in R.

Proof. For each i 2 ¹1; 2; : : : ; vº, let ti D 
.Pi .a//. We can choose a neighbourhood
Ui of ti in T such that U1�U2� : : :�Uv � U . Let Ai D ¹s 2 R W 
.Pi .s// 2 �tiC
Uiº. By Theorem 16.32.1, for every idempotent p 2 ˇRd , e
Pi.aC p/ D ti . Hence
¹s 2 R W 
.Pi .aC s// 2 Uiº 2 p. That is, �aC Ai 2 p. So

Tv
iD1.�aC Ai / 2 p.

Since
Tv
iD1.�aC Ai / � �aC A, it follows that �aC A is IP� in R.

Exercise 16.2.1. In the proof of Lemma 16.19 we used the fact that in the semigroup
.N;C/, one must have n�1.nA/ D A. Show that in .N;C/ one need not have
n.n�1A/ D A. Show in fact that n.n�1A/ D A if and only if A � Nn.

Exercise 16.2.2. Prove that if r 2 N and N D
Sr
iD1 Ci and for only one i 2

¹1; 2; : : : ; rº is there a sequence hyni1nD1 in N with FS.hyni1nD1/ � Ci , then in
fact for this i , Ci is an IP* set (so that there is a sequence hxni1nD1 in N such that
FS.hxni1nD1/ [ FP.hxni1nD1/ � Ci ).

16.3 IP* Sets in Weak Rings

In this section we extend Corollary 16.21 to apply to a much wider class, called “weak
rings”, obtaining a sequence and its finite sums and, depending on the precise hy-
potheses, either all products or almost all products in a given IP* set.
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Definition 16.33. (a) A left weak ring is a triple .S;C; � / such that .S;C/ and
.S; � / are semigroups and the left distributive law holds. That is, for all x; y; z 2
S one has x � .y C z/ D x � y C x � z.

(b) A right weak ring is a triple .S;C; � / such that .S;C/ and .S; � / are semigroups
and the right distributive law holds. That is, for all x; y; z 2 S one has .xCy/ �
z D x � z C y � z.

(c) A weak ring is a triple .S;C; � / which is both a left weak ring and a right weak
ring.

In the above definition, we have followed the usual custom regarding order of op-
erations. That is x � y C x � z D .x � y/C .x � z/.

Notice that neither of the semigroups .S;C/ nor .S; � / is assumed to be commu-
tative. Of course all rings are weak rings. Other examples of weak rings include all
subsets of C that are closed under both addition and multiplication.

Lemma 16.34. Let .S;C/ be any semigroup and let � be the operation making .S; � /
a right zero semigroup. Then .S;C; � / is left weak ring. If .S;C/ has at least one
element which is not idempotent, then .S;C; � / is not a right weak ring.

Proof. This is Exercise 16.3.2.

Analogously to Lemma 16.19, we have the following. Notice that it does not matter
whether we define a�1Ab�1 to be a�1.Ab�1/ or .a�1A/b�1. In either case, y 2
a�1Ab�1 if and only if ayb 2 A.

Lemma 16.35. Let S be a set, let A � S , and let a; b 2 S .

(a) If .S;C; � / is a left weak ring and A is an IP* set in .S;C/, then a�1A is an
IP* set in .S;C/.

(b) If .S;C; � / is a right weak ring and A is an IP* set in .S;C/, then Ab�1 is an
IP* set in .S;C/.

(c) If .S;C; � / is a weak ring and A is an IP* set in .S;C/, then a�1Ab�1 is an
IP* set in .S;C/.

Proof. It suffices to establish (a) since then (b) follows from a left-right switch and
(c) follows from (a) and (b). So, let hxni1nD1 be a sequence in S . Then

FS.ha � xni1nD1/ \ A ¤ ;

so pick F 2 Pf .N/ such that
P
n2F a � xn 2 A. Then, using the left distributive law

we have that
P
n2F xn 2 a

�1A.

Recall that in FP.hxni1nD1/, the products are taken in increasing order of indices.
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Definition 16.36. Let .S; � / be a semigroup, let hxni1nD1 be a sequence in S , and
let k 2 N. Then AP.hxniknD1/ is the set of all products of terms of hxniknD1 in any
order with no repetitions. Similarly AP.hxni1nD1/ is the set of all products of terms of
hxni

1
nD1 in any order with no repetitions.

For example, with k D 3, we obtain the following:

AP.hxni
3
nD1/ D ¹x1; x2; x3; x1x2; x1x3; x2x3; x2x1; x3x2; x3x1; x1x2x3;

x1x3x2; x2x1x3; x2x3x1; x3x1x2; x3x2x1º:

Theorem 16.37. Let .S;C; � / be a left weak ring, let A be an IP* set in .S;C/, and
let hyni1nD1 be any sequence in S . Then there exists a sum subsystem hxni1nD1 of
hyni

1
nD1 such that if m � 2, F 2 Pf .N/ with minF � m, and b 2 AP.hxnim�1nD1 /,

then b �
P
t2F xt 2 A. In particular,

FS.hxni1nD1/ [ ¹b � xm W m � 2 and b 2 AP.hxnim�1nD1 /º � A:

Proof. Pick by Lemma 5.11 some idempotent p of .ˇS;C/ with

p 2
1T
mD1

c`FS.hxni1nDm/:

Then by Lemma 16.35, we have for each a 2 S that a�1A is an IP* set in .S;C/ and
hence is in p.

Let B1 D FS.hyni1nD1/ and note that B1 2 p. Pick x1 2 B1? and pick H1 2
Pf .N/ such that x1 D

P
t2H1

yt .
Inductively, let n 2 N and assume that we have chosen hxi iniD1, hHi iniD1, and
hBi i

n
iD1 such that for each i 2 ¹1; 2; : : : ; nº:

(1) xi D
P
t2Hi

yt ,

(2) if i > 1, then minHi > maxHi�1,

(3) Bi 2 p,

(4) if ; ¤ F � ¹1; 2; : : : ; iº and m D minF , then
P
j2F xj 2 Bm

?, and

(5) if i > 1, then Bi �
T
¹a�1A W a 2 AP.hxt ii�1tD1/º.

Only hypotheses (1), (3), and (4) apply at n D 1 and they hold trivially. Let
k D maxHnC1. By assumption FS.hyt i1tDk/ 2 p. Again we have by Lemma 16.35
that for each a 2 S , a�1A is an IP* set in .S;C/ and is thus in p.

For each m 2 ¹1; 2; : : : ; nº let

Em D
°X
j2F

xj W ; ¤ F � ¹1; 2; : : : ; nº and m D minF
±
:
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By hypothesis (4) we have for eachm 2 ¹1; 2; : : : ; mº and each a 2 Em that a 2 Bm?

and hence, by Lemma 4.14, �aC Bm? 2 p. Let

BnC1 D FS.hyt i1tDk/ \
T
¹a�1A W a 2 AP.hxt intD1/º \

nT
mD1

T
a2Em

.�aC Bm
?/:

Then BnC1 2 p. Choose xnC1 2 BnC1?. Since xnC1 2 FS.hyt i1tDk/, choose
HnC1 2 Pf .N/ such that minHnC1 � k and xnC1 D

P
t2HnC1

yt . Then hypothe-
ses (1), (2), (3), and (5) are satisfied directly.

To verify hypothesis (4), let ; ¤ F � ¹1; 2; : : : ; n C 1º and let m D minF .
If n C 1 … F , the conclusion holds by hypothesis, so assume that n C 1 2 F . If
F D ¹n C 1º, then

P
j2F xj D xnC1 2 BnC1

?, so assume F ¤ ¹n C 1º and let
G D F n ¹n C 1º. Let a D

P
j2F xj . Then a 2 Em so xnC1 2 �a C Bm? soP

j2F xj D aC xnC1 2 Bm
? as required.

We thus have that hxni1nD1 is a sum subsystem of hyni1nD1. To complete the proof,
let m � 2, let F 2 Pf .N/ with minF � m and let a 2 AP.hxnim�1nD1 /. Then by
hypotheses (4) and (5),

P
j2F xj 2 Bm � a

�1A so that a �
P
t2F xt 2 A.

Observe that ¹b � xm W m � 2 and b 2 AP.hxnim�1nD1 /º is the set of all products
(without repetition) from hxni1nD1 that have their largest index occurring on the right.

Notice that the proof of Theorem 16.37 is nearly identical to that of Theorem 16.20.
Essentially the same proof establishes a much stronger conclusion in the event that one
has a weak ring rather than just a left weak ring.

Theorem 16.38. Let .S;C; � / be a weak ring, let A be an IP* set in .S;C/, and
let hyni1nD1 be any sequence in X . Then there exists a sum subsystem hxni1nD1 of
hyni

1
nD1 in S such that FS.hxni1nD1/ [ AP.hxni1nD1/ � A.

Proof. Modify the proof of Theorem 16.37 by replacing induction hypothesis (5)
with:

(5) if i > 1, then

Bi �
T
¹a�1A W a 2 AP.hxt ii�1tD1/º \

T
¹Ab�1 W b 2 AP.hxt ii�1tD1/º

\
T
¹a�1Ab�1 W a; b 2 AP.hxt ii�1tD1/º:

Then replace the definition of BnC1 with

BnC1 D FS.hyt i
1
tDk/ \

T
¹a�1A W a 2 AP.hxt ii�1tD1/º

\
T
¹Ab�1 W b 2 AP.hxt ii�1tD1/º \

T
¹a�1Ab�1 W a; b 2 AP.hxt ii�1tD1/º

\
nT

mD1

T
a2Em

.�aC Bm
?/:
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Theorems 16.37 and 16.38 raise the natural question of whether the stronger con-
clusion in fact holds in any left weak ring. The example of Lemma 16.34 is not a
counterexample to this question because, in this left weak ring, given any sequence
hxni

1
nD1, one has AP.hxni1nD1/ D ¹xn W n 2 Nº.

Theorem 16.39. Let S be the free semigroup on the two distinct letters a and b and
let hom.S; S/ be the set of homomorphisms from S to S . Let ı be the usual com-
position of functions and define an operation ˚ on hom.S; S/ as follows. Given
f; g 2 hom.S; S/ and u1; u2; : : : ; ut 2 ¹a; bº,

.f ˚ g/.u1u2 � � �ut / D f .u1/
_g.u1/

_f .u2/
_g.u2/

_ � � �_f .ut /
_g.ut /:

Then .hom.S; S/;˚; ı/ is a left weak ring and there exist an IP* set A in .hom.S; S/;
˚/ and a sequence hfni1nD1 in hom.S; S/ such that no sum subsystem hgni1nD1 of
hfni

1
nD1 has AP.hgni1nD1/ � A.

Proof. The verification that .hom.S; S/;˚; ı/ is a left weak ring is Exercise 16.3.3.
Notice that in order to define a member of hom.S; S/ it is enough to define its values
at a and b. Define f1 2 hom.S; S/ by f1.a/ D ab and f1.b/ D b and define
inductively for n 2 N, fnC1 D fn˚ f1. Notice that for each n 2 N, fn.a/ D .ab/n

and fn.b/ D bn.
Let A D hom.S; S/ n ¹fr ı fs W r; s 2 N and r > sº. Notice that, given r; s 2 N,

fr.fs.a// D fr..ab/
s// D .fr.a/fr.b//

s D ..ab/rbr/s:

(We have used the fact that fr is a homomorphism.) In particular, notice that if fr ı
fs D fm ı fn, then .r; s/ D .m; n/.

We claim that ifm; n; r; s; `; t 2 N, h D fmıfn, k D fr ıfs , and h˚k D f`ıft ,
then ` D m D r and t D nC s. Indeed,

..ab/`b`/t D .h˚ k/.a/ D h.a/_k.a/ D ..ab/mbm/n..ab/rbr/s:

Suppose now that hhni1nD1 is a sequence in hom.S; S/ with

FS.hhni
1
nD1/ � ¹fr ı fs W r; s 2 N and r > sº:

Then, using the fact just established, there is some r and for each n some s.n/ such
that hn D fr ı fs.n/. Then

h1 ˚ h2 ˚ � � � ˚ hr D fr ı ft

where t D
Pr
nD1 s.n/ � r , a contradiction. Thus A is an IP* set in .hom.S; S/;C/.

Finally, suppose that hgni1nD1 is a sum subsystem of hfni1nD1 with AP.hgni1nD1/ �
A. Then g1 D

P
n2H fn for some H 2 Pf .N/ so g1 D fk where k D

P
H . Then

gkC1 D f` for some ` > k and thus gkC1 ı g1 D f` ı fk … A, a contradiction.
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Exercise 16.3.1. Show that if .S;C; � / is a weak ring in which .S;C/ is commuta-
tive, n 2 N and the operations on the n�nmatrices with entries from S are defined as
usual (so, for example, the entry in row i and column j of A �B is

Pn
kD1 ai;k � bk;j ),

then these matrices form a weak ring. Give an example of a left weak ring .S;C; � /
for which .S;C/ is commutative, but the 2 � 2 matrices over S do not form a left
weak ring.

Exercise 16.3.2. Prove Lemma 16.34.

Exercise 16.3.3. Prove that .hom.S; S/;˚; ı/ as described in Theorem 16.39 is a left
weak ring.

Exercise 16.3.4. We know that the left weak ring .hom.S; S/;˚; ı/ of Theorem
16.39 is not a right weak ring because it does not satisfy the conclusion of Theo-
rem 16.38. Establish this fact directly by producing f; g; h 2 hom.S; S/ such that
.f ˚ g/ ı h ¤ f ı h˚ g ı h.

16.4 Spectra and Iterated Spectra

Spectra of numbers are sets of the form ¹bn˛c W n 2 Nº or ¹bn˛ C �c W n 2 Nº
where ˛ and � are positive reals. Sets of this form or of the form ¹bn˛c W n 2 Aº or
¹bn˛C�c W n 2 Aº for some specified setsA have been extensively studied in number
theory. (See the notes to this chapter for some references.) We are interested in these
sets because they provide us with a valuable collection of rather explicit examples of
IP* sets and central* sets in .N;C/.

By the very nature of their definition, it is easy to give examples of IP sets. And
anytime one explicitly describes a finite partition of N at least one cell must be a
central set and it is often easy to identify which cells are central. The situation with
respect to IP* sets and central* sets is considerably different however. We know from
Theorem 16.8 that whenever hxni1nD1 is a sequence in N such that FS.hxni1nD1/ is
not piecewise syndetic, one has N n FS.hxni1nD1/ is a central* set which is not IP*.
So, for example, ¹

P
t2F 2

t W F 2 Pf .N/ and some t 2 F is evenº is central* but
not IP* because it is N n FS.h22t�1i1tD1/.

We also know from Lemma 16.13 that for each n 2 N, Nn is an IP* set. But at this
point, we would be nearly at a loss to come up with an IP* set which doesn’t almost
contain Nn for some n. (The set of Theorem 16.32 is one such example.)

In this section we shall be utilizing some information obtained in Section 10.1.
Recall that we defined there for any subsemigroup S of .R;C/ and any positive real
number ˛, functions g˛ W S ! Z, f˛ W S ! Œ�1

2
; 1
2
/, and h˛ W S ! T by

g˛.x/ D bx˛ C
1
2
c, f˛.x/ D x˛ � g˛.x/, and h˛.x/ D 
.f˛.x// where the circle

group T D R=Z and 
 is the projection of R onto T .
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Definition 16.40. Let ˛ > 0 and let 0 < � < 1. The function g˛;� W N ! ! is
defined by g˛;� .n/ D bn˛ C �c.

We denote by eg˛;� , the continuous extension of g˛;� from ˇN to ˇ!. Notice that
g˛ D g˛; 1

2
.

Recall that for ˛ > 0 we have defined Z˛ D ¹p 2 ˇS Wff˛.p/ D 0º.
Lemma 16.41. Let ˛ > 0, let 0 < � < 1, and let p 2 Z˛. Then eg˛;� .p/ Dfg˛.p/.
Proof. Let � D min¹�; 1 � �º and let A D ¹n 2 N W �� < f˛.n/ < �º. Then A 2 p
so it suffices to show that g˛;� and g˛ agree on A. So let n 2 A and let m D g˛.n/.
Then m � � < n˛ < mC � so

m 
 m � � C � < n˛ C � < mC � C � 
 mC 1

so m D g˛;�.n/.

As regards spectra, we see that “as you sow, so shall you reap”.

Theorem 16.42. Let ˛ > 0, let 0 < � < 1, and let A � N.

(a) If A is an IP* set, then g˛;� ŒA� is an IP* set.

(b) If A is a central* set, then g˛;� ŒA� is a central* set.

(c) If A is a central set, then g˛;� ŒA� is a central set.

(d) If A is an IP set, then g˛;� ŒA� is an IP set.

Proof. (a) By Theorem 16.6 we need to show that g˛;� ŒA� is a member of every idem-
potent in .ˇN;C/. So let p be an idempotent in .ˇN;C/. Since Z1=˛ is the kernel
of a homomorphism by Lemma 10.3 we have that p 2 Z1=˛. Since, by Theorem
10.12, eg1=˛ is an isomorphism from Z1=˛ to Z˛, eg1=˛.p/ is an idempotent and so
A 2 eg1=˛.p/. By Lemma 16.41 eg˛;� .eg1=˛.p// Dfg˛.eg1=˛.p// which is p by Theo-
rem 10.12. Since A 2 eg1=˛.p/ and eg˛;� .eg1=˛.p// D p we have that g˛;� ŒA� 2 p as
required.

(b) Let p be a minimal idempotent of .ˇN;C/. We need to show that g˛;� ŒA� 2 p.
Now p 2 K.ˇN/ \ Z1=˛ and K.ˇN/ \ Z1=˛ D K.Z1=˛/ by Theorem 1.65. Thus
p is a minimal idempotent in Z1=˛ so by Theorem 10.12 eg1=˛.p/ is a minimal idem-
potent in Z˛. That is, eg1=˛.p/ 2 K.Z˛/ D K.ˇN/ \ Z˛ so eg1=˛.p/ is a minimal
idempotent in .ˇN;C/. Consequently, A 2 eg1=˛.p/ so as in part (a), g˛;� ŒA� 2 p.

(c) Since A is central, pick a minimal idempotent p with A 2 p. Then p 2
K.ˇN/\Z˛ D K.Z˛/ so by Theorem 10.12, fg˛.p/ 2 K.Z1=˛/ D K.ˇN/\Z1=˛
so fg˛.p/ is a minimal idempotent and g˛;� ŒA� 2 eg˛;� .p/ Dfg˛.p/.

(d) Since A is an IP set, pick an idempotent p with A 2 p. Then p 2 Z˛ so by
Theorem 10.12, fg˛.p/ is an idempotent and g˛;� ŒA� 2 eg˛;�.p/ Dfg˛.p/.
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In the event that ˛ � 1 we get an even stronger correspondence, because then g˛;�
is one to one.

Corollary 16.43. Let ˛ � 1, let 0 < � < 1, and let A � N.

(a) A is an IP* set if and only if g˛;� ŒA� is an IP* set.

(b) A is a central* set if and only if g˛;� ŒA� is a central* set.

(c) A is a central set if and only if g˛;� ŒA� is a central set.

(d) A is an IP set if and only if g˛;� ŒA� is an IP set.

Proof. We establish (a) and (c). The proof of (b) is similar to that of (a) and the proof
of (d) is similar to that of (c).

(a) The necessity is Theorem 16.42 (a). Assume that g˛;� ŒA� is an IP* set and
suppose that A is not an IP* set. Pick an IP set B such that A\B D ;. Since g˛;� is
one to one, g˛;� ŒA� \ g˛;� ŒB� D ; while by Theorem 16.42 (d), g˛;� ŒB� is an IP set,
a contradiction.

(c) The necessity is Theorem 16.42 (c). Assume that g˛;� ŒA� is a central set and
suppose that A is not a central set. Then N n A is a central* set so by Theorem
16.42 (b), g˛;� ŒN n A� is a central* set. But this is a contradiction because g˛;� ŒA� \
g˛;� ŒN n A� D ;.

Because for ˛ > 1 the output of g˛;� is the same kind of set as the input, one may
iterate the functions at will. Thus, for example, if A is a set which is central* but not
IP* (such as one given by Theorem 16.8), then°j

bn
p
10C 0:2c
 C

1




k
W n 2 A

±
is a central* set which is not IP*.

Notice also that the description of a set g˛;� ŒN� is effective. That is, one only needs
a sufficiently precise decimal approximation to ˛ and � in order to determine whether
a specified number is a member of g˛;� ŒN�.

16.5 Notes

The notions of IP, IP*, central, and central* are due to H. Furstenberg in [156] where
central sets were defined in terms of notions from topological dynamics. See Chap-
ter 19 for a proof of the equivalence of the notions of central.

Theorem 16.20 is from [188] where it had a purely combinatorial proof. Most of
the remaining results of Section 16.2 are from [46], obtained in collaboration with
V. Bergelson, except for Theorem 16.16 (which is from [124] and was obtained in
collaboration with W. Deuber) and Theorem 16.30 which, while previously unpub-
lished, is from an early draft of [50], obtained in collaboration with V. Bergelson and
B. Kra.
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Theorem 16.32.1 is from [55], a result of collaboration with V. Bergelson. Corol-
lary 16.32.3 was established by V. Bergelson in [32].

The results of Section 16.3 are due to E. Terry in [376]. The left weak ring
.hom.S; S/;˚; ı/ is due to J. Clay in [103] where it is given as an example of a left
nearring which is not a right nearring. (The notion of nearring is a stronger notion
than that of a weak ring.)

The results of Section 16.4 are from [50], results of collaboration with V. Bergelson
and B. Kra.

H. Furstenberg [156, Proposition 9.4] gives an explicit description of certain IP*
sets in terms of topological dynamics, and other examples can be deduced from his
paper [161] with B. Weiss.

Spectra of the form ¹bn˛ C �c W n 2 Nº were introduced by T. Skolem [365] and
given the name the � -nonhomogenous spectrum of ˛ by R. Graham, S. Lin, and C. Lin
in [174]. See the introduction to [50] for a brief history of the spectra ¹bn˛c W n 2 Nº
and further references.



Chapter 17

Sums and Products

We saw in Chapter 16 that any IP* set in .N;C/ has extensive multiplicative structure
in addition to the additive structure that one would expect. In particular, by Corol-
lary 16.21, if A is an IP* set in .N;C/, then there is some sequence hxni1nD1 in N
such that FS.hxni1nD1/ [ FP.hxni1nD1/ � A. On the other hand, IP* sets in .N;C/
are not partition regular by Theorem 16.11 so this fact does not yield any results about
finite partitions of N. In fact, we shall show in Theorem 17.16 that there is a finite
partition of N such that no cell contains all pairwise sums and products from the same
sequence.

We saw in Corollary 5.22 that given any finite partition of N, there must be one
cell A and sequences hxni1nD1 and hyni1nD1 with FS.hxni1nD1/ [ FP.hyni1nD1/ � A.
We are concerned in this chapter with extensions of this result in various different
directions.

17.1 Ultrafilters with Rich Additive and Multiplicative
Structure

Recall that we have defined M D ¹p 2 ˇN W for all A 2 p, A is central in .N;C/º
and  D ¹p 2 ˇN W for all A 2 p, d.A/ > 0º.

Definition 17.1. A combinatorially rich ultrafilter is any p 2 M \  \ K.ˇN; � /
such that p � p D p.

We shall see the reason for the name “combinatorially rich” in Theorem 17.3. First
we observe that they exist.

Lemma 17.2. There exists a combinatorially rich ultrafilter.

Proof. By Theorem 6.79 we have that  is a left ideal of .ˇN;C/ and so, by Corol-
lary 2.6 contains an additive idempotent r which is minimal in .ˇN;C/. By Remark
16.23 we have r 2M and consequently M \ ¤ ;.

Thus by Theorems 6.79 and 16.24, M \  is a left ideal of .ˇN; � / and hence
contains a multiplicative idempotent which is minimal in .ˇN; � /.

Recall the notion of FP-tree introduced in Definition 14.23. We call the corre-
sponding additive notion an FS-tree. Since any member of a combinatorially rich
ultrafilter is additively central, it must contain by Theorem 14.25 an FS-tree T such
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that ¹Bf W f 2 T º is collectionwise piecewise syndetic, and in particular each Bf is
piecewise syndetic. (Recall that Bf is the set of successors to the node f of T .)

Notice, however, that in an arbitrary central set none of the Bf ’s need have positive
upper density. (In fact, recall from Theorem 6.80 that N�n is a left ideal of .ˇN;C/
and hence there are central sets in .N;C/ with zero density.)

Theorem 17.3. Let p be a combinatorially rich ultrafilter and let C 2 p.

(a) C is central in .N;C/.

(b) C is central in .N; � /.

(c) Let hA.n/i1nD1 enumerate the image partition regular matrices with entries from
Q and for each n, let m.n/ be the number of columns of A.n/. There exists for
each n 2 N a choice of Ex.n/ 2 Nm.n/ such that, if Yn is the set of entries of
A.n/Ex.n/, then FS.hYni1nD1/ � C .

(d) Let hA.n/i1nD1 enumerate the kernel partition regular matrices with entries from
Q and for each n, let m.n/ be the number of columns of A.n/. There exists for
each n 2 N a choice of Ex.n/ 2 Nm.n/ such that A.n/Ex.n/ D E0 and, if Yn is the
set of entries of Ex.n/, then FS.hYni1nD1/ � C .

(e) There is an FS-tree T in C such that for each f 2 T , d.Bf / > 0.

(f) There is an FP-tree T in C such that for each f 2 T , d.Bf / > 0.

Proof. Conclusion (a) holds because p 2 M while conclusion (b) holds because
p � p D p 2 K.ˇN; � /.

Conclusions (c) and (d) follow from Theorems 16.16 and 16.17 respectively.
To verify conclusion (e), notice that by Lemma 14.24 there is an FS-tree T in A

such that for each f 2 T , Bf 2 p. Since each member of p has positive upper
density the conclusion follows.

Conclusion (f) follows in the same way.

As a consequence of conclusions (a) and (b) of Theorem 17.3 we have in particular
that any member of a combinatorially rich ultrafilter satisfies the conclusions of the
Central Sets Theorem (Theorem 14.11), phrased both additively and multiplicatively.

There is naturally a corresponding partition result. Notice that Corollary 17.4 ap-
plies in particular when C D N.

Corollary 17.4. Let C be a central* set in .N;C/, let r 2 N, and let C D
Sr
iD1 Ci .

There is some i 2 ¹1; 2; : : : ; rº such that each of the conclusions of Theorem 17.3
hold with Ci replacing C .

Proof. By Lemma 15.4 we have ¹p 2 K.ˇN;C/ W p D p C pº � C so M � C .
Pick a combinatorially rich ultrafilter p. Then C 2 p so some Ci 2 p.
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17.2 Pairwise Sums and Products

We know from Corollary 16.21 that any IP* set in .N;C/ contains FS.hxni1nD1/ [
FP.hxni1nD1/ for some sequence in N. It is natural to ask whether there is some
partition analogue of this result. We give a strong negative answer to this question in
this section. That is we produce a finite partition of N such that no cell contains the
pairwise sums and products of any injective sequence. As a consequence, we see that
the equation p C p D p � p has no solutions in N�.

Definition 17.5. Let hxni1nD1 be a sequence in N.

(a) PS.hxni1nD1/ D ¹xn C xm W n;m 2 N and n ¤ mº.

(b) PP.hxni1nD1/ D ¹xn � xm W n;m 2 N and n ¤ mº.

The partition we use is based on the binary representation of an integer. Recall that
for any x 2 N, x D

P
t2supp.x/ 2

t .

Definition 17.6. Let x 2 N. Then

(a) a.x/ D max supp.x/.

(b) If x … ¹2t W t 2 !º, then b.x/ D max.supp.x/ n ¹a.x/º/.

(c) c.x/ D max.¹�1; 0; 1; : : : ; a.x/º n supp.x//.

(d) d.x/ D min supp.x/.

(e) If x … ¹2t W t 2 !º, then e.x/ D min.supp.x/ n ¹d.x/º/.

When x is written (without leading 0’s) in binary, a.x/, b.x/, c.x/, d.x/, and e.x/
are respectively the positions of the leftmost 1, the next to leftmost 1, the leftmost 0,
the rightmost 1, and the next to rightmost 1.

Remark 17.7. Let x 2 N n ¹2t W t 2 Nº and let k 2 !.

(a) b.x/ � k if and only if x � 2a.x/ C 2k .

(b) b.x/ 
 k if and only if x < 2a.x/ C 2kC1.

(c) c.x/ � k if and only if x < 2a.x/C1 � 2k .

(d) c.x/ 
 k if and only if x � 2a.x/C1 � 2kC1.

(e) e.x/ D k if and only if k > d.x/ and there is some m 2 ! such that x D
2kC1mC 2k C 2d.x/.

We now introduce some sets that will be used to define the partition that we are
seeking.
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Definition 17.8. (a)

A0 D ¹x 2 N W a.x/ is even and 2a.x/ < x < 2a.x/C
1
2 º:

A1 D ¹x 2 N W a.x/ is even and 2a.x/C
1
2 < x < 2a.x/C1º:

A2 D ¹x 2 N W a.x/ is odd and 2a.x/ < x < 2a.x/C
1
2 º:

A3 D ¹x 2 N W a.x/ is odd and 2a.x/C
1
2 < x < 2a.x/C1º:

A4 D ¹2
t W t 2 !º:

(b) For i 2 ¹0; 1; 2º

Bi D ¹x 2 N n A4 W x < 2
a.x/C1.1 � 2c.x/�a.x//

1
2

and a.x/ � c.x/ 	 i .mod 3/º

[ ¹x 2 N n A4 W x � 2
a.x/C1.1 � 2c.x/�a.x//

1
2

and a.x/ � c.x/ 	 i C 1 .mod 3/º:

(c) ¹C0; C1º is any partition of N such that for all k 2 N n ¹1º, k C 1 2 C0 if and
only if 2k 2 C1.

Notice that a partition as specified in Definition 17.8 (c) is easy to come by. Odd
numbers may be assigned at will, and if the numbers less than 2k have been assigned,
assign 2k to the cell which does not contain k C 1.

Remark 17.9. (a) If x; y 2 A0 [ A2, then a.xy/ D a.x/C a.y/.

(b) If x; y 2 A1 [ A3, then a.xy/ D a.x/C a.y/C 1.

Lemma 17.10. (a) If x; y 2 A0 [ A2, then a.xy/ � b.xy/ 
 a.x/ � b.x/.

(b) If x; y 2 A1 [ A3, then a.xy/ � c.xy/ 
 a.x/ � c.x/.

Proof. We use Remarks 17.7 and 17.9.
(a) We have x � 2a.x/ C 2b.x/ and y > 2a.y/ so that

xy > 2a.x/Ca.y/ C 2b.x/Ca.y/ D 2a.xy/ C 2a.xy/�a.x/Cb.x/

so b.xy/ � a.xy/ � a.x/C b.x/.
(b) We have x < 2a.x/C1 � 2c.x/ and y < 2a.y/C1 so that

xy < 2a.x/Ca.y/C2 � 2a.y/Cc.x/C1 D 2a.xy/C1 � 2a.xy/�a.x/Cc.x/

so c.xy/ � a.xy/ � a.x/C c.x/.

We are now ready to define a partition of N. When we write x � y .mod R/ we
mean, of course, that x and y are elements of the same member of R.
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Definition 17.11. Define a partition R of N by specifying that A4 and 2N C 1 are
cells of R and for any x; y 2 N n ..2N C 1/ [ A4/, x � y .mod R/ if and only if
each of the following statements holds.

(1) For i 2 ¹0; 1; 2º, x 2 Bi if and only if y 2 Bi .

(2) For i 2 ¹0; 1º, d.x/ 2 Ci if and only if d.y/ 2 Ci .

(3) a.x/ � b.x/ 
 d.x/ if and only if a.y/ � b.y/ 
 d.y/.

(4) a.x/ � c.x/ 
 d.x/ if and only if a.y/ � c.y/ 
 d.y/.

(5) a.x/ � b.x/ 	 a.y/ � b.y/ .mod 3/.

(6) a.x/ 	 a.y/ .mod 2/.

(7) e.x/ 	 e.y/ .mod 2/.

(8) x 	 y .mod 16/.

Notice that there is no sequence hxni1nD1 with PS.hxni1nD1/ � A4 or with
PS.hxni1nD1/ � 2N C 1.

Lemma 17.12. Let hxni1nD1 be a one-to-one sequence in N. If PS.hxni1nD1/ [
PP.hxni1nD1/ is contained in one cell of the partition R, then ¹d.xn/ W n 2 Nº is
unbounded.

Proof. Suppose instead that ¹d.xn/ W n 2 Nº is bounded and pick k 2 N such that for
infinitely many n, d.xn/ D k. If k D 0, then we would have PP.hxni1nD1/ � 2N C 1
so PS.hxni1nD1/ � 2N C 1, which is impossible. Thus we may assume that k � 1.

If k > 1, then pick n < r such that d.xn/ D d.xr / D k and either

k C 1 2 supp.xn/ \ supp.xr/ or k C 1 … supp.xn/ [ supp.xr/:

Then d.xn C xr/ D k C 1 and d.xnxr / D 2k so one can’t have i 2 ¹0; 1º with
d.xn C xr/; d.xnxr/ 2 Ci .

Thus we must have that k D 1. Suppose first that for infinitely many n one has
d.xn/ D 1 and e.xn/ D 2. Pick n < r and u; v 2 ! such that u 	 v .mod 2/ and
xn D 2C4C8u and xr D 2C4C8v. Then xnCxr D 12C16�.uCv2 / 	 12 .mod 16/
while xnxr D 36C 48.uC v/C 64uv 	 4 .mod 16/.

Consequently one has infinitely many nwith d.xn/ D 1 and e.xn/ > 2. Pick n < r
and u; v 2 ! such that d.xn/ D d.xr/ D 1, 3 
 e.xn/ 
 e.xr/, u 	 v .mod 2/, and

xn D 2C 2
e.xn/ C u � 2e.xn/C1 and xr D 2C 2

e.xr / C v � 2e.xr /C1:

Suppose first that e.xn/ < e.xr /. Then

xn C xr D 4C 2
e.xn/ C 2e.xn/C1.2e.xr /�e.xn/�1 C uC v � 2e.xr /�e.xn//
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and

xnxr D 4C 2
e.xn/C1 C 2e.xn/C2.uC 2e.xr /�e.xn/�1 C 2e.xr /�2 C u � 2e.xr /�1

C v � 2e.xr /�e.xn/ C v � 2e.xr /�1 C uv � 2e.xr //

so e.xn C xr/ D e.xn/ while e.xnxr/ D e.xn/C 1, a contradiction.
Consequently we have some ` > 2 such that e.xn/ D e.xr/ D `. Then

xn C xr D 4C 2
`C1 C 2`C2

�uC v
2

�
and

xnxr D 4C 2
`C2 C 2`C3

�
2`�3 C

uC v

2
C .uC v/2`�2 C uv2`�1

�
so that e.xn C xr / D `C 1 while e.xnxr / D `C 2, again a contradiction.

As a consequence of Lemma 17.12, we know that if hxni1nD1 is a one-to-one se-
quence with PS.hxni1nD1/ [ PP.hxni1nD1/ contained in one cell of the partition R,
then we can assume that for each n, a.xn/ < d.xnC1/ and consequently, there is no
mixing of the bits of xn and xm when they are added in binary.

Lemma 17.13. Let hxni1nD1 be a one-to-one sequence in N. If PS.hxni1nD1/ [
PP.hxni1nD1/ is contained in one cell of the partition R, then ¹n 2 N W xn 2 A0º is
infinite or ¹n 2 N W xn 2 A3º is infinite.

Proof. One cannot have PS.hxni1nD1/ � A4 and one cannot have PS.hxni1nD1/ �
2N C 1 so one has a.xn C xr/ 	 a.xnxr/ .mod 2/ whenever n and r are distinct
members of N. By the pigeon hole principle we may presume that we have some
i 2 ¹0; 1; 2; 3; 4º such that ¹xn W n 2 Nº � Ai . If one had i D 4, then one would
have PP.hxni1nD1/ � A4 and hence that PS.hxni1nD1/ � A4, which we have already
noted is impossible.

By Lemma 17.12 we have that ¹d.xn/ W n 2 Nº is unbounded so pick n 2 N such
that d.xn/ > a.x1/. Then a.xn C x1/ D a.xn/.

Suppose i D 1, that is ¹xn W n 2 Nº � A1. Then by Remark 17.9, a.xnx1/ D
a.xn/C a.x1/C 1 so a.xnx1/ is odd while a.xn C x1/ is even.

Similarly, if i D 2, then a.xnx1/ is even while a.xn C x1/ is odd.

Lemma 17.14. Let hxni1nD1 be a one-to-one sequence in N. If d.xnC1/ > a.xn/ for
each n, PS.hxni1nD1/ [ PP.hxni1nD1/ is contained in one cell of the partition R, and
¹xn W n 2 Nº � A0, then ¹a.xn/ � b.xn/ W n 2 Nº is bounded.

Proof. Suppose instead that ¹a.xn/�b.xn/ W n 2 Nº is unbounded. Pick n 2 N such
that a.xn/ � b.xn/ > d.x1/. Then, using the fact that d.xn/ > a.x1/ we have that

a.xn C x1/ � b.xn C x1/ D a.xn/ � b.xn/ > d.x1/ D d.xn C x1/

while by Lemma 17.10

a.xnx1/ � b.xnx1/ 
 a.x1/ � b.x1/ < d.xn/ 
 d.xnx1/:
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Lemma 17.15. Let hxni1nD1 be a one-to-one sequence in N. If d.xnC1/ > a.xn/ for
each n, PS.hxni1nD1/ [ PP.hxni1nD1/ is contained in one cell of the partition R, and
¹xn W n 2 Nº � A3, then ¹a.xn/ � c.xn/ W n 2 Nº is bounded.

Proof. This is nearly identical to the proof of Lemma 17.14.

Theorem 17.16. There is no one-to-one sequence hxni1nD1 in N such that
PS.hxni1nD1/ [ PP.hxni1nD1/ is contained in one cell of the partition R.

Proof. Suppose instead we have such a sequence. By Lemmas 17.12, 17.13, 17.14,
and 17.15 we may presume that for each n 2 N, d.xnC1/ > a.xn/C 1 and either

(i) ¹xn W n 2 Nº � A0 and ¹a.xn/ � b.xn/ W n 2 Nº is bounded or

(ii) ¹xn W n 2 Nº � A3 and ¹a.xn/ � c.xn/ W n 2 Nº is bounded.

Assume first that ¹xn W n 2 Nº � A0 and ¹a.xn/ � b.xn/ W n 2 Nº is bounded.
Pick some k 2 N and n < r in N such that a.xn/ � b.xn/ D a.xr/ � b.xr/ D k.
Then a.xr C xn/ � b.xr C xn/ D a.xr/ � b.xr / D k.

Also 2a.xn/ C 2a.xn/�k 
 xn and 2a.xr / C 2a.xr /�k 
 xr , so

2a.xrxn/ C 2a.xrxn/�kC1 D 2a.xr /Ca.xn/ C 2a.xr /Ca.xn/�kC1 < xrxn

so b.xrxn/ � a.xrxn/ � k C 1. And xn < 2a.xn/ C 2a.xn/�kC1 and xr < 2a.xr / C
2a.xr /�kC1 so

xrxn < 2
a.xr /Ca.xn/ C 2a.xr /Ca.xn/�kC2 C 2a.xr /Ca.xn/�2kC2

D 2a.xrxn/ C 2a.xrxn/�kC2 C 2a.xrxn/�2kC2

< 2a.xrxn/ C 2a.xrxn/�kC3

so b.xrxn/ 
 a.xrxn/ � k C 2. Thus a.xrxn/ � b.xrxn/ 2 ¹k � 1; k � 2º so
a.xrxn/ � b.xrxn/ 6	 a.xr C xn/ � b.xr C xn/ .mod 3/, a contradiction.

Finally assume that ¹xn W n 2 Nº � A3 and ¹a.xn/ � c.xn/ W n 2 Nº is bounded.
We may presume that we have some k 2 N such that a.xn/ � c.xn/ D k for all
n 2 N. By the pigeon hole principle, pick n < r in N such that either

(a) xn < 2a.xn/C1.1 � 2�k/
1
2 and xr < 2a.xr /C1.1 � 2�k/

1
2 or

(b) xn � 2a.xn/C1.1 � 2�k/
1
2 and xr � 2a.xr /C1.1 � 2�k/

1
2 .

In either case we have a.xrxn/ D a.xr/ C a.xn/ C 1. Also in either case we have
xn � 2

a.xn/C1 � 2a.xn/�kC1 and xr � 2a.xr /C1 � 2a.xr /�kC1 so that

xrxn � 2
a.xrxn/C1 � 2a.xrxn/�kC2C 2a.xrxn/�2kC1 > 2a.xrxn/C1 � 2a.xrxn/�kC2

and consequently c.xrxn/ 
 a.xrxn/ � k C 1.
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Assume that xn < 2a.xn/C1.1 � 2�k/
1
2 and xr < 2a.xr /C1.1 � 2�k/

1
2 . We have

a.xrCxn/�c.xrCxn/ D a.xr/�c.xr/ D k. Since xrxn < 2a.xrxn/C1.1�2�k/ D
2a.xrxn/C1�2a.xrxn/C1�k and hence c.xrxn/ � a.xrxn/�kC1, one has c.xrxn/ D
a.xrxn/� kC 1. But then a.xrxn/� c.xrxn/ 6	 a.xr C xn/� c.xr C xn/ .mod 2/,
a contradiction.

Thus we must have that xn � 2a.xn/C1.1 � 2�k/
1
2 and xr � 2a.xr /C1.1 � 2�k/

1
2 .

Now a.xr C xn/ D a.xr/ so xr C xn > 2a.xrCxn/C1.1 � 2�k/
1
2 and a.xr C xn/ �

c.xrCxn/ D a.xr/�c.xr/ D k, so picking i 2 ¹0; 1; 2º such that iC1 	 k .mod 3/
we have that xr C xn 2 Bi and consequently xrxn 2 Bi .

Now xrxn � 2
a.xrxn/C1.1 � 2�k/ D 2a.xrxn/C1 � 2a.xrxn/C1�k so c.xrxn/ 


a.xrxn/ � k. By Lemma 17.10 a.xrxn/ � c.xrxn/ 
 k so a.xrxn/ � c.xrxn/ D k.
Notice that .1 � 2�k�1 � 2�2k�2/ < .1 � 2�k/

1
2 , a fact that may be verified by

squaring both sides. Since xn < 2a.xn/C1 � 2a.xn/�k and xr < 2a.xr /C1 � 2a.xr /�k

we have

xrxn < 2
a.xrxn/C1 � 2a.xrxn/�kC1 C 2a.xrxn/�2k�1

< 2a.xrxn/C1 � 2a.xrxn/�k � 2a.xrxn/�2k�1

D 2a.xrxn/C1.1 � 2�k�1 � 2�2k�2/

< 2a.xrxn/C1.1 � 2�k/
1
2

D 2a.xrxn/C1.1 � 2c.xrxn/�a.xrxn//
1
2 :

Thus since xrxn 2 Bi we have that k D a.xrxn/� c.xrxn/ 	 i 	 k � 1 .mod 3/, a
contradiction.

Recall from Theorem 13.14 that if p 2 ˇN and Nn 2 p for infinitely many n, then
there do not exist q, r , and s in N� such that q � p D r C s. The following corollary
has a much weaker conclusion, but applies to any p 2 N�.

Corollary 17.17. Let p 2 N�. Then p C p ¤ p � p.

Proof. Suppose instead that pCp D p �p and pick some A 2 R such that A 2 p �p.
Let B D ¹x 2 N W �x C A 2 pº \ ¹x 2 N W x�1A 2 pº and pick x1 2 B .
Inductively, let n 2 N and assume we have chosen hxt intD1. Pick

xnC1 2
�
B \

nT
tD1

.�xt C A/ \ .xt
�1A/

�
n ¹x1; x2; : : : ; xnº:

Then PS.hxni1nD1/ [ PP.hxni1nD1/ � A, contradicting Theorem 17.16.

Theorem 17.16 establishes that one cannot expect any sort of combined additive and
multiplicative results from an infinite sequence in an arbitrary finite partition of N. On
the other hand, the following question remains wide open.
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Question 17.18. Let r; n 2 N. If N D
Sr
iD1Ai , must there exist i 2 ¹1; 2; : : : ; rº

and a one-to-one sequence hxt intD1 such that FS.hxt intD1/ [ FP.hxt intD1/ � Ai?

We would conjecture strongly that the answer to Question 17.18 is “yes”. However,
the only nontrivial case for which it is known to be true is n D r D 2. (See the notes
to this chapter).

17.3 Sums of Products

Shortly after the original (combinatorial) proof of the Finite Sums Theorem and its
corollary, the Finite Products Theorem, Erdős asked [137] whether, given any finite
partition of N, there must exist one cell containing a sequence and all of its “mul-
tilinear combinations”. We know, of course, that whatever the precise meaning of
“multilinear combinations”, the answer is “no”. (Theorem 17.16.) We see in this
section, however, that a certain regularity can be imposed on sums of products of a
sequence.

Recall that, if n 2 N and p 2 ˇN, then n � p is the product of n and p in the semi-
group .ˇN; � / which need not be the same as the sum of p with itself n times. (We
already know from Theorem 13.18 that if p 2 N�, then pCp ¤ 2 �p.) Consequently
we introduce some notation for the sum of p with itself n times.

Definition 17.19. Let p 2 ˇN. Then �1.p/ D p and, given n 2 N, �nC1.p/ D
�n.p/C p.

Of course, if p 2 N, then for all n, n � p D �n.p/. The question naturally arises as
to whether it is possible to have n � p D �n.p/ for some n 2 N n ¹1º and p 2 N�.
We shall see in Corollary 17.22 that it is not possible.

Lemma 17.20. Let n 2 N, let p 2 N�, let A 2 p and let B 2 �n.p/. There is a
one-to-one sequence hxt i1tD1 in A such that, for each F 2 ŒN�n,

P
t2F xt 2 B .

Proof. This is Exercise 17.3.1.

Theorem 17.21. Let n 2 N n ¹1º. There is a finite partition R of N such that there
do not exist A 2 R and a one-to-one sequence hxt i1tD1 such that

(1) for each t 2 N, n � xt 2 A, and

(2) whenever F 2 ŒN�n,
P
t2F xt 2 A.

Proof. For i 2 ¹0; 1; 2; 3º, let

Ai D
1S
kD0

¹x 2 N W n2kCi=2 
 x < n2kC.iC1/=2º

and let R D ¹A0; A1; A2; A3º. Suppose that one has a one-to-one sequence hxt i1tD1
and i 2 ¹0; 1; 2; 3º such that
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(1) for each t 2 N, n � xt 2 Ai , and

(2) whenever F 2 ŒN�n,
P
t2F xt 2 Ai .

By the pigeon hole principle, we may presume that we have some j 2 ¹0; 1; 2; 3º
such that ¹xt W t 2 Nº � Aj .

Now if n2kCj=2 
 xt < n2kC.jC1/=2, then n2kC.jC2/=2 
 n � xt < n2kC.jC3/=2

so that i 	 j C 2 .mod 4/. On the other hand, for sufficiently large t , if n2kCj=2 

xt < n

2kC.jC1/=2, then

n2kCj=2 
 x1 C x2 C � � � C xn�1 C xt < n
2kC.jC2/=2

so that i 6	 j C 2 .mod 4/, a contradiction.

Corollary 17.22. Let p 2 N� and let n 2 N n ¹1º. Then n � p ¤ �n.p/.

Proof. Suppose that n � p D �n.p/ and pick A 2 R such that A 2 n � p. Then
n�1A 2 p so, by Lemma 17.20, choose a sequence hxt i1tD1 in n�1A such that for
each F 2 ŒN�n,

P
t2F xt 2 A. This contradicts Theorem 17.21.

Recall that, given F;G 2 Pf .N/ we write F < G if and only if maxF < minG.

Definition 17.23. Let hxt i1tD1 be a sequence in N and let m 2 N. Then

SPm.hxt i1tD1/ D
° mX
iD1

Y
t2Fi

xt W F1; F2; : : : ; Fm 2Pf .N/ and F1 < F2 < � � � < Fm
±
:

Theorem 17.24. Let p � p D p 2 ˇN, let m 2 N, and let A 2 �m.p/. Then there is
a sequence hxt i1tD1 such that SPm.hxt i1tD1/ � A.

Proof. If m D 1, this is just the finite products theorem (Theorem 5.8). In the proof,
we are dealing with two semigroups, so the notation B? is ambiguous. We shall use
it to refer to the semigroup .ˇN; � /, so that B? D ¹x 2 B W x�1B 2 pº.

We do the m D 2 case separately because it lacks some of the complexity of the
general theorem, so assume A 2 p C p. Let B1 D ¹x 2 N W �x C A 2 pº.
Then B1 2 p so B1? 2 p. Pick x1 2 B1?. Inductively, let n 2 N and assume
that we have chosen hxt intD1 in N and B1 � B2 � � � � � Bn in p such that, if
; ¤ F � ¹1; 2; : : : ; nº, k D minF , and ` D maxF , then

(1)
Q
t2F xt 2 Bk

? and

(2) if ` < n, then B`C1 � .�
Q
t2F xt C A/.

For k 2 ¹1; 2; : : : ; nº, let Ek D ¹
Q
t2F xt W F � ¹1; 2; : : : ; nº and k D minF º.

Let

BnC1 D Bn \
nT
kD1

T
a2Ek

..�aC A/ \ a�1Bk
?/:
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Now, given k 2 ¹1; 2; : : : ; nº and a 2 Ek , a 2 Bk
? � B1 so �a C A 2 p and

a�1Bk
? 2 p so BnC1 2 p. Choose xnC1 2 BnC1?.

To verify the induction hypotheses, let ; ¤ F � ¹1; 2; : : : ; nC1º, k D minF , and
` D maxF . If ` < n, then both hypotheses hold by assumption. Assume that ` D n.
Then (1) holds by assumption and

Q
t2F xt 2 Ek so (2) holds. Finally assume that

` D nC1. Then (2) is vacuous. If k D nC1, then
Q
t2F xt D xnC1 2 BnC1

?. If k 

n, then let G D F n ¹kº. Then

Q
t2G xt 2 Ek so xnC1 2 BnC1 � .

Q
t2G xt /

�1Bk
?

and thus (1) holds.
The construction being complete, let F1; F2 2 Pf .N/ with F1 < F2. Let k D

minF2 and let ` D maxF1. ThenY
t2F2

xt 2 Bk
? � B`C1 �

�
�
Y
t2F1

xt C A
�
:

This completes the proof in the case m D 2.
Now assume that m � 3. Let B1 D ¹x 2 N W �x C A 2 �m�1.p/º and choose

x1 2 B1
?.

Inductively, let n 2 N and assume that we have chosen hxkinkD1 in N and hBkinkD1
in p so that for each r 2 ¹1; 2; : : : ; nº each of the following statements holds:

(I) If ; ¤ F � ¹1; 2; : : : ; rº and k D minF , then
Q
t2F xt 2 Bk

?.

(II) If r < n, then BrC1 � Br .

(III) If ` 2 ¹1; 2; : : : ; m � 1º, F1; F2; : : : ; F` 2 Pf .¹1; 2; : : : ; rº/, and F1 < F2 <

� � � < F`, then �
P`
iD1

Q
t2Fi

xt C A 2 �m�`.p/.

(IV) If F1; F2; : : : ; Fm�1 2 Pf .¹1; 2; : : : ; rº/, F1 < F2 < � � � < Fm�1, and r < n,
then BrC1 � �

Pm�1
iD1

Q
t2Fi

xt C A.

(V) If ` 2 ¹1; 2; : : : ; m � 2º, F1; F2; : : : ; F` 2 Pf .¹1; 2; : : : ; rº/ with F1 < F2 <

� � � < F`, and r < n, then

BrC1 �
°
x 2 N W �x C

�
�
X̀
iD1

Y
t2Fi

xt C A
�
2 �m�`�1.p/

±
:

At n D 1, hypothesis (I) says that x1 2 B1?. Hypotheses (II), (IV), and (V) are
vacuous, and hypothesis (III) says that �x1 C A 2 �m�1.p/.

For ` 2 ¹1; 2; : : : ; m � 1º, let

F` D ¹.F1; F2; : : : ; F`/ W F1; F2; : : : ; F` 2 Pf .¹1; 2; : : : ; nº/

and F1 < F2 < � � � < F`º

and for k 2 ¹1; 2; : : : ; nº, let

Ek D
°Y
t2F

xt W ; ¤ F � ¹1; 2; : : : ; nº and minF D k
±
:
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Given a 2 Ek , we have that a 2 Bk
? by hypothesis (I) and so a�1Bk

? 2 p by
Lemma 4.14. If .F1; F2; : : : ; Fm�1/ 2 Fm�1, then by (III) we have

�

m�1X
iD1

Y
t2Fi

xt C A 2 p:

If ` 2 ¹1; 2; : : : ; m � 2º and .F1; F2; : : : ; F`/ 2 F` we have by hypothesis (III) that

°
x 2 N W �x C

�
�
X̀
iD1

Y
t2Fi

xt C A
�
2 �m�`�1.p/

±
2 p:

So we let

BnC1 D Bn \
nT
kD1

T
a2Ek

a�1Bk
? \

T
.F1;F2;:::;Fm�1/2Fm�1

�
�

m�1X
iD1

Y
t2Fi

xt C A
�

\
m�2T
`D1

T
.F1;F2;:::;F`/2F`

°
x 2 N W �x C

�
�
X̀
iD1

Y
t2Fi

xt C A
�
2 �m�`�1.p/

±
and notice that BnC1 2 p.

(For simplicity of notation we are taking
T
; D N in the above. Thus, for example,

if n D m � 3, then Fm�2 D Fm�1 D ; and so

BnC1 D Bn \
nT
kD1

T
a2Ek

a�1Bk
?

\
m�3T
`D1

T
.F1;F2;:::;F`/2F`

°
x 2 N W �x C

�
�
X̀
iD1

Y
t2Fi

xt C A
�
2 �m�`�1.p/

±
:/

Choose xnC1 2 BnC1?. To verify hypothesis (I), let ; ¤ F � ¹1; 2; : : : ; n C 1º

and let k D minF . If n C 1 … F , then (I) holds by assumption, so assume that
nC 1 2 F . If k D nC 1, we have xnC1 2 BnC1? directly, so assume that k < nC 1
and let G D F n ¹nC 1º. Then

Q
t2G xt 2 Ek so xnC1 2 .

Q
t2G xt /

�1Bk
?.

Hypothesis (II) holds trivially and hypotheses (IV) and (V) hold directly.
To verify hypothesis (III), let ` 2 ¹1; 2; : : : ; m � 1º and let F1; F2; : : : ; F` 2

Pf .¹1; 2; : : : ; n C 1º/ with F1 < F2 < � � � < F`. If ` D 1, then by hypothesis
(I) and (II),

Q
t2F1

xt 2 B1
? � B1 so �

Q
t2F1

xt C A 2 �m�1.p/. So assume that
` > 1. Let k D minF` and let j D maxF`�1. Then by hypotheses (I) and (II),Q
t2F`

xt 2 Bk
? � BjC1 and by hypothesis (V) at r D j ,

BjC1 �
°
x 2 N W �x C

�
�

`�1X
iD1

Y
t2Fi

xt C A
�
2 �m�`.p/

±
:
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The induction being complete, we have that whenever F1; F2; : : : ; Fm 2 Pf .N/
with F1 < F2 < � � � < Fm, if k D minFm and r D maxFm�1, then by (I), (II), and
(IV), Y

t2Fm

xt 2 Bk
? � BrC1 � �

m�1X
iD1

Y
t2Fi

xt C A

and thus
Pm
iD1

Q
t2Fi

xt 2 A.

Corollary 17.25. Let r;m 2 N and let N D
Sr
jD1Aj . Then there exist j 2

¹1; 2; : : : ; rº and a sequence hxt i1tD1 such that SPm.hxt i1tD1/ � Aj .

Proof. Pick any idempotent p in .ˇN; � / and pick j 2 ¹1; 2; : : : ; rº such that Aj 2
�m.p/.

There is a partial converse to Theorem 17.24. In this converse, the meaning of
SPn.hxt i1tDk/ should be obvious. Notice that one does not require that p � p D p.

Theorem 17.26. Let hxt i1tD1 be a sequence in N. If p 2
T1
kD1 FP.hxt i1tDk/, then

for all n and k in N, SPn.hxt i1tDk/ 2 �n.p/.

Proof. We proceed by induction on n, the case n D 1 holding by assumption. So let
n 2 N and assume that for each k 2 N, SPn.hxt i1tDk/ 2 �n.p/.

Let k 2 N. We claim that

SPn.hxt i
1
tDk/ � ¹a 2 N W �aC SPnC1.hxt i

1
tDk/ 2 pº

so that SPnC1.hxt i1tDk/ 2 �n.p/Cp D �nC1.p/. So let a 2 SPn.hxt i1tDk/ and pick
F1 < F2 < � � � < Fn in Pf .N/ such that minF1 � k and a D

Pn
iD1

Q
t2Fi

xt and
let ` D maxFn C 1. Then

FP.hxt i
1
tD`/ � �aC SPnC1.hxt i

1
tDk/

so that �aC SPnC1.hxt i1tDk/ 2 p.

We see now that one cannot necessarily expect to find SPm.hxt i1tD1/ and
SP1.hxt i1tD1/ (D FP.hxt i1tD1/) in one cell of a partition, indeed not even
SPm.hxt i1tD1/[SP1.hyt i1tD1/with possibly different sequences hxt i1tD1 and hyt i1tD1.
In fact much stronger conclusions are known – see the notes to this chapter.

Theorem 17.27. Let m 2 N n ¹1º. There is a finite partition R of N such that,
given any A 2 R, there do not exist one-to-one sequences hxt i1tD1 and hyt i1tD1 with
SPm.hxt i1tD1/ � A and SP1.hyt i1tD1/ � A.
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Proof. For x 2 N, define a.x/ and d.x/ in ! by ma.x/ 
 x < ma.x/C1 and d.x/ D
max¹t 2 ! W mt jxº. Thus when x is written in base m, a.x/ is the position of the
leftmost nonzero digit and d.x/ is the position of the rightmost nonzero digit. Let

A0 D N nNm D ¹x 2 N W d.x/ D 0º

A1 D ¹x 2 N W d.x/ D 1º

A2 D ¹m
t W t 2 N and t > 1º

A3 D ¹x 2 N W a.x/ is even, d.x/ > 1 and ma.x/ < x < ma.x/ Cma.x/�d.x/º

A4 D ¹x 2 N W a.x/ is even, d.x/ > 1 and ma.x/ Cma.x/�d.x/ 
 xº

A5 D ¹x 2 N W a.x/ is odd, d.x/ > 1 and ma.x/C1 �ma.x/�d.x/ < xº

A6 D ¹x 2 N W a.x/ is odd, d.x/ > 1 and ma.x/ < x 
 ma.x/C1 �ma.x/�d.x/º:

Then ¹A0; A1; A2; A3; A4; A5; A6º is a partition of N. Trivially, neither A0 nor A2
contains SPm.hxt i1tD1/ and A1 does not contain SP1.hxt i1tD1/ D FP.hxt i1tD1/ for
any sequence hxt i1tD1 in N.

We now claim that A3 does not contain any FP.hxt i1tD1/, so suppose instead we
have some one-to-one sequence hxt i1tD1 with FP.hxt i1tD1/ � A3. Then for each
t 2 N, d.xt / > 1 so pick a product subsystem hyt i1tD1 of hxt i1tD1 such that for
each t , a.yt / < d.xtC1/. Then ma.y1/ < y1 < ma.y1/C1 and ma.y2/ < y2 <

ma.y2/C1 so ma.y1/Ca.y2/ < y1y2 < ma.y1/Ca.y2/C2 and consequently, a.y1y2/ 2
¹a.y1/ C a.y2/; a.y1/ C a.y2/ C 1º. Since a.y1/, a.y2/, and a.y1y2/ are even,
a.y1y2/ D a.y1/C a.y2/.

Now d.y1y2/ � d.y1/C d.y2/ so

a.y1y2/ � a.y1/C d.y1/ > a.y1y2/ � a.y1/

> a.y1y2/ � d.y2/ > a.y1y2/ � d.y1y2/:

Also, y1 � ma.y1/ Cmd.y1/ and y2 > ma.y2/ so

y1y2 > m
a.y1/Ca.y2/ Cma.y2/Cd.y1/

D ma.y1y2/ Cma.y1y2/�a.y1/Cd.y1/

> ma.y1y2/ Cma.y1y2/�d.y1y2/

a contradiction.
Next we claim thatA4 does not contain any SPm.hxt i1tD1/, so suppose that we have

a one-to-one sequence hxt i1tD1 with SPm.hxt i1tD1/ � A4. If for infinitely many t ’s
we have d.xt / D 0, we may choose F 2 ŒN�m such that for any t; s 2 F one has

xt 	 xs 6	 m .mod m2/:

Then d.
P
t2F xt / D 1 so

P
t2F xt 2 SPm.hxt i1tD1/ n A4.
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Thus we may assume that each d.xt / > 0 and hence, by passing to a product
subsystem as we did when discussing A3, we may presume that for each t , a.xt / <
d.xtC1/, so that there is no carrying when xt and xtC1 are added in basem arithmetic.
(Notice that by Exercise 17.3.2, if hyt i1tD1 is a product subsystem of hxt i1tD1, then
SPm.hyt i1tD1/ � SPm.hxt i1tD1/.)

We may further assume that for each t � m, a.xt / � a.xm�1/C d.x1/C 2. We
claim that there is some t � m such that xt < ma.xt / C ma.xt /�d.x1/�1. Suppose
instead that for each t � m, xt � ma.xt /.1Cm�d.x1/�1/. Now 1Cm�d.x1/�1 > 1

so for some `, .1Cm�d.x1/�1/`C1 > m and hence

mC`Y
tDm

xt > m
PmC`
tDm a.xt /C1:

Pick the first k such that
kY
tDm

xt � m
Pk
tDm a.xt /C1:

Since
k�1Y
tDm

xt < m
Pk�1
tDm a.xt /C1 and xk < m

a.xk/C1

we have that
kY
tDm

xt < m
Pk
tDm a.xt /C2

and consequently a.
Qk
tDm xt / D

Pk
tDm a.xt /C 1.

Since, for each t , d.xtC1/ > a.xt /, we have that for each s 2 ¹m;mC 1; : : : ; kº,
a.x1 C x2 C � � � C xm�1 C xs/ D a.xs/ and, since

x1 C x2 C � � � C xm�1 C xs 2 SPm.hxt i1tD1/ � A4;

a.xs/ is even. Also a.x1 C x2 C � � � C xm�1 C
Qk
tDm xt / D a.

Qk
tDm xt /, so

a.
Qk
tDm xt / is even, a contradiction.

Thus we have some t � m such that xt < ma.xt / C ma.xt /�d.x1/�1. Let y D
x1 C x2 C � � � C xm�1 C xt . Then, a.y/ D a.xt / and d.y/ D d.x1/. And because
there is no carrying when these numbers are added in base m, we have

x1 C x2 C � � � C xm�1 < m
a.xm�1/C1


 ma.xt /�d.x1/�1
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so

y < ma.xt / Cma.xt /�d.x1/�1 Cma.xt /�d.x1/�1


 ma.xt / Cma.xt /�d.x1/

D ma.y/ Cma.y/�d.y/

contradicting the fact that y 2 A4.
Now we claim that A5 does not contain any FP.hxt i1tD1/. So suppose instead that

we have a one-to-one sequence hxt i1tD1 such that FP.hxt i1tD1/ � A5. As before, we
may presume that for each t , d.xtC1/ > a.xt /. Now x1 
 ma.x1/C1 � md.x1/ as
can be seen by considering the base m expansion of x1. Also, x2 < ma.x2/C1 so that
x1x2 < ma.x1/Ca.x2/C2 � ma.x2/Cd.x1/C1. Since also x1x2 > ma.x1/Ca.x2/ and
a.x1/, a.x2/, and a.x1x2/ are all odd, we have a.x1x2/ D a.x1/C a.x2/C 1. Also

a.x2/C d.x1/C 1 D a.x1x2/ � a.x1/C d.x1/ > a.x1x2/ � d.x1x2/

because d.x1x2/ � d.x1/C d.x2/ > a.x1/ � d.x1/. Thus

x1x2 < m
a.x1x2/C1 �ma.x1x2/�d.x1x2/;

contradicting the fact that x1x2 2 A5.
Finally we show that A6 does not contain any SPm.hxt i1tD1/, so suppose instead

that we have a one-to-one sequence hxt i1tD1 such that SPm.hxt i1tD1/ � A6. As in the
consideration of A4, we see that we cannot have d.xt / D 0 for infinitely many t ’s
and hence we can assume that for all t , d.xtC1/ > a.xt /.

We claim that there is some t � m such that xt > ma.xt /C1 � ma.xt /�d.x1/. For
suppose instead that for each t � m, xt 
 ma.xt /C1.1�m�d.x1/�1/. Then for some
`, .1 �m�d.x1/�1/`C1 < 1=m so

mC`Y
tDm

xt < m
PmC`
tDm a.xt /C`:

Pick the first k such that

kY
tDm

xt 
 m
Pk
tDm a.xt /Ck�m:

Then
k�1Y
tDm

xt > m
Pk�1
tDm a.xt /Ck�1�m and xk > m

a.xk/;

so
kY
tDm

xt > m
Pk
tDm a.xt /Ck�1�m
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and hence

a
�
x1 C x2 C � � � C xm�1 C

kY
tDm

xt

�
D a

� kY
tDm

xt

�
D

kX
tDm

a.xt /C k � 1 �m:

Also for each t 2 ¹m;mC 1; : : : ; kº, a.x1Cx2C � � �Cxm�1Cxt / D a.xt / so each
a.xt / as well as

Pk
tDm a.xt /C k � 1 �m are odd, which is impossible.

Thus we have some t � m such that xt > ma.xt /C1 � ma.xt /�d.x1/. Let y D
x1 C x2 C � � � C xm�1 C xt . Then a.y/ D a.xt / and d.y/ D d.x1/ and y >

ma.xt /C1 �ma.xt /�d.x1/ D ma.y/C1 �ma.y/�d.y/, a contradiction.

We see now that we can in fact assume that the partition of Theorem 17.27 has only
two cells.

Corollary 17.28. Let m 2 N n ¹1º. There is a set B � N such that

(1) whenever p � p D p 2 ˇN, B 2 p,

(2) whenever p � p D p 2 ˇN, N n B 2 �m.p/,

(3) there is no one-to-one sequence hxt i1tD1 in N with SPm.hxt i1tD1/ � B , and

(4) there is no one-to-one sequence hxt i1tD1 in N with SP1.hxt i1tD1/ � N n B .

Proof. Let R be the partition guaranteed by Theorem 17.27 and let

B D
S
¹A 2 R W there exists hxt i1tD1 with FP.hxt i1tD1/ � Aº:

To verify conclusion (1), let p � p D p 2 ˇN and pick A 2 R such that A 2 p.
Then by Theorem 5.8 there is a sequence hxt i1tD1 such that FP.hxt i1tD1/ � A, so
A � B so B 2 p.

To verify conclusion (2), let p � p D p 2 ˇN and pick A 2 R such that A 2
�m.p/. Then by Theorem 17.24 pick a sequence hyt i1tD1 with SPm.hyt i1tD1/ � A.
By Theorem 17.27 there does not exist a sequence hxt i1tD1 with FP.hxt i1tD1/ � A,
so A \ B D ;.

To verify conclusion (3), suppose that one had a one-to-one sequence hxt i1tD1 with
SPm.hxt i1tD1/ � B . By Lemma 5.11, pick p � p D p 2

T1
kD1 FP.hxt i1tDk/. Then

by Theorem 17.26 SPm.hxt i1tD1/ 2 �m.p/ so that B 2 �m.p/, contradicting conclu-
sion (2).

To verify conclusion (4), suppose that one had a one-to-one sequence hxt i1tD1 with
FP.hxt i1tD1/�NnB . Again using Lemma 5.11, pick p �pDp 2

T1
kD1 FP.hxt i1tDk/.

Then FP.hxt i1tD1/ 2 p so N n B 2 p, contradicting conclusion (1).

Exercise 17.3.1. Prove Lemma 17.20. (Hint: See the proofs of Corollary 17.17 and
Theorem 17.24.)
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Exercise 17.3.2. Prove that, ifm 2 N and hyt i1tD1 is a product subsystem of hxt i1tD1,
then SPm.hyt i1tD1/ � SPm.hxt i1tD1/.

Exercise 17.3.3. Let hyt i1tD1. Modify the proof of Theorem 17.24 to show that if
p � p D p 2

T1
kD1 FP.hyt i1tDk/ and A 2 �m.p/, then there is a product subsystem

hxt i
1
tD1 of hyt i1tDk such that SPm.hxt i1tD1/ � A. (Hint: See the proof of Theo-

rem 17.31.)

Exercise 17.3.4. Let n; r 2 N and let N D
Sr
iD1Ai . Prove that there is a function

f W ¹1; 2; : : : ; nº ! ¹1; 2; : : : ; rº and a sequence hxt i1tD1 such that for each m 2
¹1; 2; : : : ; nº, SPm.hxt i1tD1/ � Af .m/. (Hint: Use the results of Exercises 17.3.2
and 17.3.3.)

17.4 Linear Combinations of Sums – Infinite Partition
Regular Matrices

In this section we show that, given a finite sequence of coefficients, one can always
find one cell of a partition containing the linear combinations of sums of a sequence
which have the specified coefficients. We show further that the cell can depend on the
choice of coefficients.

In many respects, the results of this section are similar to those of Section 17.3.
However, the motivation is significantly different. In Section 15.4, we characterized
the (finite) image partition regular matrices with entries from Q. And in Section 15.6
we extended the definition of image partition regularity to infinite matrices with only
finitely many nonzero entries in each row.

We establish here the image partition regularity of certain infinite matrices. We call
the systems we are studying “Milliken–Taylor” systems because of their relation to
the Milliken–Taylor Theorem, which we shall prove in Chapter 18.

Definition 17.30. (a) AD¹hai imiD12N
m W m2N and for all i 2¹1; 2; : : : ; m�1º;

ai ¤ aiC1º.

(b) Given Ea 2 A with length m and a sequence hxt i1tD1 in N,

MT.Ea; hxt i
1
tD1/ D

° mX
iD1

ai
X
t2Fi

xt W F1; F2; : : : ; Fm 2 Pf .N/

and F1 < F2 < � � � < Fm
±
:

The reason for requiring that ai ¤ aiC1 in the definition of A is of course that
a
P
t2F xt C a

P
t2G xt D a

P
t2F[G xt when F < G.

Given Ea 2 A, MT.Ea; hxt i1tD1/ is the set of images of a matrix with finitely many
nonzero entries in each row and having all rows whose compressed form is Ea. (See
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Definition 15.35.) We shall call such a matrix a Milliken–Taylor matrix associated
with Ea. And a matrix is a Milliken–Taylor matrix if it is the Milliken–Taylor matrix
associated with Ea for some Ea 2 A. For example, if

A D

0BBBBBBBBBBBBB@

1 2 0 0 � � �

1 0 2 0 � � �

0 1 2 0 � � �

1 1 2 0 � � �

1 2 2 0 � � �

1 0 0 2 � � �

0 1 0 2 � � �

1 1 0 2 � � �
:::
:::
:::
:::
: : :

1CCCCCCCCCCCCCA
;

then A is a Milliken–Taylor matrix associated with h1; 2i. And a finite sums matrix as
introduced in Section 15.6 is a Milliken–Taylor matrix associated with h1i.

As a consequence of Corollary 17.33 below, whenever Ea 2 A and N is partitioned
into finitely many cells, one cell must contain MT.Ea; hxt i1tD1/ for some sequence
hxt i

1
tD1. This is the same as the assertion that any Milliken–Taylor matrix associated

with Ea is image partition regular.

Theorem 17.31. Let Ea D ha1; a2; : : : ; ami 2 A, let hyt i1tD1 be a sequence in N, let
p C p D p 2

T1
kD1 FS.hyt i1tDk/, and let A 2 a1p C a2p C � � � C amp. There is a

sum subsystem hxt i1tD1 of hyt i1tD1 such that MT.Ea; hxt i1tD1/ � A.

Proof. Assume first thatm D 1. Then a1�1A 2 p so by Theorem 5.14 there is a sum
subsystem hxt i1tD1 of hyt i1tD1 such that FS.hxt i1tD1/ � a1

�1A. This says precisely
that MT.Ea; hxt i1tD1/ � A.

Assume now that m � 2 and notice that

¹x 2 N W �x C A 2 a2p C a3p C � � � C ampº 2 a1p

so that
¹x 2 N W �a1x C A 2 a2p C a3p C � � � C ampº 2 p:

Let

B1 D ¹x 2 N W �a1x C A 2 a2p C a3p C � � � C ampº \ FS.hyt i1tD1/:

Pick x1 2 B1? and pick H1 2 Pf .N/ such that x1 D
P
t2H1

yt . (Here we are using
the additive version of B1?. That is, B1? D ¹x 2 B1 W �x C B1 2 pº.)

Inductively, let n 2 N and assume that we have chosen hxkinkD1 in N, hBkinkD1 in
p, and hHki

n
kD1

in Pf .N/ so that for each r 2 ¹1; 2; : : : ; nº:

(I) If ; ¤ F � ¹1; 2; : : : ; rº and k D minF , then
P
t2F xt 2 Bk

?.
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(II) If r < n, then BrC1 � Br and Hr < HrC1.

(III) If ` 2 ¹1; 2; : : : ; m � 1º, F1; F2; : : : ; F` 2 Pf .¹1; 2; : : : ; rº/, and F1 < F2 <

� � � < F`, then

�
X̀
iD1

ai
X
t2Fi

xt C A 2 a`C1p C a`C2p C � � � C amp:

(IV) If F1; F2; : : : ; Fm�1 2 Pf .¹1; 2; : : : ; rº/, F1 < F2 < � � � < Fm�1, and r < n,
then

BrC1 � am
�1
�
�

m�1X
iD1

ai
X
t2Fi

xt C A
�
:

(V) If ` 2 ¹1; 2; : : : ; m � 2º, F1; F2; : : : ; F` 2 Pf .¹1; 2; : : : ; rº/, F1 < F2 <

� � � < F`, and r < n, then

BrC1 �
°
x 2 N W �a`C1xC

�
�
X̀
iD1

ai
X
t2Fi

xt C A
�
2 a`C2pCa`C3pC� � �Camp

±
:

(VI) xr D
P
t2Hr

yt .

At n D 1, hypotheses (I) and (VI) hold directly, hypotheses (II), (IV), and (V) are
vacuous, and hypothesis (III) says that �a1x1CA 2 a2pC a3pC � � � C amp which
is true because x1 2 B1.

For ` 2 ¹1; 2; : : : ; m � 1º, let

F` D ¹.F1; F2; : : : ; F`/ W F1; F2; : : : ; F` 2 Pf .¹1; 2; : : : ; nº/

and F1 < F2 < � � � < F`º

and for k 2 ¹1; 2; : : : ; nº, let

Ek D
°X
t2F

xt W ; ¤ F � ¹1; 2; : : : ; nº and minF D k
±
:

Given b 2 Ek , we have b 2 Bk
? by hypothesis (I), and so �b C Bk

? 2 p. If
.F1; F2; : : : ; Fm�1/ 2 Fm�1, then by (III) we have .�

Pm�1
iD1 ai

P
t2Fi

xt C A/ 2

amp so that am�1.�
Pm�1
iD1 ai

P
t2Fi

xt C A/ 2 p. If ` 2 ¹1; 2; : : : ; m � 2º and
.F1; F2; : : : ; F`/ 2 F` we have by (III) that

�
X̀
iD1

ai
X
t2Fi

xt C A 2 a`C1p C a`C2p C � � � C amp
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so that°
x 2 N W �a`C1x C

�
�
X̀
iD1

ai
X
t2Fi

xt C A
�
2 a`C2p C a`C3p C � � � C amp

±
2 p:

Let s D maxHn C 1. Then we have that BnC1 2 p, where

BnC1 D Bn \ FS.hyt i
1
tDs/ \

nT
kD1

T
b2Ek

.�b C Bk
?/

\
T

.F1;F2;:::;Fm�1/2Fm�1

am
�1
�
�

m�1X
iD1

ai
X
t2Fi

xt C A
�

\
m�2T
`D1

T
.F1;F2;:::;F`/2F`

°
x 2 N W �a`C1x C

�
�
X̀
iD1

ai
X
t2Fi

xt C A
�

2 a`C2p C a`C3p C � � � C amp
±
:

Here again we use the convention that
T
; D N so, for example, if m D 2, then

BnC1 D Bn \ FS.hyt i
1
tDs/ \

nT
kD1

T
b2Ek

.�b C Bk
?/

\
T

;¤F�¹1;2;:::;nº

a2
�1
�
�a1

X
t2F

xt C A
�
:

Choose xnC1 2 BnC1? and pick HnC1 � ¹s; s C 1; s C 2; : : : º such that xnC1 DP
t2HnC1

yt .
Hypothesis (I) can be verified as in the second proof of Theorem 5.8 and hypothesis

(II) holds trivially.
Hypotheses (IV), (V) and (VI) hold directly.
To verify hypothesis (III), let ` 2 ¹1; 2; : : : ; m � 1º and let F1 < F2 < � � � < F` in

Pf .¹1; 2; : : : ; nC 1º/. If ` D 1, we have by hypotheses (I) and (II) that
P
t2F1

xt 2

B1 so that �a1
P
t2F1

xt CA 2 a2pCa3pC� � �Camp as required. So assume that
` > 1 and let k D minF` and j D maxF`�1. ThenX

t2F`

xt 2 Bk
? � BjC1 �

°
x 2 N W �a`x C

�
�

`�1X
iD1

ai
X
t2Fi

xt C A
�

2 a`C1p C a`C2p C � � � C amp
±

(by hypothesis (V) at r D j ) so

�
�X̀
iD1

ai
X
t2Fi

xt

�
C A 2 a`C1p C a`C2p C � � � C amp

as required.
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The induction being complete, let F1 < F2 < � � � < Fm in Pf .N/ and let k D
minFm and j D maxFm�1. Then

X
t2Fm

xt 2 Bk
? � BjC1 � am

�1
�
�

m�1X
iD1

ai
X
t2Fi

xt C A
�

so
Pm
iD1 ai

P
t2Fi

xt 2 A.

Just as Theorem 17.26 was a partial converse to Theorem 17.24, we now obtain a
partial converse to Theorem 17.31. Notice that p is not required to be an idempotent.

Theorem 17.32. Let Ea D ha1; a2; : : : ; ami 2 A, let hxt i1tD1 be a sequence in N, and
let p 2

T1
kD1 FS.hxt i1tDk/. Then MT.Ea; hxt i1tD1/ 2 a1p C a2p C � � � C amp.

Proof. We show, by downward induction on ` 2 ¹1; 2; : : : ; mº that for each k 2 N,

° mX
iD`

ai
X
t2Fi

xt W F`; F`C1; : : : ; Fm 2 Pf .¹k; k C 1; : : : º/

and F` < F`C1 < � � � < Fm
±
2 a`p C a`C1p C � � � C amp:

For ` D m, we have FS.hxt i1tDk/ 2 p so that FS.hamxt i1tDk/ 2 amp. So let
` 2 ¹1; 2; : : : ; m � 1º and assume that the assertion is true for `C 1. Let k 2 N and
let

A D
° mX
iD`

ai
X
t2Fi

xt W F`; F`C1; : : : ; Fm 2 Pf .¹k; k C 1; : : : º/

and F` < F`C1 < � � � < Fm
±
:

We show that

FS.ha`xt i
1
tDk/ � ¹x 2 N W �x C A 2 a`C1p C a`C2p C � � � C ampº:

So let b 2 FS.ha`xt i
1
tDk

/ and pick F` 2 Pf .¹k; k C 1; : : : º/ such that b D
a`
P
t2F`

xt . Let r D maxF` C 1. Then

° mX
iD`C1

ai
X
t2Fi

xt W F`C1; F`C2; : : : ; Fm 2 Pf .¹r; r C 1; : : : º/

and F`C1 < F`C2 < � � � < Fm
±
� �b C A

so �b C A 2 a`C1p C a`C2p C � � � C amp as required.

We see now that Milliken–Taylor systems are themselves partition regular.
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Corollary 17.33. Let Ea 2 A, let B � N, let hxt i1tD1 be a sequence in N, and assume
that MT.Ea; hxt i1tD1/ � B . If r 2 N and B D

Sr
iD1Bi , then there exist i 2 ¹1; 2;

: : : ; rº and a sum subsystem hyt i1tD1 of hxt i1tD1 such that MT.Ea; hyt i1tD1/ � Bi .

Proof. Pick by Lemma 5.11 some p C p D p 2
T1
kD1 FS.hxt i1tDk/. By Theorem

17.32, MT.Ea; hxt i1tD1/ 2 a1pCa2pC� � �Camp, where Ea D ha1; a2; : : : ; ami. Pick
i 2 ¹1; 2; : : : ; rº such thatBi 2 a1pCa2pC� � �Camp, and apply Theorem 17.31.

We observe that certain different members of A always have Milliken–Taylor sys-
tems in the same cell of a partition.

Theorem 17.34. Let Ea; Eb 2 A, and assume that there is a positive rational s such
that Ea D s Eb. Then whenever r 2 N and N D

Sr
iD1Ai , there exist i 2 ¹1; 2;

: : : ; rº and sequences hxt i1tD1 and hyt i1tD1 such that MT.Ea; hxt i1tD1/ � Ai and

MT.Eb; hyt i1tD1/ � Ai .

Proof. Assume that s D m
n

wherem; n 2 N and let Ec D mEb. Pick by Corollary 17.33
some i 2 ¹1; 2; : : : ; rº and a sequence hzt i1tD1 such that MT.Ec; hzt i1tD1/ � Ai . For

each t 2 N, let xt D nzt and yt D mzt . Then MT.Ea; hxt i1tD1/ D MT.Eb; hyt i1tD1/ D
MT.Ec; hzt i1tD1/.

We show now that we can separate certain Milliken–Taylor systems.

Theorem 17.35. There is a set A � N such that for any sequence hxt i1tD1 in N,
MT.h1; 2i; hxt i1tD1/ 6� A and MT.h1; 4i; hxt i1tD1/ 6� N n A.

Proof. For x 2 N, let supp.x/ be the binary support of x so that x D
P
t2supp.x/ 2

t .
For each x 2 N, let a.x/ D max supp.x/ and let d.x/ D min supp.x/. We also define
a function z so that z.x/ counts the number of blocks of zeros of odd length interior
to the binary expansion of x, that is between a.x/ and d.x/. Thus, for example, if in
binary, x D 1011001010001100000, then z.x/ D 3. (The blocks of length 1 and 3
were counted, but the block of length 5 is not counted because it is not interior to the
expansion of x.)

Let A D ¹x 2 N W z.x/ 	 0 .mod 4/ or z.x/ 	 3 .mod 4/º. Suppose that we have
a sequence hxt i1tD1 such that either

MT.h1; 2i; hxt i1tD1/ � A or MT.h1; 4i; hxt i1tD1/ � N n A:

Pick a sum subsystem hyt i1tD1 of hxt i1tD1 such that for each t , d.ytC1/ > a.yt /.
(See Exercise 17.4.1.) For i 2 ¹0; 1; 2; 3º let

Bi D ¹x 2 N W z.x/ 	 i .mod 4/º:
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By Corollary 17.33 we may presume that if

MT.h1; 2i; hxt i
1
tD1/ � A;

then
MT.h1; 2i; hyt i

1
tD1/ � B0 or MT.h1; 2i; hyt i

1
tD1/ � B3

and, if
MT.h1; 4i; hxt i

1
tD1/ � N n A;

then
MT.h1; 4i; hyt i

1
tD1/ � B1 or MT.h1; 4i; hyt i

1
tD1/ � B2:

By the pigeon hole principle we may presume that for t; k 2 N,

a.yt / 	 a.yk/ .mod 2/; d.yt / 	 d.yk/ .mod 2/; and z.yt / 	 z.yk/ .mod 4/:

Assume first that for t 2N, a.yt /	 d.yt / .mod 2/. Now if MT.h1; 2i; hyt i1tD1/�
A, we have y1 C y2 C 2y3 and y2 C 2y3 are in the same Bi so

z.y1 C y2 C 2y3/ 	 z.y2 C 2y3/ .mod 4/:

Since a.y1/ 	 d.y2/ .mod 2/ there is an odd block of zeros between y1 and y2
in y1 C y2 C 2y3, so z.y1 C y2 C 2y3/ D z.y1/ C 1 C z.y2 C 2y3/ and con-
sequently z.y1/ 	 3 .mod 4/. But d.2y3/ D d.y3/ C 1 6	 a.y2/ .mod 2/ so
z.y2 C 2y3/ D z.y2/ C z.y3/ 	 3 C 3 	 2 .mod 4/, a contradiction to the fact
that MT.h1; 2i; hyt i1tD1/ � A.

If MT.h1; 4i; hyt i1tD1/ � N n A, we have as above that

z.y1 C y2 C 4y3/ 	 z.y2 C 4y3/ .mod 4/

and z.y1C y2C 4y3/ D z.y1/C 1C z.y2C 4y3/ so that z.y1/ 	 3 .mod 4/. Since
d.4y3/ D d.y3/C 2 	 a.y2/ .mod 2/ we have z.y2C 4y3/ D z.y2/C 1C z.y3/ 	
3 .mod 4/, a contradiction to the fact that MT.h1; 4i; hyt i1tD1/ � N n A.

Now assume that for t 2 N, a.yt / 6	 d.yt / .mod 2/. If MT.h1; 2i; hyt i1tD1/ � A
we have z.y1Cy2C2y3/ 	 z.y2C2y3/ .mod 4/ and, since d.y2/ 6	 a.y1/ .mod 2/,
z.y1 C y2 C 2y3/ D z.y1/C z.y2 C 2y3/ so that z.y1/ 	 0 .mod 4/. Since

d.2y3/ D d.y3/C 1 	 a.y2/ .mod 2/

we have that z.y2 C 2y3/ D z.y2/C 1C z.y3/ 	 1 .mod 4/, a contradiction.
If MT.h1; 4i; hyt i1tD1/ � N n A, we have as above that z.y1/ 	 0 .mod 4/ and

since d.4y3/ D d.y3/ C 2 6	 a.y2/ .mod 2/, z.y2 C 4y3/ D z.y2/ C z.y3/ 	 0

.mod 4/, a contradiction.
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In fact, a much stronger result holds. Unfortunately, the proof is too long to include
here.

Theorem 17.35.1. Let Ea; Eb 2 A and assume that there is no positive rational ˛ such
that Eb D ˛ � Ea. Then there exist sets B and C such that N D B [ C , there is no
sequence hxt i1tD1 with MT.Ea; hxt i1tD1/ � B , and there is no sequence hxt i1tD1 with

MT.Eb; hxt i1tD1/ � C .

Proof. [125, Theorem 3.14].

By Corollary 17.33 all Milliken–Taylor matrices are image partition regular.

Corollary 17.36. Let Ea D ha1; a2; : : : ; ami 2 A and let M be an associated Milli-
ken–Taylor matrix. Then M is centrally image partition regular if and only if m D 1.
In fact, ifm D 1, and C is any IP set, then there exists Ex 2 N! with all entries ofM Ex
in C . And, if m > 1, then there is an IP� set C such that no Ex 2 N! has all entries
of M Ex in C .

Proof. Assume first Ea D hai and let C be an IP set in N. Pick by Theorem 5.12 an
idempotent p 2 C . By Lemma 6.6, aN 2 p so pick by Theorem 5.8 a sequence
hyni

1
nD0 such that FS.hyni1nD0/ � C \ aN. For each n 2 !, let xn D

yn
a

.
Now assume that m > 1 and pick by Theorem 17.35.1 sets B and C such that

N D B [ C , there is no sequence hxt i1tD1 with MT.h1i; hxt i1tD1/ � B , and there is
no sequence hxt i1tD1 with MT.Ea; hxt i1tD1/ � C . By the m D 1 case already proved,
B is not an IP set, so C is an IP� set.

In Section 15.4, we found several characterizations of finite image partition regular
matrices.

Question 17.37. Can one find a reasonable combinatorial characterization of infinite
image partition regular matrices?

Exercise 17.4.1. In Exercise 5.2.2, the reader was asked to show combinatorially that
given any sequence hxt i1tD1 there is a sum subsystem hyt i1tD1 of hxt i1tD1 such that
whenever 2k < yt , one has 2kC1jytC1. Use the fact that, by Lemma 6.8, given any
p C p D p 2

T1
kD1 FS.hxt i1tDk/, one has p 2 H, to show that there is a sum

subsystem hyt i1tD1 of hxt i1tD1 such that for each t 2 N, a.yt /C 2 
 d.ytC1/.

Exercise 17.4.2. Prove that if H is a finite subset of A, r 2 N, and N D
Sr
iD1Ai ,

then there exist a function f W H ! ¹1; 2; : : : ; rº and a sequence hxt i1tD1 such that
for each Ea 2 H , MT.Ea; hxt i1tD1/ � Af .Ea/. (Hint: Use Corollary 17.33.)
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17.5 Sums and Products in .0; 1/ – Measurable and Baire
Partitions

We show in this section that if one has a finite partition of the real interval .0; 1/ each
member of which is Lebesgue measurable, or each member of which is a Baire set,
then one cell will contain FS.hxni1nD1/ [ FP.hxni1nD1/ for some sequence hxni1nD1
in .0; 1/. (The terminology “Baire set” has different meanings in the literature. We
take it to mean members of the smallest � -algebra containing the open sets and the
nowhere dense sets.) In fact, we show that certain sums of products and products of
sums can also be found in the specified cell.

We use the algebraic structure of the subset 0C of ˇ.0; 1/d which we discussed in
Section 13.3. The results that we obtain are topological in nature, so it is natural to
wonder how one can obtain them starting with the discrete topology on .0; 1/. The
answer is that we use certain topologically characterized subsets of 0C. Recall that a
subset A of R is meager (or first category) if and only if A is the countable union of
nowhere dense sets.

Definition 17.38. (a) A set A � .0; 1/ is Baire large if and only if for every � > 0,
A \ .0; �/ is not meager.

(b) B D ¹p 2 0C W for all A 2 p, A is Baire largeº.

Lemma 17.39. B is a left ideal of .0C; � /.

Proof. Since the union of finitely many meager sets is meager, one sees easily that
whenever .0; 1/ is partitioned into finitely many sets, one of them is Baire large.

Consequently, by Theorem 5.7, it follows that ¹p 2 ˇ.0; 1/d W for all A 2 p, A is
Baire largeº ¤ ;. On the other hand, if p 2 ˇ.0; 1/d n 0C one has some � > 0 such
that .�; 1/ 2 p and .�; 1/ is not Baire large. Thus B ¤ ; . To see that B is a left ideal
of 0C, let p 2 B and q 2 0C and let A 2 q � p. Pick x 2 .0; 1/ such that x�1A 2 p.
Given � > 0, x�1A \ .0; �/ is not meager so x.x�1A \ .0; �// is not meager and
x.x�1A \ .0; �// � A \ .0; �/.

The following result, and its measurable analogue Theorem 17.46, are the ones
that allow us to obtain the combined additive and multiplicative results. Recall that a
subset of R is a Baire set if and only if it can be written as the symmetric difference
of an open set and a meager set. (Or do Exercise 17.5.1.)

Theorem 17.40. Let p be a multiplicative idempotent in B and let A be a Baire set
which is a member of p. Then ¹x 2 A W x�1A 2 p and �x C A 2 pº 2 p.

Proof. Let B D ¹x 2 A W x�1A 2 pº. Then since p D p � p, B 2 p. Also A is
a Baire set so pick an open set U and a meager set M such that A D UM . Now



Section 17.5 Sums and Products in .0; 1/ – Measurable and Baire Partitions 453

M n U is meager so M n U … p so U nM 2 p. We claim that

.U nM/ \ B � ¹x 2 A W x�1A 2 p and � x C A 2 pº:

So let x 2 .U n M/ \ B and pick � > 0 such that .x; x C �/ � U . To see that
�x C A 2 p, we observe that .0; 1/ n .�x C A/ is not Baire large. Indeed one has
..0; 1/ n .�xCA//\ .0; �/ � �xCM , a meager set. (Given y 2 .0; �/, xC y 2 U
so, if x C y … A, then x C y 2M .)

Now we turn our attention to deriving the measurable analogue of Theorem 17.40.
We denote by �.A/ the Lebesgue measure of the measurable set A, and by ��.B/
the outer Lebesgue measure of an arbitrary set B . We assume familiarity with the
basic facts of Lebesgue measure as encountered in any standard introductory analysis
course. The notion corresponding to “Baire large” is that of having positive upper
density near 0. We use the same notation for upper density near 0 as we used for
upper density of sets of integers.

Definition 17.41. Let A � .0; 1/.

(a) The upper density near 0 of A, d.A/ is defined by

d.A/ D lim sup
h#0

��.A \ .0; h//

h
:

(b) A point x 2 .0; 1/ is a density point of A if and only if

lim
h#0

��.A \ .x � h; x C h//

2h
D 1:

The following result, while quite well known, is not a part of standard introductory
analysis courses so we include a proof.

Theorem 17.42 (Lebesgue Density Theorem). LetA be a measurable subset of .0; 1/.
Then �.¹x 2 A W x is not a density point of Aº/ D 0.

Proof. If x is not a density point of A, then there is some � > 0 such that

lim inf
h#0

�.A \ .x � h; x C h//

2h
< 1 � �:

Since the union of countably many sets of measure 0 is again of measure 0, it suffices
to let � > 0 be given, let

B D
°
x 2 A W lim inf

h#0

�.A \ .x � h; x C h//

2h
< 1 � �

±
and show that �.B/ D 0. Suppose instead that ��.B/ > 0. Pick an open set U such
that B � U and �.U / < 
�.B/

1�� .
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We first claim that

if hInin2F is a (finite or countably infinite) indexed family of pairwise
disjoint intervals contained in U and for each n 2 F ,
�.A \ In/ < .1 � �/�.In/, then ��.B n

S
n2F In/ > 0.

(†)

To see this, since in general ��.C [ D/ 
 ��.C / C ��.D/, it suffices to show
that ��.B \

S
n2F In/ < �

�.B/. And indeed

��
�
B \

S
n2F

In

�

 �

�
A \

S
n2F

In

�
D
X
n2F

�.A \ In/

<
X
n2F

.1 � �/�.In/


 .1 � �/�.U /

< ��.B/:

Now choose x1 2 B and h1 > 0 such that Œx1 � h1; x1 C h1� � U and

�.A \ .x1 � h1; x1 C h1// < .1 � �/2h1:

Inductively, let n 2 N and assume we have chosen x1; x2; : : : ; xn in B and positive
h1; h2; : : : ; hn such that each Œxi�hi ; xiChi � � U , each �.A\.xi�hi ; xiChi // <
.1 � �/2hi , and Œxi � hi ; xi C hi � \ Œxj � hj ; xj C hj � D ; for i ¤ j .

Let

dn D sup
°
h W there exist x 2 B such that Œx � h; x C h� � U;

Œx � h; x C h� \
nS
iD1

Œxi � hi ; xi C hi � D ;;

and �.A \ .x � h; x C h// < .1 � �/2h
±
:

Notice that dn > 0. Indeed, by (†) one may pick x 2 B n
Sn
iD1Œxi � hi ; xi C hi �

and then pick ı > 0 such that .x � ı; x C ı/ \
Sn
iD1Œxi � hi ; xi C hi � D ; and

.x � ı; x C ı/ � U . Then, since x 2 B , one may pick positive h < ı such that
�.A \ .x � h; x C h// < .1 � �/2h.

Pick xnC1 2 B and hnC1 >
dn
2 such that ŒxnC1 � hnC1; xnC1 C hnC1� � U ,

ŒxnC1 � hnC1; xnC1 C hnC1� \
nS
iD1

Œxi � hi ; xi C hi � D ;;

and �.A \ .xnC1 � hnC1; xnC1 C hnC1// < .1 � �/2hnC1.
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The inductive construction being complete, let C D B n
S1
nD1Œxn � hn; xnC hn�.

Then by (†) ��.C / > 0. Also, since hŒxn � hn; xn C hn�i1nD1 is a pairwise disjoint
collection contained in .0; 1/,

P1
nD1 hn converges, so pick m 2 N such that

1X
nDmC1

hn < �
�.C /=6:

Then �.
S1
nDmC1Œxn � 3hn; xn C 3hn�/ < �

�.C / so pick x 2 C n .
S1
nDmC1Œxn �

3hn; xn C 3hn�/.
Then x 2 B n

Sm
nD1Œxn�hn; xnChn� so pick h > 0 such that Œx�h; xCh� � U ,

Œx�h; xCh�\
Sm
nD1Œxn�hn; xnChn� D ;, and �.A\.x�h; xCh// < .1��/2h.

Now there is some k such that Œx � h; x C h� \
Sk
nD1Œxn � hn; xn C hn� ¤ ;

(since otherwise each dk � h and consequently
P1
nD1 hn diverges) so pick the first

k such that Œx � h; x C h� \ Œxk � hk ; xk C hk � ¤ ; and notice that k > m. Then
hk �

dk�1
2
� h
2

so that jx�xkj 
 hChk 
 3hk and hence x 2 Œxk�3hk ; xkC3hk �,
contradicting the fact that x …

S1
nDmC1Œxn � 3hn; xn C 3hn�.

We also need another basic result about measurable sets.

Lemma 17.43. Let A be a measurable subset of .0; 1/ such that d.A/ > 0. There
exists B � A such that B [ ¹0º is compact and d.A n B/ D 0.

Proof. For each n 2 N, letAn D A\.1=2n; 1=2n�1/ and let T D ¹n 2 N W �.An/ >
0º. As is well known, given any bounded measurable set C and any � > 0 there is a
compact subset D of C with �.D/ > �.C/ � �. Thus for each n 2 T , pick compact
Bn � An with �.Bn/ > �.An/ �

1
4nC1

. For n 2 N n T , if any, let Bn D ;. Let
B D

S1
nD1 Bn. Then B [ ¹0º is compact.

Suppose now that d.A n B/ D ˛ > 0. Pick m 2 N such that 1
3�2m

< ˛. Pick x <
1=2m such that �..AnB/\.0; x//=x > 1

3�2m
. Pick n 2 N with 1=2n 
 x < 1=2n�1

and note that n > m. Then

�..A n B/ \ .0; x// 


1X
kDn

�.An n Bn/ <

1X
kDn

1

4kC1
D

1

3 � 4n

and x � 1
2n

so

�..A n B/ \ .0; x//=x <
1

3 � 2n
<

1

3 � 2m
;

a contradiction.

Definition 17.44. L D ¹p 2 0C W for all A 2 p, d.A/ > 0º.

Lemma 17.45. L is a left ideal of .0C; � /.



456 Chapter 17 Sums and Products

Proof. It is an easy exercise to show that if d.A [ B/ > 0 then either d.A/ > 0 or
d.B/ > 0. Consequently, by Theorem 3.11, it follows that ¹p 2 ˇ.0; 1/d W for all
A 2 p, d.A/ > 0º ¤ ;. On the other hand, if p 2 ˇ.0; 1/d n 0C one has some � > 0
such that .�; 1/ 2 p and d..�; 1// D 0. Thus L ¤ ;. Let p 2 L and let q 2 0C.
To see that q � p 2 L, let A 2 q � p and pick x such that x�1A 2 p. Another easy
exercise establishes that d.A/ D d.x�1A/ > 0.

Theorem 17.46. Let p be a multiplicative idempotent in L and letA be a measurable
member of p. Then ¹x 2 A W x�1A 2 p and �x C A 2 pº 2 p.

Proof. Let B D ¹x 2 A W x�1A 2 pº. Then B 2 p since p D p � p. Let C D
¹y 2 A W y is not a density point of Aº. By Theorem 17.42, �.C/ D 0. Consequently
since p 2 L, C … p so B n C 2 p. We claim that B n C � ¹x 2 A W x�1A 2 p
and �x C A 2 pº. Indeed, given x … C one has 0 is a density point of �x C A
so by an easy computation, d..0; 1/ n .�x C A// D 0 so .0; 1/ n .�x C A/ … p so
�x C A 2 p.

Now let us define the kind of combined additive and multiplicative structures we
obtain.

Definition 17.47. Let hxni1nD1 be a sequence in .0; 1/. We define FSP.hxni1nD1/
and � W FSP.hxni1nD1/ ! P .Pf .N// inductively to consist of only those objects
obtainable by iteration of the following:

(1) If m 2 N, then xm 2 FSP.hxni1nD1/ and ¹mº 2 �.xm/.

(2) If x 2 FSP.hxni1nD1/, m 2 N, F 2 �.x/, and minF > m, then ¹xm � x; xm C
xº � FSP.hxni1nD1/, F [ ¹mº 2 �.xm � x/, and F [ ¹mº 2 �.xm C x/.

For example, if z D x3 C x5 � x7 � .x8 C x10 � x11/, then z 2 FSP.hxni1nD1/ and
¹3; 5; 7; 8; 10; 11º 2 �.z/. (Of course, it is also possible that z D x4 C x12 � x13,
in which case also ¹4; 12; 13º 2 �.z/.) Note also that .x3 C x5/ � x7 is not, on its
face, a member of FSP.hxni1nD1/. Notice that trivially FS.hxni1nD1/[FP.hxni1nD1/ �
FSP.hxni1nD1/.

The proof of the following theorem is reminiscent of the first proof of Theorem 5.8.

Theorem 17.48. Let p be a multiplicative idempotent in B and let A be a Baire
set which is a member of p. Then there is a sequence hxni1nD1 in .0; 1/ such that
FSP.hxni1nD1/ � A

Proof. Let A1 D A. By Theorem 17.40, ¹x 2 A1 W x�1A1 2 p and �xCA1 2 pº 2
p so pick x1 2 A1 such that x1�1A1 2 p and �x1 C A1 2 p. Let

A2 D A1 \ x1
�1A1 \ .�x1 C A1/:
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Then A2 2 p and, since multiplication by x1�1 and addition of �x1 are homeomor-
phisms, A2 is a Baire set.

Inductively, let n 2 N n ¹1º and assume that we have chosen hxt in�1tD1 and hAt intD1
so that An is a Baire set which is a member of p. Again invoking Theorem 17.40, one
has that ¹x 2 An W x�1An 2 p and �x C An 2 pº 2 p so pick xn 2 An such that
xn
�1An 2 p and �xn C An 2 p. Let AnC1 D An \ xn�1An \ .�xn C An/. Then

AnC1 is a Baire set which is a member of p.
The induction being complete, we show that FSP.hxni1nD1/ � A by establishing

the following stronger assertion: If

z 2 FSP.hxni
1
nD1/; F 2 �.z/; and m D minF;

then z 2 Am. Suppose instead that this conclusion fails, and choose

z 2 FSP.hxni
1
nD1/; F 2 �.z/; and m D minF

such that z … Am and jF j is as small as possible among all such counterexamples.
Now if F D ¹mº, then z D xm 2 Am, so we must have jF j > 1. Let G D F n ¹mº

and pick y 2 FSP.hxni1nD1/ such thatG 2 �.y/ and either z D xmCy or z D xm �y.
Let r D minG. Since jGj < jF j, we have that

y 2 Ar � AmC1 � xm
�1Am \ .�xm C Am/

and hence xm C y 2 Am and xm � y 2 Am, contradicting the choice of z.

Corollary 17.49. Let r 2 N and let .0; 1/ D
Sr
iD1Ai . If each Ai is a Baire

set, then there exist i 2 ¹1; 2; : : : ; rº and a sequence hxni1nD1 in .0; 1/ such that
FSP.hxni1nD1/ � Ai .

Proof. By Lemma 17.39, B is a left ideal of .0C; � /, which is a compact right topolog-
ical semigroup by Lemma 13.29. Thus, by Corollary 2.6 we may pick an idempotent
p 2 B. Pick i 2 ¹1; 2; : : : ; rº such that Ai 2 p and apply Theorem 17.48.

We have similar, but stronger, results for measurable sets.

Theorem 17.50. Let p be a multiplicative idempotent in L and letA be a measurable
set which is a member of p. Then there is a sequence hxni1nD1 in .0; 1/ such that
c`FSP.hxni1nD1/ � A [ ¹0º

Proof. Since A 2 p, d.A/ > 0. By Lemma 17.43, pick B � A such that B [ ¹0º is
compact and d.A n B/ D 0. Then A n B … p so B 2 p.

Now, proceeding exactly as in the proof of Theorem 17.48, invoking Theorem 17.46
instead of Theorem 17.40, one obtains a sequence hxni1nD1 such that FSP.hxni1nD1/ �
B and consequently c`FSP.hxni1nD1/ � B [ ¹0º � A [ ¹0º.
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Notice that if c`FSP.hxni1nD1/ � A [ ¹0º, then in particular c`FS.hxni1nD1/ �
A [ ¹0º and hence, if F is any subset of N, finite or infinite, one has

P
n2F xn 2 A.

Corollary 17.51. Let r 2 N and let .0; 1/ D
Sr
iD1Ai . If each Ai is a measurable

set, then there exist i 2 ¹1; 2; : : : ; rº and a sequence hxni1nD1 in .0; 1/ such that
c`FSP.hxni1nD1/ � Ai [ ¹0º.

Proof. By Lemma 17.45, L is a left ideal of .0C; � /, which is a compact right topolog-
ical semigroup by Lemma 13.29. Thus, by Corollary 2.6 we may pick an idempotent
p 2 L. Pick i 2 ¹1; 2; : : : ; rº such that Ai 2 p and apply Theorem 17.50.

Exercise 17.5.1. Let X be a topological space and let B D ¹U 4M W U is open in
X and M is meager in Xº. Show that B is the set of Baire sets in X .

17.6 Notes

The material in Section 17.1 is from [40], [42], and [46] (results obtained in collabo-
ration with V. Bergelson).

The material in Section 17.2 is from [196]. (In [196], some pains were taken to
reduce the number of cells of the partition so that, in lieu of the 4610 cells of the
partition we used, only 7 were needed.)

It is a result of R. Graham (presented in [188, Theorem 4.3]) that whenever ¹1; 2;
: : : ; 252º D A1[A2, there must be some x ¤ y and some i 2 ¹1; 2ºwith ¹x; y; xCy;
x � yº � Ai , and consequently the answer to Question 17.18 is “yes” for n D r D 2.

Theorem 17.21 is from [189] in the case n D 2. It is shown in [189] that the
partition R can in fact have 3 cells. It is a still unsolved problem of J. Owings [314]
as to whether there is a two cell partition of N such that neither cell contains ¹xnCxm W
n;m 2 Nº for any one-to-one sequence hxt i1tD1 (where, of course, one specifically
does allow n D m).

Theorem 17.24 is due to G. Smith [367] and Theorem 17.27 is a special case of
a much more general result from [367], namely that given any m ¤ n in N, there
is a two cell partition of N neither cell of which contains both SPn.hxt i1tD1/ and
SPm.hyt i1tD1/ for any sequences hxt i1tD1 and hyt i1tD1.

The results of Section 17.4, including Theorem 17.35.1, one of four nonelementary
results results used in this book that we do not prove, are from [125], which is a result
of collaboration with W. Deuber, H. Lefmann, and I. Leader. It is shown in [225], a
result of collaboration with I. Leader, that most of the results of this section remain
true if the entries of Ea are allowed to be negative.

Most of the material in Section 17.5 is from [52], results obtained in collabora-
tion with V. Bergelson and I. Leader. The proof of the Lebesgue Density Theorem
(Theorem 17.42) is from [315]. The idea of considering Baire or measurable parti-
tions arises from research of Plewik, Prömel, and Voigt: Given a sequence htni1nD1
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in .0; 1�, such that
P1
nD1 tn converges, define the set of all sums of the sequence by

AS.htni1nD1/ D ¹
P
n2F tn W ; ¤ F � Nº. In [324], Prömel and Voigt considered

the question: If .0; 1� D
Sr
iD1Ai , must there exist i 2 ¹1; 2; : : : ; rº and a sequence

htni
1
nD1 in .0; 1� with AS.htni1nD1/ � Ai? As they pointed out, one easily sees (using

the Axiom of Choice) that the answer is “no” by a standard diagonalization argument.
They showed, however that if one adds the requirement that each Ai has the property
of Baire, then the answer becomes “yes”. In [322] Plewik and Voigt reached the same
conclusion in the event that each Ai is assumed to be Lebesgue measurable. A unified
and simplified proof of both results was presented in [56], a result of collaboration
with V. Bergelson and B. Weiss.



Chapter 18

Multidimensional Ramsey Theory

Several results in Ramsey Theory, including Ramsey’s Theorem itself, naturally apply
to more than one “dimension”, suitably interpreted. That is, while van der Waerden’s
Theorem and the Finite Sums Theorem, for example, deal with colorings of the ele-
ments of N, Ramsey’s Theorem deals with colorings of finite subsets of N, which can
be identified with points in Cartesian products.

18.1 Ramsey’s Theorem and Generalizations

In this section we present a proof of Ramsey’s Theorem which utilizes an arbitrary
nonprincipal ultrafilter. Then we adapt that proof to obtain some generalizations,
including the Milliken–Taylor Theorem. The main feature of the adaptation is that we
utilize ultrafilters with special properties. (For example, to obtain the Milliken–Taylor
Theorem, we use an idempotent in place of the arbitrary nonprincipal ultrafilter.)

While many of the applications are algebraic, the basic tools are purely set theoretic.

Lemma 18.1. Let S be a set, let p 2 S�, let k; r 2 N, and let ŒS�k D
Sr
iD1Ai . For

each i 2 ¹1; 2; : : : ; rº, each t 2 ¹1; 2; : : : ; kº, and each E 2 ŒS�t�1, define Bt .E; i/
by downward induction on t :

(1) For E 2 ŒS�k�1; Bk.E; i/ D ¹y 2 S nE W E [ ¹yº 2 Aiº.

(2) For t 2 ¹1; 2; : : : ; k � 1º and E 2 ŒS�t�1,

Bt .E; i/ D ¹y 2 S nE W BtC1.E [ ¹yº; i / 2 pº:

Then for each t 2 ¹1; 2; : : : ; kº and each E 2 ŒS�t�1, S nE D
Sr
iD1Bt .E; i/.

Proof. We proceed by downward induction on t . If t D k, then for each y 2 S n E,
E [ ¹yº 2 Ai for some i .

So let t 2 ¹1; 2; : : : ; k � 1º and let E 2 ŒS�t�1. Then given y 2 S nE, one has by
the induction hypothesis that S n .E [ ¹yº/ D

Sr
iD1BtC1.E [ ¹yº; i / so for some

i , BtC1.E [ ¹yº; i / 2 p.

Theorem 18.2 (Ramsey’s Theorem). Let S be an infinite set and let k; r 2 N. If
ŒS�k D

Sr
iD1Ai , then there exist i 2 ¹1; 2; : : : ; rº and an infinite subset C of S with

ŒC �k � Ai .
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Proof. If k D 1, this is just the pigeon hole principle, so assume that k � 2.
Let p be any nonprincipal ultrafilter on S . Define Bt .E; i/ as in the statement of

Lemma 18.1. Then S D
Sr
iD1B1.;; i / so pick i 2 ¹1; 2; : : : ; rº such that B1.;; i / 2

p. Pick x1 2 B1.;; i / (so that B2.¹x1º; i / 2 p.
Inductively, let n 2 N and assume that hxminmD1 has been chosen so that whenever

t 2 ¹1; 2; : : : ; k � 1º and m1 < m2 < � � � < mt 
 n, one has

BtC1.¹xm1 ; xm2 ; : : : ; xmt º; i / 2 p:

Choose

xnC1 2 .B1.;; i / n ¹x1; x2; : : : ; xnº/

\
\
¹BtC1.¹xm1 ; xm2; : : : ; xmt º; i / W t 2 ¹1; 2; : : : ; k � 1º

and m1 < m2 < � � � < mt 
 nº:

To see that BtC1.¹xm1 ; xm2; : : : ; xmt º; i / 2 p whenever t 2 ¹1; 2; : : : ; k � 1º and
m1 < m2 < � � � < mt 
 nC 1, let such t and m1; m2; : : : ; mt be given. If mt 
 n,
then the induction hypothesis applies, so assume that mt D n C 1. If t D 1, the
conclusion holds because xnC1 2 B1.;; i /. If t > 1, the conclusion holds because
xnC1 2 Bt .¹xm1 ; xm2 ; : : : ; xmt�1º; i /.

The sequence hxni1nD1 having been chosen, let m1 < m2 < � � � < mk . Then
xmk 2 Bk.¹xm1; xm2 ; : : : ; xmk�1º; i / so ¹xm1; xm2 ; : : : ; xmkº 2 Ai .

In order to establish some generalizations of Ramsey’s Theorem, we introduce
some special notation.

Definition 18.3. Let S be a set, let k 2 N, and let ' W S ! N.

(a) If hDni1nD1 is a sequence of subsets of S , then

ŒhDni
1
nD1; '�

k
< D ¹¹x1; x2; : : : ; xkº W xi ¤ xj for i ¤ j in ¹1; 2; : : : ; kº

and there exist m1 < m2 < � � � < mk in N

such that for each j 2 ¹1; 2; : : : ; kº; xj 2 Dmj
and for each j 2 ¹2; 3; : : : ; kº; mj > '.xj�1/º:

(b) If t 2 N and hDnitnD1 is a sequence of subsets of S , then

ŒhDni
t
nD1; '�

k
< D ¹¹x1; x2; : : : ; xkº W xi ¤ xj for i ¤ j in ¹1; 2; : : : ; kº

and there exist m1 < m2 < � � � < mk in ¹1; 2; : : : ; tº

such that for each j 2 ¹1; 2; : : : ; kº; xj 2 Dmj
and for each j 2 ¹2; 3; : : : ; kº; mj > '.xj�1/º:
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For example, if S D N, '.n/ D n, and Dn D ¹m 2 N W m � nº for each n 2 N,
then

ŒhDni
1
nD1; '�

k
< D ¹¹x1; x2; : : : ; xkº � N W x1 < x2 < � � � < xkº D ŒN�

k:

Theorem 18.4. Let S be an infinite set, let p 2 S�, let k; r 2 N, and assume that
ŒS�k D

Sr
iD1Ai . Let ' W S ! N and assume that there is some C 2 p on which ' is

finite-to-one. Then there exist i 2 ¹1; 2; : : : ; rº and a sequence hDni1nD1 of members
of p such that DnC1 � Dn for each n and ŒhDni1nD1; '�

k
< � Ai .

Proof. First assume that k D 1. Pick i 2 ¹1; 2; : : : ; rº such that

E D ¹x 2 S W ¹xº 2 Aiº 2 p

and let Dn D E for each n. Then ŒhDni1nD1; '�
1
< D Ai .

Now assume that k > 1 and let Bt .E; i/ be defined for each i 2 ¹1; 2; : : : ; rº, each
t 2 ¹1; 2; : : : ; kº, and each E 2 ŒS�t�1 as in Lemma 18.1. Then by Lemma 18.1,
S D

Sr
iD1 B1.;; i /, so pick i 2 ¹1; 2; : : : ; rº such that B1.;; i / 2 p.

For each ` 2 N, let H` D ¹x 2 S W '.x/ 
 `º. Then by assumption, for each `,
H` \ C is finite. Let D1 D C \ B1.;; i /. Inductively let n 2 N and assume that we
have chosen hDminmD1 in p such that for each m 2 ¹1; 2; : : : ; nº:

(1) If m < n, then DmC1 � Dm.

(2) Ifm>1, then for each t 2¹1; 2; : : : ; k�1º and eachE 2 ŒhDj\Hm�1im�1jD1 ; '�
t
<,

Dm � BtC1.E; i/.

Notice that both hypotheses are vacuous when n D 1.
We now claim that if t 2 ¹1; 2; : : : ; k � 1º and E 2 ŒhDj \ HninjD1; '�

t
<, then

BtC1.E; i/ 2 p. So let such t and E be given. Then there exist x1; x2; : : : ; xt in
S and m1 < m2 < � � � < mt in ¹1; 2; : : : ; nº such that E D ¹x1; x2; : : : ; xtº, xj 2
Dmj \Hn for each j 2 ¹1; 2; : : : ; tº, and for each j 2 ¹2; 3; : : : ; tº, mj > '.xj�1/.

If t D 1, we have x1 2 Dm1 � D1 � B1.;; i /, so B2.¹x1º; i / 2 p. So now
assume that t > 1 and let F D ¹x1; x2; : : : ; xt�1º. We claim that F 2 ŒhDj \
Hmt�1i

mt�1
jD1 ; '�

t�1
< . Indeed, one only needs to verify that for each j 2¹1; 2; : : : ; t�1º,

xj 2 Hmt�1. To see this, notice that '.xj / < mjC1 
 mt .
Since F 2 ŒhDj \Hmt�1i

mt�1
jD1 ; '�

t�1
< , we have by hypothesis (2) that

xt 2 Dmt � Bt .F; i/

so that BtC1.E; i/ 2 p as required.
Now for each t 2 ¹1; 2; : : : ; k � 1º, ŒhDj \HninjD1; '�

t
< is finite (because C \Hn

is finite), so we may choose DnC1 2 p such that DnC1 � Dn and for each t 2
¹1; 2; : : : ; k � 1º and for each E 2 ŒhDj \HninjD1; '�

t
<, DnC1 � BtC1.E; i/.

The construction being complete, we now only need to show that ŒhDni1nD1; '�
k
< �

Ai . So let E 2 ŒhDni1nD1; '�
k
< and pick x1; x2; : : : ; xk , and m1 < m2 < � � � < mk
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such that for each j 2 ¹1; 2; : : : ; kº, xj 2 Dmj , and for each j 2 ¹2; 3; : : : ; kº,
mj > '.xj�1/, and E D ¹x1; x2; : : : ; xkº.

Let F D ¹x1; x2; : : : ; xk�1º. Then for each j 2 ¹1; 2; : : : ; k � 1º, '.xj / <
mjC1 
 mk so F 2 ŒhDj \ Hmk�1i

mk�1
jD1 ; '�k�1< so xk 2 Dmk � Bk.F; i/, so

E 2 Ai as required.

As the first application of Theorem 18.4, consider the following theorem which
is a common generalization of Ramsey’s Theorem and van der Waerden’s Theorem
(Corollary 14.2). To prove this generalization, we use an ultrafilter which has the
property that every member contains an arbitrarily long arithmetic progression.

Theorem 18.5. Let k; r 2 N and let ŒN�k D
Sr
iD1Ai . Then there exist sequences

hani
1
nD1 and hdni1nD1 in N such that whenever n1 < n2 < � � � < nk and for each

j 2 ¹1; 2; : : : ; kº, tj 2 ¹0; 1; : : : ; nj º, one has

¹an1 C t1dn1 ; an2 C t2dn2 ; : : : ; ank C tkdnkº 2 Ai :

Proof. Let ' W N ! N be the identity map and pick p 2 AP (which is nonempty by
Theorem 14.5). Pick i 2 ¹1; 2; : : : ; rº and a sequence hDni1nD1 of members of p as
guaranteed by Theorem 18.4.

Pick a1 and d1 such that ¹a1; a1 C d1º � D1 and let `.1/ D 1. Inductively
assume that haminmD1, hdminmD1, and h`.m/inmD1 have been chosen so that for each
m 2 ¹1; 2; : : : ; nº, ¹am; am C dm; am C 2dm; : : : ; am Cmdmº � D`.m/. Let `.nC
1/ D max¹`.n/C 1; an C ndn C 1º and pick anC1 and dnC1 such that

¹anC1; anC1 C dnC1; anC1 C 2dnC1; : : : ; anC1 C .nC 1/dnC1º � D`.nC1/:

Assume now that n1 < n2 < � � � < nk and for each j 2 ¹1; 2; : : : ; kº tj 2
¹0; 1; : : : ; nj º. Then

¹an1 C t1dn1; an2 C t2dn2 ; : : : ; ank C tkdnkº 2 ŒhDni
1
nD1; '�

k
< � Ai :

The case k D 2 of Theorem 18.5 is illustrated in Figure 18.1, where pairs of in-
tegers are identified with points below the diagonal. In this figure arithmetic pro-
gressions of length 2, 3, and 4 are indicated and the points which are guaranteed to
be monochrome are circled. It is the content of Exercise 18.1.1 to show that Theo-
rem 18.5 cannot be extended in the case k D 2 to require that pairs from the same
arithmetic progression be included.

A significant generalization of Ramsey’s Theorem, which has often been applied
to obtain other results, is the Milliken–Taylor Theorem. To state it, we introduce
some notation similar to that introduced in Definition 18.3. We state it in three forms,
depending on whether the operation of the semigroup is written as “C”, “�”, or “[”.
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Figure 18.1 Monochrome products of arithmetic progressions.

Definition 18.6. (a) Let .S;C/ be a semigroup, let hxni1nD1 be a sequence in S ,
and let k 2 N. Then

ŒFS.hxni1nD1/�
k
< D

°°X
t2H1

xt ;
X
t2H2

xt ; : : : ;
X
t2Hk

xt

±
W

for each j 2 ¹1; 2; : : : ; kº; Ht 2 Pf .N/

and if j < k; then maxHj < minHjC1
±
:

(b) Let .S; � / be a semigroup, let hxni1nD1 be a sequence in S , and let k 2 N. Then

ŒFP.hxni
1
nD1/�

k
< D

°° Y
t2H1

xt ;
Y
t2H2

xt ; : : : ;
Y
t2Hk

xt

±
W

for each j 2 ¹1; 2; : : : ; kº; Ht 2 Pf .N/

and if j < k; then maxHj < minHjC1
±
:

(c) Let hFni1nD1 be a sequence in the semigroup .Pf .N/;[/ and let k 2 N. Then

ŒFU.hFni1nD1/�
k
< D

°° S
t2H1

Ft ;
S
t2H2

Ft ; : : : ;
S
t2Hk

Ft

±
W

for each j 2 ¹1; 2; : : : ; kº; Ht 2 Pf .N/

and if j < k; then maxHj < minHjC1
±
:
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The Milliken–Taylor Theorem is proved by replacing the arbitrary nonprincipal
ultrafilter used in the proof of Theorem 18.2 by an idempotent.

Theorem 18.7 (Milliken–Taylor Theorem – Version 1). Let k; r 2 N, let hxni1nD1 be
a sequence in N, and assume that ŒN�k D

Sr
iD1Ai . Then there exist i 2 ¹1; 2; : : : ; rº

and a sum subsystem hyni1nD1 of hxni1nD1 such that

ŒFS.hyni
1
nD1/�

k
< � Ai :

Proof. By passing to a suitable sum subsystem if necessary, we may assume that
hxni

1
nD1 satisfies uniqueness of finite sums. (That is, if F;G 2 Pf .N/ andP

n2F xn D
P
n2G xn, then F D G.) Define ' W N ! N so that for each

F 2 Pf .N/, '.
P
n2F xn/ D maxF , defining ' arbitrarily on N n FS.hxni1nD1/.

Notice that ' is finite-to-one on FS.hxni1nD1/.
Pick by Lemma 5.11 an idempotent p 2 ˇN such that FS.hxmi1mDn/ 2 p for every

n 2 N. Pick by Theorem 18.4 some i 2 ¹1; 2; : : : ; rº and a sequence hDni1nD1 of
members of p such that DnC1 � Dn for each n and ŒhDni1nD1; '�

k
< � Ai .

Let B1 D D1 \ FS.hxmi1mD1/ and pick y1 2 B1?. Inductively, let n 2 N and
assume that we have chosen hyt intD1 in N and hBt intD1 in p. Let

BnC1 D Bn \ .�yn C Bn/ \D'.yn/C1 \ FS.hxmi1mD'.yn/C1/

and pick ynC1 2 BnC1?.
Since, for each n 2 N, ynC1 2 FS.hxmi1mD'.yn/C1/, we have immediately that
hyni

1
nD1 is a sum subsystem of hxni1nD1.

One can verify as in the first proof of Theorem 5.8 that whenever F 2 Pf .N/ and
m D minF , one has

P
n2F yn 2 Bm.

To complete the proof, it suffices to show that

ŒFS.hyni
1
nD1/�

k
< � ŒhDni

1
nD1; '�

k
<:

So, let a 2 ŒFS.hyni1nD1/�
k
< and pick F1; F2; : : : ; Fk 2 Pf .N/ such that

maxFj < minFjC1 for each j 2 ¹1; 2; : : : ; k � 1º and

a D
°X
t2F1

yt ;
X
t2F2

yt ; : : : ;
X
t2Fk

yt

±
:

For each j 2 ¹1; 2; : : : ; kº, let tj D minFj , let j̀ D maxFj , and let mj D
'.ytj�1/C 1. Then

P
t2Fj

yt 2 Btj � Dmj . Further, if j 2 ¹2; 3; : : : ; kº, then

'
� X
t2Fj�1

yt

�
D '.y

j̀�1
/ 
 '.ytj�1/ < mj :
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Corollary 18.8 (Milliken–Taylor Theorem – Version 2). Let k; r 2 N and let
ŒPf .N/�

k D
Sr
iD1Ai . Then there exist i 2 ¹1; 2; : : : ; rº and a sequence hFni1nD1 in

Pf .N/ such that maxFn < minFnC1 for all n and ŒFU.hFni1nD1/�
k
< � Ai .

Proof. For each i 2 ¹1; 2; : : : ; rº, let

Bi D
°°X
t2H1

2t�1;
X
t2H2

2t�1; : : : ;
X
t2Hk

2t�1
±
W ¹H1;H2; : : : ;Hkº 2 Ai

±
:

Then ŒN�k D
Sr
iD1Bi so pick by Theorem 18.7, i 2 ¹1; 2; : : : ; rº and a sum

subsystem hyni1nD1 of h2n�1i1nD1 such that ŒFS.hyni1nD1/�
k
< � Bi . Since hyni1nD1

is a sum subsystem of h2n�1i1nD1, pick for each n, some Fn 2 Pf .N/ such that
yn D

P
t2Fn

2t�1 and maxFn < minFnC1.

To see that ŒFU.hFni1nD1/�
k
< � Ai , let H1;H2; : : : ;Hk 2 Pf .N/ with maxHj <

minHjC1 for each j 2 ¹1; 2; : : : ; k � 1º. Then°X
t2H1

yt ;
X
t2H2

yt ; : : : ;
X
t2Hk

yt

±
2 ŒFS.hyni

1
nD1/�

k
< � Bi

so there exist ¹K1; K2; : : : ; Kkº 2 Ai such that°X
t2H1

yt ;
X
t2H2

yt ; : : : ;
X
t2Hk

yt

±
D
°X
t2K1

2t�1;
X
t2K2

2t�1; : : : ;
X
t2Kk

2t�1
±
:

Now, given j 2 ¹1; 2; : : : ; kº, let Gj D
S
n2Hj

Fn. Then
P
t2Hj

yt D
P
t2Gj

2t�1

and if j < k, then maxGj < minGjC1. Thus°X
t2K1

2t�1;
X
t2K2

2t�1; : : : ;
X
t2Kk

2t�1
±
D
°X
t2G1

2t�1;
X
t2G2

2t�1; : : : ;
X
t2Gk

2t�1
±

so ¹G1; G2; : : : ; Gkº D ¹K1; K2; : : : ; Kkº (although, we don’t know for example that
G1 D K1) so that ¹G1; G2; : : : ; Gkº 2 Ai as required.

It is interesting to note that we obtain the following version of the Milliken–Taylor
Theorem (which trivially implies the first two versions) as a corollary to Corollary
18.8, which was in turn a corollary to Theorem 18.7, but cannot prove it using the
straight forward modification of the proof of Theorem 18.7 which simply replaces
sums by products. The reason is that the function ' may not be definable if the
sequence hxni1nD1 in the semigroup .S; � / does not have a product subsystem which
satisfies uniqueness of finite products.

Corollary 18.9 (Milliken–Taylor Theorem – Version 3). Let k; r 2 N, let .S; � / be a
semigroup, let hxni1nD1 be a sequence in S , and assume that

Sk
tD1ŒS�

t D
Sr
iD1Ai .

Then there exist i 2 ¹1; 2; : : : ; rº and a product subsystem hyni1nD1 of hxni1nD1 such
that ŒFP.hyni1nD1/�

k
< � Ai .
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Proof. For each i 2 ¹1; 2; : : : ; rº, let

Bi D
°
¹F1; F2; : : : ; Fkº 2 ŒPf .N/�

k W
° Y
t2F1

xt ;
Y
t2F2

xt ; : : : ;
Y
t2Fk

xt

±
2 Ai

±
:

Then ŒPf .N/�k D
Sr
iD1Bi so pick by Corollary 18.8 i 2 ¹1; 2; : : : ; rº and

a sequence hFni1nD1 in Pf .N/ such that maxFn < minFnC1 for all n and
ŒFU.hFni1nD1/�

k
< � Bi .

For each n 2 N, let yn D
Q
t2Fn

xt . Then ŒFP.hyni1nD1/�
k
< � Ai . (The verifica-

tion of this assertion is Exercise 18.1.2.)

Exercise 18.1.1. Let

A1 D ¹¹x; yº 2 ŒN�
2 W x < y < 2xº

and let
A2 D ¹¹x; yº 2 ŒN�

2 W y � 2xº:

Then ŒN�2 D A1[A2. Prove that there do not exist i 2 ¹1; 2º and sequences hani1nD1
and hdni1nD1 in N such that

(1) whenever n1 < n2 and for each j 2 ¹1; 2º and tj 2 ¹1; 2; : : : ; nj º one has
¹an1 C t1dn1 ; an2 C t2dn2º 2 Ai and

(2) whenever n 2 N and 1 
 t < s 
 n one has ¹an C tdn; an C sdnº 2 Ai .

Exercise 18.1.2. Complete the proof of Corollary 18.9 by verifying that

ŒFP.hyni
1
nD1/�

k
< � Ai :

Exercise 18.1.3. Apply Theorem 18.4 using a minimal idempotent in a countable
semigroup S . See what kind of statements you can come up with. Do the same thing
using a combinatorially rich ultrafilter in ˇN. (See Section 17.1.) (This is an open
ended exercise.)

18.2 IP* Sets in Product Spaces

We show in this section that IP* sets in any finite product of commutative semigroups
contain products of finite subsystems of sequences in the coordinates. We first extend
the notion of product subsystems to finite sequences.

Definition 18.10. Let hyni1nD1 be a sequence in a semigroup S and let k;m 2 N.
Then hxnimnD1 is a product subsystem of FP.hyni1nDk/ if and only if there exists a
sequence hHnimnD1 in Pf .N/ such that
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(a) minH1 � k,

(b) maxHn < minHnC1 for each n 2 ¹1; 2; : : : ; m � 1º, and

(c) xn D
Q
t2Hn

yt for each n 2 ¹1; 2; : : : ; mº.

The proof of the following theorem is analogous to the proof of Theorem 18.4.

Theorem 18.11. Let ` 2 N n ¹1º and for each i 2 ¹1; 2; : : : ; `º let Si be a semigroup
and let hyi;ni1nD1 be a sequence in Si . Let m; r 2 N and let ⨉`iD1 Si D

Sr
jD1 Cj .

There exists j 2 ¹1; 2; : : : ; rº and for each i 2 ¹1; 2; : : : ; `�1º, there exists a product
subsystem hxi;nimnD1 of FP.hyi;ni1nD1/ and there exists a product subsystem hx`;ni

1
nD1

of FP.hy`;ni1nD1/ such that

�`�1
⨉
iD1

FP.hxi;nimnD1/
�
� FP.hx`;ni

1
nD1/ � Cj :

Proof. Given i 2 ¹1; 2; : : : ; `º, pick by Lemma 5.11 an idempotent pi with

pi 2
1T
kD1

c`ˇSi FP.hyi;ni1nDk/:

For .x1; x2; : : : ; x`�1/ 2 ⨉`�1iD1 Si and j 2 ¹1; 2; : : : ; rº, let

B`.x1; x2; : : : ; x`�1; j / D ¹y 2 S` W .x1; x2; : : : ; x`�1; y/ 2 Cj º:

Now given t 2 ¹2; 3; : : : ; ` � 1º, assume that BtC1.x1; x2; : : : ; xt ; j / has been
defined for each .x1; x2; : : : ; xt / 2 ⨉tiD1 Si and each j 2 ¹1; 2; : : : ; rº. Given

.x1; x2; : : : ; xt�1/ 2
t�1

⨉
iD1

Si and j 2 ¹1; 2; : : : ; rº; let

Bt .x1; x2; : : : ; xt�1; j / D ¹y 2 St W BtC1.x1; x2; : : : ; xt�1; y; j / 2 ptC1º:

Finally, given thatB2.x;j / has been defined for each x2S1 and each j 2¹1;2; : : : ; rº,
let B1.j / D ¹x 2 S1 W B2.x; j / 2 p2º.

We show by downward induction on t that for each t 2 ¹2; 3; : : : ; `º and each
.x1; x2; : : : ; xt�1/ 2 ⨉

t�1
iD1 Si , St D

Sr
jD1Bt .x1; x2; : : : ; xt�1; j /. This is trivially

true for t D `. Assume t 2 ¹2; 3; : : : ; ` � 1º and the statement is true for t C 1. Let
.x1; x2; : : : ; xt�1/ 2 ⨉

t�1
iD1 Si . Given y 2 St , one has that

StC1 D
rS

jD1

BtC1.x1; x2; : : : ; xt�1; y; j /
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so one may pick j 2 ¹1; 2; : : : ; rº such that BtC1.x1; x2; : : : ; xt�1; y; j / 2 ptC1.
Then y 2 Bt .x1; x2; : : : ; xt�1; j /.

Since for each x 2 S1, S2 D
Sr
jD1B2.x; j /, one sees similarly that S1 DSr

jD1B1.j /. Pick j 2 ¹1; 2; : : : ; rº such that B1.j / 2 p1.
Pick by Theorem 5.14 a product subsystem hx1;ni1nD1 of FP.hy1;ni1nD1/ such that

FP.hx1;ni1nD1/ � B1.j /. Let D2 D
T
¹B2.a; j / W a 2 FP.hx1;nimnD1/º. Since

FP.hx1;nimnD1/ is finite, we haveD2 2 p2 so pick by Theorem 5.14 a product subsys-
tem hx2;ni1nD1 of FP.hy2;ni1nD1/ such that FP.hx2;ni1nD1 � D2.

Let t 2 ¹2; 3; : : : ; ` � 1º and assume hxt;ni1nD1 has been chosen. Let

DtC1 D
T°

BtC1.a1; a2; : : : ; at ; j / W .a1; a2; : : : ; at / 2
t

⨉
iD1

FP.hxi;nimnD1/
±
:

Then DtC1 2 ptC1 so pick by Theorem 5.14 a product subsystem hxtC1;ni1nD1 of
FP.hytC1;ni1nD1/ such that FP.hxtC1;ni1nD1/ � DtC1.

Then �`�1
⨉
iD1

FP.hxi;ni
m
nD1/

�
� FP.hx`;ni

1
nD1/ � Cj

as required.

In contrast with Theorem 18.11, where the partition conclusion applied to prod-
ucts of arbitrary semigroups, we now restrict ourselves to products of commutative
semigroups. We shall see in Theorem 18.16 that this restriction is necessary.

Definition 18.12. Let S be a semigroup, let hyni1nD1 be a sequence in S, and let
m 2 N. The sequence hxnimnD1 is a weak product subsystem of hyni1nD1 if and only
if there exists a sequence hHnimnD1 in Pf .N/ such thatHn \Hk D ; when n ¤ k in
¹1; 2; : : : ; mº and xn D

Q
t2Hn

yt for each n 2 ¹1; 2; : : : ; mº.

Recall by way of contrast, that in a product subsystem one requires that maxHn <
minHnC1.

Lemma 18.13. Let ` 2 N and for each i 2 ¹1; 2; : : : ; `º, let Si be a commutative
semigroup and let hyi;ni1nD1 be a sequence in Si . Let

L D
°
p 2 ˇ

� `

⨉
iD1

Si

�
W for each A 2 p and each m; k 2 N there exist for each

i 2 ¹1; 2; : : : ; `º a weak product subsystem hxi;ni
m
nD1

of FS.hyi;ni
1
nDk/ such that

`

⨉
iD1

FP.hxi;ni
m
nD1/ � A

±
:

Then L is a compact subsemigroup of ˇ.⨉`iD1 Si /.
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Proof. Since any product subsystem is also a weak product subsystem, we have by
Theorems 18.11 and 5.7 that L ¤ ;. Since L is defined as the set of ultrafilters all of
whose members satisfy a given property, L is closed, hence compact. To see that L

is a semigroup, let p; q 2 L, let A 2 p � q and let m; k 2 N. Then ¹Ea 2 ⨉`iD1 Si W
Ea�1A 2 qº 2 p so choose for each i 2 ¹1; 2; : : : ; `º a weak product subsystem
hxi;ni

m
nD1 of FP.hyi;ni1nDk/ such that

`

⨉
iD1

FP.hxi;nimnD1/ �
°
Ea 2

`

⨉
iD1

Si W Ea
�1A 2 q

±
:

Given i 2 ¹1; 2; : : : ; `º and n 2 ¹1; 2; : : : ; mº, pickHi;n 2 Pf .N/with minHi;n � k
such that xi;n D

Q
t2Hi;n

yi;t and if 1 
 n < s 
 m, then Hi;n \Hi;s D ;.

Let r D max.
S`
iD1

Sm
nD1Hi;n/C 1 and let

B D
T°
Ea�1A W Ea 2

`

⨉
iD1

FP.hxi;ni
m
nD1/

±
:

Then B 2 q so choose for each i 2 ¹1; 2; : : : ; `º a weak product subsystem hzi;nimnD1
of FP.hyi;ni1nDr/ such that⨉`iD1 FP.hzi;nimnD1/ � B . Given i 2 ¹1; 2; : : : ; `º and n 2
¹1; 2; : : : ; mº, pick Ki;n 2 Pf .N/ with minKi;n � r such that zi;n D

Q
t2Ki;n

yi;t
and if 1 
 n < s 
 m, then Ki;n \Ki;s D ;.

For i 2 ¹1; 2; : : : ; `º and n 2 ¹1; 2; : : : ; mº, let Li;n D Hi;n [Ki;n. ThenY
t2Li;n

yi;t D
Y
t2Hi;n

yi;t �
Y
t2Ki;n

yi;t D xi;t � zi;t

and if 1 
 n < s 
 m, then Li;n \ Li;s D ;. Thus for each i 2 ¹1; 2; : : : ; `º,
hxi;t � zi;t i

m
nD1 is a weak product subsystem of FP.hyi;ni1nDk/.

Finally we claim that ⨉`iD1 FP.hxi;n � zi;nimnD1/ � A. To this end let

Ec 2
`

⨉
iD1

FP.hxi;n � zi;nimnD1/

be given. For each i 2 ¹1; 2; : : : ; `º, pick Fi � ¹1; 2; : : : ; mº such that ci DQ
t2Fi

.xi;t � zi;t/ and let ai D
Q
t2Fi

xi;t and bi D
Q
t2Fi

zi;t . Then

Eb 2
`

⨉
iD1

FP.hzi;ni
m
nD1/

so Eb 2 B . Since Ea 2 ⨉`iD1 FP.hxi;nimnD1/ one has that Eb 2 Ea�1A so that Ea � Eb 2 A.
Since each Si is commutative, we have for each i 2 ¹1; 2; : : : ; `º that

Q
t2Fi

.xi;t �

zi;t / D .
Q
t2Fi

xi;t / � .
Q
t2Fi

zi;t/ so that Ec D Ea � Eb as required.
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Theorem 18.14. Let ` 2 N and for each i 2 ¹1; 2; : : : ; `º, let Si be a commutative
semigroup and let hyi;ni1nD1 be a sequence in Si . Let C be an IP* set in ⨉`iD1 Si
and let m 2 N. Then for each i 2 ¹1; 2; : : : ; `º there is a weak product subsystem
hxi;ni

m
nD1 of FP.hyi;ni1nD1/ such that ⨉`iD1 FP.hxi;nimnD1/ � C .

Proof. Let L be as in Lemma 18.13. Then L is a compact subsemigroup of ⨉`iD1 Si
so by Theorem 2.5 there is an idempotent p 2 L. By Theorem 16.6, C 2 p. Thus
by the definition of L for each i 2 ¹1; 2; : : : ; `º there is a weak product subsystem
hxi;ni

m
nD1 of FP.hyi;ni1nD1/ such that ⨉`iD1 FP.hxi;nimnD1/ � C .

Three natural questions are raised by Theorem 18.14.

(1) Can one obtain infinite weak product subsystems (defined in the obvious fash-
ion) such that ⨉`iD1 FP.hxi;ni1nD1/ � C ?

(2) Can one replace “weak product subsystems” with “product subsystems”?

(3) Can one omit the requirement that the semigroups Si be commutative?

We answer all three of these questions in the negative.
The first two questions are answered in Theorem 18.15 using the semigroup .N �

N;C/. Since the operation is addition we refer to “sum subsystems” rather than
“product subsystems”.

Theorem 18.15. There is an IP* set C in N �N such that:

(a) There do not exist z 2 N and a sequence hxni1nD1 in N such that either ¹zº �
FS.hxni1nD1/ � C or FS.hxni1nD1/� ¹zº � C . (In particular there do not exist
infinite weak sum subsystems hx1;ni1nD1 and hx2;ni1nD1 of FS.h2ni1nD1/ with
FS.hx1;ni1nD1/ � FS.hx2;ni1nD1/ � C .)

(b) There do not exist sum subsystems hxni2nD1 and hyni2nD1 of FS.h2ni1nD1/ with
¹x1; x2º � ¹y1; y2º � C .

Proof. Let

C D .N �N/ n
°�X
n2F

2n;
X
n2G

2n
�
W F;G 2 P .!/ and maxF < minG

or maxG < minF
±
:

To see that C is an IP* set in N � N, suppose instead that we have a sequence
h.xn; yn/i

1
nD1 in N �N with

FS.h.xn; yn/i1nD1/ �
°�X
n2F

2n;
X
n2G

2n
�
W F;G 2 P .!/ and maxF < minG

or maxG < minF
±
:
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Pick F1 and G1 in P .!/ such that x1 D
P
t2F1

2t and y1 D
P
t2G1

2t . Let k D
max.F1 [ G1/. Choose, by Lemma 14.16, H 2 Pf .N/ such that minH > 1,
2kC1j

P
n2H xn, and 2kC1j

P
n2H yn. Pick F 0; G0 2 P .!/ such that

P
n2H xn DP

n2F 0 2
n and

P
n2H yn D

P
n2G0 2

n. Then k C 1 
 min.F 0 [ G0/, so x1 CP
n2H xn D

P
n2F1[F 0

2n and y1 C
P
n2H yn D

P
n2G1[G0

2n. Also

X
n2¹1º[H

.xn; yn/ D
�
x1 C

X
n2H

xn; y1 C
X
n2H

yn

�
2
°�X
n2F

2n;
X
n2G

2n
�
W F;G 2 P .!/ and maxF < minG

or maxG < minF
±
:

Thus k C 1 
 max.F1 [ F 0/ < min.G1 [ G0/ 
 k or k C 1 
 max.G1 [ G0/ <
min.F1 [ F 0/ 
 k, a contradiction.

To establish (a), suppose that one has z 2 N and a sequence hxni1nD1 in N such that
either ¹zº � FS.hxni1nD1/ � C or FS.hxni1nD1/ � ¹zº � C and assume without loss
of generality that ¹zº � FS.hxni1nD1/ � C . Pick F 2 P .!/ such that z D

P
t2F 2

t

and let k D maxF . Pick H 2 Pf .N/ such that 2kC1j
P
n2H xn. Pick G 2 P .!/

such that
P
n2H xn D

P
t2G 2

t . Then maxF < minG so .z;
P
n2H xn/ … C .

To establish (b) suppose that one has sum subsystems hxni2nD1 and hyni2nD1 of
FS.h2ni1nD1/ with ¹x1; x2º � ¹y1; y2º � C . Pick F1; G1; F2; G2 2 P .!/ such that
x1 D

P
n2F1

2n, x2 D
P
n2F2

2n, y1 D
P
n2G1

2n, y2 D
P
n2G2

2n, maxF1 <
minF2, and maxG1 < minG2. Without loss of generality, maxF1 � maxG1. But
then we have maxG1 
 maxF1 < minF2 so .x2; y1/ … C , a contradiction.

A striking contrast is provided by Theorem 18.15 (b) and the case ` D 2 of Theorem
18.11. That is IP* sets are not in general partition regular. It is easy to divide most
semigroups into two classes, neither of which is an IP* set. Consequently it is not
too surprising when one finds a property that must be satisfied by an IP* set in a
semigroup S (such as containing a sequence with all of its sums and products when
S D N) which need not be satisfied by any cell of a partition of S . In this case
we have a property, namely containing FS.hx1;nimnD1/�FS.hx2;ni1nD1/ for some sum
subsystems of any given sequences, which must be satisfied by some cell of a partition
of N �N, but need not be satisfied by IP* sets in N �N.

The third question raised by Theorem 18.14 is answered with an example very
similar to that used in the proof of Theorem 18.15.

Theorem 18.16. Let S be the free semigroup on the alphabet ¹y1; y2; y3; : : : º. There
is an IP* set C in S�S such that there do not exist weak product subsystems hxni2nD1
and hwni2nD1 of FP.hyni1nD1/ such that ¹x1; x2º � ¹w1; w2º � C .
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Proof. Let

C D .S � S/ n
°�Y
n2F

yn;
Y
n2G

yn

�
W F;G 2 Pf .N/ and maxF < minG

or maxG < minF
±
:

To see that C is an IP* set, suppose one has a sequence h.xn; wn/i1nD1 with

FP.h.xn; wn/i
1
nD1/ �

°�Y
n2F

yn;
Y
n2G

yn

�
W F;G 2 Pf .N/ and maxF < minG

or maxG < minF
±
:

Given any i < j in N, pick Fi ; Fj ; Gi ; Gj ; Fi;j ; Gi;j 2 Pf .N/ such that xi DQ
n2Fi

yn, xj D
Q
n2Fj

yn,wi D
Q
n2Gi

yn,wj D
Q
n2Gj

yn, xixj D
Q
n2Fi;j

yn,
and wiwj D

Q
n2Gi;j

yn. Since xixj D
Q
n2Fi;j

yn, we have that maxFi < minFj
and Fi;j D Fi [ Fj and similarly maxGi < minGj and Gi;j D Gi [ Gj . Thus we
may pick j 2 N such that max.F1 [G1/ < min.Fj [Gj /. Then

.x1xj ; w1wj / …
°�Y
n2F

yn;
Y
n2G

yn

�
W F;G 2 Pf .N/ and maxF < minG

or maxG < minF
±
;

a contradiction.
Now suppose we have weak product subsystems hxni2nD1 and hwni2nD1 of

FP.hyni1nD1/ such that ¹x1; x2º � ¹w1; w2º � C . Pick F1; F2; G1; G2 2 Pf .N/
such that x1 D

Q
n2F1

yn, x2 D
Q
n2F2

yn, w1 D
Q
n2G1

yn, and w2 D
Q
n2G2

yn.
Since x1x2 2 FP.hyni1nD1/, we must have maxF1 < minF2 and similarly maxG1 <
minG2. Without loss of generality, maxF1 � maxG1. But then we have maxG1 

maxF1 < minF2 so .x2; w1/ … C , a contradiction.

18.3 Spaces of Variable Words

In this section we obtain some infinite dimensional (or infinite parameter) extensions
of the Hales–Jewett Theorem (Corollary 14.8) including the “main lemma” to the
proof of Carlson’s Theorem. (We shall prove Carlson’s Theorem itself in Section
18.4.) These extensions involve sequences of variable words. Recall that we have
defined a variable word over an alphabet ‰ to be a word over ‰ [ ¹vº in which v
actually occurs (where v is a “variable” not in ‰).

We introduce new notation (differing from that previously used) for variable words
and nonvariable words, since we shall be dealing simultaneously with both.

Definition 18.17. Let ‰ be a (possibly empty) set (alphabet).

(a) W.‰I v/ is the set of variable words over ‰.

(b) W.‰/ is the set of (nonvariable) words over ‰.

Notice that W.‰I v/ [W.‰/ D W.‰ [ ¹vº/.
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Definition 18.18. Let ‰ be a set and let hsn.v/i1nD1 be a sequence in W.‰I v/.

(a) The sequence htn.v/i1nD1 is a variable reduction of hsn.v/i1nD1 if and only if
there exist an increasing sequence of integers hni i1iD1 with n1 D 1 and a se-
quence hai i1iD1 in ‰ [ ¹vº such that for each i ,

v 2 ¹ani ; aniC1; : : : ; aniC1�1º and

ti .v/ D sni .ani /
_sniC1.aniC1/

_ � � �_sniC1�1.aniC1�1/:

(b) The sequence htn.v/i1nD1 is a variable extraction of hsn.v/i1nD1 if and only if
htn.v/i

1
nD1 is a variable reduction of some subsequence of hsn.v/i1nD1.

Thus, a variable reduction of hsn.v/i1nD1 is any infinite sequence of variable words
obtained from hsn.v/i1nD1 by replacing each si .v/ by one of its instances, dividing
the resulting sequence (of words over ‰ [ ¹vº) into (infinitely many) finite blocks of
consecutive words, and concatenating the members of each block, with the additional
requirement that each of the resulting words has an occurrence of v. For example,
if hsn.v/i1nD1 were the sequence .avbv; v; bav; abvb; vavv; : : : / then htn.v/i1nD1
might be .aabavbab; abvbbabb; : : : /.

Definition 18.19. Let ‰ be a set and let hsn.v/i1nD1 be a sequence in W.‰I v/.

(a) The word w is a reduced word of hsn.v/i1nD1 if and only if there exist k 2 N
and a1; a2; : : : ; ak in ‰ [ ¹vº such that w D s1.a1/_s2.a2/_ � � �_sk.ak/.

(b) A variable reduced word of hsn.v/i1nD1 is a variable word which is a reduced
word of hsn.v/i1nD1.

(c) A constant reduced word of hsn.v/i1nD1 is a reduced word of hsn.v/i1nD1 which
is not a variable reduced word.

Reduced words, variable reduced words and constant reduced words of a finite
sequence hsn.v/iknD1 are defined analogously.

Notice that a word is a variable reduced word of hsn.v/i1nD1 if and only if it occurs
as the first term in some variable reduction of hsn.v/i1nD1.

Definition 18.20. Let ‰ be a set and let hsn.v/i1nD1 be a sequence in W.‰I v/.

(a) The word w is an extracted word of hsn.v/i1nD1 if and only if w is a reduced
word of some subsequence of hsn.v/i1nD1.

(b) A variable extracted word of hsn.v/i1nD1 is a variable word which is an ex-
tracted word of hsn.v/i1nD1.

(c) A constant extracted word of hsn.v/i1nD1 is an extracted word of hsn.v/i1nD1
which is not a variable extracted word.
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Notice that w is an extracted word of hsn.v/i1nD1 if and only if there exist k 2 N,
n1 < n2 < � � � < nk in N, and a1; a2; : : : ; ak 2 ‰ [ ¹vº such that

w D sn1.a1/
_sn2.a2/

_ � � �_snk .ak/:

Extracted words are defined in the analogous way for a finite sequence hsn.v/iknD1.
We now introduce some special notation which will be used in the proof of the main

theorem of this section. The notions defined depend on the choice of the alphabet ‰,
but the notation does not reflect this dependence.

Definition 18.21. Let ‰ be a set, let k 2 N [ ¹1º and let hsn.v/iknD1 be a sequence
in W.‰I v/. Let S be the semigroup .W.‰ [ ¹vº/;_/.

(a) For each m 2 N, A.hsn.v/iknDm/ is the set of extracted words of hsn.v/iknDm.

(b) For each m 2 N, V.hsn.v/iknDm/ is the set of variable extracted words of
hsn.v/i

k
nDm.

(c) For each m 2 N, C.hsn.v/iknDm/ is the set of constant extracted words of
hsn.v/i

k
nDm.

(d) A.hsn.v/i
1
nD1/ D

T1
mD1 c`ˇS A.hsn.v/i

1
nDm/.

(e) V.hsn.v/i
1
nD1/ D

T1
mD1 c`ˇS V.hsn.v/i

1
nDm/.

(f) C.hsn.v/i
1
nD1/ D

T1
mD1 c`ˇS C.hsn.v/i

1
nDm/.

Notice that A.hsn.v/i
1
nD1/ D V.hsn.v/i

1
nD1/[C.hsn.v/i

1
nD1/. Notice also that if

‰ D ;, then each C.hsn.v/iknDm/ D ;.

Lemma 18.22. Let‰ be a set, let hsn.v/i1nD1 be a sequence inW.‰I v/, and let S be
the semigroup .W.‰ [ ¹vº/;_/. Then A.hsn.v/i

1
nD1/ is a compact subsemigroup of

ˇS , and V.hsn.v/i
1
nD1/ is an ideal of A.hsn.v/i

1
nD1/. If ‰ ¤ ;, then C.hsn.v/i

1
nD1/

is a compact subsemigroup of ˇS .

Proof. We use Lemma 14.9 with J D ¹1º, D D N, and Tm D S for each m 2 N.
To see that A.hsn.v/i

1
nD1/ is a subsemigroup of ˇS and V.hsn.v/i

1
nD1/ is an

ideal of A.hsn.v/i
1
nD1/, for each m 2 N let Em D A.hsn.v/i

1
nDm/ and let Im D

V.hsn.v/i
1
nDm/. In order to invoke Lemma 14.9 we need to show that

(1) for each m 2 N, Im � Em � Tm,

(2) for eachm 2 N and each w 2 Im, there is some k 2 N such that w_Ek � Im,
and

(3) for each m 2 N and each w 2 Em n Im, there is some k 2 N such that
w_Ek � Em and w_Ik � Im.
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Statement (1) is trivial. To verify statement (2), let m 2 N and w 2 Im be given.
Pick t 2 N, n1 < n2 < � � � < nt in N with n1 � m, and a1; a2; : : : ; at 2 ‰ [ ¹vº
(with at least one ai D v) such that

w D sn1.a1/
_sn2.a2/

_ � � �_snt .at /:

Let k D nt C 1. Then w_Ek � Im as required. The verification of statement (3) is
identical except that a1; a2; : : : ; at 2 ‰.

Now assume that‰ ¤ ;. To show that C.hsn.v/i
1
nD1/ is a subsemigroup it suffices

by Theorem 4.20 to show that for each m 2 N and each w 2 C.hsn.v/i1nDm/ there is
some k 2 N such that w_C.hsn.v/i1nDk/ � C.hsn.v/i

1
nDm/. The verification of this

assertion is nearly identical to the verification of statement (2) above.

By now we are accustomed to using idempotents to obtain Ramsey Theoretic re-
sults. In the following theorem, we utilize two related idempotents in the case‰ ¤ ;.

Theorem 18.23. Let ‰ be a finite set and let hsn.v/i1nD1 be a sequence in W.‰I v/.
Let F and G be finite partitions of W.‰I v/ and W.‰/, respectively. There exist
V 2 F and C 2 G and a variable extraction hwn.v/i1nD1 of hsn.v/i1nD1 such that all
variable extracted words of hwn.v/i1nD1 are in V and all constant extracted words of
hwn.v/i

1
nD1 are in C .

Proof. Assume first that ‰ D ;. Then W. I v/ D ¹vk W k 2 Nº and W.‰/ D
¹;º. Given n 2 N, pick k.n/ 2 N such that sn.v/ D vk.n/. For each V 2 F let
B.V / D ¹k 2 N W vk 2 V º. Pick by Corollary 5.15 V 2 F and a sum subsystem
h`.n/i1nD1 of hk.n/i1nD1 such that FS.h`.n/i1nD1/ � B.V /. For each n 2 N let
wn.v/ D v`.n/. Then hwn.v/i1nD1 is a variable extraction of hsn.v/i1nD1 and the
variable extracted words of hwn.v/i1nD1 correspond to the elements of FS.h`.n/i1nD1/
so that all variable extracted words of hwn.v/i1nD1 are in V . The conclusion about
constant extracted words of hwn.v/i1nD1 holds vacuously.

Now assume that ‰ ¤ ;. By Lemma 18.22, C.hsn.v/i
1
nD1/ is a compact subsemi-

group of ˇS , where S is the semigroup .W.‰ [ ¹vº/;_/. Pick by Theorem 1.60 an
idempotent p which is minimal in C.hsn.v/i

1
nD1/. Then p 2 A.hsn.v/i

1
nD1/ so pick,

again by Theorem 1.60, an idempotent q which is minimal in A.hsn.v/i
1
nD1/ such

that q 
 p. Since, by Lemma 18.22, V.hsn.v/i
1
nD1/ is an ideal of A.hsn.v/i

1
nD1/,

we have that q 2 V.hsn.v/i
1
nD1/.

Now, for each a 2 ‰, define the evaluation map �a W W.‰ [ ¹vº/ ! W.‰/

as follows. Given w 2 W.‰ [ ¹vº/, �a.w/ is w with all occurrences of v (if any)
replaced by a. Thus, if w D w.v/ 2 W.‰I v/, then �a.w.v// D w.a/, while if
w 2 W.‰/, then �a.w/ D w. Notice that �a is a homomorphism from W.‰ [ ¹vº/

to W.‰/ and hence, by Corollary 4.22, e�a is a homomorphism from ˇ.W.‰ [ ¹vº//

to ˇ.W.‰//.
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We claim that for each a 2 ‰, e�a.q/ D p. Since e�a is a homomorphism, we have
that e�a.q/ 
 e�a.p/. Since �a is equal to the identity on W. /, we have e�a.p/ D p

and consequently e�a.q/ 
 p. Since p is minimal in C.hsn.v/i
1
nD1/, to verify thate�a.q/ D p we need only show that e�a.q/ 2 C.hsn.v/i

1
nD1/.

To see that e�a.q/ 2 C.hsn.v/i
1
nD1/, let m 2 N be given. Now V.hsn.v/i

1
nDm/ 2 q

so �aŒV .hsn.v/i1nDm/� 2 e�a.q/ by Lemma 3.30. It is routine to verify that

�aŒV .hsn.v/i
1
nDm/� � C.hsn.v/i

1
nDm/

so C.hsn.v/i1nDm/ 2 e�a.q/ as required.
We shall, according to our usual custom, use _ for the binary operation on ˇS

which extends the operation _ on S .
Let V 2 F \ q and let C 2 G \ p. We put V ] D ¹y 2 V W y_p 2 V and y_q 2

V º and C ] D ¹x 2 C W x_p 2 C and x_q 2 V º. Since q_q D p_q D q_p D q
and p_p D p, it follows that V ] 2 q and C ] 2 p.

We claim that for each y 2 V ] and each x 2 C ], y�1.V ]/ 2 q, y�1.V ]/ 2 p,
x�1.V ]/ 2 q, and x�1.C ]/ 2 p. To see this, let y 2 V ] and x 2 C ] be given. To see
that y�1.V ]/ 2 q, we observe that ��1y ��1p ŒV � is a neighborhood of q in ˇS , and so is

��1y ��1q ŒV �. Also y�1V 2 q. Since y�1.V ]/ D y�1V \ ��1y ��1p ŒV � \ ��1y ��1q ŒV �,

it follows that y�1.V ]/ 2 q. Likewise, since p 2 ��1y ��1p ŒV � \ ��1y ��1q ŒV �, and

y�1V 2 p, y�1.V ]/ 2 p. Similarly x�1.V ]/ D x�1V \��1x ��1p ŒV �\��1x ��1q ŒV � 2

q and x�1.C ]/ D x�1C \ ��1x ��1p ŒC � \ ��1x ��1q ŒV � 2 p.
If x; y 2 A.hsn.v/i1nD1/, we shall write x � y if there exists m 2 N for which

x 2 A.hsn.v/i
m
nD1/ and y 2 A.hsn.v/i

1
nDmC1/. We observe that, for any given

x 2 A.hsn.v/i
1
nD1/, ¹y 2 A.hsn.v/i

1
nD1/ W x � yº 2 q.

We now inductively construct a variable extraction hwn.v/i1nD1 of hsn.v/i1nD1 for
which V.hwn.v/i1nD1/ � V

] and C.hwn.v/i1nD1/ � C
].

We first choosew1.v/ 2 V ]\
T
a2‰ �

�1
a ŒC ]�. We note that this is possible because

�a
�1ŒC ]� 2 q for every a 2 ‰.
We then let n 2 N and assume that we have chosenwi .v/ for each i 2 ¹1; 2; : : : ; nº

so that wi .v/ � wiC1.v/ for every i 2 ¹1; 2; : : : ; n � 1º, V.hwi .v/iniD1/ � V ]

and C.hwi .v/iniD1/ � C ]. We can then choose wnC1.v/ satisfying the following
conditions.

(i) wnC1.v/ 2 V ] \
T
a2‰ �a

�1ŒC ]�,

(ii) wn.v/� wnC1.v/,

(iii) wnC1.v/ 2 y�1.V ]/ for every y 2 V.hwi .v/iniD1/,

(iv) wnC1.v/ 2 �a�1Œy�1.V ]/� for every y 2 V.hwi .v/iniD1/ and every a 2 ‰,

(v) wnC1.v/ 2 x�1.V ]/ for every x 2 C.hwi .v/iniD1/, and

(vi) wnC1.v/ 2 �a�1Œx�1.C ]/� for every x 2 C.hwi .v/iniD1/ and every a 2 ‰.
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This choice is possible, because each of these conditions for wnC1.v/ is satisfied by
all the elements of some member of q.

To see that V.hwi .v/i
nC1
iD1 / � V ], let u 2 V.hwi .v/i

nC1
iD1 / and pick k and m1 <

m2 < � � � < mk in N and a1; a2; : : : ; ak 2 ‰ [ ¹vº such that some ai D v and

u D wm1.a1/
_wm2.a2/

_ � � �_wmk .ak/:

If mk < nC 1, then u 2 V ] by the induction hypothesis so assume that mk D nC 1.
If k D 1, then u 2 V ] by condition (i), so assume that k > 1. If ak 2 ‰, then
u 2 V ] by condition (iv). If ak D v and ¹a1; a2; : : : ; ak�1º � ‰, then u 2 V ] by
condition (v). If ak D v and v 2 ¹a1; a2; : : : ; ak�1º, then u 2 V ] by condition (iii).

That C.hwi .v/i
nC1
iD1 / � C ] follows from the induction hypotheses and condi-

tions (i) and (vi).
Finally, notice that hwn.v/i1nD1 is a variable extraction of hsn.v/i1nD1 by condi-

tions (i) and (ii).

The following corollary includes the “main lemma” to the proof of Carlson’s The-
orem.

Corollary 18.24. Let ‰ be a finite set and let hsn.v/i1nD1 be a sequence in W.‰I v/.
Let F and G be finite partitions of W.‰I v/ and W.‰/, respectively. There exist
V 2 F and C 2 G and a variable reduction htn.v/i1nD1 of hsn.v/i1nD1 such that
all variable reduced words of htn.v/i1nD1 are in V and all constant reduced words of
htn.v/i

1
nD1 are in C .

Proof. Define ' W W.‰ [ ¹vº/! W.‰ [ ¹vº/ by

'.a1a2 � � � ak/ D s1.a1/
_s2.a2/

_ � � �_sk.ak/

where a1; a2; : : : ; ak are in ‰ [ ¹vº. Notice that 'ŒW.‰I v/� � W.‰I v/ and
'ŒW.‰/� � W.‰/. Let H D ¹'�1ŒB� W B 2 F º and K D ¹'�1ŒB� W B 2 G º. Then
H and K are finite partitions of W.‰I v/ and W.‰/, respectively. Pick V 0 2 H ,
C 0 2 K , and a variable extraction hwn.v/i1nD1 of the sequence hv; v; v; : : : i as guar-
anteed by Theorem 18.23. (That is, hwn.v/i1nD1 is simply a sequence of variable
words, all of whose variable extracted words are in V 0 and all of whose constant ex-
tracted words are in C 0.) Pick V 2 F and C 2 G such that V 0 D '�1ŒV � and
C 0 D '�1ŒC �.

For each n 2 N pick kn 2 N and an;1; an;2; : : : ; an;kn 2 ‰ [ ¹vº such that

wn D an;1an;2 � � � an;kn :

Let `1 D 0 and for each n > 1, let `n D
Pn�1
iD1 ki . For each n 2 N let

tn.v/ D s`nC1.an;1/
_s`nC2.an;2/

_ � � �_s`nCkn.an;kn/
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and notice that htn.v/i1nD1 is a variable reduction of hsn.v/i1nD1. Notice further that
if b1; b2; : : : ; bn 2 ‰ [ ¹vº, then

'.w1.b1/
_w2.b2/

_ � � �_wn.bn// D t1.b1/
_t2.b2/

_ � � �_tn.bn/

so if b1b2 � � � bn 2 W.‰I v/, then t1.b1/_t2.b2/_ � � �_tn.bn/ 2 V and if b1b2 � � � bn 2
W.‰/, then t1.b1/_t2.b2/_ � � �_tn.bn/ 2 C .

Theorem 18.23 produces a sequence hwn.v/i1nD1 with a stronger homogeneity
property than that in Corollary 18.24, but to obtain such a hwn.v/i1nD1 we must take
an extraction of hsn.v/i1nD1; a reduction won’t do. (To see why it won’t do, con-
sider hsn.v/i1nD1 D hav; bv; bv; bv; : : : i and partition the variable words according
to whether the first letter is a or not.)

Exercise 18.3.1. Derive the Finite Sums Theorem (Corollary 5.10) as a consequence
of Corollary 18.24. (Hint: Consider the function f W W.‰I v/ ! N defined by the
condition that f .w/ is the number of occurrences of v in w.)

18.4 Carlson’s Theorem

In 1988 T. Carlson published [90] a theorem which has as corollaries many earlier
Ramsey Theoretic results. We prove this theorem in this section.

Definition 18.25. Let ‰ be a (possibly empty) finite set and let S be the set of all
infinite sequences in W.‰I v/. Denote the sequence hsni1nD1 by Es. For Es 2 S , let

B0.Es/ D ¹Et 2 S W Et is a variable reduction of Esº;

and, for each n 2 N, let

Bn.Es/ D ¹Et 2 B0.Es/ W for each i 2 ¹1; 2; : : : ; nº; ti D siº:

Remark 18.26. For every Es; Et 2 S and m; n 2 !, if Et 2 Bm.Es/ and if m 
 n, then
Bn.Et / � Bm.Es/.

The following lemma is an easy consequence of Remark 18.26.

Lemma 18.27. A topology can be defined on S by choosing ¹Bn.Es/ W Es 2 Sand n 2
!º as a basis for the open sets.

Proof. Let Es; Et 2 S , let m; n 2 !, and let Eu 2 Bm.Es/ \ Bn.Et /. Let k D max¹m; nº.
Then by Remark 18.26 Bk.Eu/ � Bm.Es/ \ Bn.Et /.

Definition 18.28. The Ellentuck topology on S is the topology with basis ¹Bn.Es/ W
Es 2 Sand n 2 !º.
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For the remainder of this section, we shall assume that S has the Ellentuck topology.

Definition 18.29. A set X � S is said to be completely Ramsey if and only if for
every n 2 ! and every Es 2 S , there is some Et 2 Bn.Es/ such that either Bn.Et / � X or
Bn.Et / \X D ;.

Recall that we take the Baire sets in a topological space to be the � -algebra gen-
erated by the open sets and the nowhere dense sets. (Other meanings for the term
Baire sets also exist in the literature.) Recall also (see Exercise 17.5.1) that a set is
a Baire set if and only if it can be written as the symmetric difference of an open set
and a meager set, where the meager (or first category) sets are those sets that are the
countable union of nowhere dense sets.

Carlson’s Theorem (Theorem 18.44) is the assertion that a subset of S is completely
Ramsey if and only if it is a Baire set (with respect to the Ellentuck topology). The
proof in one direction is simple.

Theorem 18.30. If X is a completely Ramsey subset of S , then X is a Baire set. In
fact X is the union of an open set and a nowhere dense set.

Proof. Let Xı denote the interior of X . We shall show that X is a Baire set by
showing that X n Xı is nowhere dense so that X is the union of an open set and a
nowhere dense set.

If we assume the contrary, there exists Es 2 S and n 2 ! for whichBn.Es/ � c`S .Xn
Xı/. Since X is completely Ramsey, there exists Et 2 Bn.Es/ such that Bn.Et / � X or
Bn.Et / � S nX .

However, if Bn.Et / � X , then Bn.Et / � Xı and hence Bn.Et / \ c`S .X n Xı/ D ;.
This is a contradiction, because Bn.Et / � Bn.Es/.

If Bn.Et / � S nX , then Bn.Et /\c`S .X/ D ;. This is again a contradiction, because
Bn.Et / � Bn.Es/ � c`S .X/.

Lemma 18.31. The completely Ramsey subsets of S form a subalgebra of P .S/.

Proof. It is immediate from the definition of a completely Ramsey set that a subset of
S is completely Ramsey if and only if its complement is. So it is sufficient to show
that the completely Ramsey subsets of S are closed under finite unions.

To this end let X and Y be completely Ramsey subsets of S . To see that X [ Y
is completely Ramsey, let Es 2 S and n 2 ! be given. Pick Et 2 Bn.Es/ such that
Bn.Et / � X or Bn.Et / � S nX . If Bn.Et / � X , then Bn.Et / � X [ Y and we are done,
so assume that Bn.Et / � S n X . Since Y is completely Ramsey, pick Eu 2 Bn.Et / such
that Bn.Eu/ � Y or Bn.Eu/ � S n Y . Now Bn.Eu/ � Bn.Et / and so if Bn.Eu/ � Y , then
Bn.Eu/ � X [ Y and if Bn.Eu/ � S n Y , then Bn.Eu/ � S n .X [ Y /.
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Remark 18.32. Let hEtmi1mD1 be a sequence in S with the property that EtmC1 2
BmC1.Et

m/ for every m 2 N, and let Et D ht11; t22; t33; : : : i. Then Et 2 Bm.Etm/ for
every m 2 !.

We now need to introduce some more notation.

Definition 18.33. Let n 2 !.

(a) If Es 2 S and n > 0, then Esjn D hs1; s2; : : : ; sni and Esj0 D ;.

(b) If Es 2 S , then tailn.Es/ D hsnC1; snC2; : : : i.

(c) If Es 2 W.‰I v/n, then jEsj D n.

(d) If Es is a finite sequence and Et is a finite or infinite sequence, then hEs; Eti will
denote the sequence in which Es is followed by Et . (Thus, if Es D hs1; s2; : : : ; smi
and Et D ht1; t2; : : : i, then hEs; Eti D hs1; s2; : : : ; sm; t1; t2; : : : i.)

(e) A subsetX of S is said to be almost dense in Bn.Es/ ifX \Bn.Et / ¤ ; whenever
Et 2 Bn.Es/.

Notice that the notation Esjn differs slightly from our formal viewpoint since for-
mally n D ¹0; 1; : : : ; n � 1º and ¹0; 1; : : : ; n � 1º is not a subset of the domain of the
function Es.

Definition 18.34. We define a condition (�) on a sequence hT nin2! of subsets of S

as follows:

For every n 2 ! and every Es 2 S (a) Bn.Es/ \ T
n ¤ ; and

(b) if Es 2 T n, then Bn.Es/ � T
n.

(�)

We make some simple observations which will be useful in the proof of Carlson’s
Theorem.

Remark 18.35. Let Es 2 S .

(a) If X is almost dense in Bn.Es/, then X is almost dense in Bn.Et / for every Et 2
Bn.Es/.

(b) If X \ Bn.Es/ D ;, then X \ Bn.Et / D ; for every Et 2 Bn.Es/.

(c) For any Et 2 S , Et 2 Bn.Es/ if and only if Etjn D Esjn and tailn.Et / 2 B0.tailn.Es//.

Lemma 18.36. Let hT nin2! be a sequence of subsets of S which satisfies (�) and let
Es 2 S . Then for each k 2 !, there exists Et 2 Bk.Es/ such that, for every n > k in N
and every variable reduction Er of Etjn, we have hEr; tailn.Et /i 2 T jEr j.
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Proof. We first show that

for every Et 2 S and every n 2 N, there exists E� 2 Bn.Et / such

that hEr; tailn.E�/i 2 T jErj for every variable reduction Er of Etjn.
(†)

We enumerate the finite set of variable reductions of Etjn as ¹Er1; Er2; : : : ; Ermº.
We put E	0 D tailn.Et / and then inductively choose E	1; E	2; : : : ; E	m 2 S so that the

following properties hold for each i 2 ¹1; 2; : : : ; mº:

(i) E	 i 2 B0.E	 i�1/ and

(ii) hEr i ; E	 i i 2 T jEr
i j.

Suppose that i 2 ¹0; 1; 2; : : : ; m � 1º and that we have chosen E	 i . Let l D jEr iC1j.
By condition (a) of (�), we can choose Eu 2 Bl .hEr iC1; E	 i i/\T l . Let E	 iC1 D taill .Eu/.
Then E	 iC1 2 B0.E	 i / and hEr iC1; E	 iC1i D Eu 2 T jEr

iC1j.
Having chosen E	m, we put E� D hEtjn; E	mi. Since E	m 2 B0.tailn.Et //, we have
E� 2 Bn.Et /.

Now let Er be a variable reduction of Etjn. Then Er D Er i for some i 2 ¹1; 2; : : : ; mº.
We note that E	m 2 B0.E	 i /, and hence that hEr i ; E	mi 2 BjEri j.hEr

i ; E	 i /i. So hEr i ; E	mi D

hEr i ; tailn.E�/i 2 T jEr
i j, by condition (b) of (�). Thus (†) is established.

Now let k 2 ! be given. By (†) we can inductively define elements Et0; Et1; Et2; : : :
of S with the following properties:

(i) Et0 D Et1 D � � � D Etk D Es,

(ii) Etn 2 Bn.Etn�1/ for every n > k, and

(iii) for every n > k and every variable reduction Er of Etn�1
jn

, hEr; tailn.Etn/i 2 T jEr j.

Let Et D ht11; t22; t33; : : : i. Then Et 2 Bk.Es/. Let n > k be given and let Er be a
variable reduction of Etjn. Now Etjn D Etn�1jn so Er is a variable reduction of Etn�1

jn
and thus

hEr; tailn.Etn/i 2 T jEr j. Also hEr; tailn.Et /i 2 BjErj.hEr; tailn.Etn/i/ and so by condition (b)

of (�), hEr; tailn.Et /i 2 T jEr j.

Corollary 18.37. Let Es 2 S , k 2 !, and X � S . Then there exists Et 2 Bk.Es/ such
that, for every n > k and every variable reduction Er of Etjn, either X is almost dense
in BjErj.hEr; tailn.Et /i/ or else X \ BjErj.hEr; tailn.Et /i/ D ;.

Proof. For each n 2 ! we define T n � S by stating that E	 2 T n if and only if either
X is almost dense in Bn.E	/ or X \Bn.E	/ D ;. We shall show that hT nin2! satisfies
(�), and our claim will then follow from Lemma 18.36.

Let n 2 ! and E	 2 S . If X is almost dense in Bn.E	/, then E	 2 Bn.E	/ \ T n.
Otherwise there exists Eu 2 Bn.E	/ for which Bn.Eu/\X D ; and so Eu 2 Bn.E	/\ T n.
Thus hT nin2! satisfies condition (a) of (�).

To see that hT nin2! satisfies condition (b) of (�), let n 2 !, let E	 2 T n and let
Eu 2 Bn.E	/. Then Bn.Eu/ � Bn.E	/. Consequently, if X is almost dense in Bn.E	/, then
X is almost dense in Bn.Eu/ and if X \ Bn.E	/ D ;, then X \ Bn.Eu/ D ;.
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Definition 18.38. (a) Let Et 2 S . then R.Et / D ¹w 2 W.‰I v/ W w is a variable
reduced word of Etº.

(b) Let Et 2 S and let w 2 R.Et /. Then N.w; Et / is that l 2 N for which there exist
a1; a2; : : : ; al 2 ‰ [ ¹vº such that w D t1.a1/_t2.a2/_ � � �_tl .al /.

Remark 18.39. Let Es 2 S , Et 2 B0.Es/ and w 2 R.Et /. Then hw; tailN.w;Et/.Et /i 2
B0.hw; tailN.w;Es/.Es/i/.

Lemma 18.40. Let Es 2 S , k 2 ! and X � S . Then there exists Et 2 Bk.Es/ such that,
for every n 2 N satisfying n > k and every variable reduction Er of Etjn, either

(1) for everyw2R.tailn.Et //,X is almost dense inBjErjC1.hEr; w; tailN.w;tailn.Et//Cn
.Et /i

or

(2) for every w 2 R.tailn.Et //, X \ BjErjC1.hEr; w; tailN.w;tailn.Et//Cn
.Et /i/ D ;.

Proof. We define a sequence hT nin2! of subsets of S by stating that E	 2 T n if
and only if either X \ BnC1.hE	jn; w; tailN.w;tailn.E�//Cn.E	/i/ D ; for every w 2
R.tailn.E	//, or else X is almost dense in BnC1.hE	jn; w; tailN.w;tailn.E�//Cn.E	/i for ev-
ery w 2 R.tailn.E	//. We shall show that hT nin2! satisfies (�). The claim then
follows from Lemma 18.36.

Let n 2 ! and E	 2 S . We shall show that T n and E	 satisfy conditions (a) and (b)
of (�). By Corollary 18.37, there exists Eu 2 Bn.E	/ such that, for every m > n in N
and every variable reduction Er of Eujm,X\BjErj.hEr; tailm.Eu/i/ D ; or elseX is almost
dense in BjErj.hEr; tailm.Eu/i/. Let

V0 D ¹w 2 R.tailn.Eu// W X \ BnC1.hEujn; w; tailN.w;tailn.Eu//Cn.Eu/i/ D ;º,

V1 D R.tailn.Eu// n V0, and

V2 D W.‰I v/ nR.tailn.Eu//.

We note that, if w 2 R.tailn.Eu//, then w 2 V1 if and only if X is almost dense in
BnC1.hEujn; w; tailN.w;tailn.Eu//Cn.Eu/i/.

By Corollary 18.24, there exists i 2 ¹0; 1; 2º and E� 2 B0.tailn.Eu// such that
R.E�/ � Vi . Since R.E�/ � R.tailn.Eu//, i ¤ 2.

Let E� D hEujn; E�i. Then E� 2 Bn.E	/ \ T n. So T n and E	 satisfy condition (a) of (�).
To verify that T n and E	 satisfy condition (b) of (�), assume that E	 2 T n and

let E� 2 Bn.E	/. Then tailn.E�/ 2 B0.tailn.E	// and R.tailn.E�// � R.tailn.E	//. If
w 2 R.tailn.E�//, then

hE�jn; w; tailN.w;tailn.E�//Cn.E�/i 2 BnC1.hE	jn; w; tailN.w;tailn.E�//Cn.E	/i/

so that

BnC1.hE�jn; w; tailN.w;tailn.E�//Cn.E�/i/ � BnC1.hE	jn; w; tailN.w;tailn.E�//Cn.E	/i/:

It follows easily that E� 2 T n.



484 Chapter 18 Multidimensional Ramsey Theory

Lemma 18.41. Every closed subset X of S is completely Ramsey.

Proof. Let Es 2 S and k 2 !. We need to show that there exists E� 2 Bk.Es/ for which
Bk.E�/ � X or Bk.E�/\X D ;. We suppose, on the contrary, that no such element E�
exists. So X is almost dense in Bk.Es/.

Let Et 2 Bk.Es/ be the element guaranteed by Lemma 18.40. We shall show that, for
every Eu 2 Bk.Et / and every n � k in !, X is almost dense in Bn.Eu/. This is true if
n D k. We shall assume that it is true for n and deduce that it is also true for nC 1.

Suppose then that Eu 2 Bk.Et / and let m 2 N be the integer for which Eujn is
a variable reduction of Etjm. By our inductive assumption, there exists Ex 2 X \Bn.Eu/.
Let w D xnC1 2 R.tailm.Et //. Since Ex 2 BnC1.hEujn; w; tailN.w;tailm.Et//Cm

.Et /i/ \X ,

it follows from our choice of Et that X is almost dense in BnC1.hEujn; w
0;

tailN.w 0;tailm.Et//Cm
.Et /i/ for every w0 2 R.tailm.Et //. In particular, this holds if we

put w0 D unC1. We then have Eu 2 BnC1.hEujn; w0; tailN.w 0;tailm.Et//Cm
.Et /i/, and so X

is almost dense in BnC1.Eu/.
We have thus shown that, for every Eu 2 Bk.Et / and every n > k in !, Bn.Eu/\X ¤
;. Since X is closed, this implies that Eu 2 X . Thus Bk.Et / � X , a contradiction.

Lemma 18.42. Let hFni1nD0 be an increasing sequence of closed nowhere dense sub-
sets of S and let N D

S1
nD0 Fn. Then N is nowhere dense in S .

Proof. For each n 2 !, let T n D ¹E	 2 S W Bn.E	/ \ Fn D ;º. Since each Fn is com-
pletely Ramsey (by Lemma 18.41) and nowhere dense, hT nin2! satisfies condition
(a) of (�). It clearly satisfies condition (b) of (�).

To see that N is nowhere dense in S , suppose instead that we have some Es in the
interior of c`N . Pick k 2 ! such that Bk.Es/ � c`N . By Lemma 18.36, there exists
Et 2 Bk.Es/ such that, for every m > k in ! and every variable reduction Er of Etjm, we

have hEr; tailm.Et /i 2 T jEr j.
Then Et 2 c`N so pick Eu 2 Bk.Et / \ N and pick n > k such that Eu 2 Fn. Pick

m > k such that Eujn is a variable reduction of Etjm. Then Eu 2 Bn.hEujn; tailm.Et /i/ and
hEujn; tailm.Et /i 2 T n so Eu … Fn, a contradiction.

Corollary 18.43. If N is a meager subset of S , then N is completely Ramsey.

Proof. We have that N is the union of an increasing sequence hXni1nD0 of nowhere
dense subsets of S . Let X D c`.

S1
nD0Xn/. Then X is nowhere dense, by Lemma

18.42, and X is completely Ramsey, by Lemma 18.41. It follows that, for each Es 2 S

and n 2 !, there exists Et 2 Bn.Es/ for which Bn.Et / \ X D ;. Since N � X , this
implies that Bn.Et / \N D ;.

Theorem 18.44 (Carlson’s Theorem). A subset of S is completely Ramsey if and only
if it is Baire.



Section 18.4 Carlson’s Theorem 485

Proof. By Theorem 18.30, every completely Ramsey subset of S is Baire. Now as-
sume that X is a Baire set and pick an open set U and a meager set M such that
X D U 4M . By Lemmas 18.41 and 18.31, U is completely Ramsey and by Corol-
lary 18.43, M is completely Ramsey. Applying Lemma 18.31 again, one has that X
is completely Ramsey.

As an amusing consequence of Theorems 18.30 and 18.44 one sees that in S , every
Baire set is the union of an open set and a nowhere dense set.

Notice that one has an immediate partition corollary to Carlson’s Theorem.

Corollary 18.45. Let r 2 N and assume that S D
Sr
iD1Xi . If each Xi is a Baire

set, then for every n 2 ! and every Es 2 S , there exist some i 2 ¹1; 2; : : : ; rº and some
Et 2 Bn.Es/ such that Bn.Et / � Xi .

Proof. Let n 2 ! and Es 2 S and suppose that for each i 2 ¹1; 2; : : : ; rº and each
Et 2 Bn.Es/ one does not have Bn.Et / � Xi . Pick Et1 2 Bn.Es/ as guaranteed by the fact
that X1 is completely Ramsey. (So Bn.Et1/ \ X1 D ;.) For i 2 ¹1; 2; : : : ; r � 1º,
assume that Et i has been chosen and pick Et iC1 2 Bn.Et i/ as guaranteed by the fact
that XiC1 is completely Ramsey. (So Bn.Et iC1/ \ XiC1 D ;.) Then Bn.Etr/ � ;, a
contradiction.

An extensive array of Theorems in Ramsey Theory are a consequence of Carlson’s
Theorem. For example, Ellentuck’s Theorem [129] is the special case of Carlson’s
Theorem which has the alphabet ‰ D ;.

We have already seen in Exercise 18.3.1 that the Finite Sums Theorem is derivable
from the “main lemma” to Carlson’s Theorem. To illustrate a more typical application,
we shall show how the Milliken–Taylor Theorem (Theorem 18.7) is derivable from
Carlson’s Theorem. As is common in such applications, one only uses the fact that
open sets are completely Ramsey.

Corollary 18.46 (Milliken–Taylor Theorem). Let k; r 2 N, let hxni1nD1 be a se-
quence in N, and assume that ŒN�k D

Sr
iD1Ai . Then there exist i 2 ¹1; 2; : : : ; rº

and a sum subsystem hyni1nD1 of hxni1nD1 such that

ŒFS.hyni1nD1/�
k
< � Ai :

Proof. Let ‰ D ¹aº and define the function f W W.‰I v/ ! N by letting f .w/ be
the number of occurrences of v in w.

For each i 2 ¹1; 2; : : : ; rº let

Xi D ¹Es 2 S W ¹f .s1/; f .s2/; : : : ; f .sk/º 2 Aiº

and let
XrC1 D ¹Es 2 S W j¹f .s1/; f .s2/; : : : ; f .sk/ºj < kº:
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Then S D
SrC1
iD1 Xi . Now, given i 2 ¹1; 2; : : : ; r C 1º and Es 2 Xi , one has that

Bk.Es/ � Xi so Xi is open.
For each n 2 N, let sn D vxn , so that f .sn/ D xn. Pick by Corollary 18.45 some

i 2 ¹1; 2; : : : ; r C 1º and some Et 2 B0.Es/ such that B0.Et / � Xi . Since B0.Et / � Xi ,
i ¤ r C 1. For each n 2 N, let yn D f .tn/. Then hyni1nD1 is a sum subsystem of
hxni

1
nD1.

To see that ŒFS.hyni1nD1/�
k
< � Ai , let H1;H2; : : : ;Hk 2 Pf .N/ be given such

that maxHj < minHjC1 for each j 2 ¹1; 2; : : : ; k � 1º. For each j 2 ¹1; 2; : : : ; kº,
let j̀ D maxHj and let `0 D 0. For each n 2 ¹1; 2; : : : ; `kº, let

bn D

´
a if n …

Sk
iD1Hi

v if n 2
Sk
iD1Hi

and for j 2 ¹1; 2; : : : ; kº, let

wj D t`j�1C1.b j̀�1C1/
_t

j̀�1C2.b j̀�1C2/
_ � � �_t

j̀
.b

j̀
/:

For j > k, letwj D tlkCj�k . Then Ew 2 B0.Et / so ¹f .w1/; f .w2/; : : : ; f .wk/º 2 Ai .
Since

¹f .w1/; f .w2/; : : : ; f .wk/º D
° X
n2H1

yn;
X
n2H2

yn; : : : ;
X
n2Hk

yn

±
;

we are done.

18.5 Notes

The ultrafilter proof of Ramsey’s Theorem (Theorem 18.2) is by now classical. See
[106, p. 39] for a discussion of its origins. Version 1 of the Milliken–Taylor Theorem
is essentially the version proved by K. Milliken [306] while Version 2 is that proved
by A. Taylor [375]. The rest of the results of Section 18.1 are from [41] and were
obtained in collaboration with V. Bergelson.

The results of Section 18.2 are from [47], a result of collaboration with V. Bergel-
son.

Theorem 18.23 and Corollary 18.24 are from [34], a result of collaboration with
V. Bergelson and A. Blass. The part of Corollary 18.24 that corresponds to W.‰/ is
[43, Corollary 3.7], a result of collaboration with V. Bergelson. It is a modification of
a result of T. Carlson and S. Simpson [96, Theorem 6.3]. The part of Corollary 18.24
that refers to W.‰I v/ is due to T. Carlson.

Carlson’s Theorem is of course due to T. Carlson and is from [90]. The Ellentuck
topology on the set of sequences of variable words was introduced by T. Carlson and
S. Simpson in [96, Section 6]. It is analagous to a topology on the set of infinite
subsets of ! which was introduced by E. Ellentuck in [129].
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Given a finite alphabet ‰, call L an infinite dimensional subspace of W.‰/ if and
only if there is a sequence hsn.v/i1nD1 in W.‰I v/ such that L is the set of all con-
stant reduced words of hsn.v/i1nD1. Similarly, given a finite sequence hwn.v/idnD1 in
W.‰I v/, call L a d -dimensional subspace of W.‰/ if and only if

L D ¹w1.a1/
_w2.a2/

_ � � �_wd .ad / W a1; a2; : : : ; ad 2 ‰º:

It is a result of H. Furstenberg and Y. Katznelson [158, Theorem 3.1] that whenever
the collection of all d -dimensional subspaces of W.‰/ are partitioned into finitely
many pieces, there exists an infinite dimensional subspace of W.‰/ all of whose
d -dimensional subspaces lie in the same cell of the partition. This result can be es-
tablished by methods similar to those of Section 18.3. (See [34].)





Part IV

Connections With Other Structures





Chapter 19

Relations With Topological Dynamics

We have already seen that the notions of syndetic and piecewise syndetic, which have
their origins in topological dynamics, are important in the theory of ˇS for a dis-
crete semigroup S . We have also remarked that the notion of central, which is very
important in the theory of ˇS and has a very simple algebraic definition, originated
in topological dynamics. In this chapter we investigate additional relations between
these theories. In particular, we establish the equivalence of the algebraic and dynam-
ical definitions of “central”.

19.1 Minimal Dynamical Systems

The most fundamental notion in the study of topological dynamics is that of dynamical
system. We remind the reader that we take all hypothesized topological spaces to be
Hausdorff.

Definition 19.1. A dynamical system is a pair .X; hTsis2S / such that

(1) X is a compact topological space (called the phase space of the system);

(2) S is a semigroup;

(3) for each s 2 S , Ts is a continuous function from X to X ; and

(4) for all s; t 2 S , Ts ı Tt D Tst .

If .X; hTsis2S / is a dynamical system, one says that the semigroup S acts onX via
hTsis2S .

We observe that we are indeed familiar with certain dynamical systems.

Remark 19.2. Let S be a discrete semigroup. Then .ˇS; h�sis2S / is a dynamical
system.

Definition 19.3. Let .X; hTsis2S / be a dynamical system. A subset Y of X is invari-
ant if and only if for every s 2 S , TsŒY � � Y .

Lemma 19.4. Let S be a semigroup. The closed invariant subsets of the dynamical
system .ˇS; h�sis2S / are precisely the closed left ideals of ˇS .
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Proof. Given a left ideal L of ˇS , p 2 L, and s 2 S , one has �s.p/ D sp 2 L so
left ideals are invariant.

Given a closed invariant subset Y of ˇS and p 2 Y one has that .ˇS/p D
c`.Sp/ � c`Y D Y .

Definition 19.5. The dynamical system .X; hTsis2S / is minimal if and only if there
are no nonempty closed proper invariant subsets of X .

Definition 19.5.1. Let .X; hTsis2S / be a dynamical system. The orbit of a point
x 2 X is ¹Ts.x/ W s 2 Sº.

Lemma 19.5.2. The dynamical system .X; hTsis2S / is minimal if and only if the orbit
of each point of X is dense.

Proof. Necessity. Let x 2 X . It is routine to verify that c`¹Ts.x/ W s 2 Sº is an
invariant subset of X so is equal to X .

Sufficiency. Let Y be a nonempty closed invariant subset of X and pick x 2 Y .
Then X D c`¹Ts.x/ W s 2 Sº � Y .

A simple application of Zorn’s Lemma shows that, given any dynamical system
.X; hTsis2S /, X contains a minimal nonempty closed invariant subset Y , and conse-
quently .Y; hT 0s is2S / is a minimal dynamical system, where T 0s is the restriction of Ts
to Y .

Lemma 19.6. Let S be a semigroup. The minimal closed invariant subsets of the
dynamical system .ˇS; h�sis2S / are precisely the minimal left ideals of ˇS .

Proof. This is an immediate consequence of Lemma 19.4 and the fact that minimal
left ideals of ˇS are closed (Corollary 2.6).

Of course, a given semigroup can act on many different topological spaces. For
example, if X is any topological space, f is any continuous function from X to X ,
and for each n 2 N, Tn D f n, then .X; hTnin2N/ is a dynamical system. And, since
any dynamical system contains a minimal dynamical system, a given semigroup may
act minimally on many different spaces.

Definition 19.7. Let S be a semigroup. Then .X; hTsis2S / is a universal minimal
dynamical system for S if and only if .X; hTsis2S / is a minimal dynamical system
and, whenever .Y; hRsis2S / is a minimal dynamical system, there is a continuous
function ' from X onto Y such that for each s 2 S one has that Rs ı ' D ' ı Ts .
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(That is, given any s 2 S , the diagram

Y Y

X X

' '

Ts

Rs �

�

� �

commutes.)

Theorem 19.8. Let S be a semigroup, let L be a minimal left ideal of ˇS , and for
each s 2 S , let �0s be the restriction of �s to L. Then .L; h�0sis2S / is a universal
minimal dynamical system for S .

Proof. Let .Y; hRsis2S / be a minimal dynamical system and fix y 2 Y . Define
g W S ! Y by g.s/ D Rs.y/ and let ' D egjL. Then immediately we have that ' is
a continuous function from L to Y . To complete the proof it suffices to show that for
all s 2 S and all p 2 L, '.�0s.p// D Rs.'.p//. (For then RsŒ'ŒL�� � 'ŒL� so 'ŒL�
is invariant and thus by minimality 'ŒL� D Y .)

To see that '.�0s.p// D Rs.'.p// for all s 2 S and all p 2 L, it suffices to show
that for each s 2 S ,eg ı �s D Rs ıeg on ˇS for which it in turn suffices to show thateg ı �s D Rs ıeg on S . So let t 2 S be given. Then

g.�s.t// D g.st/ D Rst .y/ D Rs.Rt .y// D Rs.g.t//:

We now wish to show that .L; h�0sis2S / is the unique universal minimal dynamical
system for S . For this we need the following lemma which is interesting in its own
right.

Lemma 19.9. Let S be a semigroup and let L and L0 be minimal left ideals of ˇS .
If ' is a continuous function from L to L0 such that �s ı ' D ' ı �0s for all s 2 S
(where �0s is the restriction of �s to L), then there is some p 2 L0 such that ' is the
restriction of �p to L.

Proof. Pick by Corollary 2.6 some idempotent q 2 L and let p D '.q/. Then �p and
' ı �q are continuous functions from ˇS to L0. Further, given any s 2 S ,

�p.s/ D sp D s'.q/ D .�s ı '/.q/ D .' ı �
0
s/.q/ D '.sq/ D .' ı �q/.s/

and thus �p and 'ı�q are continuous functions agreeing on S and are therefore equal.
In particular, �pjL D .' ı�q/jL. Now, by Lemma 1.30 and Theorem 1.59, q is a right
identity for L, so .' ı �q/jL D ' and thus ' D �pjL as required.
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The following theorem is in many respects similar to Remark 3.26 which asserted
the uniqueness of the Stone–Čech compactification. However, unlike that remark,
the proof of Theorem 19.10 is not trivial. That is, given another universal minimal
dynamical system .X; hTsis2S / and given s 2 S , one obtains the following diagram

L L

X X

	 	

Ts

�0s �

�

� �

L L

' '

�0s �

� �

and would like to use it to show that ' is one to one. However, if for example S is a
left zero semigroup, so that ˇS is also a left zero semigroup, then �s.p/ D �s.q/ for
all p and q in ˇS , and the above diagram is of no use in showing that ' is one to one.

Theorem 19.10. Let S be a semigroup and let L be a minimal left ideal of ˇS . Then,
up to a homeomorphism respecting the action of S , .L; h�0sis2S / is the unique uni-
versal minimal dynamical system for S . That is, given any universal minimal dynam-
ical system .X; hTsis2S / for S there is a homeomorphism ' W L ! X such that
' ı �0s D Ts ı ' for every s 2 S .

Proof. Pick ' W L ! X as guaranteed by the fact that .L; h�0sis2S / is a universal
minimal dynamical system for S and pick 	 W X ! L as guaranteed by the fact that
.X; hTsis2S / is a universal minimal dynamical system for S .

Then one has immediately that ' ı �0s D Ts ı ' for every s 2 S and that ' is
a continuous function on a compact space to a Hausdorff space and is thus closed.
Therefore, it suffices to show that ' is one to one. Now 	 ı ' W L ! L and for each
s 2 S ,

�s ı .	 ı '/ D �
0
s ı .	 ı '/ D .	 ı '/ ı �

0
s

so by Lemma 19.9 there is some p 2 L such that 	 ı ' is the restriction of �p to L.
Since, by Theorem 2.11 (c), the restriction of �p to L is one to one, we are done.

19.2 Enveloping Semigroups

We saw in Theorem 2.29 that if X is a topological space and T is a semigroup con-
tained in XX (with the product topology) and each member of T is continuous, then
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the closure of T in XX is a semigroup under ı, called the enveloping semigroup of
T . In particular (and this is the origin of the notion of enveloping semigroup), if
.X; hTsis2S / is a dynamical system, then the closure of ¹Ts W s 2 Sº in XX is a
semigroup which is referred to as the enveloping semigroup of the dynamical system.

Theorem 19.11. Let .X; hTsis2S / be a dynamical system and define � W S ! XX

by �.s/ D Ts . Thene� is a continuous homomorphism from ˇS onto the enveloping
semigroup of .X; hTsis2S /.

Proof. Immediately one has thate� is continuous and thate�ŒˇS� D c`¹Ts W s 2 Sº.
Also by Theorem 2.2, each Tx is in the topological center ofXX so by Corollary 4.22,
� is a homomorphism.

The following notation will be convenient in the next section.

Definition 19.12. Let .X; hTsis2S / be a dynamical system and define � W S ! XX

by �.s/ D Ts . For each p 2 ˇS , let Tp De�.p/.
As an immediate consequence of Theorem 19.11 we have the following. Be cau-

tioned however that Tp is usually not continuous, so .X; hTpip2ˇS / is usually not a
dynamical system.

Remark 19.13. Let .X; hTsis2S / be a dynamical system and let p; q 2 ˇS . Then
Tp ı Tq D Tpq and for each x 2 X , Tp.x/ D p-lim

s2S

Ts.x/.

How close the enveloping semigroup comes to being a copy of ˇS can be viewed
as a measure of the complexity of the action hTsis2S of S on X . With certain weak
cancellation requirements on S , we see that there is one dynamical system for which
ˇS is guaranteed to be the enveloping semigroup.

Lemma 19.14. Let Q be a semigroup, let S be a subsemigroup of Q, and let � D
Q¹0; 1º with the product topology. For each s 2 S , define Ts W � ! � by Ts.f / D
f ı �s . Then .�; hTsis2S / is a dynamical system. Furthermore, for each p 2 ˇS ,
f 2 �, and s 2 S ,

.Tp.f //.s/ D 1 , ¹t 2 S W f .t/ D 1º 2 sp:

Proof. Let s 2 S . To see that Ts is continuous it is enough to show that 
t ı Ts is
continuous for each t 2 Q. So, let t 2 Q and let f 2 �. Then

.
t ı Ts/.f / D 
t .f ı �s/ D .f ı �s/.t/ D f .ts/ D 
ts.f /:

That is to say that 
t ı Ts D 
ts and is therefore continuous.
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Now let s; t 2 S . To see that Ts ı Tt D Tst , let f 2 �. Then

.Ts ı Tt /.f / D Ts.Tt .f // D Ts.f ı �t / D f ı �t ı �s D f ı �st D Tst .f /:

Finally, let p 2 ˇS , f 2 � and s 2 S . Then

.Tp.f //.s/ D 1 , .p-lim
u2S

Tu.f //.s/ D 1

, p-lim
u2S

.Tu.f //.s/ D 1

, p-lim
u2S

f .su/ D 1

, ef .sp/ D 1
, ¹t 2 S W f .t/ D 1º 2 sp:

Notice that by Lemma 8.1, the hypotheses of the following theorem hold whenever
S has any left cancelable element. In particular, they hold in the important cases in
which S is N or Z.

Theorem 19.15. Let S be a semigroup, let � D S¹0; 1º, and for each s 2 S , define
Ts W �! � by Ts.f / D f ı �s . If for every pair of distinct elements p and q of ˇS
there is some s 2 S such that sp ¤ sq, then ˇS is topologically and algebraically
isomorphic to the enveloping semigroup of .�; hTsis2S /.

Proof. By Lemma 19.14, .�; hTsis2S / is a dynamical system. Define � W S ! ��

by �.s/ D Ts . Then by Theorem 19.11,e� is a continuous homomorphism from ˇS

onto the enveloping semigroup of .�; hTsis2S /. Thus we need only show that e� is
one to one.

So let p and q be distinct members of ˇS and pick s 2 S such that sp ¤ sq. Pick
A 2 sp n sq and let �A be the characteristic function of A. Then by Lemma 19.14,
.Tp.�A//.s/ D 1 and .Tq.�A//.s/ D 0. Thereforee�.p/ D Tp ¤ Tq De�.q/.

We have seen that if L is a closed left ideal of ˇS and �0s is the restriction of �s
to L, then .L; h�0sis2S / is a dynamical system. We know further (by Theorems 19.8
and 19.10) that if L is a minimal left ideal of ˇS , then .L; h�0sis2S / is the universal
minimal dynamical system for S . It is a natural question as to whether ˇS can be the
enveloping semigroup of .L; h�0sis2S /.

Lemma 19.16. Let S be a semigroup, let L be a closed left ideal of ˇS , and for each
s 2 S , let �0s be the restriction of �s to L. Define � W S ! LL by �.s/ D �0s . Then
for all p 2 ˇS ,e�.p/ D �pjL.

Proof. Let p 2 ˇS , let q 2 L, and let Tp De�.p/. Then by Remark 19.13,e�.p/.q/ D
Tp.q/ D p-lim

s2S

sq D pq:
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Notice that if L contains any element which is right cancelable in ˇS then the
hypotheses of the following theorem are satisfied. (See Chapter 8 for characterizations
of right cancelability.) If S is a countable semigroup which can be embedded in a
group and if L 6� K.ˇS/, then L does contain an element which is right cancelable
in ˇS (by Theorem 6.56). So, in this case, the enveloping semigroup of .L; h�sis2S /
is topologically and algebraically isomorphic to ˇS .

Theorem 19.17. Let S be a semigroup, letL be a closed left ideal of ˇS , and for each
s 2 S , let �0s be the restriction of �s to L. Then ˇS is topologically and algebraically
isomorphic to the enveloping semigroup of .L; h�0sis2S / via a map which takes s to
�0s if and only if whenever q and r are distinct elements of ˇS , there is some p 2 L
such that qp ¤ rp.

Proof. Define � W S ! LL by �.s/ D �0s . By Theorem 19.11 e� is a continuous
homomorphism onto the enveloping semigroup of .L; h�0sis2S / (and is the only con-
tinuous function extending � ). The conclusion now follows from Lemma 19.16.

If L is a minimal left ideal of ˇS , we have the following superficially weaker
condition.

Theorem 19.18. Let S be a semigroup, let L be a minimal left ideal of ˇS , and for
each s 2 S , let �0s be the restriction of �s to L. Then ˇS is topologically and alge-
braically isomorphic to the enveloping semigroup of .L; h�0sis2S / via a map which
takes s to �0s if and only if whenever q and r are distinct elements of ˇS , there is some
p 2 K.ˇS/ such that qp ¤ rp.

Proof. Since L � K.ˇS/, the necessity follows immediately from Theorem 19.17.
For the sufficiency, let q and r be distinct members of ˇS and pick some p 2 K.ˇS/
such that qp ¤ rp. Pick by Theorem 2.8 some minimal left ideal L0 of ˇS such that
p 2 L0 and pick some z 2 L. By Theorem 2.11 (c), the restriction of �z to L0 is
one to one and qp and rp are in L0 so qpz ¤ rpz. Since pz 2 L, Theorem 19.17
applies.

We include this section by showing that ˇN is the enveloping semigroup of certain
natural actions of N on the circle group T , which we take here to be the quotient R=Z
under addition.

Theorem 19.19. Let a 2 ¹2; 3; 4; : : :º and for each n 2 N define Tn W T ! T by
Tn.ZC x/ D ZC anx. Then .T ; hTnin2N/ is a dynamical system. If � W N ! TT
is defined by �.n/ D Tn, then e� is a continuous isomorphism from ˇN onto the
enveloping semigroup of .T ; hTnin2N/.
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Proof. Since a 2 N, the functions Tn are well defined. Let n 2 N, let ` W R! R be
multiplication by an, and let 
 W R! T be the projection map. Then Tn ı
 D 
 ı `
so Tn is continuous.

Trivially, if n;m 2 N, then Tn ı Tm D TnCm. Thus .T ; hTnin2N/ is a dynamical
system.

To complete the proof it suffices, by Theorem 19.11, to show thate� is one to one.
To this end, let p and q be distinct members of ˇN. Pick B 2 ¹2N; 2N�1º such that
B 2 p and pick A 2 p n q. Define x 2 .0; 1/ by

x D

1X
jD1

j̨a
�j where j̨ D

´
1 if j � 1 2 A \ B

0 if j � 1 … A \ B:

Let

C D
°
ZC t W

1

a

 t 


1

a
C

2

a3

±
and let D D

°
ZC t W 0 
 t 


1

a2
C

2

a4

±
:

Notice that (since a2 C 2 < a3), C \ D D ;. We claim that e�.p/.x/ 2 C ande�.q/.x/ 2 D. To see this it suffices to show, since C and D are closed, that for each
n 2 N, if n 2 A \ B , then Tn.x/ 2 C , and if n … A \ B , then Tn.x/ 2 D.

So let n 2 N be given. Then

Tn.x/ D ZC
1X
jD1

j̨a
n�j D ZC

1X
jDnC1

j̨a
n�j

since j̨a
n�j 2 Z if j 
 n. Now assume that n 2 A \ B . Then ˛nC1 D 1 and

(because nC 1 … B) ˛nC2 D 0. Thus
P1
jDnC1 j̨a

n�j D a�1 C
P1
jDnC3 j̨a

n�j

so
1

a



1X
jDnC1

j̨a
n�j 


1

a
C

2

a3

and hence Tn.x/ 2 C as claimed.
Next assume that n … A \ B . Then ˛nC1 D 0 and either ˛nC2 D 0 or ˛nC3 D 0.

Consequently

0 


1X
jDnC1

j̨a
n�j 


1

a2
C

2

a4

and hence Tn.x/ 2 D as claimed.

If one views the circle group as ¹z 2 C W jzj D 1º, then Theorem 19.19 says that
the enveloping semigroup of the system .T ; hf nin2N/ is isomorphic to ˇN, where
f .z/ D za.
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19.3 Dynamically Central Sets

The term “central set” was originally defined by Furstenberg [156, Definition 8.3] for
subsets of N. Sets defined algebraically as elements of minimal idempotents were
called “central” because many of the same theorems could be proved about them. The
original definition (restricted to the semigroup N and applied only to metric dynamical
systems) is as follows. We add the modifier “dynamically” because it is by no means
obvious that the concepts are the same, even for subsets of N.

Definition 19.20. Let S be a semigroup. A set C � S is dynamically central if
and only if there exist a dynamical system .X; hTsis2S /, points x and y in X , and a
neighborhood U of y such that

(1) y is a uniformly recurrent point of X ,

(2) x and y are proximal, and

(3) C D ¹s 2 S W Ts.x/ 2 U º.

The terms “uniformly recurrent” and “proximal” are notions from topological dy-
namics, defined as follows.

Definition 19.21. Let .X; hTsis2S / be a dynamical system.

(a) A point y 2 X is uniformly recurrent if and only if for every neighborhood U
of y, ¹s 2 S W Ts.y/ 2 U º is syndetic.

(b) Points x and y of X are proximal if and only if there is a net hs�i�2I in S such
that the nets hTs�.x/i�2I and hTs�.y/i�2I converge to the same point of X .

The definition of “proximal” as standardly given for a dynamical system with
a metric phase space .X; d/ says that there is some sequence hsni1nD1 such that
limn!1 d.Tsn.x/; Tsn.y// D 0. It is easy to see that this definition is equivalent
to the one given above.

The characterization of proximality provided by the following lemma will be very
convenient for us.

Lemma 19.22. Let .X; hTsis2S / be a dynamical system and let x; y 2 S . Then x and
y are proximal if and only if there exists a point p 2 ˇS such that Tp.x/ D Tp.y/.

Proof. Notice that if p 2 ˇS , hs�i�2I is a net in S which converges to p, and z 2 X ,
then Tp.z/ D lim�2I Ts�.z/. Thus if p 2 ˇS and Tp.x/ D Tp.y/, then picking any
net hs�i�2I in S which converges to p, one has lim�2I Ts�.x/ D lim�2I Ts�.y/.

Conversely, assume that one has a net hs�i�2I in S such that lim�2I Ts�.x/ D
lim�2I Ts�.y/. Let p be any limit point of hs�i�2I in ˇS . By passing to a sub-
net we may presume that hs�i�2I converges to p. Then Tp.x/ D lim�2I Ts�.x/ D
lim�2I Ts�.y/ D Tp.y/.
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In order to establish the equivalence of the notions of “central” we investigate rela-
tionships between some algebraic and dynamical notions.

Theorem 19.23. Let .X; hTsis2S / be a dynamical system, let L be a minimal left
ideal of ˇS , and let x 2 X . The following statements are equivalent.

(a) The point x is a uniformly recurrent point of .X; hTsis2S /.

(b) There exists u 2 L such that Tu.x/ D x.

(c) There exists an idempotent e 2 L such that Te.x/ D x.

(d) There exists y 2 X and an idempotent e 2 L such that Te.y/ D x.

Proof. (a) implies (b). Choose any v 2 L. Let N be the set of neighborhoods of
x in X . For each U 2 N let BU D ¹s 2 S W Ts.x/ 2 U º. Since x is uniformly
recurrent, each BU is syndetic and so there exists a finite set FU � S such that
S D

S
t2FU

.t�1BU /. Pick tU 2 FU such that tU�1BU 2 v so that tU v 2 BU . Let
u be a limit point of the net htU viU2N in ˇS and notice that u 2 L. We claim that
Tu.x/ D x. By Remark 19.13, it suffices to show that BV 2 u for each V 2 N . So
let V 2 N and suppose that BV … u. Pick U � V such that tU v 2 S n BV . Then
tU v 2 BU � BV , a contradiction.

(b) implies (c). Since u belongs to a group contained in L (by Theorem 2.8), there
is an idempotent e 2 L for which eu D u. So (using Remark 19.13) Te.x/ D
Te.Tu.x// D Teu.x/ D Tu.x/ D x.

That (c) implies (d) is trivial.
(d) implies (a). We note that Te.x/ D Te.Te.y// D Tee.y/ D Te.y/ D x. Let U

be a neighborhood of x. We need to show that ¹s 2 S W Ts.x/ 2 U º is syndetic. Pick
a neighborhood V of x such that c`V � U and let A D ¹s 2 S W Ts.x/ 2 V º. Since
x D e-lim

s2S
Ts.x/ by Remark 19.13, A 2 e. Let B D ¹s 2 S W se 2 Aº. Then by

Theorem 4.39, B is syndetic. We claim that B � ¹s 2 S W Ts.x/ 2 U º. Indeed, if
s 2 B , then Ts.x/ D Ts.Te.x// D Tse.x/ 2 ¹Tt .x/ W t 2 Aº � V � U .

Theorem 19.24. Let .X; hTsis2S / be a dynamical system and let x 2 X . Then there
is a uniformly recurrent point y 2 c`¹Ts.x/ W s 2 Sº such that x and y are proximal.

Proof. Let L be any minimal left ideal of ˇS and pick an idempotent u 2 L. Let
y D Tu.x/. Then trivially y 2 c`¹Ts.x/ W s 2 Sº. By Theorem 19.23 y is a
uniformly recurrent point of .X; hTsis2S /. By Remark 19.13 we have that Tu.y/ D
Tu.Tu.x// D Tuu.x/ D Tu.x/ so by Lemma 19.22 x and y are proximal.

Theorem 19.25. Let .X; hTsis2S / be a dynamical system and let x; y 2 X . If x and
y are proximal, then there is a minimal left ideal L of ˇS such that Tu.x/ D Tu.y/

for all u 2 L.
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Proof. By Lemma 19.22, ¹p 2 ˇS W Tp.x/ D Tp.y/º ¤ ;. It is a left ideal in ˇS ,
because, for every p; q 2 ˇS , Tp.x/ D Tp.y/ implies that Tqp.x/ D Tq.Tp.x// D

Tq.Tp.y// D Tqp.y/.

Theorem 19.26. Let .X; hTsis2S / be a dynamical system and let x; y 2 X . There
is a minimal idempotent u in ˇS such that Tu.x/ D y if and only if x and y are
proximal and y is uniformly recurrent.

Proof. Necessity. Since u is minimal, there is a minimal left ideal L of ˇS such
that u 2 L. Thus by Theorem 19.23 y is uniformly recurrent. By Remark 19.13
Tu.y/ D Tu.Tu.x// D Tuu.x/ D Tu.x/ so by Lemma 19.22 x and y are proximal.

Sufficiency. Pick by Theorem 19.25 a minimal left idealL of ˇS such that Tu.x/ D
Tu.y/ for all u 2 L. Pick by Theorem 19.23 an idempotent u 2 L such that
Tu.y/ D y.

We are now prepared to establish the equivalence of the notions of central.

Theorem 19.27. Let S be a semigroup and let B � S . Then B is central if and only
if B is dynamically central.

Proof. Necessity. Let Q D S [ ¹eº where e is a new identity adjoined to S (even if
S already has an identity). Let � D Q¹0; 1º and for s 2 S define Ts W � ! � by
Ts.f / D f ı �s . Then by Lemma 19.14, .�; hTsis2S / is a dynamical system.

Let x D �B , the characteristic function of B � Q. Pick a minimal idempotent u
in ˇS such that B 2 u and let y D Tu.x/. Then by Theorem 19.26 y is uniformly
recurrent and x and y are proximal.

Now let U D ¹z 2 � W z.e/ D y.e/º. Then U is a neighborhood of y in �. We
note that y.e/ D 1. Indeed, y D Tu.x/ so ¹s 2 S W Ts.x/ 2 U º 2 u so choose some
s 2 B such that Ts.x/ 2 U . Then y.e/ D Ts.x/.e/ D x.es/ D 1. Thus given any
s 2 S ,

s 2 B , x.s/ D 1

, Ts.x/.e/ D 1

, Ts.x/ 2 U:

Sufficiency. Choose a dynamical system .X; hTsis2S /, points x; y 2 X , and a
neighborhood U of y such that x and y are proximal, y is uniformly recurrent, and
B D ¹s 2 S W Ts.x/ 2 U º. Choose by Theorem 19.26 a minimal idempotent u in ˇS
such that Tu.x/ D y. Then B 2 u.

It is not obvious from the definition that the notion of “dynamically central” is
closed under passage to supersets. (If B D ¹s 2 S W Ts.x/ 2 U º and B � C , one can
let V D U [ ¹Ts.x/ W s 2 C º. But there does not seem to be any reason to believe
that ¹s 2 S W Ts.x/ 2 V º � C .)
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Corollary 19.28. Let S be a semigroup and let B � C � S . If B is dynamically
central, then C is dynamically central.

Proof. This follows from Theorem 19.27 and the fact that supersets of central sets are
central.

A consequence of the proof of Theorem 19.27 is that a subset of a semigroup S
is central if and only if it is dynamically central with respect to a specific dynamical
system. In the event that S has an identity, this takes a particularly simple form.

Theorem 19.28.1. Let S be a semigroup with an identity 1 and let � D S¹0; 1º. For
s 2 S , define Ts W � ! � by, for f 2 �, Ts.f / D f ı �s . Let C � S . Then
C is central if and only if there is a uniformly recurrent point y of � such that y is
proximal to �C and y.1/ D 1.

Proof. Necessity. This is essentially the same as the proof of the necessity in Theo-
rem 19.27.

Sufficiency. Let U D ¹x 2 � W x.1/ D 1º. Then U is a neighborhood of y
and C D ¹s 2 S W Ts.�C / 2 U º. So C is dynamically central hence central by
Theorem 19.27.

Exercise 19.3.1. Let .X; hTsis2S / be a dynamical system and let x 2 X . The point
x 2 X is periodic if and only if there is some s 2 S which is not an identity such
that Ts.x/ D x. The point x 2 X is recurrent if and only if every neighborhood of x
contains a point of the form Ts.x/ for some s 2 S other than an identity.

Assume that x is not a periodic point of X and that S� is a subsemigroup of ˇS .
(See Theorem 4.28.) Prove that the following statements are equivalent:

(i) x is recurrent.

(ii) Tp.x/ D x for some p 2 S�.

(iii) Te.x/ D x for some idempotent e 2 S�.

(iv) Given a neighborhood U of x, there exists a sequence hsni1nD1 of distinct ele-
ments of S such that Ts.x/ 2 U for every s 2 FP.hsni1nD1/.

Exercise 19.3.2. Let S D .!;C/ and let � D S¹0; 1º. Prove that

(a) The point y 2 � is uniformly recurrent if and only if

.8k 2 !/.¹n 2 ! W .8t 2 ¹0; 1; : : : ; kº/.y.nC t / D y.t//º has bounded gaps/.

(b) The points x; y 2 � are proximal if and only if

.8k 2 !/.9n 2 !/.8t 2 ¹0; 1; : : : ; kº/.x.nC t / D y.nC t //:
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(c) The set C � ! is central if and only if there exists D � ! such that

(i) 0 2 D;

(ii) .8k 2 !/.¹n 2 ! W .8t 2 ¹0; 1; : : : ; kº/.n C t 2 D , t 2 D/º has
bounded gaps/; and

(iii) there exist arbitrarily long intervals I such that C \ I D D \ I .

19.4 Dynamically Generated IP* Sets

In this section we consider certain dynamically defined sets that are always IP* sets.
In contrast with the results of Section 19.3, we see that the notion of a “dynamical IP*
set” is not equivalent to that of “IP* set”, but is rather significantly stronger.

The dynamical notion with which we shall be concerned in this section is that of a
measure preserving system.

Definition 19.29. (a) A measure space is a triple .X;B; �/, where X is a set, B is
a � -algebra of subsets of X , and � is a countably additive measure on B with
�.X/ finite.

(b) Given a measure space .X;B; �/, a function T W X ! X is a measure preserv-
ing transformation if and only if for allB 2 B, T �1ŒB� 2 B and �.T �1ŒB�/ D
�.B/.

(c) Given a semigroup S and a measure space .X;B; �/, a measure preserving
action of S on X is an indexed family hTsis2S such that each Ts is a measure
preserving transformation of X and Ts ı Tt D Tst for all s; t 2 S . It is also
required that if S has an identity e, then Te is the identity function on X .

(d) A measure preserving system is a quadruple .X;B; �; hTsis2S / such that
.X;B; �/ is a measure space and hTsis2S is a measure preserving action of
S on X .

We shall need a preliminary result about the semigroup .Pf .N/;[/.

Definition 19.30. Let .X;B; �/ be a measure space. A monotone action of Pf .N/
on X is an indexed family hTF iF 2Pf .N/ such that

(a) each TF is a measure preserving transformation of X and

(b) if F;K 2 Pf .N/ and maxF < minK, then TF ı TK D TF[K .

Notice that, because of the “maxF < minK” requirement, a monotone action of
Pf .N/ on X need not be a measure preserving action of Pf .N/ on X .

Lemma 19.31. Let hTF iF 2Pf .N/ be a monotone action of Pf .N/ on the measure
space .X;B; �/ and let A 2 B with �.A/ > 0. Then for each k 2 N there exists
H 2 Pf .N/ with minH > k such that �.A \ TH

�1ŒA�/ > 0.
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Proof. Pick m 2 N such that �.A/ > �.X/=m. For n 2 ¹1; 2; : : : ; mº, let Fn D
¹k C n; k C n C 1; : : : ; k C mº. Then each �.TFn

�1ŒA�/ D �.A/ > �.X/=m so
pick n; ` 2 ¹1; 2; : : : ; mº such that n < ` and �.TFn

�1ŒA� \ TF`
�1ŒA�/ > 0. Let

H D ¹k C n; k C n C 1; : : : ; k C ` � 1º. Then TH ı TF` D TFn so TFn
�1ŒA� D

TF`
�1ŒTH

�1ŒA�� so

�.TH
�1ŒA� \ A/ D �.TF`

�1ŒTH
�1ŒA� \ A�/

D �.TF`
�1ŒTH

�1ŒA�� \ TF`
�1ŒA�/

D �.TFn
�1ŒA� \ TF`

�1ŒA�/ > 0:

Lemma 19.32. Let .X;B; �; hTsis2S / be a measure preserving system and letA2B

satisfy �.A/ > 0. For every sequence hsni1nD1 in S and every m 2 N, there exists
F 2 Pf .N/ such that minF > m and �.A \ T �1s ŒA�/ > 0, where s D

Q
n2F sn.

Proof. For F 2 Pf .N/, let RF D TQ
n2F sn

. Then hRF iF 2Pf .N/ is a monotone
action of Pf .N/ on X . So we can choose a set F with the required properties by
Lemma 19.31.

Theorem 19.33. Let .X;B;�;hTsis2S/ be a measure preserving system and letC �S .
If there is some A 2 B with �.A/ > 0 such that ¹s 2 S W �.A\ T �1s ŒA�/ > 0º � C ,
then C is an IP* set.

Proof. This follows immediately from Lemma 19.32.

Lemma 19.33.1. Let .X;B; �; hTsis2S / be a measure preserving system. Let k 2 N
and, for each i 2 ¹1; 2; : : : ; kº, let Ai 2 B satisfy �.Ai / > 0 and let hsi;ni1nD1 be a
sequence in S . Then, for everym 2 N, there exists F 2 Pf .N/ such thatm < minF
and, for every i 2 N, �.Ai \ T �1ti ŒAi �/ > 0, where ti D

Q
n2F si;n.

Proof. If H 2 Pf .N/ and i 2 ¹1; 2; : : : ; kº, TH;i will denote TQ
n2H si;n .

Let U denote the semigroup .Pf .N/;[/. By Lemma 5.11 applied to the sequence
h¹nºi1nD1, we can choose an idempotent p in ˇU with the property that, for every
n 2 N, ¹H 2 Pf .N/ W minH > nº 2 p. For each i 2 ¹1; 2; : : : ; kº, let

Vi D ¹H 2 Pf .N/ W �.Ai \ T
�1
H;i ŒAi �/ > 0º:

We claim that Vi 2 p. To see this, let W 2 p. By Theorem 5.14, there exists a
sequence hHni1nD1 in Pf .N/ with the property that maxHn < minHnC1 for every
n 2 N and FU.hHni1nD1/ � W . For K 2 Pf .N/, let RK;i D TL;i , where L DS
n2K Hn. Then hRK;iiK2Pf .N/ is a monotone action of Pf .N/ on X . Pick by

Lemma 19.31,K 2 Pf .N/ such that �.Ai \R�1K;i ŒAi �/ > 0. Then
S
n2K Hn 2 Vi \

W . So Vi 2 p. It follows that we can choose F 2
Tk
iD1 Vi satisfying minF > m.
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Definition 19.34. Let S be a semigroup. A subset C of S is a dynamical IP* set if
and only if there exist a measure preserving system .X;B; �; hTsis2S / and an A 2 B

with �.A/ > 0 such that ¹s 2 S W �.A \ T �1s ŒA�/ > 0º � C .

Theorem 19.34.1. Let S be a semigroup and let C be a dynamical IP* subset of S .
Let k 2 N and, for each i 2 ¹1; 2; : : : ; kº, let hsini1nD1 be a sequence in S . Then
there exists a sequence hHni1nD1 in Pf .N/ such that maxHn < minHnC1 for every
n 2 N and, if ti;n D

Q
r2Hn

si;r , then FP.hti;ni1nD1/ � C for every i 2 ¹1; 2; : : : ; kº.

Proof. Pick a measure preserving system .X;B; �; hTsis2S / and a set A 2 B, satis-
fying �.A/ > 0, such that ¹s 2 S W �.A \ T �1s ŒA�/ > 0º � C . For H 2 Pf .N/
and i 2 ¹1; 2; : : : ; kº, let TH;i D TQ

n2H si;n
. By Lemma 19.33.1, we can choose

H1 2 Pf .N/, such that �.A \ T �1H1;i ŒA�/ > 0 for every i 2 ¹1; 2; : : : ; kº. We make
the inductive assumption that n � 1 and that we have chosen H1;H2; : : : ;Hn in
Pf .N/ such that maxHm < minHmC1 for every m 2 ¹1; 2; : : : ; n� 1º and, if Ai D
A \

T
¹T �1H;i ŒA� W H 2 FU.hHminmD1/º, then �.Ai / > 0. By Lemma 19.33.1 we can

chooseHnC1 2 Pf .N/ such that maxHn < minHnC1 and�.Ai\T �1HnC1;i ŒAi �/ > 0

for every i 2 ¹1; 2; : : : ; kº. We observe that Ai \ T �1HnC1;i ŒAi � D A \
T
¹T �1H;i ŒA� W

H 2 FU.hHmi
nC1
mD1/º for every i 2 ¹1; 2; : : : kº. So our inductive assumption holds

for nC 1 in place of n. Thus we can choose an infinite sequence hHni1nD1 in Pf .N/
for which our inductive assumption is satisfied for every n 2 N. We then have
FP.hti;ni1nD1/ � C for every i 2 ¹1; 2; : : : ; kº.

Recall that by Theorem 16.32, there is an IP* set B in .N;C/ such that for each
n 2 N, neither nC B nor �nC B is an IP* set. Consequently, the following simple
result shows that not every IP* set is a dynamical IP* set.

Theorem 19.35. Let B be a dynamical IP* set in .N;C/. There is a dynamical IP*
set C � B such that for each n 2 C , �n C C is a dynamical IP* set (and hence
�nC B is a dynamical IP* set).

Proof. Pick a measure space .X;B; �/, a measure preserving action hTnin2N of N
on X , and a set A 2 B such that �.A/ > 0 and ¹n 2 N W �.A\Tn

�1ŒA�/ > 0º � B .
Let C D ¹n 2 N W �.A\ Tn

�1ŒA�/ > 0º. To see that C is as required, let n 2 C and
let D D A \ Tn�1ŒA�. We claim that ¹m 2 N W �.D \ Tm

�1ŒD�/ > 0º � �nC C .
To this end, let m 2 N such that �.D \ Tm�1ŒD�/ > 0. Then

D \ T �1m ŒD� D A \ T �1n ŒA� \ T �1m ŒA \ T �1n ŒA��

� A \ T �1m ŒT �1n ŒA��

D A \ .Tn ı Tm/
�1ŒA�

D A \ T �1nCmŒA�

so nCm 2 C .
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Recall from Theorem 18.15 that an IP* set in N � N need not contain ¹wº �
FS.hxni1nD1/ for any sequence hxni1nD1. In the final result of this section we show
that a dynamical IP* set in the product of two semigroups with identities must contain
sets of the form FP.hxni1nD1/�FP.hyni1nD1/. Indeed, it has a much stronger property:
given any sequences hwni1nD1 and hzni1nD1 one can choose infinite product subsys-
tems hxni1nD1 of hwni1nD1 and hyni1nD1 of hzni1nD1 with FP.hxni1nD1/�FP.hyni1nD1/
contained in the given dynamical IP* set. More than this, they can be chosen in a
parallel fashion. That is if xn D

Q
t2Hn

wt , then yn D
Q
t2Hn

zt .
We only discuss the product of two semigroups for simplicity and because the gen-

eralization to arbitrary finite products is straightforward.

Theorem 19.36. Let S1 and S2 be semigroups with identities and let C be a dynami-
cal IP* set in S1�S2. Let hwni1nD1 be a sequence in S1 and let hzni1nD1 be a sequence
in S2. There exists a sequence hHni1nD1 in Pf .N/ such that

(a) for each n, maxHn < minHnC1 and

(b) if for each n, xn D
Q
t2Hn

wt and yn D
Q
t2Hn

zt , then

FP.hxni
1
nD1/ � FP.hyni

1
nD1/ � C:

Proof. Let S D S1�S2. Let e1 and e2 denote the identities of S1 and S2, respectively.
Pick a measure space .X;B; �/, a measure preserving action hT.s;t/i.s;t/2S1	S2 of

S on X , and A 2 B with �.A/ > 0 such that,

D D ¹.s; t/ 2 S W �.A \ T.s;t/
�1ŒA�/ > 0º � C:

For each F1; F2 2 Pf .N/, we put RF1;F2;1 D T.
Q
m2F1

wm;
Q
n2F2

zn/, RF1;F2;2 D
T.
Q
m2F1

wm;e2/ and RF1;F2;3 D T.e1;
Q
n2F2

zn/.
For each n 2 N, we put s1;n D .wn; zn/, s2;n D .wn; e2/ and s3;n D .e1; zn/.

By applying Lemma 19.33.1 to these three sequences, we can find H1 2 Pf .N/ such
that �.A \R�1H1;H1;i ŒA�/ > 0 for every i 2 ¹1; 2; 3º.

We now make the inductive assumption that n � 1 and that we have chosen
H1;H2; : : : ;Hn in Pf .N/ satisfying the following conditions:

(1) maxHi < minHiC1 for each i 2 ¹1; 2; : : : ; n � 1º;

(2) �.A\R�1F1;F2;i ŒA�/ > 0 for every i 2 ¹1; 2; 3º and every F1; F2 2 FU.hHi iniD1/:

For every F1; F2 2 FU.hHi iniD1/ and i 2 ¹1; 2; 3º, put AF1;F2;i DA\R
�1
F1;F2;i

ŒA�.
By Lemma 19.33.1, we can choose HnC1 2 Pf .N/ such that maxHn < minHnC1
and, for every F1; F2 2 FU.hHi iniD1/ and every i and j in ¹1; 2; 3º, �.AF1;F2;i \
T �1Q

t2HnC1
sj;t
AF1;F2;i / > 0. Our inductive assumption then holds with nC 1 in place

of n. So we can choose an infinite sequence hHni1nD1 satisfying (1) and (2) for every
n 2 N.



Section 19.5 Notes 507

Conditions (a) and (b) in the statement of our theorem are then satisfied since, if
K1; K2 2 Pf .N/, A \ T �1.

Q
m2K1

xm;
Q
n2K2

yn/
ŒA� D AS

m2K1
Hm;

S
n2K2

Hn;1. So

.
Q
m2K1

xm;
Q
n2K2

yn/ 2 C .

19.5 Notes

The notion of “dynamical system” is often defined only for compact metric spaces.
The greater generality that we have chosen (which is essential if one is going to take
ˇS as the phase space of a dynamical system) is also common in the literature of
dynamical systems. General references for topological dynamics include the books
by R. Ellis [134] and J. Auslander [12].

Theorem 19.8 and Lemma 19.9 are due to B. Balcar and F. Franek in [20] as is the
proof that we give of Theorem 19.10. Theorem 19.10 is proved by R. Ellis [134] in
the case that S is a group.

Theorem 19.15 is due to E. Glasner in [168], where it is stated in the case that S
is a countable Abelian group. Theorems 19.17 and 19.18 are from [217], a result of
collaboration with J. Lawson and A. Lisan. Theorem 19.19 is due to W. Ruppert in
[357]. E. Glasner has published [169] a proof that the enveloping semigroup of a
minimal left ideal in ˇZ is not topologically and algebraically isomorphic to ˇZ via
a map taking n to �0n. As a consequence, the condition of Theorem 19.18 does not
hold in ˇZ.

The equivalence of the notions of “central” and “dynamically central” was estab-
lished in the case in which S is countable and the phase space X is metric in [42], a
result of collaboration with V. Bergelson with the assistance of B. Weiss. The equiv-
alence of these notions in the general case is a result of H. Shi and H. Yang in [362].
A preliminary version of Theorem 19.27 for countable Abelian groups was obtained

by E. Glasner in [168]
Theorem 19.24 is due to J. Auslander [11] and R. Ellis [133].
Theorem 19.28.1 and Exercise 19.3.2 are due to S. Koppelberg in [284].
Most of the results of Section 19.4 are from an early draft of [47], results obtained

in collaboration with V. Bergelson. Lemma 19.31 is a modification of standard results
about Poincaré recurrence. Theorem 19.33 for the case S D Z is due to H. Fursten-
berg [156].



Chapter 20

Density – Connections with Ergodic Theory

As we have seen, many results in Ramsey Theory assert that, given a finite partition
of some set, one cell of the partition must contain a specified kind of structure. One
may ask instead that such a structure be found in any “large” set.

For example, van der Waerden’s Theorem (Corollary 14.3) says that whenever N
is divided into finitely many classes, one of these contains arbitrarily long arithmetic
progressions. Szemerédi’s Theorem says that whenever A is a subset of N with posi-
tive upper density, A contains arbitrarily long progressions.

Szemerédi’s original proof of this theorem [374] was elementary, but very long and
complicated. Subsequently, using ergodic theory, H. Furstenberg [155] provided a
shorter proof of this result. This proof used his “correspondence principle” which can
be viewed as a device for translating some problems involving sets of positive density
in N into problems involving measure preserving systems, the primary object of study
in ergodic theory.

We present in Section 20.2 a proof of Furstenberg’s Correspondence Principle using
the notion of p-limit and in Section 20.3 a strong density version of the Finite Sums
Theorem obtained using the algebraic structure of .ˇN;C/.

20.1 Upper Density and Banach Density

We have already dealt with the notion of ordinary upper density of a subset A of N,
which was defined by

d.A/ D lim sup
n!1

jA \ ¹1; 2; : : : ; nºj

n
:

Another notion of density that is more useful in the context of ergodic theory is that
of Banach density which we define here in a quite general context.

Definition 20.1. Let .S; � / be a countable semigroup which has been enumerated as
hsni
1
nD1 and let A � S . The right Banach density of A is

d�r .A/ D sup
°
˛ 2 R W for all n 2 N there exist m � n and x 2 S

such that
jA \ ¹s1; s2; : : : ; smº � xj

m
� ˛

±



Section 20.1 Upper Density and Banach Density 509

and the left Banach density of A is

d�l .A/ D sup
°
˛ 2 R W for all n 2 N there exist m � n and x 2 S

such that
jA \ x � ¹s1; s2; : : : ; smºj

m
� ˛

±
:

If S is commutative, one has d�r D d
�
l

and we simply write d�.A/ for the Banach
density of A.

Notice that the Banach density of a subset A of S depends on the fixed enumeration
of S . For example, in the semigroup .N;C/, if N is enumerated as

1; 2; 3; 4; 6; 5; 8; 10; 12; 14; 7; 16; 18; 20; 22; 24; 26; 28; 30; 9; 32; : : :

then d�.2N/ D 1, while with respect to the usual enumeration of N, d�.2N/ D 1
2

.
When working with the semigroup .N;C/we shall always assume that it has its usual
enumeration so that

d�.A/ D sup
°
˛ 2 R W for all n 2 N there exist m � n and x 2 N

such that
jA \ ¹x C 1; x C 2; : : : ; x Cmºj

m
� ˛

±
:

Lemma 20.2. Let .S; � / be a countable semigroup which has been enumerated as
hsni

1
nD1 and let A;B � S . Then d�r .A [ B/ 
 d�r .A/ C d�r .B/ and d�

l
.A [

B/ 
 d�
l
.A/ C d�

l
.B/. If S is right cancellative, then d�r .S/ D 1 and if S is left

cancellative, then d�
l
.S/ D 1

Proof. This is Exercise 20.1.1.

Recall that we have defined  D ¹p 2 ˇN W for all A 2 p; d.A/ > 0º. We
introduce in a more general context the similar sets defined in terms of d�r and d�

l
.

Definition 20.3. Let .S; � / be a countable semigroup which has been enumerated as
hsni
1
nD1. Then �r .S; � / D ¹p 2 ˇS W for all A 2 p, d�r .A/ > 0º and �

l
.S; � / D

¹p 2 ˇS W for all A 2 p, d�
l
.A/ > 0º.

Again, if S is commutative we write �.S; � / for �r .S; � / D 
�
l
.S; � /.

Lemma 20.4. Let .S; � / be a countable semigroup which has been enumerated as
hsni

1
nD1 and let A � S .

(a) If d�r .A/ > 0, then A \�r .S; � / ¤ ;.

(b) If d�
l
.A/ > 0, then A \�

l
.S; � / ¤ ;.

Proof. We establish (a) only. By Theorem 3.11 it suffices to show that if F is a finite
nonempty subset of P .S/ and d�r .

S
F / > 0, then for some B 2 F , d�r .B/ > 0.

This follows from Lemma 20.2.
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Recall from Theorems 6.79 and 6.80 that both  and N� n  are left ideals of
.ˇN;C/ and of .ˇN; � /. By way of contrast, we see in the following theorems that
S� n�r is far from being a left ideal of ˇS and S� n�

l
is far from being a right ideal

of ˇS .

Theorem 20.5. Let .S; � / be a countable right cancellative semigroup which has been
enumerated as hsni1nD1. Then �r .S; � / is a right ideal of ˇS .

Proof. One has that�r .S; � / ¤ ; by Lemma 20.4 and the fact from Lemma 20.2 that
d�r .S/ > 0. Let p 2 �r .S; � /, let q 2 ˇS , and let A 2 p � q. We need to show that
d�r .A/ > 0. Let B D ¹y 2 S W y�1A 2 qº. Then B 2 p so d�r .B/ > 0. Pick ˛ > 0
such that for all n 2 N there exist m � n and x 2 S such that jB\¹s1;s2;:::;smº�xj

m
� ˛.

To see that d�r .A/ � ˛, let n 2 N and pick m � n and x 2 S such that
jB\¹s1;s2;:::;smº�xj

m
� ˛. Let C D B \ ¹s1; s2; : : : ; smº � x and pick z 2

T
y2C y

�1A.
Then, since S is right cancellative, �zjC is a one-to-one function from C to A \

¹s1; s2; : : : ; smº � xz so jA\¹s1;s2;:::;smº�xzj
m

� ˛.

Theorem 20.6. Let .S; � / be a countable left cancellative semigroup which has been
enumerated as hsni1nD1. Then �

l
.S; � / is a left ideal of ˇS .

Proof. Let p 2 �
l
.S; � /, let q 2 ˇS , and let A 2 q � p. We need to show that

d�
l
.A/ > 0. Now ¹y 2 S W y�1A 2 pº 2 q so pick y 2 S such that y�1A 2 p. Then

d�
l
.y�1A/ > 0 so pick ˛ > 0 such that for all n 2 N there exist m � n and x 2 S

such that jy
�1A\x�¹s1;s2;:::;smºj

m
� ˛. Now given m and x, since S is left cancellative,

�y is a one-to-one function from y�1A\x�¹s1; s2; : : : ; smº toA\yx�¹s1; s2; : : : ; smº,
and consequently, d�

l
.A/ � ˛.

As a consequence of Theorems 20.5 and 20.6, if S is commutative and cancellative,
then �.S/ is an ideal of ˇS .

Theorem 20.7. Let .S; � / be a countable right cancellative semigroup which has been
enumerated as hsni1nD1. For any A � S , if A is piecewise syndetic, then there is some
G 2 Pf .S/ such that d�r .

S
t2G t

�1A/ D 1. If .S; � / D .N;C/, then the converse
holds. Consequently,

c`K.ˇN;C/ D
°
p 2 ˇN W for all A 2 p there exists G 2 Pf .N/

such that d�
� S
t2G

�t C A
�
D 1

±
:

Proof. Let A � S , assume that A is piecewise syndetic, and pick G 2 Pf .S/ such
that for each F 2 Pf .S/ there exists x 2 S with F � x �

S
t2G t

�1A. To see that
d�r .

S
t2G t

�1A/ D 1, let n 2 N be given and pick x 2 S such that

¹s1; s2; : : : ; snº � x �
S
t2G

t�1A:
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Then ˇ̌̌ S
t2G

t�1A \ ¹s1; s2; : : : ; snº � x
ˇ̌̌
D n:

Now assume that .S; � / D .N;C/ and we haveG 2 Pf .N/ such that d�.
S
t2G �tC

A/ D 1. Let F 2 Pf .N/ be given and pick k 2 N such that F � ¹1; 2; : : : ; kº. We
claim that there is some x 2 N such that ¹xC1; xC2; : : : ; xCkº � .

S
t2G �tCA/.

To see this, pick some m > 2k2 and some y 2 N such thatˇ̌̌
¹y C 1; y C 2; : : : ; y Cmº \

� S
t2G

�t C A
�ˇ̌̌
> .1 � 1

2k
/m

and pick v 2 N such that vk < m 
 .v C 1/k, noting that v � 2k. If for some
i 2 ¹0; 1; : : : ; v�1º one has ¹yCikC1; yCikC2; : : : ; yC.iC1/kº �

S
t2G �tCA,

then we are done, so suppose instead that for each i 2 ¹0; 1; : : : ; v � 1º,ˇ̌̌
¹y C ik C 1; y C ik C 2; : : : ; y C .i C 1/kº \

� S
t2G

�t C A
�ˇ̌̌

 k � 1:

Then�
1 �

1

2k

�
m <

ˇ̌̌
¹y C 1; y C 2; : : : ; y Cmº \

� S
t2G

�t C A
�ˇ̌̌

D

v�1X
iD0

ˇ̌̌
¹y C ik C 1; y C ik C 2; : : : ; y C .i C 1/kº \

� S
t2G

�t C A
�ˇ̌̌

C
ˇ̌̌
¹y C vk C 1; y C vk C 2; : : : ; y Cmº \

� S
t2G

�t C A
�ˇ̌̌


 v.k � 1/C k

so, since m > vk, one has that .1 � 1
2k
/vk < v.k � 1/ C k so that 2k > v, a

contradiction.
The final conclusion now follows from Corollary 4.41.

The following result reflects the interaction of addition and multiplication in ˇN
which was treated in Chapter 13.

Theorem 20.8. The set �.N;C/ is a left ideal of .ˇN; � /.

Proof. Let p 2 �.N;C/ and let q 2 ˇN. To see that q � p 2 �.N;C/, let
A 2 q � p. Then ¹x 2 N W x�1A 2 pº 2 q so pick x such that x�1A 2 p. Then
d�.x�1A/ > 0 (where here, of course, we are referring to the additive version of
d�) so pick ˛ > 0 such that for all n 2 N there exist m � n and y 2 N such that
jx�1A\¹yC1;yC2;:::;yCmºj

m
� ˛. Then given such n, m, and y, one has that

jA \ ¹xy C 1; xy C 2; : : : ; xy C xmºj

m
� ˛

so that d�.A/ � ˛
x

.
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Recall that, given a subset A of a semigroup .S; � / that we have defined a tree T
in A whose nodes are functions. Recall further that given a node f of T , the set of
successors to f is denoted by Bf and that T is a FP-tree provided that for each node
f of T , Bf consists of all finite products of entries on paths extending f which occur
after f . (By a path in T we mean a function g W ! ! A such that for each n 2 !, the
restriction of g to ¹0; 1; : : : ; n � 1º is in T .)

Theorem 20.9. Let .S; � / be a countable cancellative semigroup which has been enu-
merated as hsni1nD1. Let r 2 N and let S D

Sr
iD1Ai . There exist i 2 ¹1; 2; : : : ; rº

and a tree T in Ai such that for each path g in T , FP.hg.n/i1nD0/ � Ai , and for each
node f of T , d�r .Bf / > 0 and d�

l
.Bf / > 0.

Proof. By Theorems 20.5 and 20.6, �r .S; � / is a right ideal of ˇS and �
l
.S; � /

is a left ideal of ˇS . By Corollary 2.6 and Theorem 2.7 pick an idempotent p 2
�r .S; � / \ 

�
l
.S; � / and pick i 2 ¹1; 2; : : : ; rº such that Ai 2 p. Then by Lemma

14.24 there is an FP-tree T in Ai such that for each f 2 T , Bf 2 p. Thus, in
particular, for each f 2 T , d�r .Bf / > 0 and d�

l
.Bf / > 0.

The following theorem is not a corollary to Theorem 20.9 because d�.A/ > 0 does
not imply that d.A/ > 0. The proof is essentially the same, however, so we leave that
proof as an exercise.

Theorem 20.10 is an interesting example of the strength of combinatorial results
obtainable using idempotents in ˇN.

Theorem 20.10. Let r 2 N and let N D
Sr
iD1Ai . There exist i 2 ¹1; 2; : : : ; rº and

a tree T in Ai such that for each path g in T , FS.hg.n/i1nD0/ � Ai , and for each
node f of T , d.Bf / > 0.

Proof. This is Exercise 20.1.2.

The following lemma will be needed in the next section.

Lemma 20.11. Let A � N such that d�.A/ D ˛ > 0. Then there exists some
sequence hIki

1
kD1

of intervals in N such that lim
k!1

jIkj D 1 and

lim
k!1

jA \ Ikj

jIkj
D ˛:

Proof. This is Exercise 20.1.3.

Exercise 20.1.1. Prove Lemma 20.2.

Exercise 20.1.2. Using the fact that  is a left ideal of .ˇN;C/ (Theorem 6.79),
prove Theorem 20.10.

Exercise 20.1.3. Prove Lemma 20.11.
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20.2 The Correspondence Principle

Recall that we have defined a measure preserving system as a quadruple .X;B; �;
hTsis2S / where .X;B; �/ is a measure space and hTsis2S is a measure preserving
action of a semigroup S on X .

If the semigroup is .N;C/, the action hTnin2N is generated by a single function T1
and we put T D T1 and refer to the measure preserving system .X;B; �; T /.

Theorem 20.12 (Furstenberg’s Correspondence Principle). LetA � N with d�.A/ >
0. There exist a measure preserving system .X;B; �; T / (in which X is a compact
metric space and T is a homeomorphism from X onto X ) and a set A0 2 B such that

(1) �.A0/ D d�.A/ and

(2) for every F 2 Pf .N/, d
�.A \

T
n2F .�nC A// � �.A

0 \
T
n2F T

�nŒA0�/.

Proof. Let � D Z¹0; 1º with the product topology and let T W � ! � be the shift
defined by T .x/.n/ D x.n C 1/. (By Exercise 20.2.1 one has in fact that � is a
metric space.) Let � be the characteristic function of A (viewed as a subset of Z). Let
X D c`¹T n.�/ W n 2 Zº, the orbit closure of � . Then X is a compact metric space
and (the restriction of) T is a homeomorphism from X onto X .

For each n 2 Z, let Dn D X \ 
n
�1Œ¹1º� D ¹ı 2 X W ı.n/ D 1º and notice that

Dn is clopen in X . Let A be the Boolean algebra of sets generated by ¹Dn W n 2 Zº
and let B be the � -algebra generated by ¹Dn W n 2 Zº. Notice that for each n 2 Z,
T ŒDn� D Dn�1 and T �1ŒDn� D DnC1. Consequently, if B 2 B, then T �1ŒB� 2 B

(and T ŒB� 2 B).
Define ' W P .X/! P .N/ by '.B/ D ¹n 2 N W T n.�/ 2 Bº. Let ˛ D d�.A/ and

pick by Lemma 20.11 a sequence hIki1kD1 of intervals in N such that lim
k!1

jIkj D 1

and

lim
k!1

jA \ Ikj

jIkj
D ˛:

Pick any p 2 N� and define � W P .X/! Œ0; 1� by

�.B/ D p-lim
k2N

j'.B/ \ Ikj

jIkj
:

Notice that �.X/ D 1. Further, given any B;C � X , one has '.B \ C/ D '.B/ \

'.C / (so that, in particular, if B \C D ;, then '.B/\ '.C / D ;) and '.B [C/ D
'.B/ [ '.C /. Thus, if B and C are disjoint subsets of X , then

�.B [ C/ D p-lim
k2N

j.'.B/ [ '.C // \ Ikj

jIkj

D p-lim
k2N

j'.B/ \ Ikj C j'.C / \ Ikj

jIkj

D �.B/C �.C /:
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Next we claim that for any B � X , �.T �1ŒB�/ D �.B/. Indeed, '.T �1ŒB�/ D
.�1C '.B// \N so

�.T �1ŒB�/ D p-lim
k2N

j.�1C '.B// \ Ikj

jIkj
D p-lim

k2N

j'.B/ \ Ikj

jIkj
D �.B/

because for any k 2 N, j.�1C '.B// \ Ikj and j'.B/ \ Ikj differ by at most 1.
Thus � is finitely additive and T -invariant on P .X/ and hence in particular on A.

Further all members of A are clopen in X , so if one has a sequence hBni1nD1 in A

such that each BnC1 � Bn and
T1
nD1Bn D ;, then since X is compact there is some

k such that for all n � k, Bn D ; and hence limn!1 �.Bn/ D 0.
Therefore, we are in a position to apply Hopf’s Extension Theorem. (This is a

standard result in first year analysis courses. See for example [184, Exercise 10.37] or
[22, Satz 3.2].) The finitely additive measure � on A can be extended to a countably
additive measure � on B where for each B 2 B,

�.B/ D inf
°X
C2G

�.C / W G � A; jG j 
 !; and B �
S

G
±
:

Using this description of �.B/ and the fact that for C 2 A, �.T �1ŒC �/ D �.C /,
one sees immediately that for all B 2 B, �.T �1ŒB�/ D �.B/. Thus we have that
.X;B; �; T / is a measure preserving system.

Let A0 D D0 D ¹ı 2 X W ı.0/ D 1º and observe that '.A0/ D A and for each
n 2 N, T �nŒA0� D Dn and '.Dn/ D .�nC A/ \N. Thus

�.A0/ D �.A0/ D p-lim
k2N

j'.A0/ \ Ikj

jIkj
D p-lim

k2N

jA \ Ikj

jIkj
D ˛

and given any F 2 Pf .N/,

�.A0 \
T
n2F

T �nŒA0�/ D �
�
D0 \

T
n2F

Dn

�
D �

�
D0 \

T
n2F

Dn

�
D p-lim

k2N

j'.D0/ \
T
n2F '.Dn/ \ Ikj

jIkj

D p-lim
k2N

jA \
T
n2F .�nC A/ \ Ikj

jIkj


 d�
� T
n2F

A \ .�nC A/
�
:

When proving Szemerédi’s Theorem, one wants to show that, given a set A with
d�.A/ > 0 and ` 2 N, there is some d 2 N such that

¹a 2 N W ¹a; aC d; aC 2d; : : : ; aC `dº � Aº ¤ ;:
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As is typical of ergodic theoretic proofs of combinatorial facts, one establishes this
fact by showing that the set is in fact large. The proof of the following theorem
requires extensive background development, so we do not present it here.

Theorem 20.13. Let .X;B; �/ be a measure space, let T1; T2; : : : ; T` be commuting
measure preserving transformations of .X;B; �/, and let B 2 B with �.B/ > 0.
Then there exists d 2 N such that �.B \

T`
iD1 Ti

�d ŒB�/ > 0.

Proof. [156, Theorem 7.15].

Corollary 20.14 (Szemerédi’s Theorem). Let A � N with d�.A/ > 0. Then A
contains arbitrarily long arithmetic progressions.

Proof. Pick by Theorem 20.12 a measure preserving system .X;B; �; T / and a set
A0 2 B such that

(1) �.A0/ D d�.A/ and

(2) for every F 2 Pf .N/,

d�
�
A \

T
n2F

.�nC A/
�
� �

�
A0 \

T
n2F

T �nŒA0�
�
:

Let ` 2 N be given and for each i 2 ¹1; 2; : : : ; `º, let Ti D T i . Notice that T1; T2;
: : : ; T` are measure preserving transformations of .X;B; �/ that commute with each
other. Pick by Theorem 20.13 some d 2 N such that �.A0 \

T`
iD1 Ti

�d ŒA0�/ > 0

and notice that for each i , Ti�d D T �id . Let F D ¹d; 2d; 3d; : : : ; `dº. Then

d�
�
A \

T
n2F

.�nC A/
�
� �

�
A0 \

T
n2F

T �nŒA0�
�
> 0

so A \
T
n2F .�n C A/ ¤ ; so pick a 2 A \

T
n2F .�n C A/. Then ¹a; a C d;

aC 2d; : : : ; aC `dº � A.

Exercise 20.2.1. Let � D Z¹0; 1º and for � ¤ � in �, define �.�; �/ D 1
kC1

where
k D min¹jt j W t 2 Z and �.t/ ¤ �.t/º (and of course �.�; �/ D 0). Prove that � is a
metric on � and the metric and product topologies on � agree.

20.3 A Density Version of the Finite Sums Theorem

The straightforward density version of the Finite Sums Theorem (which would assert
that any set A � N such that d.A/ > 0 – or perhaps d�.A/ > 0 – would contain
FS.hxni1nD1/ for some sequence hxni1nD1) is obviously false. Consider A D 2N C 1.
However, a consideration of the proof of Szemerédi’s Theorem via ergodic theory
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reminds us that the proof was obtained by showing that a set which was only required
to be nonempty was in fact large.

Viewed in this way, the Finite Sums Theorem says that whenever r 2 N and N DSr
iD1Ai , there exist i 2 ¹1; 2; : : : ; rº and a sequence hxni1nD1 such that for each n,

xnC1 2 Ai \
T
¹�
P
t2F xt CAi W ; ¤ F � ¹1; 2; : : : ; nºº. In this section we show

that not only this set, but indeed many of its subsets, can be made to have positive
upper density and specify how big these sets can be made to be.

Lemma 20.15. Let A � N such that d.A/ > 0 and let B be an infinite subset of N.
For every � > 0 there exist x < y in B such that d.A\.�.y�x/CA// � d.A/2��.

Proof. Let a D d.A/ and pick a sequence hxni1nD1 in N such that limn!1 xn D 1
and

lim
n!1

jA \ ¹1; 2; : : : ; xnºj

xn
D a:

Notice that for every t 2 N, lim
n!1

j.�tCA/\¹1;2;:::;xnºj
xn

D a.

Enumerate B in increasing order as hyi i1iD1. Let � > 0 be given. If � � a2, the

conclusion is trivial, so assume that � < a2 and let b D
p
a2 � �=2. Pick k 2 N such

that k > 4a
�

and pick ` 2 N such that for all i 2 ¹1; 2; : : : ; kº and all n � `,

b <
j.�yi C A/ \ ¹1; 2; : : : ; xnºj

xn
< 2a:

It suffices to show that for some pair .i; j / with 1 
 i < j 
 k, one has

d..�yi C A/ \ .�yj C A// � a
2 � �

since d..�yi CA/\ .�yj CA// D d.A\ .�.yj � yi /CA//. Suppose instead that
this conclusion fails. Then in particular for each pair .i; j / with 1 
 i < j 
 k, there
is some vi;j 2 N such that for all n � vi;j

j.�yi C A/ \ .�yj C A/ \ ¹1; 2; : : : ; xnºj

xn
< a2 � �::

Let n D max.¹`º [ ¹vi;j W 1 
 i < j 
 kº/ and let m D xn. For each i 2
¹1; 2; : : : ; kº, let Ai D .�yi CA/\ ¹1; 2; : : : ; mº and for any C � ¹1; 2; : : : ; mº, let
�.C/ D jC j

m
. Then for each i 2 ¹1; 2; : : : ; kº, b < �.Ai / < 2a, and for 1 
 i < j 


k, �.Ai \ Aj / < a2 � �. Notice also that for C � ¹1; 2; : : : ; kº,

�.C/ D

Pm
tD1

�C .t/

m
:

We claim that it suffices to show that

k2b2 <

kX
iD1

�.Ai /C 2

k�1X
iD1

kX
jDiC1

�.Ai \ Aj /:
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Indeed, once we have done so, we have k2b2 < 2kaC k.k � 1/.a2 � �/ so that

2a > k.� � .a2 � b2//C a2 � �

> k.� � .a2 � b2//

D
k�

2

> 2a;

a contradiction.
To establish the desired inequality, observe first that

kb <

kX
iD1

�.Ai / D

Pk
iD1

Pm
tD1

�Ai .t/

m

so that

k2b2 <
.
Pm
tD1

Pk
iD1

�Ai .t//
2

m2
: (1)

Next one establishes by a routine induction on m that for any function f W ¹1; 2;
: : : ; mº ! R,

m

mX
tD1

f 2.t/ �
� mX
tD1

f .t/
�2
D

mX
tD2

t�1X
sD1

.f .t/ � f .s//2

and thus m
Pm
tD1 f

2.t/ � .
Pm
tD1 f .t//

2. Then in particular

� mX
tD1

kX
iD1

�Ai .t/
�2

 m

mX
tD1

� kX
iD1

�Ai .t/
�2

and thus by (1) we have

k2b2 <

Pm
tD1.

Pk
iD1

�Ai .t//
2

m
: (2)

Now, for any t ,

� kX
iD1

�Ai .t/
�2
D

kX
iD1

�Ai
2.t/C 2

k�1X
iD1

kX
jDiC1

�Ai .t/
�Aj .t/

D

kX
iD1

�Ai .t/C 2

k�1X
iD1

kX
jDiC1

�Ai\Aj .t/
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so that Pm
tD1.

Pk
iD1

�Ai .t//
2

m
D

Pk
iD1

Pm
tD1

�Ai .t/

m

C
2
Pk�1
iD1

Pk
jDiC1

Pm
tD1

�Ai\Aj .t/

m

D

kX
iD1

�.Ai /C 2

k�1X
iD1

kX
jDiC1

�.Ai \ Aj /:

Now, using (2) the required inequality is established.

Notice that in Lemma 20.15, one cannot do better than d.A/2. Indeed, choose
a set A � N by randomly assigning (with probability 1

2
) each n 2 N to A or its

complement. Then for any t 2 N, d.A \ .�t C A// D 1
4
D d.A/2.

Lemma 20.16. Let p 2  such that p C p D p, let A 2 p, and let � > 0. Then

¹x 2 A W .�x C A/ 2 p and d.A \ .�x C A// > d.A/2 � �º 2 p:

Proof. Let B D ¹x 2 N W d.A \ .�x C A// � d.A/2 � �=2º. Since by Theorem
4.12, A? D ¹x 2 A W .�x C A/ 2 pº 2 p, it suffices to show that B 2 p. Suppose
instead that N n B 2 p and pick by Theorem 5.8 a sequence hxni1nD1 in N such that
FS.hxni1nD1/ � N n B . Let C D ¹

Pn
tD1 xt W n 2 Nº and pick by Lemma 20.15

some n < m such that
Pm
tD1 xt �

Pn
tD1 xt 2 B . Since

mX
tD1

xt �

nX
tD1

xt D

mX
tDnC1

xt 2 FS.hxt i1tD1/;

this is a contradiction.

The proof of the following theorem is reminiscent of the proof of Lemma 14.24.

Theorem 20.17. Let p 2 , let A 2 p and let 0 < ı < d.A/. There is a tree T in A
such that

(1) for each path g of T

(a) FS.hg.t/i1tD1/ � A and

(b) for each F 2 Pf .!/, d.A \
T
¹�y C A W y 2 FS.hg.t/it2F /º/ > ı2

jF j

and

(2) for each f 2 T , d.Bf / > 0.
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Proof. Given n 2 !, g W ¹0; 1; : : : ; n � 1º ! A, and F � ¹0; 1; : : : ; n � 1º, let

D.F; g/ D A \
\
¹�y C A W y 2 FS.hg.t/it2F /º;

C.F; g/ D ¹x 2 D.F; g/ W �x CD.F; g/ 2 p

and d.D.F; g/ \ .�x CD.F; g/// > ı2
jF jC1

º; and

B.g/ D
\
¹C.F; g/ W F � ¹0; 1; : : : ; n � 1ºº:

Notice that, following our usual convention that
T
; is whatever semigroup we are

concerned with at the time, one has D.;; g/ D A.
Let T0 D ¹;º and inductively for n 2 !, let

TnC1 D ¹g [ ¹.n; x/º W g 2 Tn; x 2 B.g/; and if n > 0, x > g.n � 1/º:

Let T D
S1
nD0 Tn. Then trivially T is a tree in A. (Given x 2 B.g/, x 2 C.;; g/ �

D.;; g/ D A.) Notice that for n 2 N and g 2 Tn, Bg D ¹x 2 B.g/ W x > g.n� 1/º.
We show first by induction on n that for all g 2 Tn and all F � ¹0; 1; : : : ; n � 1º,

C.F; g/ 2 p and d.D.F; g// > ı2
jF j

. Observe that

if k D maxF and h is the restriction of g to ¹0; 1; : : : ; kº,
then D.F; g/ D D.F; h/ and C.F; g/ D C.F; h/.

(�)

To ground the induction assume that n D 0. Then g D F D ; and D.F; g/ D A

so that d.D.F; g// > ı D ı2
0

. Let � D d.A/2 � ı2. Then

C.F; g/ D ¹x 2 A W �x C A 2 p and d.A \ .�x C A// > d.A/2 � �º

so that by Lemma 20.16, C.F; g/ 2 p.
Now let n 2 ! and assume that for all g 2 Tn and all F � ¹0; 1; : : : ; n � 1º,

C.F; g/ 2 p and d.D.F; g// > ı2
jF j

. Let g 2 TnC1 and F � ¹0; 1; : : : ; nº be given.
By the observation (�), we may assume that n 2 F . Let h be the restriction of g to
¹0; 1; : : : ; n � 1º, let H D F n ¹nº, and let x D g.n/. Then h 2 Tn and x 2 B.h/.

We now claim that

D.F; g/ D D.H; h/ \ .�x CD.H; h//: (��)

To see that D.H; h/ \ .�x C D.H; h// � D.F; g/, let z 2 D.H; h/ \ .�x C
D.H; h//. Then z 2 D.H; h/ � A. Let y 2 FS.hg.t/it2F / and pick G � F such
that y D

P
t2G g.t/. We show that z 2 �y C A. If n … G, then y 2 FS.hh.t/it2H /

and hence, since z 2 D.H; h/, z 2 �yCA. We thus assume that n 2 G. If G D ¹nº,
then z 2 �x C D.H; h/ � �x C A D �y C A as required. We therefore assume
that K D G n ¹nº ¤ ;. Then K � H . Let v D

P
t2H g.t/ D

P
t2H h.t/. Then

v 2 FS.hh.t/it2H / so xC z 2 D.H; h/ � �vCA and thus vC xC z D yC z 2 A
as required.
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To see that D.F; g/ � D.H; h/ \ .�x C D.H; h//, let z 2 D.F; g/. Since
FS.hh.t/it2H / � FS.hg.t/it2F /, z 2 D.H; h/. Since x D g.n/ 2 FS.hg.t/it2F /,
x C z 2 A. To see that x C z 2 D.H; h/, let y 2 FS.hh.t/it2H /. Then y C x 2
FS.hg.t/it2F / so z 2 �.y C x/C A so x C z 2 �y C A. Thus (��) is established.

Since x 2 B.h/ � C.H; h/, we have �x CD.H; h/ 2 p. Thus

D.H; h/ \ .�x CD.H; h// 2 p:

That is D.F; g/ 2 p. Now since x 2 C.H; h/ and D.F; g/ D D.H; h/ \ .�x C

D.H; h//, d.D.F; g// > ı2
jH jC1

D ı2
jF j

. Let � D d.D.F; g// � ı2
jF j

and let
� D 2�ı2

jF j

C �2. Let

E D ¹z 2 D.F; g/ W �z CD.F; g/ 2 p and

d.D.F; g/ \ .�z CD.F; g/// > d.D.F; g//2 � �º:

By Lemma 20.16, E 2 p. Since d.D.F; g//2 � � D .ı2
jF j

C �/2 � � D ı2
jF jC1

, we
have that E D C.F; g/ so that C.F; g/ 2 p. The induction is complete.

Now let f be any path of T . We show by induction on jF j, using essentially the
first proof of Theorem 5.8, that if F 2 Pf .!/, n D minF , and h is the restriction of
f to ¹0; 1; : : : ; n � 1º, then

P
t2F f .t/ 2 D.¹0; 1; : : : ; n � 1º; h/. First assume that

F D ¹nº, let g be the restriction of f to ¹0; 1; : : : ; nº, and let h be the restriction of
f to ¹0; 1; : : : ; n � 1º. Then g D h [ ¹.n; f .n//º with

f .n/ 2 B.h/ � C.¹0; 1; : : : ; n � 1º; h/ � D.¹0; 1; : : : ; n � 1º; h/

as required.
Now assume that jF j > 1, let G D F n ¹nº, and let m D minG. Let h, g, and

k be the restrictions of f to ¹0; 1; : : : ; n � 1º, ¹0; 1; : : : ; nº, and ¹0; 1; : : : ; m � 1º
respectively. ThenX

t2G

f .t/ 2 D.¹0; 1; : : : ; m � 1º; k/ � D.¹0; 1; : : : ; nº; g/

andD.¹0; 1; : : : ; nº; g/ D D.¹0; 1; : : : ; n�1º; h/\.�f .n/CD.¹0; 1; : : : ; n�1º; h//
by (��). Thus

P
t2G f .t/Cf .n/ 2 D.¹0; 1; : : : ; n�1º; h/ as required. In particular,

conclusion (1)(a) holds.
To establish conclusion (1) (b), let F 2 Pf .!/, pick n > maxF , and let h be

the restriction of f to ¹0; 1; : : : ; n � 1º. The conclusion of (1) (b) is precisely the
statement, proved above, that d.D.F; h// > ı2

jF j

.
As we observed above, for n 2 N and g 2 Tn, Bg D ¹x 2 B.g/ W x > g.n � 1/º

and thus Bg 2 p so, since p 2 , d.Bg/ > 0.
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20.4 Notes

The notion which we have called “Banach density” should perhaps be called “Polya
density” since it appears (with reference to N) explicitly in [323]. To avoid prolifera-
tion of terminology, we have gone along with Furstenberg [156] who says the notion
is of the kind appearing in early works of Banach. The definition of Banach density
in the generality that we use in Section 20.1 is based on the definition of “maximal
density” by H. Umoh in [381].

It is easy to construct subsets A of N such that for all n 2 N, d.
Sn
tD1�t C A/ D

d.A/ > 0. On the other hand, it was shown in [195] that if d�.A/ > 0, then for each
� > 0 there is some n 2 N such that d�.

Sn
tD1�tCA/ > 1��. Consequently, in view

of Theorem 20.7, it would seem that�.N;C/ is not much larger than c`K.ˇN;C/.
On the other hand it was shown in [114], a result of collaboration with D. Davenport,
that c`K.ˇN;C/ is the intersection of closed ideals of the form c`.p C N�/ lying
strictly between c`K.ˇN;C/ and �.N;C/.

In the first edition of this book we remarked that we doubted that an elementary
proof of Theorem 20.10 would be found in the near future. In fact one has been
recently found by H. Towsner in [378].

Theorem 20.13, one of four nonelementary results used in this book that we do
not prove, is due to H. Furstenberg and Y. Katznelson in [159]. In [57] V. Bergelson
and A. Leibman proved that if P1; P2; : : : ; Pr are polynomials taking integer values
at integers and taking 0 to 0 and E is a set of integers of positive upper Banach
density, then there exist integers a and n ¤ 0 such that ¹a C P1.n/; a C P2.n/; : : : ;
aC Pr.n/º � E.

Lemma 20.15 is due to V. Bergelson in [30]. Theorem 20.17 is from [39], a result
of collaboration with V. Bergelson.

Given a discrete semigroup S , l1.S/ is the Banach space of bounded complex
valued functions on S with the supremum norm. A mean on S is a member � of
l1.S/

� such that k�k D 1 and �.g/ 2 Œ0;1/ whenever g 2 l1.S/ is real-valued
and nonnegative. A left invariant mean on S is a mean � such that for all s 2 S and
all g 2 l1.S/, �.s � g/ D �.g/, where s � g D g ı �s . Let LIM.S/ be the set of left
invariant means on S . A semigroup S is left amenable if and only if LIM.S/ ¤ ;.
Every commutative semigroup is left amenable, and so are many noncommutative
semigroups. The standard example of a group which is not left amenable is the free
group on two generators.

The algebra of ˇS has applications to the theory of left invariant means. Since
`1.S/ can be identified with the space of complex-valued continuous functions on
ˇS , it follows from the Riesz Representation Theorem that the means on S can be
identified with the complex-valued regular probability measures on ˇS . A measure
� of this kind is then a left invariant mean if and only if �.s�1B/ D �.B/ for every
s 2 S and every Borel subset B of ˇS . It is clear that the support of such a measure
is a closed left ideal of ˇS . It is also easy to see that, if S is left amenable, then
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every left ideal of ˇS contains the support of a left invariant mean. This follows from
the fact that, if � is a left invariant mean on S and if x 2 ˇS , then the measure �
defined by �.B/ D �.��1x ŒB�/ for every Borel subset B of ˇS , is also a left invariant
mean and its support is contained in ˇSx. It follows that the number of left invariant
means on S is at least equal to the number of minimal left ideals of ˇS . Hence, by
Theorem 6.30, if S is infinite and weakly left cancellative, there are 22

jSj

left invariant
means on S .

A left cancellative and left amenable semigroup S satisfies the Strong Følner Con-
dition [10]. H of S and any � > 0, there is a finite nonempty subset F of S such that
for each s 2 H , jsFF j < � � jF j. This was shown by I. Namioka in [310]. This
condition is useful in defining a very well behaved notion of density via the notion
of a left Følner net, that is a net hF˛i˛2D of finite nonempty subsets of S such that
for each s 2 S , .jsF˛F˛j/=jF˛j converges to 0. Let LIM0.S/ denote the set of
left invariant means which are weak* limits in l1.S/� of left Følner nets. In [264]
we showed that LIM.S/ is the weak* closure of the convex hull of LIM0.S/ and that
LIM.N/ D LIM0.N/. (If S is a left amenable group, this is a relatively old result of
C. Chou [98, Theorem 3.2 (a)].)
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Other Semigroup Compactifications

Throughout this book we have investigated the structure of ˇS for a discrete semi-
group S . According to Theorem 4.8, ˇS is a maximal right topological semigroup
containing S within its topological center.

In this chapter we consider semigroup compactifications that are maximal right
topological, semitopological, or topological semigroups, or topological groups, de-
fined not only for discrete semigroups, but in fact for any semigroup which is also a
topological space.

21.1 The LMC , WAP , AP , and SAP

Compactifications

Let S be a semigroup which is also a topological space. We shall describe a method
of associating S with a compact right topological semigroup defined by a universal
property. The names for the compactifications that we introduce in this section are
taken from [63] and [64]. These names come from those of the complex valued func-
tions on S that extend continuously to the specified compactification. The four classes
of spaces in which we are interested are defined by the following statements.

Definition 21.1. (a) ‰1.C/ is the statement “C is a compact right topological semi-
group”.

(b) ‰2.C / is the statement “C is a compact semitopological semigroup”.

(c) ‰3.C / is the statement “C is a compact topological semigroup”.

(d) ‰4.C / is the statement “C is a compact topological group”.

Lemma 21.2. Let S be a set with jS j D � � !, let X be a compact space, and let
f W S ! X . If f ŒS� is dense in X , then jX j 
 22

�

.

Proof. Give S the discrete topology. Then the continuous extension ef of f to ˇS
takes ˇS onto X so that jX j 
 jˇS j. By Theorem 3.58, jˇS j D 22

�

.

In the following lemma we need to be concerned with the technicalities of set theory
more than is our custom. One would like to define Fi D ¹.f; C / W ‰i .C /, f is a
continuous homomorphism from S to C , and f ŒS� � ƒ.C/º. However, there is no
such set. (Its existence would lead quickly to Russell’s Paradox.)
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Notice that the requirements in (1) and (2) concerning the topological center are
redundant if i ¤ 1.

Lemma 21.3. Let S be an infinite semigroup which is also a topological space and
let i 2 ¹1; 2; 3; 4º. There is a set Fi of ordered pairs .f; C / such that

(1) if .f; C / 2 Fi , then‰i .C /, f is a continuous homomorphism from S to C , and
f ŒS� � ƒ.C/, and

(2) given any D such that ‰i .D/ and given any continuous homomorphism g W

S ! D with gŒS� � ƒ.D/, there exist .f; C / 2 Fi and a continuous one-to-
one homomorphism ' W C ! D such that ' ı f D g.

Proof. Let � D jS j and fix a set X with jX j D 22
�

. Let

G D ¹.f; .C; T ; � // W C � X , T is a topology on C; � is an associative

binary operation on C , and f W S ! C º:

Note that if C � X , T is a topology on C , � is a binary operation on C , and f W S !
C , then f � S �C � S �X , C � X , T � P .C / � P .X/, and � W C �C ! C so
that � � .C � C/ � C � .X �X/ �X . Thus

G � P .S �X/ � .P .X/ �P .P .X// �P ..X �X/ �X//

so G is a set. (More formally, the axiom schema of separation applied to the set

P .S �X/ � .P .X/ �P .P .X// �P ..X �X/ �X//

and the statement “C � X , T is a topology on C , � is an associative binary operation
on C , and f W S ! C ” guarantees the existence of a set G as we have defined it.)

In defining G we have, out of necessity, departed from the custom of not specifi-
cally mentioning the topology or the operation when talking about a semigroup with
a topology. In the definition of the set Fi we return to that custom, writing C instead
of .C; T ; � /. Let

Fi D ¹.f; C / 2 G W ‰i .C /; f is a continuous homomorphism

from S to C , and f ŒS� � ƒ.C/º:

(Notice again that the requirement that f ŒS� � ƒ.C/ is redundant if i ¤ 1.)
Trivially Fi satisfies conclusion (1). Now let g and D be given such that ‰i .D/

and g is a continuous homomorphism from S to D. Let B D c` gŒS�. By Exercise
2.3.2, since gŒS� � ƒ.D/, B is a subsemigroup of D. Further, if D is a topological
group (as it is if i D 4), then by Exercise 2.2.3 B is a topological group. Since the
continuity requirements of ‰i are hereditary, we have ‰i .B/.

Now by Lemma 21.2, jBj 
 22
�

D jX j so pick a one-to-one function 	 W B ! X

and let C D 	ŒB�. Give C the topology and operation making 	 an isomorphism and
a homeomorphism fromB ontoC . Let f D 	ıg and let ' D 	�1. Then .f; C / 2 Fi ,
' is a continuous one-to-one homomorphism from C to D, and ' ı f D g.
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Notice that one may have f and distinctC1 andC2 with .f; C1/ 2 Fi and .f; C2/ 2
Fi . We can now establish the existence of universal semigroup compactifications with
respect to each of the statements ‰i .

Theorem 21.4. Let S be an infinite semigroup which is also a topological space and
let i 2 ¹1; 2; 3; 4º. There exist a pair .�i ; �iS/ such that

(1) ‰i .�iS/,

(2) �i is a continuous homomorphism from S to �iS ,

(3) �i ŒS� is dense in �iS ,

(4) �i ŒS� � ƒ.�iS/, and

(5) given any D such that ‰i .D/ and any continuous homomorphism g W S ! D

with gŒS� � ƒ.D/, there exists a continuous homomorphism � W �iS ! D

such that � ı �i D g.

So the following diagram commutes:

S

�iS

D:

�i �

g�
�
�� �

�
��
�

Proof. Pick a set Fi as guaranteed by Lemma 21.3 and let T D ⨉.f;C/2Fi C . Define
�i W S ! T by �i .s/.f; C / D f .s/. Let �iS D c`T �i ŒS�. By Theorem 2.22 T (with
the product topology and coordinatewise operations) is a compact right topological
semigroup and �i ŒS� � ƒ.T /. If i 2 ¹2; 3; 4º one easily verifies the remaining
requirements needed to establish that‰i .T /. By Exercise 2.3.2 �iS is a subsemigroup
of T and, if i D 4, by Exercise 2.2.3 �iS is a topological group. Consequently
‰i .�iS/.

For each .f; C / 2 Fi , 
.f;C/ ı �i D f so �i is continuous. Given s; t 2 S and
.f; C / 2 Fi ,

.�i .s/�i .t//.f; C / D .�i .s/.f; C //.�i .t/.f; C //

D f .s/f .t/ D f .st/ D �i .st/.f; C /

so �i is a homomorphism.
Trivially �i ŒS� is dense in �iS and we have already seen that �i ŒS� � ƒ.T / so that

�i ŒS� � ƒ.�iS/.
Finally, let D be given such that ‰i .D/ and let g W S ! D be a continuous

homomorphism. Pick by Lemma 21.3 some .f; C / 2 Fi and a continuous one-to-one
homomorphism ' W C ! D such that ' ı f D g. Let � D ' ı 
.f;C/. Then, given
s 2 S ,

.� ı �i /.s/ D .' ı 
.f;C/ ı �i /.s/ D '.�i .s/.f; C // D '.f .s// D g.s/:
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We now observe that the compactifications whose existence is guaranteed by The-
orem 21.4 are essentially unique.

Theorem 21.5. Let S be an infinite semigroup which is also a topological space and
let i 2 ¹1; 2; 3; 4º. Let .�i ; �iS/ be as guaranteed by Theorem 21.4. Assume that also
the pair .'; T / satisfies

(1) ‰i .T /,

(2) ' is a continuous homomorphism from S to T ,

(3) 'ŒS� is dense in T ,

(4) 'ŒS� � ƒ.T /, and

(5) given any D such that ‰i .D/ and any continuous homomorphism g W S ! D

with gŒS� � ƒ.D/, there exists a continuous homomorphism � W T ! D such
that � ı ' D g.

Then there is a function ı W �iS ! Y which is both an isomorphism and a homeo-
morphism such that ı takes �i ŒS� onto 'ŒS� and ı ı �i D '.

Proof. Let ı W �iS ! T be as guaranteed by conclusion (5) of Theorem 21.4 for T
and ' and let � W T ! �iS be as guaranteed by conclusion (5) above for �iS and �i .
Then ı and � are continuous homomorphisms, ı ı �i D ', and � ı ' D �i .

Now ıŒ�iS� is a compact set containing 'ŒS� which is dense in T so ıŒ�iS� D T .
Also � ı ı ı �i D � ı ' D �i so � ı ı agrees with the identity on the dense set �i ŒS�
and thus �ıı is the identity on �iS . Consequently � D ı�1 so ı is a homeomorphism
and an isomorphism.

As a consequence of Theorem 21.5 it is reasonable to speak of “the” LMC -com-
pactification, and so forth.

Definition 21.6. Let S be an infinite semigroup which is also a topological space and
for each i 2 ¹1; 2; 3; 4º let .�i ; �iS/ be as guaranteed by Theorem 21.4.

(a) .�1; �1S/ is the LMC-compactification of S and LMC.S/ D �1S .

(b) .�2; �2S/ is the WAP -compactification of S and WAP .S/ D �2S .

(c) .�3; �3S/ is the AP -compactification of S and AP .S/ D �3S .

(d) .�4; �4S/ is the SAP -compactification of S and SAP .S/ D �4S .

Notice that by Theorem 4.8, if S is a discrete semigroup, then .�; ˇS/ is another
candidate to be called “the” LMC -compactification of S .

We remind the reader that semigroup compactifications need not be topological
compactifications because the functions (in this case �i ) are not required to be em-
beddings. In Exercise 21.1.1, the reader is asked to show that if it is possible for �i to
be an embedding, or just one-to-one, then it is.
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Exercise 21.1.1. Let S be an infinite semigroup which is also a topological space
and let i 2 ¹1; 2; 3; 4º. Let Y be a semigroup with topology such that ‰i .Y / Let
	 W S ! Y be a continuous homomorphism with 	ŒS� � ƒ.Y /.

(a) Prove that if 	 is one-to-one, then so is �i .

(b) Prove that if 	 is an embedding, then so is �i .

Exercise 21.1.2. If S is a group (which is also a topological space), show that
AP .S/ � SAP .S/. (Hint: Prove that AP .S/ is a group and apply Ellis’ Theo-
rem (Corollary 2.39).)

Exercise 21.1.3. Let C denote any of the semigroups WAP .N/, AP .N/, or
SAP .N/. Let x 2 C and let m and n be distinct positive integers. Show that
mC x ¤ nC x.

Exercise 21.1.4. Show that each of the compactifications WAP .N/;AP .N/ and
SAP .N/ has 2c elements. (Hint: By Kronecker’s Theorem, N can be densely and
homomorphically embedded in a product of c copies of the unit circle.)

21.2 Right Topological Compactifications

The requirements in conclusions (4) and (5) of Theorem 21.4 referring to the topo-
logical center seem awkward. They are redundant except when i D 1, when the
property being considered is that of being a right topological semigroup. We show
in this section that without the requirement that gŒS� � ƒ.D/, there is no maximal
right topological compactification of any infinite discrete weakly right cancellative
semigroup in the sense of Theorem 21.4.

Theorem 21.7. Let S be an infinite discrete weakly right cancellative semigroup and
let � be an infinite cardinal. There exist a compact right topological semigroup T
and an injective homomorphism 	 W S ! T such that any closed subsemigroup of T
containing 	ŒS� has cardinality at least �.

Proof. Let1 be a point not in � � S and let T D .� � S/ [ ¹1º. (Recall that the
cardinal � is an ordinal, so that � D ¹˛ W ˛ is an ordinal and ˛ < �º.) Define an
operation � on T as follows:

.0; s/ � .t 0; s0/ D .t 0; ss0/;

.t; s/ � .t 0; s0/ D .t 0 C t; s/ if t ¤ 0; and

.t; s/ � 1 D 1 � .t; s/ D1 �1 D 1;

where t 0 C t is ordinal addition. We leave it as an exercise (Exercise 21.2.1) to verify
that the operation � is associative.
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Now fix an element � 2 S and define a topology on T as follows:

(1) Each point of .� � .S n ¹�º// [ ¹.0; �/º is isolated.

(2) Basic open neighborhoods of1 are of the form

¹1º [ .¹t 00 W t 0 < t 00 < �º � S/ [ .¹t 0º � .S n F //

where t 0 < � and F is a finite subset of S with � 2 F .

(3) If t D t 0 C 1, then basic open neighborhoods of .t; �/ are of the form

¹.t; �/º [ .¹t 0º � .S n F //

where F is a finite subset of S with � 2 F .

(4) If t is a nonzero limit ordinal, then basic open neighborhoods of .t; �/ are of the
form

¹.t; �/º [ .¹t 00 W t 0 < t 00 < tº � S/ [ .¹t 0º � .S n F //

where t 0 < t and F is a finite subset of S with � 2 F .

That is to say, a basis for the topology on T is

B D ¹¹.t; s/º W t < � and s 2 S n ¹�ºº [ ¹¹.0; �/ºº

[ ¹¹1º [ .¹t 00 W t 0 < t 00 < �º � S/ [ .¹t 0º � .S n F // W

t 0 < �; F 2 Pf .S/, and � 2 F º

[ ¹¹.t 0 C 1; �/º [ .¹t 0º � .S n F // W t 0 < �; F 2 Pf .S/, and � 2 F º

[ ¹¹.t; �/º [ .¹t 00 W t 0 < t 00 < tº � S/ [ .¹t 0º � .S n F // W

t is a limit, t 0 < t < �; F 2 Pf .S/, and � 2 F º:

The verification that B is a basis for a Hausdorff topology on T is Exercise 21.2.2.
To see that, with this topology, T is compact, let U be an open cover of T . Pick

U 2 U such that1 2 U and pick t1 < � such that ¹t 00 W t1 < t 00 < �º � S � U .
If a finite subfamily of U covers ¹t W t 
 t1º � S , then we are done. So assume that
no finite subfamily of U covers ¹t W t 
 t1º � S and pick the least t0 such that no
finite subfamily of U covers ¹t W t 
 t0º � S . Pick V 2 U such that .t0 C 1; �/ 2 V
and pick F 2 Pf .S/ such that ¹t0º � .S n F / � V . Pick finite G � U such that
¹t0º � F �

S
G .

Assume first that t0 D t 0 C 1 for some t 0 and pick finite F � U such that ¹t W t 

t 0º � S �

S
F . Then F [ G [ ¹V º covers ¹t W t 
 t0º � S , a contradiction.

Thus t0 is a limit ordinal. If t0 D 0, then G [¹V º covers ¹0º�S . Thus t0 ¤ 0. Pick
W 2 U such that .t0; �/ 2 W and pick t 0 < t0 such that ¹t 00 W t 0 < t 00 < t0º�S � W .
Pick finite F � U such that ¹t W t 
 t 0º � S �

S
F . Then F [ G [ ¹V;W º covers

¹t W t 
 t0º � S , a contradiction.
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Thus T is compact as claimed. We verify now that T is a right topological semi-
group. Since �1 is constant it is continuous. Let .t 0; s0/ 2 � � S . Trivially �.t 0;s0/
is continuous at each isolated point of T , so we only need to show that �.t 0;s0/ is
continuous at1 and at each point of .� n ¹0º/ � ¹�º.

To see that �.t 0;s0/ is continuous at 1, let U be a neighborhood of 1 and pick
u < � such that ¹t 00 W u < t 00 < �º � S � U . Let

W D ¹1º [ .¹t 00 W uC 1 < t 00 < �º � S/ [ .¹uC 1º � .S n ¹�º//:

Then �.t 0;s0/ŒW � � U since t 00 
 t 0 C t 00 for all t 00 < �.
Next let 0 < t < � and let U be a neighborhood of .t; �/ � .t 0; s0/ D .t 0 C t; �/.

Assume first that t D t0 C 1 and pick F 2 Pf .S/ with � 2 F such that ¹t 0 C t0º �
.S n F / � U . Let G D ¹s 2 S W ss0 2 F º and notice that, since S is weakly right
cancellative, G is finite. Let

W D ¹.t; �/º [ .¹t0º � .S n .F [G///:

Then �.t 0;s0/ŒW � � U . (If t0 D 0 and s 2 S nG, then ss0 … F .)
Now assume that t is a limit ordinal and pick t0 < t and F 2 Pf .S/ with � 2 F

such that

¹.t 0 C t; �/º [ .¹t 00 W t 0 C t0 < t
00 < t 0 C tº � S/ [ .¹t 0 C t0º � .S n F // � U

and let
W D ¹.t; �/º [ .¹t 00 W t0 < t

00 < tº � S/ [ .¹t0º � .S n F //:

Then �.t 0;s0/ŒW � � U .
Thus T is a compact right topological semigroup. Define 	 W S ! T by 	.s/ D

.0; s/. Trivially 	 is an injective homomorphism.
Now letH be a closed subsemigroup of T containing 	ŒS�. We claim that ��¹�º �

H . Suppose not, and pick the least t < � such that .t; �/ … H . Notice that t > 0.
Pick a neighborhood U of .t; �/ such that U \H D ;. Then there exist some t 0 < t
and some F 2 Pf .S/ such that ¹t 0º � .S n F / � U . Then .t 0; �/ 2 H so

.¹0º � S/ � .t 0; �/ D ¹t 0º � S� � H:

Since S is weakly right cancellative, S� is infinite, so .¹t 0º � S�/ \ U ¤ ;, a
contradiction.

The following corollary says in the strongest terms that without the requirement
that 	ŒS� � ƒ.T / (or some other requirement), there could not be a maximal right
topological compactification of S . Notice that the corollary does not even demand
any relationship between the topology on X and the semigroup operation, nor are any
requirements, either algebraic or topological, placed on the function '. (Although,
presumably, the kind of result one would be looking for would have X as a compact
right topological semigroup and would have ' as a homomorphism with 'ŒS� dense
in X .)
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Corollary 21.8. Let S be an infinite discrete weakly right cancellative semigroup,
let X be a semigroup with a compact topology, and let ' W S ! X . There exist a
compact right topological semigroup T and an injective homomorphism 	 W S ! T

such that there is no continuous homomorphism � W X ! T with � ı ' D 	 .

Proof. Pick a cardinal � > jX j and let T and 	 be as guaranteed by Theorem 21.7
for S and �. Suppose one has a continuous homomorphism � W X ! T such that
� ı ' D 	 . Then �ŒX� is a closed subsemigroup of T containing 	ŒS� and thus
� > jX j � �ŒX� � �, a contradiction.

Exercise 21.2.1. Prove that the operation on T defined in the proof of Theorem 21.7
is associative.

Exercise 21.2.2. Let B and T be as in the proof of Theorem 21.7. Prove that B is a
basis for a Hausdorff topology on T .

21.3 Periodic Compactifications as Quotients

Given a semigroup S with topology, the WAP -, AP -, and SAP -compactifications
are all compact right topological semigroups that are equal to their topological centers
and thus, by Theorem 4.8 each is a quotient of ˇSd , where Sd denotes S with the
discrete topology.

In this section we shall identify equivalence relations on ˇSd that yield the WAP -
and AP -compactifications. We shall use the explicit descriptions of these compacti-
fications as quotients to characterize the continuous functions from a semitopological
semigroup S to a compact semitopological or topological semigroup that extend to the
WAP - or AP -compactifications of S . We shall also show that, if S is commutative,
SAP .S/ is embedded in WAP .S/ as the smallest ideal of WAP .S/.

We first give some simple well-known properties of quotient spaces defined by
families of functions.

Definition 21.9. Let X be a compact space and let �.f; Y / be a statement which
implies that f is a continuous function mapping X to a space Y . We define an equiv-
alence relation on X by stating that x 	 y if and only if f .x/ D f .y/ for every f
for which �.f; Y / holds for some Y . Let X=	 denote the quotient of X defined by
this relation, and let 
 W X ! X=	 denote the canonical mapping. We give X=	
the quotient topology, in which a set U is open in X=	 if and only if 
�1ŒU � is open
in X .

Of course, the space X=	 depends on the statement �, although we have not indi-
cated this in the notation.
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Lemma 21.10. Let X be a compact space and let �.f; Y / be a statement which
implies that f is a continuous function mapping X to a space Y . Then X=	 has
the following properties:

(1) If g W X ! Z is a continuous function and if Og W X=	 ! Z is a function for
which g D Og ı 
 , then Og is continuous.

(2) X=	 is a compact Hausdorff space.

(3) A net h
.x�/i�2I converges to 
.x/ in X=	 if and only if hf .x�/i�2I converges
to f .x/ in Y for every .f; Y / for which �.f; Y / holds.

Proof. (1) If V is an open subset of Z, then 
�1Œ Og�1ŒV �� D g�1ŒV �, which is open
in X and so Og�1ŒV � is open in X=	.

(2) Since X=	 is the continuous image of a compact space, it is compact. To
see that it is Hausdorff, suppose that x; y 2 X and that 
.x/ ¤ 
.y/. Then there
is a pair .f; Y / such that �.f; Y / holds and f .x/ ¤ f .y/. For every u; v 2 X ,

.u/ D 
.v/ implies that f .u/ D f .v/. So there is a function Of W X=	 ! Y for
which f D Of ı 
 . By (1), Of is continuous. If G and H are disjoint subsets of Y
which are neighborhoods of f .x/ and f .y/ respectively, then Of �1ŒG� and Of �1ŒH �
are disjoint subsets of X=	 which are neighborhoods of 
.x/ and 
.y/ respectively.
So X=	 is Hausdorff.

(3) As in (2), for each .f; Y / for which �.f; Y / holds, let Of W X=	 ! Y denote
the continuous function for which f D Of ı 
 . The set ¹ Of �1ŒU � W �.f; Y / and U is
open in Y º is a subbase for a topology 	 on X=	 which is coarser than the quotient
topology and is therefore compact. However, we saw in (2) that, for every x; y 2 X ,

.x/ ¤ 
.y/ implied that 
.x/ and 
.y/ had disjoint 	 -neighborhoods. So 	 is
Hausdorff and is therefore equal to the quotient topology on X=	.

Let hx�i�2I be a net in X and let x 2 X . If hf .x�/i�2I converges to f .x/ in Y
whenever �.f; Y / holds, then h
.x�/i�2I converges to 
.x/ in the topology 	 . So
h
.x�/i�2I converges to 
.x/ in the quotient topology.

Now assume that h
.x�/i�2I converges to 
.x/ and let .f; Y / be given such that
�.f; Y / holds. If U is a neighborhood of f .x/, then Of �1ŒU � is a neighborhood
of 
.x/. Thus h
.x�/i�2I is eventually in Of �1ŒU � and so hf .x�/i�2I is eventually
in U .

We recall that we defined in Section 13.4 a binary operation ˘ on ˇSd by putting
x˘y D limt!y lims!x st , where s and t denote elements of S . Note that, in defining
x ˘y, we have reversed the order of the limits used in our definition of the semigroup
.ˇSd ; � /. The semigroup .ˇSd ;˘/ is a left topological semigroup while .ˇSd ; � /, as
we defined it, is a right topological semigroup.

The following lemma summarizes the basic information that will be used in our
construction of the WAP - and AP -compactifications of a semitopological semi-
group.
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Lemma 21.11. Let S be a semitopological semigroup and let �.f; C / be a statement
which implies that f is a continuous function f mapping S to a compact semitopolog-
ical semigroup C . Let �.g; C / be the statement that there exists f for which �.f; C /
holds and g D ef W ˇSd ! C . Suppose that, for every .f; C / for which �.f; C / is
true, we have:

(1) �.f ı �a; C / and �.f ı �a; C / hold for every a 2 S (where �a; �a W S ! S )
and

(2) for all x; y 2 ˇSd , ef .x � y/ D ef .x ˘ y/.
Let ˇSd=	 and 
 be defined by the statement � as described in Definition 21.9. We
define � on ˇSd=	 by putting 
.x/ � 
.y/ D 
.x � y/.

(a) The operation � on ˇSd=	 is well defined.

(b) With this operation, ˇSd=	 is a compact semitopological semigroup and 
 is
a continuous homomorphism from .ˇSd ; � / and from .ˇSd ;˘/.

(c) The restriction 
jS is continuous.

Proof. Notice that for x; y 2 ˇSd , we have x 	 y if and only if for every pair .f; C /
satisfying �.f; C /, one has ef .x/ D ef .y/.

(a) Given a 2 S and x; x0 2 ˇSd with x 	 x0, we claim that x � a 	 x0 � a and
a � x 	 a � x0. To see this, let .f; C / be given satisfying �.f; C /. Then �.f ı �a; C /
and �.f ı �a; C / hold. Since Bf ı �a D ef ı e�a and Bf ı �a D ef ıf�a we have thatef .x � a/ D ef .x0 � a/ and ef .a � x/ D ef .a � x0/ as required.

Now assume that x 	 x0 and y 2 ˇSd . We claim that x � y 	 x0 � y. Recall that
we denote by `x the continuous function from ˇSd to ˇSd defined by `x.z/ D x ˘ z.
Now for each a 2 S and each .f; C / for which �.f; C / holds,

ef ı `x.a/ D ef .x ˘ a/ D ef .x � a/ D ef .x0 � a/ D ef .x0 ˘ a/ D ef ı `x0.a/
and so ef ı `x and ef ı `x0 are continuous functions agreeing on S , hence on ˇSd .
Thus ef .x � y/ D ef .x0 � y/. Similarly (using �x.z/ D z � x), y � x 	 y � x0.

Now let x 	 x0 and y 	 y0. Then x � y 	 x0 � y 	 x0 � y0.
(b) By Lemma 21.10, ˇSd=	 is compact and Hausdorff. By (a), 
 is a homomor-

phism from .ˇSd ; � /, and by (a) and (2), 
 is a homomorphism from .ˇSd ;˘/. By
Exercise 2.2.2, since ˇSd=	 is the continuous homomorphic image of .ˇSd ; � /, it is
a right topological semigroup, and since it is the continuous homomorphic image of
.ˇSd ;˘/, it is a left topological semigroup.

(c) To see that 
jS W S ! ˇSd=	 is continuous, let s 2 S and let hs�i�2I be a
net in S converging to s in S . To see that h
.s�/i�2I converges to 
.s/ it suffices by
Lemma 21.10 to let .g; C / be given such that �.g; C / holds and show that hg.s�/i�2I
converges to g.s/. Pick f such that �.f; C / holds and g D ef . Then f W S ! C is
continuous so hf .s�/i�2I converges to f .s/. That is, hg.s�/i�2I converges to g.s/ as
required.
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The numbering �2 and �2 in the following definition is intended to correspond to the
function �2 W S ! WAP .S/. The statements �2 and �2 depend on the semigroup S ,
but the notation does not reflect this dependence.

Definition 21.12. Let S be a semitopological semigroup. �2.f; C / is the statement
“C is a compact semitopological semigroup, f is a continuous function from S to C ,
and ef .x ˘ y/ D ef .x � y/ for every x; y 2 ˇSd”. �2.g; C / is the statement “there
exists .f; C / for which �2.f; C / holds and g D ef W ˇSd ! C ”.

Lemma 21.13. Let S be a semitopological semigroup. If �2.f; C / holds and a 2 S ,
then �2.f ı �a; C / and �2.f ı �a; C / hold as well (where �a; �a W S ! S ).

Proof. Since �a is continuous (because S is a semitopological semigroup), we have
that f ı �a is continuous. Notice also that Bf ı �a D ef ıf�a. Now, let x; y 2 ˇSd .
Then, since a 2 S , a ˘ x D a � x and so

Bf ı �a.x ˘ y/ D ef .a ˘ .x ˘ y// D ef ..a ˘ x/ ˘ y/ D ef ..a � x/ ˘ y/
D ef ..a � x/ � y/ D ef .a � .x � y// DBf ı �a.x � y/:

Similarly �2.f ı �a; C / holds.

The reader may wonder why we now require S to be a semitopological semigroup,
after pointing out in Section 21.1 that we were not demanding this. The reason is that
we need this fact for the validity of Lemma 21.13.

Theorem 21.14. Let S be a semitopological semigroup, let � D �2 and let ˇSd=	
and 
 W ˇSd ! ˇSd=	 be defined by Definition 21.9. Then .
jS ; ˇSd=	/ is a
WAP -compactification of S . That is:

(a) ‰2.ˇSd=	/,

(b) 
jS is a continuous homomorphism from S to ˇSd=	,

(c) 
ŒS� is dense in ˇSd=	, and

(d) given any D such that ‰2.D/ and any continuous homomorphism g W S ! D,
there exists a continuous homomorphism � W ˇSd= 	 ! D such that � ı

jS D g.

Proof. Conclusions (a), (b), and (c) are an immediate consequence of Lemmas 21.11
and 21.13.

Let g and D be given such that ‰2.D/ and g is a continuous homomorphism from
S to D. We claim that �2.g;D/ holds. So let x; y 2 ˇSd . Notice that eg is a
homomorphism from .ˇSd ; � / to D by Corollary 4.22. Thus

eg.x ˘ y/ Deg.y-lim
t2S

x-lim
s2S

s � t / D y-lim
t2S

x-lim
s2S

g.s/ � g.t/ Deg.x/ �eg.y/ Deg.x � y/:
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Let � W ˇSd=	 ! D denote the function for which � ı 
 D eg. Then � is
continuous, by Lemma 21.10, and is easily seen to be a homomorphism.

We now turn our attention to characterizations of functions that extend to WAP .S/.

Theorem 21.15. Let S be a semitopological semigroup, let C be a compact semi-
topological semigroup, and let f be a continuous function from S to C . There is
a continuous function g W WAP .S/ ! C for which f D g ı �2 if and only ifef .x � y/ D ef .x ˘ y/ for every x; y 2 ˇSd .

Proof. Necessity. Pick a continuous function g W WAP .S/ ! C such that f D
g ı �2. Then

ef .x � y/ D x-lim
s2S

y-lim
t2S

f .s � t / D x-lim
s2S

y-lim
t2S

g.�2.s � t //

D g.x-lim
s2S

y-lim
t2S

�2.s/ � �2.t// D g.e�2.x/ � e�2.y//
D g.y-lim

t2S

x-lim
s2S

�2.s/ � �2.t//

D y-lim
t2S

x-lim
s2S

g.�2.s � t // D y-lim
t2S

x-lim
s2S

f .s � t / D ef .x ˘ y/:
Sufficiency. Define 	 as in Theorem 21.14. Then by Theorems 21.5 and 21.14, it

suffices to show that there exists a continuous function g W ˇSd=	 ! C for which
f D g ı 
jS . Since �2.ef ; C / holds, there is a function g W ˇSd=	! C for whichef D g ı 
 . By Lemma 21.10, g is continuous.

If S is commutative, we obtain a characterization in terms of .ˇSd ; � / alone.

Corollary 21.16. Let S be a commutative semitopological semigroup, let C be a
compact semitopological semigroup, and let f be a continuous function from S to C .
There is a continuous function g W WAP .S/! C for which f D g ı �2 if and only
if ef .x � y/ D ef .y � x/ for every x; y 2 ˇSd .

Proof. This is an immediate consequence of Theorems 13.37 and 21.15.

Recall that C.S/ denotes the algebra of bounded continuous complex-valued func-
tions defined on S .

Definition 21.17. Let S be a semitopological semigroup and let f 2 C.S/.

(a) The function f is weakly almost periodic if and only if there is a continuous
g W WAP .S/! C such that g ı �2 D f .

(b) The function f is almost periodic if and only if there is a continuous g W
AP .S/! C such that g ı �3 D f .
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Theorem 21.18. Let S be an infinite semitopological semigroup and let f 2 C.S/.
The following statements are equivalent:

(1) The function f is weakly almost periodic.

(2) Whenever x; y 2 ˇSd , ef .x � y/ D ef .x ˘ y/.
(3) Whenever hani1nD1 and hbni1nD1 are sequences in S and all indicated limits

exist, limm!1 limn!1 f .am � bn/ D limn!1 limm!1 f .am � bn/.

Proof. By Theorem 21.15, (1) and (2) are equivalent. We shall show that (2) and (3)
are equivalent.

(2) implies (3). Let hani1nD1 and hbni1nD1 be sequences in S for which all the
limits indicated in the expressions limm!1 limn!1 f .am � bn/ and limn!1
limm!1 f .am � bn/ exist. Let x and y be limit points in ˇSd of the sequences
hani

1
nD1 and hbni1nD1 respectively. Then limn!1 limm!1 f .am � bn/ D ef .x ˘ y/

and limm!1 limn!1 f .am � bn/ D ef .x � y/. So (2) implies that these double limits
are equal.

(3) implies (2). Let x; y 2 ˇSd , let k D ef .x � y/, and let ` D ef .x ˘ y/. For each
n 2 N let An D ¹a 2 S W jef .a �y/� kj < 1

n
º and let Bn D ¹b 2 S W jef .x � b/� `j <

1
n
º. Since .ˇSd ; � / is a right topological semigroup, .ˇSd ;˘/ is a left topological

semigroup, and x � b D x ˘ b for b 2 S , An 2 x and Bn 2 y.
Choose a1 2 A1 and b1 2 B1. Inductively, let r 2 N and assume that we have

chosen ¹a1; a2; : : : ; arº and ¹b1; b2; : : : ; brº so that for all m; n 2 ¹1; 2; : : : ; rº

(i) am 2 Am and bn 2 Bn,

(ii) if m > n, then jf .am � bn/ � `j < 1
n

,

(iii) if n > m, then jf .am � bn/ � kj < 1
m

,

(iv) if m > n, then jf .am � bn/ � ef .x � bn/j < 1
m

, and

(v) if n > m, then jf .am � bn/ � ef .am � y/j < 1
n

.

Now for each n 2 ¹1; 2; : : : ; rº, bn 2 Bn so ¹a 2 S W jf .a � bn/ � `j < 1
n
º 2 x.

Also, for each n 2 ¹1; 2; : : : ; rº, ¹a 2 S W jf .a � bn/ � ef .x � bn/j < 1
rC1
º 2 x

so pick arC1 such that for each n 2 ¹1; 2; : : : ; rº, jf .arC1 � bn/ � `j < 1
n

and
jf .arC1 � bn/ � ef .x � bn/j < 1

rC1
. Similarly, choose

brC1 2
rT

mD1

�°
b 2 S W jf .am � b/ � kj <

1

m

±
\
°
b 2 S W jf .am � b/ � ef .am � y/j < 1

r C 1

±�
:

Now, given n 2 N, one has lim
m!1

f .am � bn/ D ef .x � bn/ and given m 2 N one has

lim
n!1

f .am �bn/ D ef .am �y/. Also lim
m!1

lim
n!1

f .am �bn/ D k and lim
n!1

lim
m!1

f .am �

bn/ D `. So ` D k.
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Theorem 21.19. Let S be a commutative semitopological semigroup. Then WAP .S/

is also commutative. Furthermore, .�2;WAP .S// is the maximal commutative semi-
group compactification of S in the following sense: If .�; T / is any commutative
semigroup compactification of S , then there is a continuous homomorphism � W

WAP .S/! T for which � D � ı �2.

Proof. By Theorems 21.5 and 21.14, we may assume that WAP .S/ D ˇSd=	 and
�2 D 
jS . Now given .f; C / such that �2.f; C /, one has by Theorem 13.37 that for
all x; y 2 ˇSd , ef .x � y/ D ef .y � x/ and thus 
.x/ � 
.y/ D 
.y/ � 
.x/.

Now, if .�; T / is a commutative semigroup compactification of S , then T is a semi-
topological semigroup so there exists a continuous homomorphism � W WAP .S/!

T for which � D � ı �2.

Theorem 21.20. Let S be an infinite commutative semitopological semigroup. Then
K.WAP .S// can be identified with SAP .S/.

Proof. Let K D K.WAP .S//. By Theorem 21.19 and Corollary 2.40, K is a com-
pact topological group. Let e denote the unique minimal idempotent of WAP .S/.
We define a continuous homomorphism 	 W WAP .S/! K by 	.x/ D xe and define
a continuous homomorphism � W S ! K by � D 	 ı �2.

Let T be a compact topological group and let � W S ! T be a continuous homo-
morphism. By the defining property of WAP .S/, there is a continuous homomor-
phism � W WAP .S/ ! T for which � ı �2 D �. We note that �.e/ is the identity
of T and so �jK ı � D �. This shows that we can identify SAP .S/ with K (by
Theorem 21.5).

We now discuss some simple properties of WAP .N/. We use Theorems 21.5 and
21.14 to identify WAP .N/ with ˇN=	 and �2 with 
jN .

If S D N [¹1º, the one point compactification of N, and1C x D xC1 D1
for all x 2 S , then S is a semitopological semigroup. Thus, by Exercise 21.1.1,
�2 W N ! WAP .N/ is an embedding. Consequently, we shall regard N as being a
subspace of WAP .N/.

Lemma 21.21. Let x be in the interior in ˇN of ˇN n .N�CN�/. Then j
.x/j D 1.

Proof. Let y 2 ˇN n ¹xº. We can choose a subset A of N for which x 2 A, y … A,
and A \ .N� CN�/ D ;.

Let f D �A W N ! ¹0; 1º so that ef D �A . We claim that ef .p C q/ D ef .q C p/
for all p; q 2 ˇN. Indeed, if p 2 N or q 2 N, then p C q D q C p, while if
p; q 2 N�, then ef .p C q/ D 0 D ef .q C p/. Thus by Corollary 21.16, there is a
continuous function g W WAP ! ¹0; 1º such that f D g ı 
jN . Then ef and g ı 

are continuous functions from ˇN to ¹0; 1º agreeing on N and so ef D g ı 
 . Sinceef .x/ D 1 and ef .y/ D 0, 
.x/ ¤ 
.y/. That is, y … 
.x/.
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Theorem 21.22. There is a dense open subset U of N� with the property that
j
.x/j D 1 for every x 2 U .

Proof. By Exercise 4.1.7, if hxni1nD1 is a sequence in N for which xnC1 � xn !1
and if A D ¹xn W n 2 Nº, then .c`ˇN A/ \ .N� C N�/ D ;. Now any infinite
sequence in N contains a subsequence with this property, and so there is a dense open
subset U of N� for which U \ .N� CN�/ D ;.

Theorem 21.23. If x is a P-point in N�, then 
.x/ is P-point in WAP .N/ nN.

Proof. Let U denote the interior of ˇN n .N� C N�/. We shall show that x 2 U .
Our claim will then follow from Lemma 21.21 and the observation that 
ŒU � is open
in WAP .N/ because 
�1Œ
ŒU �� D U .

For each k 2 N, we can choose a set Ak 2 x with the property that ja � a0j � k
whenever a and a0 are distinct integers in Ak . (This can be seen from the fact that
there exists i 2 ¹0; 1; 2; : : : ; k � 1º for which Nk C i 2 x.) Since x is a P-point
in N�, there is a set A 2 x for which A n Ak is finite for every k. It follows from
Exercise 4.1.7 that A \ .N� CN�/ D ;.

We now turn our attention to representing AP .S/ as a quotient of ˇSd .

Definition 21.24. Let S be a semitopological semigroup. �3.f; C / is the statement
“C is a compact semitopological semigroup, f is a continuous function from S to C ,
and there is a continuous function f � W ˇSd � ˇSd ! C such that for all s; t 2 S ,
f .s �t / D f �.s; t/”. �3.g; C / is the statement “there exists .f; C / for which �3.f; C /
holds and g D ef W ˇSd ! C ”.

We show next that �3.f; C / implies �2.f; C /.

Lemma 21.25. Let S be a semitopological semigroup. If �3.f; C / holds and a 2
S , then �3.f ı �a; C / and �3.f ı �a; C / hold as well (where �a; �a W S ! S ).
Furthermore, if f � is as guaranteed by this statement, then for all x; y 2 ˇSd ,ef .x � y/ D f �.x; y/ D ef .x ˘ y/.
Proof. Suppose that �3.f; C / holds and that a 2 S . Let g W ˇSd � ˇSd ! C be
defined by g.x; y/ D f �.ax; y/. Then g is continuous and g.s; t/ D .f ı �a/.s � t /
for every s; t 2 S . So �3.f ı �a; C / holds. Similarly, �3.f ı �a; C / holds.

Let x; y 2 ˇSd . Then

ef .x � y/ D x-lim
s2S

y-lim
t2S

f .s � t / D x-lim
s2S

y-lim
t2S

f �.s; t/ D f �.x; y/

D y-lim
t2S

x-lim
s2S

f �.s; t/ D y-lim
t2S

x-lim
s2S

f .s � t / D ef .x ˘ y/:
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For the remainder of this section, we reuse the notations 	 and 
 for a different
quotient.

Theorem 21.26. Let S be a semitopological semigroup. Let ˇSd=	 and 
 be defined
by Definition 21.9 with � D �3. For each x; y 2 ˇSd ; let 
.x/ � 
.y/ D 
.x � y/.
Then .
jS ; ˇSd=	/ is an AP -compactification of S . That is,

(a) ‰3.ˇSd=	/,

(b) 
jS is a continuous homomorphism from S to ˇSd=	,

(c) 
ŒS� is dense in ˇSd=	, and

(d) given any D such that ‰3.D/ and any continuous homomorphism g W S ! D,
there exists a continuous homomorphism � W ˇSd= 	 ! D such that � ı

jS D g.

Proof. It follows immediately from Lemmas 21.11 and 21.25 that 
 is well-defined.
Conclusions (b) and (c) are also immediate from these lemmas, as is the fact that
.ˇSd=	; � / is a compact semitopological semigroup. To complete the verification of
(a), we need to show that multiplication in ˇSd=	 is jointly continuous.

Suppose that x; y 2 ˇSd and that hx�i�2I and hy�i�2I are nets in ˇSd for which
h
.x�/i�2I and h
.y�/i�2I converge to 
.x/ and 
.y/ respectively in ˇSd=	. We
claim that h
.x�/ � 
.y�/i�2I converges to 
.x/ � 
.y/, that is that h
.x� � y�/i�2I
converges to 
.x � y/. By passing to a subnet, we may presume that hx�i�2I and
hy�i�2I converge in ˇSd to limits u and v respectively. Then 
.u/ D 
.x/ and

.v/ D 
.y/.

To see that h
.x� � y�/i�2I converges to 
.x � y/ D 
.u � v/, it suffices by Lem-
ma 21.10 to show that hef .x� � y�/i�2I converges to ef .u � v/ for every .f; C / for
which �3.f; C / holds. So assume that �3.f; C / holds and let f � be the function
guaranteed by this statement. Then hf �.x�; y�/i�2I converges to f �.u; v/ and so by
Lemma 21.25, hef .x� � y�/i�2I converges to ef .u � v/ as required.

To verify (d), let g and D be given such that ‰3.D/ and g is a continuous ho-
momorphism from S to D. We claim that �3.g;D/ holds. To see this, define
g� W ˇSd � ˇSd ! D by g�.x; y/ D eg.x/ � eg.y/. Then g� is continuous and,
given s; t 2 S , one has g�.s; t/ D g.s/ � g.t/ D g.s � t /.

Let � W ˇSd=	! D be the function for which � ı 
 D eg. Then � is continuous
(by Lemma 21.10) and is easily seen to be a homomorphism.

Theorem 21.27. Let S be a semitopological semigroup, let C be a compact topologi-
cal semigroup, and let f be a continuous function from S to C . There is a continuous
function g W AP .S/ ! C for which f D g ı �3 if and only if there is a continuous
function f � W ˇSd � ˇSd ! C such that f �.s; t/ D f .s � t / for all s; t 2 S .

Proof. Necessity. Pick a continuous function g W AP .S/! C such that f D g ı�3.
Let e�3 W ˇSd ! AP .S/ denote the continuous extension of �3. Define f �.x; y/ D
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g.e�3.x/ � e�3.y//. Then given s; t 2 S one has g.e�3.s/ � e�3.t// D g.�3.s/ � �3.t// D
g.�3.s � t // D f .s � t /.

To see that f � is continuous, let x; y 2 ˇSd and let W be a neighborhood of
g.e�3.x/ � e�3.y//. Pick neighborhoods U and V of e�3.x/ and e�3.y/ in AP .S/ such
that U � V � g�1ŒW �. Then f �Œe�3�1ŒU � � e�3�1ŒV �� � W .

Sufficiency. Since �3.f; C / holds, there is a function g W ˇSd=	 ! C such that
f D g ı 
 . By Lemma 21.10, g is continuous.

Theorem 21.28. Let S be a semitopological semigroup and let f 2 C.S/. The
following statements are equivalent:

(1) The function f is almost periodic.

(2) There is a continuous function f � W ˇSd � ˇSd ! C such that for all s; t 2 S ,
f �.s; t/ D f .s � t /.

(3) For every � > 0, there is an equivalence relation � on S with finitely many
equivalence classes such that jf .s � t / � f .s0 � t 0/j < � whenever s � s0 and
t � t 0.

Proof. The equivalence of (1) and (2) is a special case of Theorem 21.27.
(2) implies (3). Let � > 0 be given. Each element of ˇSd�ˇSd has a neighborhood

of the form U � V , where U and V are clopen subsets of ˇSd and jf �.x; y/ �
f �.u; v/j < � whenever .x; y/; .u; v/ 2 U � V . We can choose a finite family F of
sets of this form which covers ˇSd � ˇSd . Let

W D ¹U W U � V 2 F for some V º [ ¹V W U � V 2 F for some U º:

Define an equivalence relation � on S by s � t if and only if for all W 2 W , either
¹s; tº � W or ¹s; tº \W D ;. Then � is an equivalence relation with finitely many
equivalence classes.

Now assume that s � s0 and t � t 0. Pick U and V such that U � V 2 F and
.s; t/ 2 U � V . Then since s � s0 and t � t 0, .s0; t 0/ 2 U � V and so jf �.s; t/ �
f �.s0; t 0/j < �. That is, jf .s � t / � f .s0 � t 0/j < �.

(3) implies (2). Define f �.x; y/ D ef .x � y/ for all x; y 2 ˇSd . Then trivially
f �.s; t/ D f .s � t / for all s; t 2 S .

To see that f � is continuous, let x; y 2 ˇSd and let � > 0 be given. Pick an
equivalence relation� on S with finitely many equivalence classes such that jf .s �t /�
f .s0 � t 0/j < �

3
whenever s � s0 and t � t 0. Let R be the set of�-equivalence classes

and pick A;B 2 R such that x 2 A and y 2 B . We claim that for all .u; v/ 2 A�B ,
one has jf �.x; y/ � f �.u; v/j < �. Since ef .x � y/ D x-lim

s2S
y-lim
t2S

f .s � t /, we can

choose .s; t/ 2 A � B such that jef .x � y/ � f .s � t /j < �
3

. Similarly, we can choose
.s0; t 0/ 2 A�B such that jef .u � v/� f .s0 � t 0/j < �

3
. Since s � s0 and t � t 0, one has

jf .s � t / � f .s0 � t 0/j < �
3

and so jef .x � y/ � ef .u � v/j < �.
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Exercise 21.3.1. Show that WAP .N/nN contains a dense open set V disjoint from
.WAP .N/ nN/C .WAP .N/ nN/.

Exercise 21.3.2. Show that WAP .N/ nN contains weak P-points.

Exercise 21.3.3. Show that WAP .N/ is not an F-space. (Hint: An F-space cannot
contain an infinite compact right topological group. See [305, Corollary 3.4.2].)

Exercise 21.3.4. We have seen that K.WAP .N// can be identified with SAP .N/
(by Theorem 21.20). Show that the same statement holds for K.AP .N//.

Exercise 21.3.5. Let S be a semitopological semigroup and suppose that f 2 C.S/
is almost periodic. Show that every sequence hsni in S contains a subsequence hsnr i
for which the sequence of functions t 7! f .snr t / converges uniformly on S . (Hint:
Use Theorem 21.28.)

21.4 Semigroup Compactifications as Spaces of Filters

We have seen that if S is a discrete semigroup, then ˇS is the LMC -compactification
of S . We have also found it useful throughout this book to have a specific representa-
tion for the points of ˇS , namely the ultrafilters on S .

As we noted in Section 21.3, the WAP -, AP -, and SAP -compactifications are all
quotients of ˇS . The points of these compactifications correspond to closed subsets
of ˇS . Since the closed subsets of ˇS correspond to filters on S by Theorem 3.20,
each of these compactifications – indeed any semigroup compactification – can be
viewed as a set of filters. In this section we characterize those sets of filters that are,
in a natural way, semigroup compactifications of S .

Remark 21.29. Let S be a discrete space, let X be a compact space, and let g be a
continuous function from ˇS onto X . Then given any x 2 X and any neighborhood
U of x, g�1ŒU � \ S 2

T
g�1Œ¹xº�.

The first step in the characterization is to define an appropriate topology on a set of
filters.

Definition 21.30. Let S be a discrete space, let R be a set of filters on S , and let
A � S .

(a) A] D ¹A 2 R W A 2 Aº.

(b) The quotient topology on R is the topology with basis ¹A] W A � Sº.

Observe that if A;B � S , then A] \ B] D .A \ B/] so that ¹A] W A � Sº does
form a basis for a topology on R.
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That the term “quotient topology” is appropriate is part of the content of the fol-
lowing theorem.

Recall that, given a set R of sets, a choice function for R is a function f W R !S
R such that for all A 2 R, f .A/ 2 A.

Theorem 21.31. Let S be a discrete space, let X be a compact space, and let g be a
continuous function from ˇS onto X . Let R D ¹

T
g�1Œ¹xº� W x 2 Xº. Then R is a

set of filters on S satisfying

(a) given any choice function f for R there exists F 2 Pf .R/ such that S DS
A2F f .A/ and

(b) given distinct A and B in R, there exist A 2 A and B 2 B such that whenever
C 2 R, either S n A 2 C or S n B 2 C .

Further, with the quotient topology on R, the function h W X ! R defined by h.x/ DT
g�1Œ¹xº� is a homeomorphism.

Proof. Given x 2 X , g�1Œ¹xº� is a set of ultrafilters whose intersection is therefore a
filter.

Let f be a choice function for R and suppose that for each F 2 Pf .R/,

S n
S

A2F
f .A/ ¤ ;:

Then ¹S n f .A/ W A 2 Rº has the finite intersection property so pick p 2 ˇS such
that ¹S n f .A/ W A 2 Rº � p. Let x D g.p/ and let A D

T
g�1Œ¹xº�. Then

f .A/ 2 A � p and S n f .A/ 2 p, a contradiction.
Now let A and B be distinct members of R and pick x and y in X such that

A D
T
g�1Œ¹xº� and B D

T
g�1Œ¹yº�. Pick neighborhoods U of x and V of y such

that c`U \ c`V D ;. Let A D g�1ŒU � \ S and let B D g�1ŒV � \ S . Then by
Remark 21.29, A 2 A and B 2 B. Now let C 2 R and pick z 2 X such that C DT
g�1Œ¹zº�. Then without loss of generality z … c`U so if C D g�1ŒX n c`U � \ S

we have by Remark 21.29 that C 2 C . Then C \ A D ; so, since C is a filter,
S n A 2 C .

Finally define h W X ! R by h.x/ D
T
g�1Œ¹xº�. Then trivially h is one-to-one

and onto R. Since X is compact, in order to show that h is a homeomorphism it
suffices to show that R is Hausdorff and h is continuous.

To see that R is Hausdorff, let A and B be distinct members of R and pick A 2 A

and B 2 B as guaranteed by (b). Then A] and B] are disjoint neighborhoods of A

and B respectively.
To see that h is continuous, let x 2 X and let A � S such that A] is a basic open

neighborhood of h.x/. Let U D X ngŒS n A�. Now gŒS n A� is the continuous image
of a compact set so is compact. Thus U is an open subset of X . We claim that x 2 U
and hŒU � � A]. For the first assertion suppose instead that we have some p 2 S n A
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such that g.p/ D x. Then h.x/ � p so A 2 p, a contradiction. Now let y 2 U . Then
by Remark 21.29, we have g�1ŒU � \ S 2 h.y/. Since g�1ŒU � \ S � A we have
A 2 h.y/ so h.y/ 2 A] as required.

The following theorem tells us that the description of quotients provided by Theo-
rem 21.31 is enough to characterize them.

Theorem 21.32. Let S be a discrete space and let R be a set of filters on S satisfying

(a) given any choice function f for R there exists F 2 Pf .R/ such that S DS
A2F f .A/ and

(b) given distinct A and B in R, there exist A 2 A and B 2 B such that whenever
C 2 R, either S n A 2 C or S n B 2 C .

Then, with the quotient topology, R is a compact Hausdorff space. Further, for each
p 2 ˇS there is a unique A 2 R such that A � p and the function g W ˇS ! R

defined by g.p/ � p is a continuous surjection.

Proof. That R is Hausdorff is an immediate consequence of (b). That R is compact
will follow from the fact that R is a continuous image of ˇS .

Now let p 2 ˇS and suppose first that for no A 2 R is A � p. Then for each A 2

R pick f .A/ 2 A n p. By (a) pick some F 2 Pf .R/ such that S D
S

A2F f .A/.
Then S 2 p so pick some A 2 F such that f .A/ 2 p, a contradiction.

Next suppose that we have distinct A and B in R with A � p and B � p. Pick
A 2 A and B 2 B as guaranteed by (b). Then S n A 2 B � p and A 2 A � p, a
contradiction.

The function g is trivially onto R. To see that g is continuous, let p 2 ˇS and let
A � S with g.p/ 2 A]. For each B 2 R n ¹g.p/º pick by (b) some f .B/ 2 B

and some D.B/ 2 g.p/ so that for all C 2 R, S n f .B/ 2 C or S n D.B/ 2 C .
Let f .g.p// D A. Pick by (a) some F 2 Pf .R/ such that S D

S
B2F f .B/

and let G D F n ¹g.p/º. Then S n A �
S

B2G f .B/. Let D D
T

B2G D.B/.

Then D 2 g.p/ � p. We claim that gŒD� � A]. So let q 2 D and suppose that
A … g.q/. Pick by Corollary 3.9 some r 2 ˇS such that g.q/ [ ¹S n Aº � r and
pick B 2 G such that f .B/ 2 r . Then one cannot have S n f .B/ 2 g.r/ D g.q/ so
S nD.B/ 2 g.q/ � q, a contradiction.

Now we bring the algebra of S into play. The operation � on filters is a natural
generalization of the operation � on ultrafilters.

Definition 21.33. Let S be a semigroup and let A and B be filters on S . Then

A �B D ¹A � S W ¹x 2 S W x�1A 2 Bº 2 Aº:

Remark 21.34. Let S be a semigroup and let A and B be filters on S . Then A �B

is a filter on S .
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Definition 21.35. Let S be a semigroup and let R be a set of filters on S . If for all A

and B in R, there is a unique C 2 R such that C � A�B, then define an operation �
on R by A �B 2 R and A �B � A �B.

Theorem 21.36. Let S be a discrete semigroup and let .'; Y / be a semigroup com-
pactification of S . Let R D ¹

Te'�1Œ¹xº� W x 2 Y º. Then R is a set of filters on S
satisfying

(a) given any choice function f for R there exists F 2 Pf .R/ such that S DS
A2F f .A/,

(b) given distinct A and B in R, there exist A 2 A and B 2 B such that whenever
C 2 R, either S n A 2 C or S n B 2 C , and

(c) given any A and B in R there is a unique C 2 R such that C � A �B.

Further, with the quotient topology and the operation � on R, the function h W Y ! R

defined by h.x/ D
Te'�1Œ¹xº� is an isomorphism and a homeomorphism.

Proof. Conclusions (a) and (b) follow from Theorem 21.31. To establish (c), let
A;B 2 R. We note that it is enough to show that there exists C 2 R such that
C � A � B. (For then, if D 2 R and D ¤ C pick by (b) some C 2 C such
that S n C 2 D . Then C 2 A � B so S n C 2 D n .A � B/.) Pick x; y 2 Y
such that A D

Te'�1Œ¹xº� and B D
Te'�1Œ¹yº� and let C D

Te'�1Œ¹xyº�. To see
that C � A � B, let A 2 C . Let U D Y n e'ŒS n A�. Then U is open in Y and
xy 2 U . (For if xy … U pick some p 2 S n A such thate'.p/ D xy. Then A … p so
A …

Te'�1Œ¹xyº�, a contradiction.)
Since xy 2 U and Y is right topological, pick a neighborhood V of x such that

Vy � U . Then by Remark 21.29, '�1ŒV � D e'�1ŒV � \ S 2 A. We claim that
'�1ŒV � � ¹s 2 S W s�1A 2 Bº so that A 2 A � B as required. To this end, let
s 2 '�1ŒV �. Then '.s/y 2 U . Since �'.s/ is continuous pick a neighborhood W of
y such that '.s/W � U . Then by Remark 21.29, '�1ŒW � 2 B so it suffices to show
that '�1ŒW � � s�1A. Let t 2 '�1ŒW �. Then '.st/ D '.s/'.t/ 2 U so st … S n A,
i.e., st 2 A as required.

By Theorem 21.31, the function h W Y ! R defined by h.x/ D
Te'�1Œ¹xº� is a

homeomorphism from Y onto R. To see that it is a homomorphism, let x; y 2 Y .
We have just shown that h.xy/ D

Te'�1Œ¹xyº� � h.x/ � h.y/ so that h.x/ � h.y/ D
h.xy/.

The following theorem tells us that the description of semigroup compactifications
provided by (a), (b), and a weakening of (c) of Theorem 21.36 in fact characterizes
semigroup compactifications.

Theorem 21.37. Let S be a discrete semigroup and let R be a set of filters on S
satisfying
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(a) given any choice function f for R there exists F 2 Pf .R/ such that S DS
A2F f .A/,

(b) given distinct A and B in R, there exist A 2 A and B 2 B such that whenever
C 2 R, either S n A 2 C or S n B 2 C , and

(c) given any A and B in R there exists C 2 R such that C � A �B.

Then in fact for any A and B in R there exists a unique C 2 R such that C �

A � B. Also, with the quotient topology and the operation �, R is a compact right
topological semigroup and the function g W ˇS ! R defined by g.p/ � p is a
continuous homomorphism from ˇS onto R with gŒS� � ƒ.R/ and gŒS� dense in R.
In particular, .gjS ;R/ is a semigroup compactification of S .

Proof. As in the proof of Theorem 21.36 we see that statements (b) and (c) imply
that for any A and B in R there exists a unique C 2 R such that C � A � B, so
the operation � is well defined. By Theorem 21.32, with the quotient topology R is
a compact Hausdorff space and g is a (well defined) continuous function from ˇS

onto R.
We show next that g is a homomorphism. To this end, let p; q 2 ˇS . To see that

g.p � q/ D g.p/ � g.q/, we show that g.p/ � g.q/ � p � q. Let A 2 g.p/ � g.q/. Then
A 2 g.p/ � g.q/ so B D ¹s 2 S W s�1A 2 g.q/º 2 g.p/ � p and if s 2 B , then
s�1A 2 g.q/ � q so ¹s 2 S W s�1A 2 qº 2 p. That is, A 2 p � q as required.

Since g is a homomorphism onto R, we have immediately that the operation � on
R is associative. By Exercise 2.2.2, R is a right topological semigroup.

Let s 2 S . To see that �g.s/ is continuous, note that since g is a homomorphism
g ı �s D �g.s/ ı g. Let U be open in R and let V D �g.s/

�1ŒU �. Then g�1ŒV � D
.g ı �s/

�1ŒU � is open in ˇS . Then V D R n gŒˇS n g�1ŒV �� is open in R.
Since S is dense in ˇS and g is continuous, gŒS� is dense in R.

21.5 Uniform Compactifications

Every uniform space X has a compactification .�; �uX/ defined by its uniform struc-
ture. For many uniform spacesX which are also semigroups, .�; �uX/ is a semigroup
compactification of X . It has the property that the map .a; x/ 7! �.a/x is a continu-
ous map from X ��uX to �uX , and �uX is the maximal semigroup compactification
of X for which this holds.

This is true for all discrete semigroups and for all topological groups. If X is a
discrete semigroup, then �uX � ˇX and so the material in this section generalizes
our definition of ˇX as a semigroup.
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We first remind the reader of the definition of a uniform structure.

Definition 21.38. Let X be any set. If U; V � X � X , we define U�1 and UV by
U�1 D ¹.y; x/ W .x; y/ 2 U º and UV D ¹.x; y/ W .x; z/ 2 V and .z; y/ 2 U
for some z 2 Xº. We may use U 2 to denote UU .  will denote the diagonal
¹.x; x/ W x 2 Xº.

A uniform structure (or uniformity) U on X is a filter of subsets of X �X with the
following properties:

(1)  � U for every U 2 U;

(2) for every U 2 U, U�1 2 U; and

(3) for every U 2 U, there exists V 2 U for which V 2 � U .

Let U be a uniform structure on X and let U 2 U. For each x 2 X , we put
U.x/ D ¹y 2 X W .x; y/ 2 U º, and, for each Y � X , we put U ŒY � D

S
y2Y U.y/.

U generates a topology on X in which a base for the neighborhoods of the point
x 2 X are the sets of the form U.x/, where U 2 U. If X has this topology, .X;U/ is
called a uniform space and X is called a uniformizable space.

If .X;U/ and .Y;V/ are uniform spaces, a function f W X ! Y is said to be uni-
formly continuous if, for each V 2 V , there exists U 2 U such that .f .x1/; f .x2// 2
V whenever .x1; x2/ 2 U .

Metric spaces and topological groups provide important examples of uniformizable
spaces.

If .X; d/ is a metric space, the filter which has as base the sets of the form ¹.x; y/ 2
X � X W d.x; y/ < rº, where r > 0, is a uniform structure on X . This example
includes all discrete spaces. If X is discrete, it has the trivial uniform structure U D

¹U � X �X W  � U º.
If G is a topological group, its topology is defined by the right uniform structure

which has as base the sets ¹.x; y/ 2 G � G W xy�1 2 V º, where V denotes a
neighborhood of the identity. In this section, we shall assume that we have assigned
this uniform structure to any topological group to which we refer.

It is precisely the completely regular topological spaces which are uniformizable.
Suppose that X is a space and that CR.X/ denotes the subalgebra of C.X/ consisting
of the real-valued functions in C.X/. X is said to be completely regular if, for every
closed subset E of X and every x 2 X n E, there is a function f 2 CR.X/ for
which f .x/ D 0 and f ŒE� D ¹1º. For each f 2 CR.X/ and each � > 0, we put
Uf;� D ¹.x; y/ 2 X �X W jf .x/ � f .y/j < �º. The finite intersections of the sets of
the form Uf;� then provide a base for a uniform structure on X .

In particular, every compact space X is uniformizable. In fact, X has a unique
uniform structure given by the filter of neighborhoods of the diagonal in X � X (see
Exercise 21.5.1).

In the next lemma we establish a relation between compactifications of X and sub-
algebras of CR.X/.



546 Chapter 21 Other Semigroup Compactifications

Lemma 21.39. Let X be any topological space and let A be a norm closed subal-
gebra of CR.X/ which contains the constant functions. There exist a compact space
Y and a continuous function � W X ! Y with the property that �ŒX� is dense in Y
and A D ¹f 2 CR.X/ W f D g ı � for some g 2 CR.Y /º. The mapping � is an
embedding if, for every closed subsetE ofX and every x 2 X nE, there exists f 2 A
such that f .x/ D 0 and f ŒE� D ¹1º.

Proof. For each f 2 A, let If D ¹t 2 R W jt j 
 kf kº. Let C D ⨉f 2A If and let
� W X ! C be the evaluation map defined by �.x/.f / D f .x/. Let Y D c`C �ŒX�.

For each f 2 A, let 
f W C ! If be the projection map. If f 2 A, we have
f D 
f jY ı �. Conversely, let G D ¹g 2 CR.Y / W g ı � 2 Aº. By Exercise 21.5.2,
G is a closed subalgebra of CR.Y / which contains the constant functions. We claim
that G also separates the points of Y . To see this, let Ey and Ez be distinct points in Y
and choose f 2 A such that yf ¤ zf . Since 
f jY ı � D f , we have 
fjY 2 G
and 
f jY . Ey/ ¤ 
f jY .Ez/. So G separates the points of Y and it follows from the
Stone–Weierstrass Theorem that G D CR.Y /. Thus A D ¹f 2 CR.X/ W f D g ı �

for some g 2 CR.Y /º.
Suppose now that, for every closed subsetE ofX and every x 2 X nE, there exists

f 2 A such that f .x/ D 0 and f ŒE� D ¹1º. Then � is clearly injective. To see that �
is an embedding, let E be closed in X and let y 2 �ŒX� n�ŒE�. Pick x 2 X such that
y D �.x/ and pick f 2 A such that f .x/ D 0 and f ŒE� D ¹1º. Pick g 2 C.Y / such
that f D g ı �. Then g.y/ D g.�.x// D 0 and gŒ�ŒE�� D ¹1º so y … c` �ŒE�.

The following result establishes the existence of the Stone–Čech compactification
for any completely regular space. (Of course, since any subset of a compact space is
completely regular, this is the greatest possible generality for such a result.)

Theorem 21.40. Let X be a completely regular space. Then X can be embedded in a
compact space ˇX which has the following universal property: whenever g W X ! C

is a continuous function from X to a compact space, there is a continuous functioneg W ˇX ! C which is an extension of g.

Proof. Let A D CR.X/. By Lemma 21.39, X can be densely embedded in a compact
space ˇX with the property that every function in A extends to a continuous function
in CR.ˇX/. We shall regard X as being a subspace of ˇX .

Let C be a compact space and let F denote the set of all continuous functions from
C to [0,1]. We define a natural embedding i W C ! FŒ0; 1� by putting i.u/.f / D
f .u/ for every u 2 C and every f 2 F .

Suppose that g W X ! C is continuous. Then, for every f 2 F , f ı g has a
continuous extension .f ı g/e W ˇX ! Œ0; 1�. We define h W ˇX ! FŒ0; 1� by
h.y/.f / D .f ı g/e.y/ for every y 2 ˇX and every f 2 F . We observe that
h.x/ D i.g.x// whenever x 2 X . Since X is dense in ˇX , hŒX� is dense in hŒˇX�.
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So hŒˇX� � i ŒC �, because hŒX� � i ŒC � and i ŒC � is compact. We can therefore defineeg byeg D i�1 ı h.

Recall that a topological compactification .'; Y / of a space X has the property that
' is an embedding of X into Y .

Theorem 21.41. Let .X;U/ be a uniform space. There is a topological compactifi-
cation .�; �uX/ of X such that it is precisely the uniformly continuous functions in
CR.X/ which have continuous extensions to �uX . (That is, ¹f 2 CR.X/ W f D gı�
for some g 2 CR.�uX/º D ¹f 2 CR.X/ W f is uniformly continuousº.)

Proof. It is a routine matter to prove that the uniformly continuous functions inCR.X/
are a norm closed subalgebra of CR.X/. The conclusion then follows from Exer-
cise 21.5.3 and Lemma 21.39.

Since � is an embedding, we shall regard X as being a subspace of �uX . The
compactification �uX will be called the uniform compactification of X .

It can be shown that all possible topological compactifications of a completely reg-
ular space X arise in this way as uniform compactifications.

We now see that �uX may be very large.

Lemma 21.42. Let .X;U/ be a uniform space. Suppose that there exist a sequence
hxni

1
nD1 in X and a set U 2 U such that xm … U.xn/ whenever m ¤ n. Let

f W N ! X be defined by f .n/ D xn. Then ef W ˇN ! �uX is an embedding.

Proof. We claim that, for any two disjoint subsets A and B of N, c`�uX f ŒA� \
c`�uX f ŒB� D ;. To see this, we observe that U Œ¹xn W n 2 Aº� and ¹xn W n 2 Bº
are disjoint, and hence that there is a uniformly continuous function g W X ! Œ0; 1�

for which gŒ¹xn W n 2 Aº� D ¹0º and gŒ¹xn W n 2 Bº� D ¹1º (by Exercise 21.5.3).
By Theorem 21.41, g can be extended to a continuous function g W �uX ! R.
Since gŒc`�uX f ŒA�� D ¹0º and gŒc`�uX f ŒB�� D ¹1º, we have c`�uX f ŒA� \
c`�uX f ŒB� D ;.

Now suppose that u and v are distinct elements of ˇN. We can choose disjoint
subsets A and B of N such that A 2 u and B 2 v. Since ef .u/ 2 c`�uX .f ŒA�/ andef .v/ 2 c`�uX .f ŒB�/, it follows that ef .u/ ¤ ef .v/. So ef is injective and is therefore
an embedding.

We now assume thatX is a semigroup and that .X;U/ is a uniform space. We shall
give sufficient conditions for .�; �uX/ to be a semigroup compactification of X . We
observe that these conditions are satisfied in each of of the following cases:

(1) X is discrete (with the trivial uniformity);

(2) .X; d/ is a metric space with a metric d satisfying d.xz; yz/ 
 d.x; y/ and
d.zx; zy/ 
 d.x; y/ for every x; y; z 2 X ;

(3) X is a topological group.
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Notice that requirement (ii) below is stronger than the assertion that �a is uniformly
continuous for each a 2 X .

Theorem 21.43. Suppose that X is a semigroup and that .X;U/ is a uniform space.
Suppose that the two following conditions are satisfied:

(i) For each a 2 X , �a W X ! X is uniformly continuous and

(ii) for each U 2 U, there exists V 2 U such that for every .s; t/ 2 V and every
a 2 X , one has .sa; ta/ 2 U .

Then we can define a semigroup operation on �uX for which .�; �uX/ is a semigroup
compactification of X .

Proof. For each a 2 X , there is a continuous extension N�a W �uX ! �uX of �a (by
Exercise 21.5.4). We put ay D N�a.y/ for each y 2 �uX .

Given y 2 �uX , we define ry W X ! �uX by ry.s/ D sy. We shall show that ry
is uniformly continuous. We have observed that the (unique) uniformity on �uX is
generated by ¹Ug;� W g 2 CR.�uX/ and � > 0º, whereUg;� D ¹.u; v/ 2 �uX��uX W
jg.u/ � g.v/j < �º. So let g 2 CR.�uX/ and � > 0 be given.

Now gjX is uniformly continuous by Theorem 21.41 so pick W 2 U such that
jg.s/� g.t/j < �

2
whenever .s; t/ 2 W . Pick by condition (ii) some V 2 U such that

for all a 2 X and all .s; t/ 2 V , one has .sa; ta/ 2 W . Then, given .s; t/ 2 V , one
has jg.sy/ � g.ty/j D lima!y jg.sa/ � g.ta/j 
 �

2
, where a denotes an element of

X , and so .ry.s/; ry.t// 2 Ug;� .
It follows from Exercise 21.5.4 that ry can be extended to a continuous function

ry W �uX ! �uX .
We now define a binary operation on �uX by putting xy D ry.x/ for every x; y 2

�uX . We observe that, for every a 2 X , the mapping y 7! ay from �uX to itself
is continuous; and, for every y 2 �uX , the mapping x 7! xy from �uX to itself is
continuous, because these are the mappings �a and ry respectively.

It follows that the operation defined is associative because, for every x; y; z 2 �uX ,

x.yz/ D lim
s!x

lim
t!y

lim
u!z

s.tu/ and

.xy/z D lim
s!x

lim
t!y

lim
u!z

.st/u;

where s, t , and u denote elements of X .
So x.yz/ D .xy/z. Thus �uX is a semigroup compactification of X .

We now show that the semigroup operation on �uX is jointly continuous on X �
�uX .
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Theorem 21.44. Let .X;U/ satisfy the hypotheses of Theorem 21.43. Then the map
.s; x/ 7! sx is a continuous map from X � �uX to �uX .

Proof. Let s 2 X and x 2 �uX . Choose any f 2 CR.�uX/ and any � > 0.
Since fjX is uniformly continuous, there exists U 2 U such that jf .s/�f .s0/j < �

whenever .s; s0/ 2 U . By condition (ii) of Theorem 21.43, there exists V 2 U

such that .st; s0t / 2 U for every .s; s0/ 2 V and every t 2 X . If x0 2 �uX , then
jf .sx0/�f .s0x0/j D limt!x0 jf .st/�f .s

0t /j 
 � whenever .s; s0/ 2 V . Thus, if s0 2
V.s/ and x0 2 ��1s Œ¹y 2 �uX W jf .sx/�f .y/j < �º�, we have jf .sx/�f .sx0/j < �
and jf .sx 0/ � f .s0x0/j 
 �. So jf .sx/ � f .s0x0/j < 2�.

Theorem 21.45. Suppose that .X;U/ satisfies the conditions of Theorem 21.43. Sup-
pose that Y is a compact right topological semigroup and that h W X ! Y is a uni-
formly continuous homomorphism with hŒX� � ƒ.Y /. Then h can be extended to a
continuous homomorphism h W �uX ! Y .

Proof. By Exercise 21.5.4, h can be extended to a continuous function h W �uX ! Y .
For every u; v 2 �uX , we have

h.uv/ D lim
s!u

lim
t!v

h.st/ D lim
s!u

lim
t!v

h.s/h.t/ D lim
s!u

h.s/h.v/ D h.u/h.v/;

where s and t denote elements of X . So h is a homomorphism.

We now show that, if X is a topological group, �uX is maximal among the semi-
group compactifications of X which have a joint continuity property.

Theorem 21.46. Let X be a topological group and let .�; Y / be a semigroup com-
pactification of X . Suppose that the mapping .x; y/ 7! �.x/y from X � Y to Y
is continuous. Then there is a continuous homomorphism � W �uX ! Y such that
� D � jX .

Proof. We shall show that � is uniformly continuous.
Let e denote the identity ofX and let Ne be the set of neighborhoods of e. Suppose

that � is not uniformly continuous. Then there exists an open neighborhood U of the
diagonal in Y �Y such that, for every V 2 Ne , there are points sV ; tV 2 X satisfying
sV t
�1
V 2 V and .�.sV /; �.tV // … U . The net h.�.sV /; �.tV //iV 2Ne has a limit point

.y; z/ 2 .Y �Y /nU . Now sV D eV tV , where eV 2 V , and so �.sV / D �.eV /�.tV /.
Since eV ! e, �.eV /! �.e/, and �.e/ is easily seen to be an identity for Y . So our
continuity assumption implies that y D z, a contradiction.

Thus � is uniformly continuous and therefore can be extended to a continuous ho-
momorphism � W �uX ! Y (by Theorem 21.45).
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Theorem 21.45 shows that �uX can be identified with ˇX if X is a discrete semi-
group with the trivial uniformity. However, there are many familiar examples in which
�uX and ˇX are different. Suppose, for example, that X D .R;C/. We shall see in
Theorem 21.47 that ˇR cannot be made into a semigroup compactification of .R;C/,

It is natural, given a nondiscrete topological semigroup such as .R;C/, to attempt
to proceed as we did with a discrete semigroup in Theorem 4.1. And, indeed, one
can do the first part of the extension the same way. That is, given any s 2 S , one
can define `s W S ! S � ˇS by `s.t/ D st . Then by Theorem 21.40, there is
a continuous function Ls W ˇS ! ˇS such that Ls jS D `s so one can define for
s 2 S and q 2 ˇS , sq D Ls.q/. As before one still has the function rq W S ! ˇS

defined by rq.s/ D sq. However, in order to invoke Theorem 21.40 to extend rq , one
would need rq to be continuous. We now see that this condition does not hold in many
familiar semigroups, including .R;C/.

Note that in the following theorem we do not assume that the operation on ˇS is
associative.

Theorem 21.47. Let S be a semigroup which is also a metric space with a metric ı
for which ı.st; st 0/ D ı.t; t 0/ and ı.ts; t 0s/ D ı.t; t 0/ for every s; t; t 0 2 S . Suppose
that S contains a sequence hyni1nD1 such that ı.ym; yn/ > 1 whenever m ¤ n. Let �
be a binary operation on ˇS which extends the semigroup operation of S and has the
property that the mapping � 7! x � � from ˇS to itself is continuous for every x 2 S .
Then there is a point p 2 ˇS such that the mapping x 7! x � p is discontinuous at
every nonisolated point x of S .

Proof. Let p be any limit point of hyni1nD1 and let x 2 S be the limit of a sequence
hxni

1
nD1 of distinct elements of S . We may suppose that ı.xm; xn/ < 1

2
for every

m; n 2 N.
For every m;m0; n; n0 2 N with n ¤ n0, we have

ı.xmyn; xm0yn0/ � ı.xmyn; xmyn0/ � ı.xmyn0 ; xm0yn0/

D ı.yn; yn0/ � ı.xm; xm0/ >
1

2
:

Let A D ¹xmyn W m < n and m is evenº and B D ¹xmyn W m < n and m is oddº.
We claim that A and B have no points of accumulation in S . This can be seen from
the fact that, for any s 2 S , ¹t 2 S W ı.s; t/ < 1

4
º cannot contain two points of the

form xmyn and xm0yn0 with n ¤ n0, and can therefore contain only a finite number
of points in A [ B . Thus c`S A D A, c`S B D B and c`S A \ c`S B D ;.

It follows from Urysohn’s Lemma that there is a continuous function f W S !
Œ0; 1� for which f ŒA� D ¹0º and f ŒB� D ¹1º. Let ef W ˇS ! Œ0; 1� denote the
continuous extension of f . Then ef .xm � p/ D 0 if m is even and ef .xm � p/ D 1 if m
is odd. So the sequence hxm � pi1mD1 cannot converge to x � p.



Section 21.5 Uniform Compactifications 551

We shall now look at some of the properties of �uR, where R denotes the topolog-
ical group formed by the real numbers under addition. We first note that ˇZ can be
embedded topologically and algebraically in �uR. By Theorem 21.45, the inclusion
map i W Z ! R can be extended to a continuous homomorphism i W ˇZ ! �uR.
We can show that i is injective and therefore an embedding, by essentially the same
argument as the one used in the proof of Lemma 21.42.

We shall therefore assume that ˇZ � �uR, by identifying ˇZ with i ŒˇZ�. This
identifies ˇZ with c`�uR.Z/, because i ŒˇZ� D c`�uR.i ŒZ�/.

The following theorem gives an expression for an element of �uR analogous to the
expression of a real number as the sum of its fractional and integral parts.

Theorem 21.48. Every x 2 �uR can be expressed uniquely as x D t C z, where
t 2 Œ0; 1/ and z 2 ˇZ.

Proof. Let 
 W R ! T D R=Z denote the canonical map. Since 
 is uniformly
continuous, 
 can be extended to a continuous homomorphism 
 W �uR! T .

We claim that 
.x/ D 0 if and only if x 2 ˇZ. On the one hand, 
.x/ D 0 if
x 2 ˇZ, because 
ŒZ� D ¹0º. On the other hand, suppose that x … ˇZ. Then there is
a continuous function f W �uR! Œ0; 1� for which f .x/ D 1 and f ŒZ� D ¹0º. Since
fjZ is uniformly continuous, there exists ı > 0 such that f Œ

S
n2ZŒn � ı; n C ı�� �

Œ0; 1
2
�. So x … c`�uR.

S
n2ZŒn�ı; nCı�/ and therefore x 2 c`�uR.

S
n2Z.nCı; nC

1 � ı// and 
.x/ ¤ 0, because 0 … c`T 
Œ
S
n2Z.nC ı; nC 1 � ı/�.

Let t denote the unique number in Œ0; 1/ for which 
.t/ D 
.x/. If z D �t C x,
then 
.z/ D 0 and so z 2 ˇZ. Thus we have an expression for x of the type required.

To prove uniqueness, suppose that x D t 0 C z0, where t 0 2 Œ0; 1/ and z0 2 ˇZ.
Then 
.x/ D 
.t 0/ and so t 0 D t and therefore z0 D �t C x D z.

Theorem 21.48 allows us to analyze the algebraic structure of �uR in terms of the
algebraic structure of ˇZ.

Corollary 21.49. The left ideals of �uR have the form RCL, where L is a left ideal
of ˇZ; and the right ideals of �uR have the form R C R, where R is a right ideal
of ˇZ.

Proof. This follows easily from Theorem 21.48 and the observation that R is con-
tained in the center of �uR.

We omit the proofs of the following corollaries, as they are easy consequences of
Theorem 21.48.

Corollary 21.50. K.�uR/ D RCK.ˇZ/.
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Corollary 21.51. Every idempotent of �uR is in ˇZ.

Corollary 21.52. �uR has 2c minimal left ideals and 2c minimal right ideals, each
containing 2c idempotents.

Proof. This follows from Corollary 21.49 and Theorem 6.9.

Exercise 21.5.1. Let .X;U/ be a uniform space. Show that every U 2 U is a neigh-
borhood of the diagonal  in X �X . If X is compact, show that U is the filter of all
neighborhoods of  in X �X .

Exercise 21.5.2. Let G and Y be as in the proof of Lemma 21.39. Prove that G is a
closed subalgebra of CR.Y / which contains the constant functions.

Exercise 21.5.3. Let .X;U/ be a uniform space. Suppose that E and F are subsets
of X and that U ŒE� \ F D ; for some U 2 U. Show that there is a uniformly
continuous function f W X ! Œ0; 1� for which f ŒE� D ¹0º and f ŒF � D ¹1º.

(Hint: Choose a sequence hUnin2! in U by putting U0 D U \ U�1 and choosing
Un to satisfy Un D U�1n and U 2n � Un�1 for every n > 0. Then define subsets Er of
X for each dyadic rational r 2 Œ0; 1� with the following properties:

E0 D E;

E1 D X n F;

and for each n 2 N and each k 2 ¹0; 1; 2; : : : ; 2n � 1º,

UnŒE k
2n
� � EkC1

2n
:

can be done inductively by putting E0 D E and E1 D X n F , and then assuming
that E k

2n
has been defined for every k 2 ¹0; 1; 2; : : : ; 2nº. If k D 2m C 1 for m 2

¹0; 1; : : : ; 2n � 1º, E k

2nC1
can be defined as UnC1ŒE m

2n
�. Once the sets Er have been

constructed, define f W X ! Œ0; 1� by putting f .x/ D 1 if x 2 F and f .x/ D inf¹r W
x 2 Erº otherwise.)

Exercise 21.5.4. Suppose that .X;U/ and .Y;V/ are uniform spaces and that � W
X ! Y is uniformly continuous. Show that � has a continuous extension � W �uX !
�uY . (Hint: LetA D CR.�uY /. The mapping � W �uY ! AR defined by �.y/.f / D
f .y/ is then an embedding. If f 2 A, fjY is uniformly continuous and so f ı � is

uniformly continuous and has a continuous extension Of W �uX ! R. Let W �uX !
�Œ�uY � be defined by  .x/.f / D Of .x/. For every x 2 X;  .x/ D �.�.x//.)
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Exercise 21.5.5. A uniform space .X;U/ is said to be totally bounded if, for every
U 2 U, there exists a finite subset F of X such that X D

S
x2F U.x/. If .X;U/ is

not totally bounded, show that �uX contains a topological copy of ˇN. (Hint: Apply
Lemma 21.42.)

Exercise 21.5.6. Let X be a topological group. Show that f 2 CR.X/ is uniformly
continuous if and only if the map x 7! f ı �x from X to CR.X/ is continuous,
where the topology of CR.X/ is that defined by its norm. (For this reason, �uX
may be called the left uniformly continuous compactification of X and denoted by
LUC.X/.)

21.6 Notes

It is customary to define the LMC , WAP , AP , and SAP compactifications only
for semitopological semigroups S . Of course, if S is not semitopological, then the
map �1 cannot be an embedding (because �1ŒS� is semitopological). It was shown in
[240] (a result of collaboration with P. Milnes) that there exists a completely regular
semitopological semigroup S such that �1 is neither one-to-one nor open and that
there exist completely regular semigroups which are neither left nor right topological
for which �1 is one-to-one and other such semigroups for which �1 is open as a map
to �1ŒS�.

In keeping with our standard practice, we have assumed that all hypothesized topo-
logical spaces are Hausdorff. However, the results of Section 21.1 remain valid if S
is any semigroup with topology, without any separation axioms assumed.

We defined weakly almost periodic and almost periodic functions in terms of ex-
tendibility to the WAP - and AP -compactifications. It is common to define them
in terms of topologies on C.S/. One then has that a function f 2 C.S/ is weakly
almost periodic if c`¹f ı �s W s 2 Sº is compact in the weak topology on C.S/ and
is almost periodic provided c`¹f ı �s W s 2 Sº is compact in the norm topology on
C.S/. For the equivalence of these characterizations with our definitions see [64].

Theorem 21.7 and Corollary 21.8 are due to J. Berglund, H. Junghenn, and
P. Milnes in [63], where they credit the “main idea” to J. Baker.

The equivalence of statements (1) and (3) in Theorem 21.18 is due to A. Grothen-
dieck [179].

Theorem 21.22 is due to W. Ruppert [355].
The algebraic properties of WAP .N/ are much harder to analyze than those of

ˇ.N/. It is difficult to prove that WAP .N/ contains more than one idempotent.
T. West was the first to prove that it contains at least two [389]. It has since been
shown, in the work of G. Brown and W. Moran [82], W. Ruppert [358] and B. Bor-
dbar [76], that WAP .N/ has 2c idempotents. Whether the set of idempotents in
WAP .N/ is closed, was an open question for some time. It was answered in the
negative by B. Bordbar and J. S. Pym [78].
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The results of Section 21.4 are from [61] and were obtained in collaboration with
J. Berglund. In [61] a characterization of the WAP -compactification as a space of
filters was also obtained.

Theorem 21.40 is due (independently) to E. Čech [97] and M. Stone [368]. See the
notes to Chapter 3 for more information about the origins of the Stone–Čech com-
pactification.

Theorem 21.48 is due to M. Filali [143], who proved it for the more general case
of �uRn.

Suppose that S is a semitopological semigroup and that f 2 C.S/. It is fairly easy
to prove that f is a WAP function if and only if ¹.f ı �s/eW s 2 Sº is relatively
compact in ¹eg W g 2 C.S/º for the topology of pointwise convergence on C.ˇSd /. It
follows from [128, Theorem IV.6.14] that this is equivalent to ¹f ı �s W s 2 Sº being
weakly relatively compact in C.S/.
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cations, Proc. Edinburgh Math. Soc. 36 (1992), 49–54.

[17] J. Baker, A. Lau, and J. Pym, Identities in Stone–Čech compactifications of semigroups,
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identified withbT , 67

ˇN
additive, 127
topological copy, 80

ˇZ
additive, 127

Z
discrete copies in ˇN, 192

Z�

copies of Z� in Z�, 266L
, 5, 131, 187

⨉, 5
c`K.H/, 211
ı, 427
ıS , 92
˘, 324
p̀ , 308, 324

fsupp, 292
�u, 547
c, 78
�-uniform finite intersection property, 80,

81
�-uniform ultrafilter, 60
�x , 7

, 18

L, 18, 234

R, 18, 234

R-maximal idempotent

existence, 43
in K.ˇN/, 224
in K.ˇG/, 222


RK, 203, 271
lim
a!x

, 75

�.A/, 453
��.A/, 453
!, xi
FP-tree, 356
FP-trees

and Banach density, 512
FP.hxni1nD1/, 108
FP.hxnimnD1/, 108
FP.hxni1nDm/, 112
FS.hYni1nD1/, 410
FS.hxni1nD1/, 108
FS.hxnimnD1/, 108
FS1, 293
FSm, 293
FU.hFni1nD1/, 113
naFU, 118
˝, 272
d.A/, 453
K.ˇS/

contains right cancelable elements,
207

K.ˇN/
and sums of elements outside
.K.ˇN/, 211

Pf .A/, xi
�, 128
�b , 309
p-lim, 74–77

existence, 75Q
, 7

�x , 7
A �B, 542
AP , 333, 463

an ideal, 333
compactification, 526

AP .S/, 526
as quotient, 538

LMC

compactification, 526
LMC.S/, 526
LUC , 553
S , 293
SAP

compactification, 526
SAP .S/, 526
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Sf , 293
WAP

compactification, 526
compactification as quotient, 533

WAP .S/, 526
smallest ideal, 536

WAP .N/, 536
� -compact sets, 71
�.F /, 10
�n.p/, 435
v, 282
supp, 127, 131T1
nD1 c`ˇN.nN/

a copy of H, 183T
n2N c`ˇN.3nN/

a copy of H, 187T
n2N c`ˇZ.3nZ/

a copy of H, 187T
n2Z c`ˇZ.2nZ/

a copy of H, 187
� , 128Q
s2F xs , 137bA, 61bA, 63ef , 68, 69, 73

XX , 3, 8, 39, 49, 50
a topological semigroup, 39
right topological semigroup, 39

e, 66
e.a/, 61

identified with a, 66
e.x/, 64
eŒD�

identified with D, 66
f ŒA�, xi
f �1ŒA�, xi
f˛ , 254
g˛ , 254

as mapping on Z˛ , 256
h˛ , 254
hn, 309
p-limit, 74, 87
p C q ¤ p � q, 327
p <RK q, 203
p �RK q, 203
r-coloring, 121
rp , 308

rx , 324
s�1A, 89
xC, 319
x�, 319
xn, 13

action
measure preserving, 503
monotone, 503

Adams, P., 269
adequate partial semigroup, 10
almost disjoint family, 288
almost left invariant, 147
almost periodic function, 534, 538
alphabet, 333
Anthony, P., 328
anti-homomorphism, 4
anti-isomorphic, 4
anti-isomorphism, 4
Arens, R., 107
arithmetic progression, 332
associative, 3
associativity of .ˇS; � /, 86
Auslander, J., 55, 166, 507
Axiom of Choice, 82

Baire set, 452, 480
Baker, J., viii, 107, 166, 167, 251, 269,

553
Balcar, B., 327, 507
Banach density, 509
base

filter, 56, 60
Baumgartner, J., 122
Beiglböck, M., 363
Bergelson, V., viii, 107, 123, 269, 363,

404, 425, 458, 459, 486, 507, 521
Berglund, J., viii, 55, 166, 553
bicyclic, 26
binary expansion, 127
Blass, A., viii, 107, 123, 225, 285, 307,

486
Boolean algebra, 61, 83

homomorphism, 61
Bordbar, B., 553
Brown, G., 553
Brown, T., 363
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Budak, T., 166
Burns, S., 328
Butcher, R., 107

c.c.c., 287
cancelability

and K.ˇS/, 208
and K.S/, 36
in ˇZ, 214

cancelable
right, 199

cancelable elements, 138
cancelable elements in ˇZ, 214
cancelable elements in ˇS , 213
cancelable elements of S

cancelable in ˇS , 196
cancellative, 8

ˇS not, 196
very weakly, 141
very weakly left, 141, 146
very weakly right, 141
weakly, 97
weakly left, 97, 150, 408
weakly right, 97, 150

cardinal, xi
cardinality of ˇD, 79
cardinality of U� , 79
cardinality of closed sets in ˇD, 80
Carlson’s Theorem, 473, 479
Carlson, T., 166, 479, 486
Cartesian product

or central sets, 103
Čech, E., 82, 554
center, 7, 46, 95

.N;C/ and .N; � /, 130

.Z;C/, 127
of ˇS equal to that of S , 153
of p.ˇS/p, 160
of p C ˇN C p, 160
of U�.S/ empty, 152

central, 102, 331, 340, 405
combinatorial characterization, 357
contains many disjoint central sets,

244
dynamically, 499
equivalent to dynamically central,

501

examples, 405
multiplicative and additive, 116
not changed by adding 0, 370
often translates to central, 416

central in .N;C/
preserved under multiplication, 115,

381
central set

as C -set, 348
central sets

Cartesian product, 103
many disjoint, 142

Central Sets Theorem, 331, 337, 363
commutative, 337, 340
noncommutative, 348
satisfied by noncentral set, 353

central* set
if and only if, 411
sums and products in, 413

central* sets, 365
examples, 424

centralizer
nowhere dense in U�.S/, 152

chain of ideals
increasing, 164

characteristic function, 50
Chou, C., 166, 167, 522
Christensen, J., 55
circle group, 185, 253, 497
Civin, P., 107
Clay, J., 426
clopen, 64
closed, 3
closure

and p-lim, 77
of subsemigroup, 48, 205

collectionwise piecewise syndetic, 353,
354, 357, 359

coloring, 121
columns condition, 371, 372, 376, 410

over Q, 373
over Z, 373
over field, 391

combinatorially rich ultrafilter, 427
commutative, 7
commutative semigroup S

contained in center of ˇS , 95
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compact
iff p-lim exists, 77

compactification, 65
AP , 526
LMC , 526
SAP , 526
WAP , 526
and algebra of functions, 546
semigroup, 88, 91, 529
Stone–Čech, 65–67, 82
Stone–Čech, existence, 546
topological, 547

compactness, 120, 121, 333, 335, 369, 392
compatible, 287
completely regular, 545
compressed form, 397
concatenation, 4
continuity, 78

and p-lim, 77
continuous extensions

equal when functions never agree,
272

convergent ultrafilter, 238
correspondence principle, 513

Davenport, D., viii, 107, 166, 521
Day, M., 107
De, D., 363
dense, 286
density, 165

Banach, 509
Deuber, W., viii, 403, 404, 425, 458
direct product, 5
direct sum, 5, 187

of countable groups, 187
discrete

strongly, 73
discrete copies of Z, 192
disjoint central sets, 142
distinct finite products, 137

of � sequence, 139
semigroup isomorphic to H, 137

distinct finite sums, 137
distributive laws

in H, 316
in N�, 318
in ˇZ, 308, 315, 316

doubly thin, 316
Douwen, E. van, 166, 328
dynamical IP � set, 505

contains FP.hxni1nD1/�FP.hyni1nD1/,
506

dynamical system, 491
minimal, 492

dynamically central, 499
equivalent to central, 501

El-Mabhouh, A., viii, 225, 328
Ellentuck topology, 479
Ellentuck, E., 485, 486
Ellis’ Theorem, 54
Ellis, R., 39, 54, 55, 107, 507
embedding, 65
enveloping semigroup, 49, 494

ˇS as, 496
as image of ˇS , 495
of actions on the circle group, 497
of closed left ideal of ˇS , 497

Erdős, P., 435
extracted word, 474
extraction

variable, 474
extremally disconnected, 71, 74, 84, 191,

235, 239
D� not, 71
ˇD, 71

F-space, 84, 540
Følner condition, 522
Ferri, S., 194, 270
Filali, M., 167, 554
filter, 56, 57, 63, 286

in partially ordered set, 286
filter base, 56, 60
finite intersection property, 57, 58, 78

�-uniform, 80, 81
infinite, 60, 312

finite products, 108, 137
and idempotents, 112

finite products theorem, 111, 341
finite version, 120
for partial semigroups, 114

finite semigroups
images of H, 128

finite sums, 108, 137
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finite sums and products
in same cell, 116
in same cell, finite version, 121

Finite Sums Theorem, 112, 114, 460, 479,
516

Galvin-Glazer proof, 110
finite unions, 113, 117
finite-to-one, 98
first category, 452
first entries condition, 365, 366, 368, 369,

372, 390
over F , 389

fixed point, 68, 69
nonexistence, 68

Franek, F., 507
free group, 12, 186

mapped to finite group, 13
on 22

�
generators, 188

on 2c generators, 220
in ˇS , 190

subgroup of compact group, 47
universal property, 12

free group on 22
�

generators, 190
free group on 2c generators, 190

in Cp , 220
free group on 2c generators in ˇN, 190
free semigroup, 4, 8, 161, 333, 334

defined by a right cancelable element,
205

in N�, 188
on 2c generators, 187
with identity, 4

Frolík, Z., 82, 285
functions equal at p

not equal at any x, 198
Furstenberg, H, 521
Furstenberg, H., vii, viii, 122, 363, 425,

426, 487, 507, 508, 521

Galvin, F., 82, 122
García-Ferreira, S., viii, 284
geoarithmetic progressions, 360
Glasner, E., 507
Glazer, S., 122
Graham, R., 122, 426, 458
Grainger, A., viii
Grothendieck, A., 553

group, 6, 19, 21
characterizations, 20
closure, 46
equal to eSe, 23, 28
in smallest ideal, 41, 42
locally compact, 39
maximal, 11, 43, 46
maximal groups in minimal left ideal,

22
maximal, closed, 46, 50

group of quotients, 9, 160
Gunderson, D., viii

Hales, A., 333
Hales–Jewett Theorem, 333–335, 363,

473
consequence of Central Sets Theo-

rem, 351
Hausdorff

all hypothesized spaces, 38
Hausdorff metric, 51
Hausdorff all hypothesized spaces, vii
Hilbert’s Theorem, 109, 364
Hilbert, D., 109
Hofmann, K., viii
homeomorphism classes

of maximal groups, 191
homeomorphism type, 144
homeomorphism types in ˇD

at least 2c, 144
homomorphism, 4, 88, 252

from ˇN to N�, 260, 261
from ˇS to G�, 258
from ˇT to ˇS , 265
from ˇT to S�, 259
from T � to S�, 264, 265
image of K.S/, 36
of topological center, 44
on H, 128
on intersection, 91
partial semigroup, 10
to compact right topological semi-

group, 92

I-restricted span, 379
ideal, 14

equal to SxS , 16
smallest, 24, 34
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idempotent, 406
minimal – 2c others close to one, 243

idempotents, 10, 406
2c right maximal, 227
2c strongly right maximal, 234
� minimal idempotents, 28

R maximal, in K.ˇG/, 222

R-maximal idempotents inK.ˇN/,

224
!1 chains, 242
and finite products, 112
at least 2c, 140
at least 2c minimal, 149
chains in Cp , 220
closure, 115
commuting, 136
conditions equivalent to being mini-

mal, 42
defining maximal topologies, 237
existence, 40
immediately below a given idempo-

tent, 241
in K.ˇN/, 224
inbA, iff, 112
in finite semigroup, 14
infinite chains, 141
infinite chains in H, 131
left maximal, 226
maximal, 226
minimal for partial orders, 18
minimal, at least 22

�
, 146

minimal, in intersection of left and
right ideals, 41

minimal, in right ideal, 41
multiplicative idempotents in

c`.E.K.ˇN;C///, 116
nonminimal, 140
not closed, 207, 292
number in minimal left and right

ideals, 146
right maximal, 226, 228
right maximal idempotents, 250
right maximal, qp not in smallest

ideal, 231
right maximal, finite fibres, 229
right maximal, in Gı set, 229
strongly right maximal, 232

strongly right maximal, existence,
232

sum not idempotent, 134
sum of idempotents in ˇN not equal

to either, 249
topologies defined by, 235
topologies defined by strongly right

maximal idempotents, 236
idempotents of .ˇN;C/

in H, 129
identity, 5

adjoined, 8
in ˇS , 245

image partition regular, 365, 366, 368,
369, 379, 383, 390, 403, 409

centrally, 398
essentially, 394
essentially centrally, 398
infinite matrices, 393
over .N;C/ and .N; � /, 389
strongly, 369
vector spaces over a field, 390
weakly, 369

image partition regular matrices
sums of terms, 410, 428

incompatible, 287
infinite finite intersection property, 60, 312
invariant, 491
inverse, 5
IP set, 406

if and only if, 406
IP* set, 406, 427, 467

and measure preserving systems, 504
examples, 424
if and only if, 406, 411
may never translate to IP*, 416
sums and products in, 413

irrational
with respect to S , 255

isomorphic, 4, 43, 46
isomorphism, 4

of principal left ideals, 268
of principal right ideals, 268

Jewett, R., 333
Johnson, J., 363
Junghenn, H., 553
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Kalášek, P., 327
Katetǒv, M., 82
Katznelson, Y., viii, 363, 487, 521
Keisler, H., 285
kernel partition regular, 371, 373, 376,

403, 409
over .N;C/ and .N; � /, 374
over a field, 391
over a finite field, 391

kernel partition regular matrices
sums of terms, 410, 428

Koppelberg, S., 507
Kra, B., 269, 425
Kunen, K., 82, 306

Lau, A., 251
Lawson, J., viii, 55, 507
Leader, I., viii, 251, 328, 404, 458
Lebesgue

density theorem, 458
Lebesgue measurable, 452
Lefmann, H., viii, 458
left cancelability in ˇN, 215

does not imply right cancelability,
215

left cancelable, 7, 212
left cancelable elements in ˇN

left cancelable in ˇZ, 212
left cancelable elements of ˇS

contain dense open subset of S�, 213
left cancellative, 8, 97, 98, 273

very weakly, 141, 146
weakly, 97, 408

left ideal, 14, 22, 164
22
�

, 146
S� a finite union of disjoint closed

left ideals, 147
U�.S/ a left ideal of ˇS , 156
X˛ and Y˛ as left ideals, 255
closed left ideals defined by density,

165
closure, 45, 91
contains minimal left ideal, 23
decomposition of U�.S/ into, 153
equal to Sx, 16
infinite chains, 159
intersecting, 135

intersection, 16
isomorphic principal left ideals, 268
maximal principal left ideals, 158
maximal semiprincipal left ideals in
N�, 159

minimal, 22, 41, 42
minimal, all homeomorphic, 43
minimal, contains idempotent, 41
minimal, homeomorphic to those in
ˇ!, 186

principal, 266
semiprincipal, 135, 136

left ideal and right ideal
intersection, 16

left ideals
minimal isomorphic, 33

left identities
22
�
, 246

left identity, 5
for ˇS , not in S�, 246

left invariant topology, 168, 173
Hausdorff, 175
zero-dimensional, 175

left inverse, 5
left simple, 15, 23, 28, 42
left solution set, 97
left topological groups

partitions, 238, 240
left topological semigroup, 38
left zero, 4, 5
left zero semigroup, 31, 96
Legette, L., 166, 307
Leibman, A, 521
length, 4
limit, 75, 78
Lin, C., 426
Lin, S., 426
Lisan, A., viii, 166, 194, 363, 507
local homomorphism, 180
local isomorphism, 180
local left group, 180

locally isomorphic, 181

Maleki, A., viii, 167, 269, 327, 363
Malykhyn, V., 307
Martin’s Axiom, 287

MA.c/ false, 289
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and P-points, 290
maximal almost disjoint families

have cardinality c, 289
nonempty G� subsets of N� have

nonempty interior, 289
proper F� subsets of N� not dense in

N�, 289
Matet, P., 307
matrices

image partition regular, 383
maximal groups, 11

in ˇN, 190
in ˇG, 190
in K.S/ isomorphic, 43
in smallest ideal isomorphic, 35
isomorphic to Z, 303
not closed, 192
number of homeomorphism classes,

191
maximal topologies, 237

number, 238
McCutcheon, R., 107
McLeod, J., 107, 166
meager, 452
mean

left invariant, 521
measurable, 452
measure, 57
measure preserving action, 503
measure preserving system, 503
measure preserving transformation, 503
measure space, 503
Milliken, K., 444, 486
Milliken–Taylor matrix, 445
Milliken–Taylor system, 444

partition regular, 448
Milliken–Taylor Theorem, 460, 465–467,

485
Milnes, P., viii, 107, 166, 167, 269, 553
minimal (w.r.t. partial order), 18
minimal dynamical system, 492

universal, 493
minimal idempotent, 18, 23, 25, 28

and minimal left ideals, 19
at least 2c, 129
closure not contained in S�S�, 207
existence, 27

minimal idempotents
2c others close to one, 243
at least 2c, 149
closure not contained in smallest

ideal, 154
minimal left and right ideal

defined by idempotents, 27
intersection, 29

minimal left and right ideals in Cp , 219
minimal left ideal, 15, 16, 22, 23, 28

a group if commutative, 27
all homeomorphic, 43
and minimal idempotents, 19
as minimal closed invariant set, 492
at least 2c, 129, 146
idempotents in minimal left ideal not

closed, 133
infinite, 145
isomorphic, 30
same in S� and ˇS , 99
without idempotents, 27

minimal left ideals
isomorphic, 33

minimal right ideal, 15, 23, 28
at least 2c, 129, 145, 146
contains idempotent, 27
idempotents in minimal right ideal

not closed, 134
number, 149
same in S� and ˇS , 99

minimal right ideals
isomorphic, 33

monochrome, 109, 121
monotone action, 503
Moran, W., 553
Moshesh, I., 404
multilinear combinations, 435
multiplication

partial, 9, 180

Namioka, I., 522
neighborhood, 56
Neuman, B., 107
nonprincipal ultrafilter, 58
norm, 60
Numakura, K., 55

oid, 131
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adequate partial semigroup, 132
operator

uniform, 76
orbit, 492
order, 13
ordinal, xi
Owings, J., 458

P-point, 70, 82, 214, 290
cancelable, 216
cancelable in ˇZ, 214
defined by union ultrafilter, 298
existence, 70
independence, 299

pairwise sums and products, 433
Papazyan, T., 166, 250
Parsons, D., 166
partial multiplication, 9, 180
partial order, 286
partial semigroup, 9, 92, 114, 180

adequate, 10
partial semigroup homomorphism, 10
partially ordered set, 286
partition regular, 59, 61, 364, 407

image, 365, 366, 368, 369, 379, 390,
403

kernel, 371, 373, 376, 403
strongly image, 369
weakly, 59
weakly image, 369

partition regularity and ultrafilters, 59
path, 512
periodic, 502
piecewise syndetic, 101–103, 331, 334,

353, 370, 407
J -set, 336, 347
if and only if the closure meets
K.ˇS/, 102

and central sets theorem, 352
collectionwise, 353, 354, 357, 359
in N, 104
intersection of thick and syndetic,

105
left, 325
near 0, 322
partition has left and right, 327
partition regular, 332, 363

right, 325
right piecewise syndetic versus left

piecewise syndetic, 325
shift of central, 102

pigeon hole principle, 109
Plewik, S., 459
pointwise convergence, 39
Polya, G., 521
polynomials

values (mod 1) assumed by real poly-
nomials, 417

positive upper density, 428
Prömel, H., 459
principal closed ideal, 162

increasing chain, 164
principal ideal, 17
principal ultrafilter, 58, 64
product

of right topological semigroups, 47
product in ˇS

as ultrafilter, 89, 90
product of a finite number of ultrafilters,

93
product subsystem, 112, 408, 466, 468

weak, 469
product topology, 39
products

nowhere dense in S�, 143
proper ideal, 14
Protasov, I, 82
Protasov, I., viii, 107, 194, 225, 232, 250,

269, 307
proximal, 499

and minimal left ideals of ˇS , 500
Pym, J., viii, 37, 82, 167, 194, 225, 251,

269, 328, 553

quotient spaces, 531
quotient topology, 540
quotients

group of, 9, 160

Rado’s Theorem, 109, 374, 376
Rado, R., 109, 403
Ramsey Theory, 108, 364
Ramsey ultrafilter, 285
Ramsey’s Theorem, 109, 460

finite version, 122
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Ramsey, F., 109, 460
rapidly increasing sequences, 94
rectangular semigroup, 246
rectangular semigroups in K.ˇN/, 249
recurrent, 502

uniformly, 499
reduced word, 474
reduction

variable, 474
Rees, D., 37
right cancelability

and the Rudin–Keisler order, 203
on dense open subset of ˇS , 205
relations with discreteness, 200

right cancelability in ˇN
characterization, 208
does not imply left cancelability, 212

right cancelability in ˇZ
characterization, 208
stronger than in ˇN, 209

right cancelability in ˇS
characterizations, 204, 205

right cancelable, 7, 156, 199
right cancelable elements

in closure of minimal idempotents,
207

intrinsic characterization, 199
right cancelable elements of ˇS

contain a dense open subset of
U�.S/, 200

number, 200
right cancellation

characterizations, 201, 284
right cancellative, 7, 8, 97, 98

very weakly, 141
weakly, 97

right continuous, 38
right ideal, 14, 16

2c disjoint in N�, 257
U˛ and D˛ , 255
closed disjoint, 134
closure, 45, 46, 91
closure as ideal, 104
in ˇS , 255
isomorphic principal right ideals, 268
minimal, 41–43
minimal closed, 46

of right ideal, 23
principal, 266

right ideals
minimal isomorphic, 33

right ideals in ˇN
closed, 134

right identities
22
�
, 245

for S�, 246
for S�, at least 2c, 246
unique, 245

right identity, 5
right inverse, 5
right maximal

strongly, 300
right simple, 15, 23, 28, 42
right solution set, 97
right topological semigroup, 38, 39

compact, 40
right zero, 4, 5
right zero semigroup, 31, 96

finite, 227
Rothschild, B., 122
Rudin, M., vii, 166, 167, 285
Rudin, W., 82
Rudin–Frolík order, 282

p v q implies p 
RK q, 283
and strongly right maximal idempo-

tents, 283
transitive, 283

Rudin–Keisler order, 166, 203, 271
22
�

successors, 274
cC chains, 282
p <RK p C q and q <RK p C q, 279
pq and qp not comparable, 278
xq 
RK yp, 275
and right cancelability, 203, 274
and tensor products, 273
common successor, 281
common successor in any left or right

ideal, 281
maximal property of˝, 273
P-points, 280
predecessors not a semigroup, 275
successors not a semigroup, 282

Ruppert, W., 55, 553
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Salmi, P., 167
Schur’s Theorem, 109, 364
Schur, I., 109
selective ultrafilter, 285
semigroup, 3

closure not semigroup, 205
free, 333, 334
partial, 9
simple, 31

semigroup compactification, 88, 90, 91,
529

and spaces of filters, 543
maximal, 88
universal, existence, 525
universal, uniqueness, 526

semiprincipal left ideal, 135
at least 2c maximal, 159
characterization of members, 137
infinite chains, 159
intersecting, 136
reverse well ordered, 159

semitopological group
not topological semigroup, 240

semitopological semigroup, 38
compact, 48
dense center, 48

separable, 74
Shelah, S., vii, 82, 166, 307
Shi, H., 507
Simon, P., viii, 82, 167
simple, 15, 26, 31
Simpson, S., 486
Skolem, T., 426
smallest ideal, 24, 25, 221

c`.EK.ˇN/ not contained in
K.ˇN/, 153

equal to LR, 25
in product, 47
of .ˇN; � / and .ˇN;C/, 314
of subsemigroup, 34
right cancelable elements in EK.ˇS ,

207
structure theorem, 33

smallest ideal of ˇN
closure contains 2c nonminimal

idempotents, 224

closure contains chains of idempo-
tents, 224

Smith, G., 458
solution set

left and right, 97
span

I-restricted, 379
special strongly summable ultrafilter, 293

p D q C r implies that p D q D r ,
303

p D qC r implies that q; r 2 ZCp,
304

existence, 295
spectra, 423
Stone space, 83
Stone, M., 82, 554
Stone–Čech compactification, 65–67, 82

existence, 546
not a semigroup compactification,

550
of completely regular space, 546

strongly discrete, 73, 200
subset, 74

strongly image partition regular, 369
strongly right maximal idempotents, 232,

300
2c, 234
defined by strongly summable ultra-

filters, 300
defining a topology, 236
existence, 232
maximal topologies, 237
on uncountable semigroups, 250

strongly summable ultrafilter, 290
and union ultrafilter, 298
as idempotent, 291
as strongly right maximal idempo-

tent, 300
independence, 299
maximal group isomorphic to Z, 303
not in c`K.ˇN;C/, 292
special, 293
special, p D q C r implies that p D
q D r , 303

special, p D qCr implies that q; r 2
ZC p, 304

special, existence, 295
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subgroup, 10
subgroups

in same minimal right ideal isomor-
phic and homoeomorphic, 43

subsemigroup, 10
as intersection, 91
closure, 49, 91
closure in ˇS , 91
closure not a semigroup, 49

subsystem
product, 468
sum, 412

sum subsystem, 112, 412, 465
summable

strongly, 290
weakly, 290

sums equal to products, 308, 314
nowhere dense sets, 313

Suschkewitsch, A., 37
symmetric difference, 50
syndetic, 101, 102

if and only if, 106
iff closure hits each left ideal, 105
near 0, 321
piecewise, 331

syndetic subgroup, 104
Szemerédi’s Theorem, vii, 515
Szemerédi, E., 508

Tang, D., viii
Taylor, A., 307, 444, 486
tensor product, 272

as double limit, 273
Terry, E., viii, 426
thick, 104

if and only if, 106
iff closure contains left ideal, 105
translate in A, 105

toplogical groups
extremally disconnected, 307
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