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Volume 77, Number 1, October 1979 

SIMULTANEOUS IDEMPOTENTS IN AN \ N 
AND FINITE SUMS AND PRODUCTS IN N 

NEIL HINDMANI 

ABSTRACT. The principal result is that there do not exist simultaneous 
multiplicative and additive idempotents in 83N\N. Some consequences of 
the (already known) existence of multiplicative idempotents which are close 
to additive idempotents are also derived. 

1. Introduction. Around 1971, F. Galvin wanted to know if there existed 
ultrafilters p on N such that {x E N: A - x E p} E p whenever A E p 
(where A - x = {y E N: x + y E A}). Galvin called such ultrafilters "al- 
most translation invariant". His motivation was that he knew that the 
existence of such an ultrafilter would imply the validity of a conjecture, made 
independently by Sanders [10] and by Graham and Rothschild [6]. This 
conjecture was that, whenever r E N and N = U ,.=Ai, there exist i and 
infinite B C Ai such that EF E Ai whenever F E fin(B) (where fin(B) = 

[B]<` \ {0}, the finite nonempty subsets of B). 
The conjecture was proved in 1972 [7] and as a consequence Galvin's 

almost translation invariant ultrafilters were known to exist, provided the 
continuum hypothesis was assumed [9]. 

In 1975 Glazer proved directly, without assumption of the continuum 
hypothesis, that Galvin's almost translation invariant ultrafilters exist [5] (see 
also [2]). This result provided an independent proof of the above mentioned 
conjecture. (There are now a total of four such proofs. For the others see [1] 
and [4].) 

Glazer's approach was to define the sum of two ultrafilters p and q on N by 

p + q = {A C N: {x E N: A-x E p} E q}- 

(Glazer says that this definition is implicitly contained in some work of Ellis.) 
Then, using methods of topological dynamics, Glazer showed that there exist 
additive idempotents in 8N \ N (viewed here as the set of nonprincipal 
ultrafilters on N). Such an additive idempotent is exactly an almost transla- 
tion invariant ultrafilter. 
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Defining analogously p - q = {A C N: {x c N: A/x c p} C q} (where 
A/x = {y c N: y - x C A)), one obtains in a similar fashion a multiplicative 
idempotent. (Van Douwen [3] has obtained several interesting results about 
extensions to f8N of any binary operation on N.) From the existence of a 
multiplicative idempotent in f8N \ N one obtains a proof of the fact that, 
whenever r E N and N = U r= Ai, there exist i and infinite B C Ai such that 

HF E Ai whenever F E fin(B). 
For B C N, let FS(B) = {(2F: F E fin(B)} and let FP(B) = {IIF: F E 

fin(B)}. A natural question arises: If r E N and N= U ,.=Ai, must there 
exist i and infinite B C Ai such that FS(B) U FP(B) C Ai? This question is 
still open.2 It is known [8, Theorem 2.13] that the existence of a simultaneous 
idempotent in f8N \ N (i.e., a nonprincipal ultrafilter p on N such that 
p *p = p and p + p = p) would imply an affirmative answer-in fact a much 
stronger result. 

In [8] it was shown that there is a multiplicative idempotent p in AN \ N 
such that 

p E ClfiN{q E AN: q + q = q} 

and consequently that, whenever r E N and N = U ,=1Ai, there exist i and 

infinite subsets B and C of Ai such that FS(B) U FP(C) C Ai. Additional 
consequences of the existence of such ultrafilters will be presented here in ?3. 

The existence of multiplicative idempotents in fN \ N which are topologi- 
cally close to the set of additive idempotents made it seem likely that there 
might exist some simultaneous idempotent. We present here in ?2 a proof that 
simultaneous idempotents do not exist in fN \ N. 

The author wishes to acknowledge here his indebtedness to E. van 
Douwen, M. Cates, and C. Gordon for helpful conversations and correspon- 
dence. 

2. The nonexistence of simultaneous idempotents. The proof that there do 
not exist simultaneous idempotents in f8N \ N is completely elementary. Very 
few facts about ultrafilters on N are needed; we will make this presentation 
entirely self-contained. 

The points of f8N \ N are the nonprincipal ultrafilters on N; p is a 
nonprincipal ultrafilter on N if and only if p C VP(N), each member of p is 
infinite, p is closed under finite intersections, and whenever r E N and 
N= U i Ai one has some Ai E p. 

If p E AN \ N andp + p = p, then 

p = {A C N: {x E N:A - x Ep} Ep} 

so that, whenever A E p there exists x in A such that A - x E p. Similarly if 
p E A8N \ N and p - p = p, then whenever A E p there exists x in A such that 
A/x c p. As a final preliminary, we note that if p E A8N \ N, p + p = p, 

2 The author has recently answered this question in the negative. 
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r C N, and M(r) = {x r: x c N), then M(r) c p. (To see this, note that for 
some i in {O, 1,.. r - 1) we have M(r) + i C p. But if x C M(r) + i, then 
(M(r) + i) - x = M(r).) 

2.1 LEMMA. Let p C f3N \ N such that p + p = p. If there is a family {An: 
n C N and n > 2) Cp such that for all n > 2 and all m > 2 one has 
(n - An) n (m + Am) = 0, then p - p #- p. 

PROOF Let B = U m=2(m + Am). We first claim that B E p. Suppose 
instead that N \ B E p and pick m > 2 in N \ B such that (N \ B) - m E p. 
Pick x in ((N \ B) - m) n Am. Then x + m E N \ B while x + m E m + 
Am, a contradiction. 

Suppose now that p -p = p, and pick n > 2 in B such that B/n C p. Pick x 
in (B/n) n An. Then x- n E B, so pick m > 2 such that x- n Em + Am. 
Then x - n E (m + Am) n (n - An), a contradiction. 

We omit the easy verification of the following arithmetic lemma. 

2.2 LEMMA. For r and k in N, let aOk,r 
= k2r- 1 + kr-1, al,k,r = bo kr =2r 

+ kr-II a2kr = bl,k,r = k2r + kr, and b2,k,r = aO,k,r+l. If k > 2, r > 4, and 

i E {O, 1, 2), then 

k * bi,k,r ( ai,k,r+ I and (k - 
ai,k,r - bi,k,r)3 > bi,k,r. 

2.3 THEOREM. Letp E f8N \ N. Then p + p =#p orp -p =#p. 

PROOF. We assume that p + p = p and apply Lemma 2.1. For each i in 

{O, 1, 2) and each k in N with k > 2, let 
00 

Bi,k = U {x E N: ai,k,r < X < bi,k,r 
r=4 

Given k in N with k > 2, we have 
2 

N= U Bi,k U {x EN:x <aO,k,4} 
i=O 

Since the latter set is finite, we have f(k) in {O, 1, 2) such that BAk),k E p. For 
n > 2, let 

n 

A= nQ(Bk),k n M(k3) n M(k + 1)). 
k=2 

Then {An: n E Nandn 2) C}p. 
We claim that for n > 2 and m > 2, (n - An) n (m + Am) = 0. Suppose 

not, and pick n > 2, m > 2, x in An, and y in Am such that n - x = m + y. 
We consider first the possibility that m < n. Then An C Am so we have 
x E M(m + 1) and y E M(m + 1). Consequently m E M(m + 1), a con- 
tradiction. 

Thus we have m > n. Let i = f(n) and note that for some r > 4 and some 
s > 4 we have ai,n,r < X < bi,n,r and ai,n,s < Y < bi,n since both x and y are in 
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Bi . Since x < bi,n,r we have, by Lemma 2.2, that y < n - x < ai,n,r +I and 

hence s < r. Thusy < bi,n,r. Also x>a,nr som =nx-y nai,nr -bi,n,r' 

So by Lemma 2.2, m3 > bi,n,r. But y E M(m3) so bi,n,r < y, a contradiction. 

3. Sums and products within cells of a partition of N. As earlier remarked, it 

was shown [8] that there is a multiplicative idempotent p in /8N \ N such that 

p E cl3Nf{q E 83N: q + q = q} and consequently that, whenever r E N and 

N = U r= A one has some i and some B and C in [Ail' such that FS(B) U 
FP(C) C Ai. ([A]k = {B C A: IBI = k).) (These conclusions are drawn from 

Corollary 2.11 and the proof of Theorem 2.6 in [8].) We present here some 
stronger results which follow from the existence of such an ultrafilter and 

some discussion of the finite versions of the main open question. 

3.1 THEOREM. Let p E f8N \ N such that p * p = p and p E clNf{q E 8N: 

q + q = q} and letA E p. 
(a) There is an increasing sequence <xn>n' 1 in A such that, whenever 

F E fin(N) and m = min F one has some C in [A] m such that fI nIEFXn = XC 
andFS(C) CA; 

(b) for each m in N there exists B in [A ]' such that for each F in fin(B) one 

has some C in [A]m with EF = IIC and FP(C) C A; 
(c) there exists B in [A]' such that FS(B) C A and, for each x in FS(B), one 

has some C in [A]' such that x = min C and FP(C) C A; and 

(d) there exists B in [A ]w such that FP(B) C A and, for each x in FP(B), one 

has some C in [A]@ such that x = min C and FS(C) C A. 

PROOF. As in the proof of Theorem 2.6 of [8] we have that, whenever 
D E p one has some B and C in [D]' such that FS(B) U FP(C) C D. 

(a) For each n in N, let En = { x E N: there exists C in [A]n such that 
FS(C) C A and x = EC). We claim that each En C p. Suppose instead that 
A \ En E p and choose D in [A \ En]' such that FS(D) C A \ En. Pick C in 

[D]n and let x = XC. Since C C A, we have x E En. On the other hand 
x E FS(C) so x E En, a contradiction. 

Now let Al = E1 n A and choose xl in A1 such that Al/xl E p. Induc- 
tively let An I = En+I n An n (An/xn) and choose xn+ I in An+I such that 

An+ I/xn+ 1 E p and xn+ 1 > xn . One easily shows by induction on IFI that, if 
F E fin(N) and m = min F, then i wEFXn E A, 

(b) Let m E n and let E = {x C N; there exists C in [A]' such that 
FP(C) C A and x = IIC). As above, one has E C p. Choose B in [A n E]'@ 
such that FS(B) C A n E. 

(c) Let E = {x: there exists C in [A]' such that x = min C and FP(C) C 

A}. As above,E E p. Choose B in [A n E]' such that FS(B) C A n E. 
The proof of (d) is similar. 

3.2 COROLLARY. If ( is a finite partition of N, then there exists A in i such 
that each of the conclusions of Theorem 3.1 holds. 
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By comparison with the strong infinite results presented above, it is rather 
shocking to note the lack of knowledge about the simplest finite versions. (See 
?4 of [8].) In particular it is not known if, whenever r E N and N= 

Ui =I Ai, there exist i and arbitrarily large distinct x and y such that 
{ x,y, x + y, x *y} Q Ai. (In fact if r = 2 one can read "arbitrarily large" as 
"at least 3" and if r > 3 one can dispense with "arbitrarily large" entirely.) 

As a corollary of 3.1 (c) or (d) one can always obtain, when N = U Ai 
some i and arbitrarily large distinct x, y, and z such that { x, y, z, x + y, x 
z} C Ai. We are grateful to R. Graham for permission to present the only 
other result in this direction which we know of. 

3.3 THEOREM (GRAHAM). Let N = AI U A2. There exist i in {l, 2) and, for 
each k in N, distinct x and y larger than k such that {x + y, x -y) C Ai. 

PROOF. We show that for each k in N we can find i in { 1, 2} and distinct x 
andy larger than k such that { x + y, x y)} 5 Ai. The result follows from the 
pigeon hole principle. 

Let k be given. If, for some d we have i in (1, 2) such that {3x: 
x > d)} C Ai, the result is trivial. Otherwise pick d > k such that 3d + 3 and 
3d + 6 are in different cells. Pick i such that 2d(d + 3) E Ai. If 3d + 3 E Ai, 
let x = d + 3 and lety = 2d. If 3d + 6 E Ai let x = d and lety = 2d + 6. 
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