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Abstract

Csikvári, Gyarmati, and Sárközy asked whether, whenever the set N of positive
integers is finitely colored, there must exist monochromatic a, b, c, and d such that
a + b = cd and a �= b. We provide an affirmative answer, showing that a much
stronger statement is true.

1. Introduction

In [9, Corollary 1], Sárközy established that if p is a prime, A, B, C, and D are
subsets of Zp, and |A| · |B| · |C| · |D| > p

3, then there exist a ∈ A, b ∈ B, c ∈ C, and
d ∈ D such that a + b = cd. In [6] this result was extended to finite fields. That is,
if q is a prime power, Fq is the field with q elements, A, B, C, and D are subsets of
Fq, and |A| · |B| · |C| · |D| > q

3, then there exist a ∈ A, b ∈ B, c ∈ C, and d ∈ D such
that a + b = cd.

These results led Csikvári, Gyarmati, and Sárközy to ask [5, Problem B] whether
whenever the set N of positive integers is finitely colored, there must exist monochro-
matic a, b, c, and d with a �= b such that a + b = cd. We shall answer this question
affirmatively, showing in addition that one can demand that a, b, c, and d are all
distinct and that the color of a+ b is that same as that of a, b, c, and d. In fact, our
main result is considerably stronger than this. In order to describe it, we introduce
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some notation. Given a set X, we write Pf (X) for the set of finite nonempty subsets
of X.

Definition 1. Let �xn�∞n=1 be an infinite sequence in N, let m ∈ N, and let �yn�mn=1

be a finite sequence in N.

(a) FS(�xn�∞n=1) = {
�

n∈F
xn : F ∈ Pf (N)} and FP (�xn�∞n=1) = {

�
n∈F

xn :
F ∈ Pf (N)}.

(b) FS(�yn�mn=1) =
��

n∈F
yn : ∅ �= F ⊆ {1, 2, . . . ,m}

�
and

FP (�yn�mn=1) =
��

n∈F
yn : ∅ �= F ⊆ {1, 2, . . . ,m}

�
.

(c) The sequence �xn�∞n=1 has distinct finite sums if and only if whenever F,G ∈
Pf (N) and F �= G, one has

�
n∈F

xn �=
�

n∈G
xn. The analogous definition

applies to �yn�mn=1.

(d) The sequence �xn�∞n=1 has distinct finite products if and only if whenever
F,G ∈ Pf (N) and F �= G, one has

�
n∈F

xn �=
�

n∈G
xn. The analogous

definition applies to �yn�mn=1.

(e) The sequence �xn�∞n=1 is strongly increasing if and only if for each n ∈ N,�
n

t=1 xt < xn+1.

Notice that if �xn�∞n=1 is strongly increasing, then it has distinct finite sums.

We shall establish in a straightforward manner the following generalization of
the affirmative answer to the question of Csikvári, Gyarmati, and Sárközy.

Theorem 2. Let m, r ∈ N with m > 1 and let N =
�

r

k=1 Ak. There exist k ∈ {1, 2,
. . . , r}, d ∈ N, and sequences �xt�mt=1 and �yt�mt=1 such that

(1) �xt�mt=1 has distinct finite sums;

(2) �yt�mt=1 has distinct finite products;

(3)
�

m

t=1 xt =
�

m

t=1 yt = d;

(4) FS(�xt�mt=1) ∪ FP (�yt�mt=1) ⊆ Ak; and

(5) FS(�xt�mt=1) ∩ FP (�yt�mt=1) = {d}.

Notice that the strength of Theorem 2 increases as m increases. If one has
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�xt�m+1
t=1 and �yt�m+1

t=1 as guaranteed for m + 1, one may let

x
�
t
=

�
xt if t < m

xm + xm+1 if t = m
and y

�
t
=

�
yt if t < m

ym · ym+1 if t = m,

and then �x�
t
�m
t=1 and �y�

t
�m
t=1 are as required for m.

We shall show in fact that one may get sequences as guaranteed by Theorem 2
for any finite set of values of m simultaneously, in such a way that all sums and all
products from any of the sequences (except, of course, for the one on which they
agree) are distinct.

Theorem 3. Let n, r ∈ N with n > 1 and let N =
�

r

k=1 Ak. There exist k ∈ {1, 2,
. . . , r}, d ∈ N, and for each i ∈ {2, 3, . . . , n} sequences �xi,t�it=1 and �yi,t�it=1 such
that

(1) for each i ∈ {2, 3, . . . , n}, �xi,t�it=1 has distinct finite sums;

(2) for each i ∈ {2, 3, . . . , n}, �yi,t�it=1 has distinct finite products;

(3) for each i ∈ {2, 3, . . . , n},
�

i

t=1 xi,t =
�

i

t=1 yi,t = d;

(4) for each i ∈ {2, 3, . . . , n}, FS(�xi,t�it=1) ∪ FP (�yi,t�it=1) ⊆ Ak;

(5) for i �= j in {2, 3, . . . , n}, FS(�xj,t�jt=1) ∩ FS(�xi,t�it=1) = {d} and
FP (�yj,t�jt=1) ∩ FP (�yi,t�it=1) = {d}; and

(6) for i, j ∈ {2, 3, . . . , n}, FS(�xj,t�jt=1) ∩ FP (�yi,t�it=1) = {d}.

We shall establish these results in Section 2. The proof of the main tool, namely
Theorem 5, uses the algebraic structure of βN, the Stone-Čech compactification of
N. The points of βN are the ultrafilters on N, with the principal ultrafilters being
identified with the points of N. The existence of nonprincipal ultrafilters depends
unescapably on the Axiom of Choice. In Section 3 we show how our results can be
proved without invoking the Axiom of Choice.

2. Finding Many Monochromatic Solutions to
�

n

t=1 xt =
�

n

t=1 yt

The only fact which one needs to know in this section about the algebraic structure
of βN is that there is an ultrafilter p ∈ βN such that, for every A ∈ p there exist
sequences �xn�∞n=1 and �yn�∞n=1 with FS(�xn�∞n=1) ⊆ A and FP (�yn�∞n=1) ⊆ A. This
is shown in the proof of [8, Corollary 5.22]. Everything preceeding that point in [8]
(except for Section 2.5 which is not needed for this fact) is established in a routine
elementary fashion, so the naive reader is encouraged to investigate this proof.
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In the following lemma, we demand that the terms of �wt�∞t=1 not be equal to 1
only to forbid a sequence which is eventually equal to 1 (whose set of finite products
would then be finite).

Lemma 4. Let �wt�∞t=1 be a sequence in N\{1}. There exist sequences �xt�∞t=1 and
�yt�∞t=1 such that �xt�∞t=1 is strongly increasing (and thus has distinct finite sums),
�yt�∞t=1 is increasing and has distinct finite products, FS(�xt�∞t=1) ⊆ FS(�wt�∞t=1),
and FP (�yt�∞t=1) ⊆ FP (�wt�∞t=1).

Proof. We first construct the sequence �xt�∞t=1 and a sequence �Ht�∞t=1 in Pf (N)
inductively. Let x1 = w1 and H1 = {1}. Let n ∈ N and assume that we have
chosen �xk�nk=1 and �Hk�nk=1 so that for each k ∈ {1, 2, . . . , n}, xk =

�
t∈Hk

wt and
if k < n, then maxHk < minHk+1 and

�
k

t=1 xt < xk+1. Let l = maxHn and
pick Hn+1 ∈ Pf (N) with minHn+1 > l such that

�
t∈Hn+1

wt >
�

n

k=1 xk and let
xn+1 =

�
t∈Hn+1

wt.

The sequence �xn�∞n=1 having been chosen, we have immediately that it is
strongly increasing. To see that FS(�xn�∞n=1) ⊆ FS(�wt�∞t=1), let F ∈ Pf (N) and
let K =

�
n∈F

Hn. Then
�

n∈F
xn =

�
t∈K

wt.

Now we construct the sequence �yt�∞t=1 and a sequence �Ht�∞t=1 in Pf (N) in-
ductively. Let y1 = w1 and H1 = {1}. Let n ∈ N and assume that we have
chosen �yk�nk=1 and �Hk�nk=1 so that for each k ∈ {1, 2, . . . , n}, yk =

�
t∈Hk

wt

and if k < n, then maxHk < minHk+1. Assume further that if F and G are
distinct finite nonempty subsets of {1, 2, . . . , n}, then

�
k∈F

yk �=
�

k∈G
yk. Let

E = FP (�yk�nk=1), let l = maxHn, and pick Hn+1 ∈ Pf (N) with minHn+1 > l

such that
�

t∈Hn+1
wt > yn and

�
t∈Hn+1

wt /∈ E ∪ {u−1
v : u, v ∈ E}. Let

yn+1 =
�

t∈Hn+1
wt. Now let F and G be distinct finite nonempty subsets of

{1, 2, . . . , n + 1} and suppose that
�

k∈F
yk =

�
k∈G

yk. If n + 1 /∈ F ∪ G, this
contradicts the induction hypothesis. If n+1 ∈ F ∩G, then letting F

� = F \{n+1}
and G

� = G \ {n + 1}, one has
�

k∈F � yk =
�

k∈G� yk (where we let
�

k∈∅ yk = 1
if either F = {n + 1} or G = {n + 1}). This contradicts either the induction hy-
pothesis, or the fact that each wt > 1. So assume without loss of generality that
n + 1 ∈ F and n + 1 /∈ G. Then

�
k∈G

yk ∈ E. If F = {n + 1}, then yn+1 ∈ E.
Otherwise, yn+1 ∈ {u−1

v : u, v ∈ E}. In either case we get a contradiction.

One sees that FP (�yn�∞n=1) ⊆ FP (�wt�∞t=1) in exactly the same fashion as we
saw that FS(�xn�∞n=1) ⊆ FS(�wt�∞t=1).

Theorem 5. Let r ∈ N and let N =
�

r

i=1 Ai. There exists i ∈ {1, 2, . . . , r} such
that for each m ∈ N,
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(1) there exists an increasing sequence �yn�∞n=1 with distinct finite products such
that
FP (�yn�∞n=1) ⊆ Ai and whenever F ∈ Pf (N), there exists a strongly increas-
ing sequence �xn�mn=1 such that FS(�xn�mn=1) ⊆ Ai and

�
m

n=1 xn =
�

n∈F
yn

and

(2) there exists a strongly increasing sequence �xn�∞n=1 such that FS(�xn�∞n=1) ⊆
Ai and whenever F ∈ Pf (N), there exists an increasing sequence �yn�mn=1

with distinct finite products such that FP (�yn�mn=1) ⊆ Ai and
�

m

n=1 yn =�
n∈F

xn.

Proof. Pick p ∈ βN such that, for every A ∈ p there exist sequences �xn�∞n=1 and
�yn�∞n=1 with FS(�xn�∞n=1) ⊆ A and FP (�yn�∞n=1) ⊆ A. Pick i ∈ {1, 2, . . . , r} such
that Ai ∈ p.

Let m ∈ N be given. Let B = {z ∈ Ai : there exists strongly increasing
�xn�mn=1 such that FS(�xn�mn=1) ⊆ Ai and z =

�
m

n=1 xn}. Let C = {z ∈ Ai :
there exists increasing �yn�mn=1 satisfying uniqueness of finite products such that
FP (�yn�mn=1) ⊆ Ai and z =

�
m

n=1 yn}.

We claim that B ∈ p. Suppose instead that B /∈ p, in which case Ai\B ∈ p. Pick
a sequence �xn�∞n=1 with FS(�xn�∞n=1) ⊆ Ai \B. By Lemma 4 we may assume that
�xn�∞n=1 is strongly increasing. But then

�
m

n=1 xn ∈ B, a contradiction. Similarly
C ∈ p.

For conclusion (1) pick an increasing sequence �yn�∞n=1 with distinct finite prod-
ucts such that FP (�yn�∞n=1) ⊆ B. For conclusion (2) pick a strongly increasing
sequence �xn�∞n=1 such that FS(�xn�∞n=1) ⊆ C.

Note that the m = 2 case of either part of Theorem 5 is already strong enough
to answer the question as posed by Csikvári, Gyarmati, and Sárközy.

Lemma 6. Let m,n ∈ N, let �xt�nt=1 be a strongly increasing sequence in N, and
let �yt�mt=1 be a sequence in N \ {1} such that

�
n

t=1 xt =
�

m

t=1 yt. If ∅ �= F ⊆� {1, 2,
. . . , n} and n ∈ F , then

�
t∈F

xt /∈ FP (�yt�mt=1).

Proof. Suppose we have ∅ �= G ⊆ {1, 2, . . . ,m} such that
�

t∈F
xt =

�
t∈G

yt.
Since

�
t∈F

xt <
�

m

t=1 yt, we have G �= {1, 2, . . . ,m}. Let H = {1, 2, . . . , n} \ F

and let K = {1, 2, . . . ,m} \ G. Then
�

t∈H
xt +

�
t∈F

xt = (
�

t∈F
xt)

�
t∈K

yt.
Since n ∈ F we have

�
t∈F

xt >
�

t∈H
xt = (

�
t∈F

xt)(
�

t∈K
yt − 1) ≥

�
t∈F

xt,
a contradiction.
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Lemma 7. For each k, l ∈ N, there exists b ∈ N such that whenever �xt�bt=1 is a
strongly increasing sequence in N and A ⊆ N with |A| = l, there exist 0 = a0 <

a1 < . . . < ak < b so that, if for each j ∈ {1, 2, . . . , k}, zj =
�aj

t=aj−1+1 xt, then
FS(�zj�kj=1) ∩A = ∅.

Proof. We proceed by induction on k with fixed l and A. For k = 1, let b = l + 2.
For some a ∈ {1, 2, . . . , l + 1},

�
a

t=1 xt /∈ A.

Now let k ∈ N and assume that we have b1 as guaranteed for k. Let b = b1+l2k+1
and let strongly increasing �xt�bt=1 be given. Pick 0 = a0 < a1 < . . . < ak < b1

as guaranteed by hypothesis. For j ∈ {1, 2, . . . , k}, let zj =
�aj

t=aj−1+1 xt and
let B = FS(�zj�kj=1). Then |B| = 2k − 1. Let C = A ∪

�
w∈B

(A − w). Then
|C| ≤ l + (2k − 1)l = 2k

l. Pick ak+1 ∈ {ak + 1, ak + 2, . . . , ak + 2k
l + 1} such that�

ak+1
t=ak+1 xt /∈ C. Then ak+1 ≤ ak + 2k

l + 1 < b1 + 2k
l + 1 = b.

We are now prepared to prove Theorem 2.

Proof of Theorem 2. Let l = 2m − 2. Pick b as guaranteed by Lemma 7 for l and
k − 1. Pick i ∈ {1, 2, . . . , r} and increasing �yn�∞n=1 satisfying uniqueness of finite
products as guaranteed by conclusion (1) of Theorem 5. Pick strongly increasing
�xt�bt=1 such that

�
b

t=1 xt =
�

m

t=1 yt. Let A = FP (�yt�mt=1) \ {
�

m

t=1 yt}. Then
|A| = l. Pick 0 = a0 < a1 < a2 < . . . < ak−1 as guaranteed by Lemma 7. Let
ak = b. For j ∈ {1, 2, . . . , k}, let zj =

�aj

t=aj−1+1 xt.

Let w ∈ FS(�zj�kj=1)∩FP (�yt�mt=1). Then w =
�

t∈F
zt for some F ⊆ {1, 2, . . . ,

k}. If k /∈ F , then since w <
�

m

t=1 yt we have by Lemma 7 that w /∈ FP (�yt�mt=1).
So k ∈ F . Then by Lemma 6, F = {1, 2, . . . , k}.

In order to prove Theorem 3 we need another preliminary lemma. This lemma
is valid in an arbitrary semigroup. We shall use it with the semigroups (N,+) and
(N, ·). We only defined “distinct finite products” for (N, ·), but it has its obvious
interpretation in any semigroup. Likewise, FP (�wt�mt=1) has its obvious meaning.

Lemma 8. Let n ∈ N and let m =
n

2 − n + 2
2

. Let (S, ·) be a semigroup and let
�wt�mt=1 be a sequence in S with distinct finite products. For each i ∈ {2, 3, . . . , n}
there is a sequence �yi,t�it=1 such that

(1) for each i, FP (�yi,t�it=1) ⊆ FP (�wt�mt=1);

(2) for each i,
�

i

t=1 yi,t =
�

m

t=1 wt; and
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(3) for i �= j, FP (�yi,t�it=1) ∩ FP (�yj,t�jt=1) = {
�

m

t=1 wt}.

Proof. Define f : N → N by f(i) =
i
2 − 3i + 4

2
. Then f(2) = 1 and for each i ∈ N,

f(i+1) = f(i)+ i−1. Note that m = f(n+1). For i ∈ {2, 3, . . . , n}, define �yi,t�it=1

as follows.
yi,1 =

�
f(i)
t=1 wt ,

yi,t = wf(i)+t−1 for t ∈ {2, 3, . . . , i− 1}, and
yi,i =

�
m

t=f(i)+i−1 wt .

The first two conclusions are immediate. Assume that i, j ∈ {2, 3, . . . , n} with i < j

and we have some c ∈ FP (�yi,t�it=1) ∩ FP (�yj,t�jt=1). Pick F and G with ∅ �= F ⊆
{1, 2, . . . , i} and ∅ �= G ⊆ {1, 2, . . . , j} such that c =

�
t∈F

yi,t =
�

t∈G
yj,t. Since

c ∈ FP (�wt�mt=1), pick H with ∅ �= H ⊆ {1, 2, . . . ,m} such that c =
�

t∈H
wt.

Assume first that i /∈ F . Then maxH ≤ f(i) + i − 2. Since ∅ �= G ⊆ {1, 2,
. . . , j}, we have that maxH ≥ f(j) > f(i) + i − 2, a contradiction. So i ∈ F

and consequently {f(i) + i − 1, f(i) + i, . . . ,m} ⊆ H. Since f(i) + i − 1 ∈ H and
f(i) + i− 1 ≤ f(j), we have 1 ∈ G and so {1, 2, . . . , f(i) + i− 1} ⊆ H. Therefore,
H = {1, 2, . . . ,m} so c =

�
m

t=1 wt.

Proof of Theorem 3. Let m =
n

2 − n + 2
2

. Pick by Theorem 5(2) k ∈ {1, 2, . . . ,
r} and a strongly increasing sequence �vt�∞t=1 such that FS(�vt�∞t=1) ⊆ Ak and
whenever F ∈ Pf (N), there exists an increasing sequence �wt�mt=1 with distinct
finite products such that FP (�wt�mt=1) ⊆ Ak and

�
m

t=1 wt =
�

t∈F
vt.

Pick b as guaranteed by Lemma 7 for k = m−1 and l = 2m−2. Let d =
�

b

t=1 vt

and pick an increasing sequence �wt�mt=1 with distinct finite products such that�
m

t=1 wt = d. Let B = FP (�wt�mt=1) \ {d}. Pick 0 = a0 < a1 < . . . < am−1 < b so
that, if for each j ∈ {1, 2, . . . ,m−1}, zj =

�aj

t=aj−1+1 vt, one has FS(�zj�m−1
j=1 )∩B =

∅. Let zm =
�

b

t=am−1+1 vt. Then �zt�mt=1 is strongly increasing. We claim that

(∗) FS(�zt�mt=1) ∩ FP (�wt�mt=1) = {d} .

Certainly d =
�

m

t=1 zt =
�

m

t=1 wt. Assume that u ∈ FS(�zt�mt=1) ∩ FP (�wt�mt=1).
Pick F such that ∅ �= F ⊆ {1, 2, . . . ,m} such that u =

�
t∈F

zt. If m /∈ F , then
u ∈ FS(�zj�m−1

j=1 ) so u /∈ B and, since u < d, u /∈ FP (�wt�mt=1). Thus m ∈ F . By
Lemma 6, F = {1, 2, . . . ,m}.

Applying Lemma 8 to the semigroup (N,+), pick for each i ∈ {2, 3, . . . , n} a
sequence �xi,t�it=1 such that

(1) for each i, FS(�xi,t�it=1) ⊆ FS(�zt�mt=1);
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(2) for each i,
�

i

t=1 xi,t =
�

m

t=1 zt; and

(3) for i �= j, FS(�xi,t�it=1) ∩ FS(�xj,t�jt=1) = {
�

m

t=1 zt}.

Applying Lemma 8 to the semigroup (N, ·), pick for each i ∈ {2, 3, . . . , n} a
sequence �yi,t�it=1 such that

(1) for each i, FP (�yi,t�it=1) ⊆ FP (�wt�mt=1);

(2) for each i,
�

i

t=1 yi,t =
�

m

t=1 wt; and

(3) for i �= j, FP (�yi,t�it=1) ∩ FP (�yj,t�jt=1) = {
�

m

t=1 wt}.

All conclusions are easily verified.

3. Worrying About the Axiom of Choice

The proof of Theorem 5 uses a nonprincipal ultrafilter on N, and such things depend
on some version of the Axiom of Choice for their existence. Since the conclusions
of Theorem 3 are finitistic in nature, one may very well wish to avoid an appeal to
the Axiom of Choice. We describe here how this may be done.

The following theorem was proved in [2] without appeal to the axiom of choice.
Further, with one proviso, the argument was reasonably simple. That proviso is
that the Finite Sums Theorem was used. In [3] Blass, Hirst, and Simpson showed
that both the original proof of the Finite Sums Theorem [7] as well as Baumgart-
ner’s simplification [1] could be modified so as to not invoke the axiom of choice.
However, one could not say that it was particularly easy to do either one (especially
the original). (It was known before the publication of [3] that the Finite Sums
Theorem does not require the Axiom of Choice for its proof because of absoluteness
considerations. See [4, Section 4.2] for a discussion of this point.)

Theorem 9. Let r ∈ N and let N =
�

r

i=1 Ai. There exist i ∈ {1, 2, . . . , r} and
sequences �xn�∞n=1 and �yn�∞n=1 such that FS(�xn�∞n=1) ∪ FP (�yn�∞n=1) ⊆ Ai.

Proof. [2, Theorem 2.4].

Corollary 10. Let r ∈ N and let N =
�

r

i=1 Ai. There exist i ∈ {1, 2, . . . , r} such
that whenever Ai is partitioned into finitely many cells, there exist one cell B and
sequences �xn�∞n=1 and �yn�∞n=1 such that FS(�xn�∞n=1) ∪ FP (�yn�∞n=1) ⊆ B.

Proof. If each Ai could be partitioned into finitely many pieces, none of which
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contained FS(�xn�∞n=1)∪FP (�yn�∞n=1) for any sequences �xn�∞n=1 and �yn�∞n=1, the
result is a finite partition of N with that same property.

We now show how to reprove Theorem 5 without using the Axiom of Choice.

Theorem 5. Let r ∈ N and let N =
�

r

i=1 Ai. There exists i ∈ {1, 2, . . . , r} such
that for each m ∈ N,

(1) there exists an increasing sequence �yn�∞n=1 with distinct finite products such
that
FP (�yn�∞n=1) ⊆ Ai and whenever F ∈ Pf (N), there exists a strongly increas-
ing sequence �xn�mn=1 such that FS(�xn�mn=1) ⊆ Ai and

�
m

n=1 xn =
�

n∈F
yn

and

(2) there exists a strongly increasing sequence �xn�∞n=1 such that FS(�xn�∞n=1) ⊆
Ai and whenever F ∈ Pf (N), there exists an increasing sequence �yn�mn=1

with distinct finite products such that FP (�yn�mn=1) ⊆ Ai and
�

m

n=1 yn =�
n∈F

xn.

Proof. Pick i ∈ {1, 2, . . . , r} as guaranteed by Corollary 10 and let m ∈ N be given.
Let B = {z ∈ Ai : there exists strongly increasing �xn�mn=1 such that FS(�xn�mn=1) ⊆
Ai and z =

�
m

n=1 xn}. Let C = {z ∈ Ai : there exists increasing �yn�mn=1 satisfying
uniqueness of finite products such that FP (�yn�mn=1) ⊆ Ai and z =

�
m

n=1 yn}.

Then {Ai \ (B ∪ C), B \ C,C \ B,B ∩ C} is a partition of Ai and the only
cell which contains FS(�xn�∞n=1) ∪ FP (�yn�∞n=1) for some sequences �xn�∞n=1 and
�yn�∞n=1 is B∩C. By Lemma 4 one may assume that �xn�∞n=1 is strongly increasing
and �yn�∞n=1 is increasing with distinct finite products.

For conclusion (1) pick an increasing sequence �yn�∞n=1 with distinct finite prod-
ucts such that FP (�yn�∞n=1) ⊆ B. For conclusion (2) pick a strongly increasing
sequence �xn�∞n=1 such that FS(�xn�∞n=1) ⊆ C.
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