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Preface

What is this book about?

This book is about ultrafilters. So what is an ultrafilter? Given a set X,
an ultrafilter on X is simply a “sensible” division of all of the subsets of X
into two categories: small and large. For this division to be sensible, one
should impose some axioms:

e X should be a large subset of X, while () should be a small subset
of X.

e If Y is a large subset of X and Y C Z C X, then Z should also be
large; that is, a set containing a large set should also be large.

e If Y and Z are two large subsets of X, then sois Y N Z.

The last axiom is perhaps not entirely intuitive, but becomes more in-
tuitive when stated in terms of small sets: the union of two small sets is
once again small. The axioms also imply that a set is large precisely when
its complement is small.

Why write a book about such a seemingly simple notion? It turns out
that this notion is very useful for describing limits of various objects. For
example, much to the chagrin of many calculus students, one knows that
there are many sequences (ay)pen from [0, 1] that have no limit. However,
limit in the usual sense is very restrictive in that it requires a,, to be close to
the limit for a large number of n, where large here means for all but finitely
many n. Note that this restrictive notion of largeness does not lead to an
ultrafilter on N as there are certainly sets that are infinite and which have
infinite complement. However, if one works with a notion of largeness as
given by an ultrafilter, then all of a sudden every sequence in [0,1] has a

xiii



xiv Preface

limdt! This fact can be used as a powerful tool in analytic and topological
endeavors.

The notion of ultrafilter also allows one to consider limits of families of
structures like groups, rings, graphs, or Banach spaces. The limiting struc-
tures alluded to here are called ultraproducts and will become a central
part of this book. These limiting objects can be very useful in solving prob-
lems, for often various desirable properties are approximately true in the
individual structures of the family, while in the limit they become exactly
true.

Who should read this book?

The short answer is: everyone! More precisely, the thesis of this book is
that, while ultrafilters and ultraproducts are often relegated to graduate-
level courses in logic, we believe that this practice is entirely misguided.
Indeed, the notion of ultrafilter and ultraproduct are entirely accessible to
an advanced undergraduate or beginning graduate student in mathematics
(the target audience of this book). Moreover, as we will see throughout
the course of this book, ultrafilters and ultraproducts have had numerous
applications to nearly every area of mathematics. Thus, no matter what area
of mathematics the reader is interested in, it is quite likely that ultrafilters
and ultraproducts have made an impact in that area. An attempt has been
made to present as diverse a sample of such applications as possible.

That being said, this book is being written by a logician, and ultrafil-
ters present numerous fascinating foundational concerns, many of which are
discussed in this book. If the reader is purely interested in mathematical
applications, they may safely skip the portions of this book discussing these
metamathematical issues.

What is in this book?

Let us briefly summarize the contents of this book. Part [Il is entirely de-
voted to ultrafilters. Chapter Il introduces the basic facts about ultrafilters,
including what it means for them to be isomorphic and how many of them
there are. Chapter 2 provides one with a first application of ultrafilters,
namely to a proof of Arrow’s theorem on fair voting. This application is
nice in the sense that it requires little to no mathematical background and
yet exemplifies a perfect use of ultrafilters. Chapter Bl introduces the use of
ultrafilters in topology, including the aforementioned facts about generalized
limits. This chapter also shows how ultrafilters can be used to describe the
important Stone-Cech compactification construction. Chapter € is a brief
introduction to how ultrafilters can be used in certain parts of combinatorics;
a much more detailed investigation of that line of research can be found in
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the book [42], written by the author with Mauro Di Nasso and Martino
Lupini. Chapter [l the last chapter in Part [l of the book, discusses many of
the interesting foundational issues presented by the existence of ultrafilters.

Part 2] of the book is concerned with the classical ultraproduct construc-
tion. As alluded to above, this construction allows one to take the limit
of families of objects such as groups, rings, graphs, etc., ... The lengthy
Chapter [0l introduces this construction and proves the Fundamental The-
orem of Ultraproducts (otherwise known as Lo$’s theorem), which states
that the truth of a first-order sentence in an ultraproduct is determined by
whether or not the sentence is true in a large (as measured by the ultrafilter)
number of the individual structures. This chapter includes many other im-
portant facts about ultraproducts, including cardinalities of ultraproducts
and a discussion of what happens when one tries to iterate the ultraproduct
construction.

Chapter [1 gives one a first look at how ultraproducts can be used “in
practice.” The applications in this chapter are all algebraic in nature, and
include Ax’s theorem on polynomial functions and the Ax-Kochen theorem
relating the rings Z, of p-adic integers with the power series rings F,[[T]].
One important feature of ultraproducts is that they are often very “rich”
in the precise sense of being saturated. Chapter [§ gives a detailed discus-
sion of exactly how saturated ultraproducts can be. Chapter [9 gives a brief
introduction to nonstandard analysis. While nonstandard analysis is a sub-
ject of its own, it is often presented using ultraproducts and we discuss this
approach here. This chapter is far from a complete story on nonstandard
analysis and we refer the interested reader to [42] for a more thorough dis-
cussion. Chapter [I0 discusses the class of subgroups of nonstandard (in
the sense of Chapter [d)) free groups; the finitely generated such subgroups
are called limit groups and have become a widely studied class of groups in
geometric group theory.

The ultraproduct construction referred to above is suitable for discrete
spaces such as those arising in algebra and combinatorics, but is not very
useful for structures appearing in analysis. Part [3] of the book is concerned
with a modification of the ultraproduct construction for structures based on
metric spaces. Chapter [Tl introduces this metric ultraproduct and discusses
some of its basic properties. That chapter also includes a discussion of a
relatively new logic, aptly called continuous logic, which is the logic naturally
connected to this metric ultraproduct construction.

The remainder of Part [3] details several applications of the metric ultra-
product construction. Chapter describes a fascinating theorem of Gro-
mov from geometric group theory, where the key ingredient to the proof
is a particular metric ultraproduct called an asymptotic cone. Chapter
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discusses the class of sofic groups, which can be defined in terms of metric
ultraproducts of symmetric groups. Chapter [[4] the final chapter of Part [3]
discusses some applications of metric ultraproducts to functional analysis.
One might argue that functional analysis is an area of mathematics where
ultraproducts have played an increasingly more important role. Unfortu-
nately, the mathematical background needed by the reader is much larger
in this area of mathematics and thus this section cannot quite do justice to
the importance of ultraproducts in functional analysis.

Part [, the last part of this book, is devoted to three advanced top-
ics. Chapter [[5] discusses a question that often arises to many people seeing
ultraproducts for the first time: does the ultraproduct depend on the ultra-
filter being used? The answer to this question is surprisingly subtle and a
more or less complete answer to a specific case of this question is discussed.
Chapter [16] discusses the fantastic Keisler-Shelah theorem, which shows how
elementary equivalence, a notion from logic, can be reformulated in terms
of isomorphic ultrapowers, a purely algebraic notion. This chapter also in-
cludes a few applications of the Keisler-Shelah theorem. Chapter [, the
final chapter of the book, shows how the study of large cardinals in set the-
ory can be recast in terms of ultrafilters satisfying certain extra properties.
This part of the book might require a bit more maturity and/or background
from the reader.

What are the prerequisites for reading this book?

We have no illusions that any one student has all of the prerequisites neces-
sary to read the entire book. However, this fact is by design! As discussed
above, we are trying to convey to the reader that ultrafilters and ultraprod-
ucts are applicable in most areas of mathematics and thus we have tried to
describe a wide variety of applications.

That being said, we have assumed that the reader is familiar with some
basic facts from real analysis, topology, and algebra. Any facts that we
believe are not part of the usual curricula from those disciplines are often
described in full detail here. Sometimes certain topics are outside of the
scope of this book and we provide references to the reader for places in
the literature where they can learn more. It is also our hope that a reader
interested in, for example, algebra sees the chapter on, say, functional anal-
ysis, and finds the general idea interesting enough that they decide to learn
more about this area. In today’s mathematical world, breadth is everything
and an aspiring mathematician should keep their eyes open to all areas of
mathematics.

In discussing ultrafilters, one cannot hide the fact that logic and set
theory play an important role. Moreover, there is a high probability that
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the average reader might not have the requisite knowledge in these areas to
follow the main parts of this book. For the reader’s convenience, appendices
on these subjects are included in this book. Also, occasionally in the text,
very basic parts of category theory are needed and the necessary facts from
category theory are collected in the final appendix.

How to read this book

Some later chapters rely somewhat heavily on earlier chapters. The follow-
ing flowchart lists some of these dependencies. The blue arrows indicate
dependencies that are not strictly necessary but possibly helpful.

[2] Arrow’s (1] Ultrafilter 5] Foundational
%
theorem basics concerns
[3]  Ultrafilters [6]  Classical [17] Large car-
in topology ultraproducts dinals
[4] Ramsey 7] Applications
theory to algebra
[15]  Ultrafilter
[11] Metric [8] Ultraproducts dependence
ultraproducts and saturation
\ \ @” Keisler-Shelah ‘
[12]  Gromov’s [9] Nonstandard
-~ .
theorem analysis

[14]  Functional

B 13 10 . .
analysis u’ Sofic groups ‘4— LI] Limit groups ‘

Exercises

Rather than ending each section or chapter with a list of exercises, we have
instead sprinkled them throughout the text itself. Some of the exercises
are simply checks for understanding, but others are more involved. Often,
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the exercises themselves will be used in the proofs of later results. We
recommend that the reader stop reading when they encounter an exercise
and attempt a solution at that moment. Solutions to a handful of exercises
appear in Appendix [Dl but we urge the reader not to consult these solutions
unless the situation becomes dire!
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Part 1

Ultrafilters
and their applications






Chapter 1

Ultrafilter basics

In this chapter, we present the basic theory of ultrafilters. Section [L.1] con-
tains the basic definitions of filters and ultrafilters and proves the existence
of a nonprincipal ultrafilter on an infinite set. Section is a short section
devoted to explaining how one can view an ultrafilter on a set as a kind of
quantifier. Section gives a category-theoretic perspective on ultrafilters.
In Section [[L4] we compute the cardinality of the set of ultrafilters on a
given set. In Section [l we introduce the cardinal characteristic u, which,
roughly speaking, is the smallest number of sets needed to specify a nonprin-
cipal ultrafilter on N, while in Section [L6 we introduce the Rudin-Keisler
ordering on the collection of all ultrafilters, which is a relative measure of
complexity for ultrafilters.

1.1. Basic definitions
Throughout this section, we let S denote a set.

Definition 1.1.1. A (proper) filter on S is a set F of subsets of S (that
is, F C P(S)) such that:

(1) 0 ¢ F but S € F;

(2) if A,B € F, then AN B € F;

(3) if Ae Fand AC B, then B € F.

We think of elements of F as “big” sets (because that is what filters
do, they catch the big objects). The first and third axioms are (hopefully)
intuitive properties of big sets. Perhaps the second axiom is not as intuitive,
but if one thinks of the complement of a big set as a “small” set, then the

3



4 1. Ultrafilter basics

second axiom asserts that the union of two small sets is small (which is
hopefully more intuitive).

Exercise 1.1.2. Suppose that S is infinite. Set F := {A C S| S\ 4
is finite}. Prove that F is a filter on S, called the Fréchet or cofinite filter
on S.

One often describes a filter by specifying a base:

Definition 1.1.3. Suppose that F is a filter on S. Then a base for F is
a collection B of subsets of S such that F = {A C S : B C A for some
B € B}.

Exercise 1.1.4. Suppose that B is a collection of nonempty subsets of S.
Prove that B is a base for a (necessarily unique) filter on S if and only if,
for any A, B € B, there is C' € B such that C C AN B.

In practice, one has a collection D of subsets of S which they would like
to belong to some filter F on S but which does not satisfy the criterion in
the previous exercise for being a base for a filter. One can of course try
to force D to satisfy the criterion by closing D under finite intersections.
However, a base for a filter is required to consist of nonempty sets and, in
closing D under finite intersections, one may accidentally stumble upon the
emptyset. Thus, the following definition becomes crucial:

Definition 1.1.5. Suppose that D is a collection of subsets of S. We say
that D has the finite intersection property (or FIP for short) if, when-
ever Dy,...,D, € D, we have D1 N---N D, # 0.

The previous discussion thus establishes:

Theorem 1.1.6. Suppose that D is a collection of subsets of S with the
finite intersection property. Then {D1N---N Dy, : Diy,...,D, € D} is a
base for a filter on S, called the filter generated by D, denoted (D).

To be explicit, we have
(D)={ECS : Din---NnD, CE for some Dy,...,D, € D}.

Exercise 1.1.7. Suppose that F is a filter on S and A C S. Prove that
F U{A} has the FIP if and only if (S\ A) ¢ F.

If F is a filter on S, then a subset of S cannot be simultaneously big
and small (that is, both it and its complement belong to F), but there is
no requirement that one of the two be big. It will be desirable (for reasons
that will become clear in a moment) to add this as an additional property:

Definition 1.1.8. If F is a filter on S, then F is an ultrafilter if, for any
A C S, either A€ For S\ A€ F (but not both!).
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Ultrafilters are usually denoted by U or V, and the set of ultrafilters on
S is usually denoted 8S (for a topological reason that we will discuss in
Chapter [3)). Observe that the Fréchet filter on S is not an ultrafilter since
there are sets A C S such that A and S\ A are both infinite.

Exercise 1.1.9 (For those who are familiar with measure theory). Given a
set S and a collection U of subsets of S, we have that I/ is an ultrafilter on
S if and only if there is a finitely additive probability measure p on S that
only takes the values 0 or 1 such that, for all A C S, we have A € U/ if and
only if u(A) = 1. In this case, p is unique, whence we may denote it by 1.

Exercise 1.1.10. Suppose that U/ is an ultrafilter on S and Ay,..., A, are
subsets of S such that A; U---U A, € U. Prove that thereisi € {1,...,n}
such that A; € U. Moreover, if the Aq,..., A, are pairwise disjoint, prove
that there is a unique such i.

There is actually a strong converse to the previous exercise that we will
use in Chapter

Exercise 1.1.11. Suppose that U is a collection of nonempty subsets of S
with the following property: Whenever A;, Az, and Ag are pairwise disjoint
subsets of S with S = A; U Ay U A3 (with perhaps one or more of the
A; =), then there is exactly one i € {1,2,3} with A; € Y. Prove that U is
an ultrafilter on S. (Hint. This is a fun exercise with Venn diagrams.)

Exercise 1.1.12. Suppose that U is an ultrafilter on S and that A € U.
Prove that

ANnU:={ANB : BelU}
is an ultrafilter on A, called the ultrafilter on A induced by U.

We have yet to see an example of an ultrafilter. Here is a “trivial” source
of ultrafilters:

Definition 1.1.13. Given s € S, set U :={AC S | s € A}.

Exercise 1.1.14. For s € S, prove that U, is an ultrafilter on S, called the
principal ultrafilter generated by s.

We say that an ultrafilter &/ on S is principal if 4 = U, for some s € S
otherwise, we say that U is nonprincipal. Although principal ultrafilters
settle the question of the existence of ultrafilters, they will turn out to be
useless for most purposes, as we will see later on. From a philosophical
viewpoint, principal ultrafilters fail to capture the idea that sets belonging
to the ultrafilter are large, for {s} belongs to the ultrafilter U and yet hardly
anyone would dare say that the set {s} is large!
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Exercise 1.1.15. Prove that an ultrafilter ¢ on S is principal if and only if
there is a finite set A C S such that A € U. In particular, every ultrafilter
on a finite set is principal.

Exercise 1.1.16. Suppose that F is a filter on S. Then F is an ultrafilter
on S if and only if it is a maximal filter, that is, if and only if, whenever F’
is a filter on S such that F C F’, we have F = F'.

Fix a filter F. Since it is readily verified that the union of an increasing
chain of filters on S containing F is once again a filter on S containing F, the
previous exercise and Zorn’s lemma (see Appendix [Bl) yield the following:

Corollary 1.1.17. Given any filter F on S, there is an ultrafilter U on S
such that F CU.

We refer to the previous statement as the ultrafilter theorem for
S. By the ultrafilter theorem, we mean the statement that the ultrafilter
theorem for S holds for every set S. We will have a lot more to say about
the ultrafilter theorem from a foundational perspective in Chapter Bl For
now, we note that, by applying the ultrafilter theorem for S to the Fréchet
filter on S (when S is infinite), we obtain the following:

Corollary 1.1.18. If S infinite, then there is a nonprincipal ultrafilter on
S.

Exercise 1.1.19. Suppose that S is an infinite set and D is a collection
of subsets of S such that Dy N --- N D, is infinite for any finitely many
D;,...,D, € D. Prove that there is a nonprincipal ultrafilter &/ on S such
that D C U.

Exercise 1.1.20. Prove that there is an ultrafilter &/ on N such that, for
every A € U, we have that ) _, % diverges.

Definition 1.1.21. An ultrafilter U on I is called uniform if |A| = |I]| for
every A € U.

Exercise 1.1.22. Suppose that U is an ultrafilter on I and J € U has
minimal cardinality (amongst sets in U). Prove that & N J is a uniform
ultrafilter on J.

1.2. The ultrafilter quantifier

In this section, given A C S, we view A both as a subset of S and a relation
on S, and thus the expressions “s € A” and “A(s)” are synonymous.

Definition 1.2.1. Given a set S, a subset A of S, and an ultrafilter / on
S, we write (Us)A(s) if A € U, and we say that “U-almost all s in S satisfy
A(s)”.
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Remark 1.2.2. Using the notation from Exercise [L1.9) we have that
(Us)A(s) holds if and only if A(s) holds pz-almost everywhere.

We think of the formation Us as a quantifier of sorts. We can translate
many of the basic properties of ultrafilters into properties of the ultrafilter
quantifier.

Exercise 1.2.3. Prove the following properties of the ultrafilter quantifier:
(1) (VsA(s)) = Us)A(s).
(2) ~(Us)A(s)) & (Us)(~A(s)).

(3) Us)(A(s) A B(s)) < ((Us)A(s) A (Us)B(s)).

(4) Us)(A(s) V B(s)) < ((Us)A(s) V (Us)B(s)).

One must take care in manipulations with the ultrafilter quantifier as it
does not always behave like its more familiar counterparts ¥V and 3:

) &
) &

Exercise 1.2.4. Fix an ultrafilter &/ on N.

(1) If U is nonprincipal, prove that the quantifiers Us and Ut do not
commute, that is, there is A C N? such that (Us)(Ut)A(s,t) but
—(Ut)(Us)A(s, t).

(2) For any n € N and any B C N2, prove that (Us)(U,t)B(s,t) holds
if and only if (U,t)(Us)B(s,t) holds. In other words, the ultrafilter
quantifier corresponding to a principal ultrafilter commutes with
any other ultrafilter quantifier.

At first glance, it might seem that what we have defined is a sort of
universal quantifier. Temporarily, let us rewrite our quantifier as V¥, that is,
(V¥s)A(s) holds precisely when {s € S : A(s) holds} € U. In analogy with
the usual quantifiers, one might be tempted to then define the corresponding
existential quantifier 3 by declaring (3%s)A(s) holds if and only if it is not
the case that (V“s)A(s) fails, or symbolically, 3%s = —v¥s—.

Exercise 1.2.5. Prove that the quantifier 3 coincides with the quantifier
VY that is, for any set S, any subset A C S, and any ultrafilter ¢ on S,
prove that (3¥s)A(s) holds if and only if (V¥s)A(s) holds.

For this reason, we only consider the single ultrafilter quantifier intro-
duced above.

1.3. The category of ultrafilters

In this section, we define what it means for two ultrafilters to be isomorphic.
Naively speaking, one might expect ultrafilters &/ and ) on index sets .S and
T to be isomorphic if there is a bijection f : S — T such that, for A C S,
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we have A € U if and only if f(A) € V. However, this turns out to be a bit
too restrictive and does not quite capture the spirit of things needing only
to occur on “large” sets.

To aid ourselves in coming up with the correct notion of isomorphic
ultrafilters, it behooves us to take a categorical perspective on the matter.
(The reader unfamiliar with basic category theory may consult Appendix

Q)
Definition 1.3.1.

(1) If f: 8 — T is a function and U is an ultrafilter on S, then the
pushfoward of U along f is the ultrafilter (i) on T defined by
setting, for A C T

AcfU) e fHA) eU.

(2) Given two functions f, f' : S — T, we say that f and f’ are equal
modulo U, written f =4 f, if (Us)(f(s) = f'(s)).

Remark 1.3.2. Using the notation from Exercise[[.T.9] the pushfoward ul-
trafilter f(U) is the ultrafilter of measure 1 sets corresponding to the push-
foward measure f*uy on T.

Exercise 1.3.3. Suppose that f : S — T is a function and s € S. Prove
that f(Us) = Z/[f(s).

Exercise 1.3.4.

(1) Prove that = is an equivalence relation on functions from S to 7.
We denote the equivalence class of f: S — T by [f]u.

(2) Prove that if f =4 f’, then f(U) = f'(U).

(B3)If f: S—Tandg:T — U are functions and U is an ultrafilter on
S, prove that (g o f)(U) = g(f(U)).

4) If f,f:S—Tandg,g : T — U are functions, U is an ultrafilter
on S, and f =y f" and g =5y ¢, prove that go f =y g'o f'.

Definition 1.3.5. Given two ultrafilters i/ and V on sets S and T', respec-
tively, a morphism between U and V is an equivalence class [f]; such that
fUU) = V. As is customary in category theory, we write [f|y : U — V if
[f]u is a morphism.

By Exercise [[L3.4)(2), this notion is well-defined, that is, independent
of representative. Moreover, Exercise [[3.4(3) allows us to unambiguously
define the composition of two morphisms [f]y and [g]y to be [g]y o [f]u =
[9 o flu (defined when f(U) = V). It is easy to see that this notion of
composition is associative. Moreover, denoting the identity function on S
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by idg, we see that [idg|y is an identity morphism for &. Summarizing, we
thus have:

Theorem 1.3.6. The collection of all ultrafilters equipped with the above
notion of morphism forms a category.

Now that we have a category, we obtain a natural notion of isomorphism
between ultrafilters:

Definition 1.3.7. If i/ and V are ultrafilters on index sets S and T', we say
that U and V are isomorphic, denoted U = V), if they are isomorphic in
the category-theoretic sense, that is, if there are morphisms [f]y : U — V
and [g]y : V — U such that [g]y o [f]y = [ids]y and [f]y o [g]y = [idr]y.

Exercise 1.3.8. Prove that any two principal ultrafilters are isomorphic but
that a principal ultrafilter is never isomorphic to a nonprincipal ultrafilter.

Remark 1.3.9. A particular consequence of the preceding exercise is that
ultrafilters on index sets of different cardinalities can still be isomorphic.

It is desirable to have a more concrete description of isomorphic ul-
trafilters that avoids category-theoretic language. An essential tool in this
endeavor is the following:

Theorem 1.3.10. If U is a nonprincipal ultrafilter on S, then the only
morphism from U to itself is [ids|y. In other words, if f: S — S is such
that f(U) =U, then f =y idg.

To prove Theorem [[L.3.10, we need to prove a combinatorial fact. First,

we establish a piece of notation that will be used many times throughout
this book:

Notation 1.3.11. Given any set S, we let Pf(S) denote the set of finite
subsets of S.

Lemma 1.3.12. Suppose that S is infinite and g : S — S is fixed-point free,
that is, g(s) # s for all s € S. Then there is a partition of S := S1U Sy U S;3
such that, for alln =1,2,3, if s € Sy, then g(s) ¢ Sy,.

Proof. We first establish the following:

Claim. For every finite subset F' C S, there is a partition F' = S1 pUSs pU
Ss.p such that, for all s € F and n =1,2,3, if s € S, p and g(s) € F, then
9(s) ¢ Sn,r-

Proof of Claim. We prove the Claim by induction on |F|. The Claim is
obvious when |F'| = 1. Now suppose that |F| > 1 and the Claim has been
proven for all finite sets of smaller size. By the pigeonhole principle, there
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is s € F such that there is at most one ¢ € F such that g(t) = s. Set
G := F'\ {s}. By induction, we may find a partition G = S;,qg U S2 ¢ U S3 ¢
as in the statement of the Claim. We now take n € {1,2,3} such that
9(s),g9(t) ¢ Sp, where ¢t is the unique element of G such that g(¢t) = s,
should it exist. Set S, p = Sp,g U {s} for this n and set Sy,  := Sy, ¢ for
m € {1,2,3} \ {n}. It is clear that this partition of F' is as desired. Thus,
the Claim is proven.

For each s € S, let Ay := {F € Ps(S) : s € F}. Since the family
(Ag)ses has the finite intersection property (as {si,...,sn} C ()i, As, for
any finitely many si,...,s, € S), there is an ultrafilter & on Pf(S) such
that A € U for all s € S. We use U to define a partition S = S1 U Sy U S3
as follows. Given s € S, put s € 5, if and only if n is the unique number
in {1,2,3} such that s € S, p for U-almost all F' € A,, where S, p is as
in the Claim. Note that this partition is as desired: if g(s) € S, as well,
then for U-almost all F' € Pf(S), we have s,g(s) € F and s,9(s) € Sy F,
contradicting the choice of partition .S, r. O

Proof of Theorem [I.3.10L Suppose that f(U) = U and yet, toward a
contradiction, that f #;; idg. Thus, there is A € U such that f(s) # s for
all s € A. Let g : S — S be fixed-point free and such that g(s) = f(s)
for all s € A, whence g =y f. Since U is nonprincipal (by assumption),
S is infinite. Let S = S7 U S2 U S3 be the partition of S as guaranteed by
Lemma, By Exercise [LT.I0, there is a unique n such that S, € U.
Since f(U) = U, we have that f~1(S,) € U, whence AN S, N f71(S,) € U.
In particular, there is s € AN S, such that f(s) € S,, contradicting the
defining property of the partition and the fact that f(s) = g(s) for this
particular s. ([l

Corollary 1.3.13. Suppose thatU andV are ultrafilters on the sets I and J,
respectively, and that there are morphisms [fly :U —V and [gly : V — U.

(1) [flu and [g]y are inverse isomorphisms.

(2) [flu is the only morphism from U to V, and [g]y is the only mor-
phism from V to U.

Proof. Item (1) is clear when U and V are principal, and it follows immedi-
ately from Theorem [[L3.10] when they are nonprincipal. For (2), notice that
if [f']es : U — V were also a morphism, then by item (1) (applied to [f']y
and [g]y), we would have that [f’];; is the inverse of [g]y; by uniqueness
of inverses, we have that [f]yy = [f']i. The analogous statement for [g]y
follows by the same argument. O
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Corollary 1.3.14. IfU is an ultrafilter on S and f : S — T is a function,
then [fly is an isomorphism if and only if there is A € U such that f | A is
injective.

Proof. First suppose that [f]; is an isomorphism with inverse [g]y, where
V= f(U). Let
A={seS : (gof)(s)=s}.

Since g o f =y idg, we have that A € Y. It remains to note that f [ A is
injective.

Conversely, suppose that A € U is such that f | A is injective. Let
g : T — S be such that g [ f(A) is the inverse of the bijection f [ A: A —
f(A). We leave it to the reader to check that [g]y is the inverse of [f];. O

Exercise 1.3.15. Finish the proof of the previous corollary by checking
that [g]y is indeed the inverse of [f]y.

We can now provide a more concrete description of isomorphic ultrafil-
ters:

Corollary 1.3.16. IfU andV are ultrafilters on sets S and T, respectively,
then U =V if and only if there is a function f: S — T such that f(U) =V
and for which there is A € U such that f | A is injective.

Note that, in the notation from the previous corollary, we have that
U=V ifand only if f | A witnesses that YN A and VN f(A) are isomorphic
in the naive sense introduced in the beginning of this section (where YN A :=
{BNA : B e U} is the ultrafilter on A induced by U as introduced in
Exercise and likewise for V N f(A)).

1.4. The number of ultrafilters

Fix an infinite cardinal x. Since the set of ultrafilters on x is a subset of
P(P(k)), a naive upper bound for the cardinality of the set of ultrafilters on
k is 227 In this section, we show that this upper bound is actually achieved:

Theorem 1.4.1. For any infinite cardinal k, there are 22° many ultrafilters
on K.

The plan of the proof is as follows. For each C' C 2%, we would like to
construct an ultrafilter U(C') on k such that C # Co impliest(C1) # U(Cy),
whence there will be at least (and hence exactly) 22" many ultrafilters on
k. We start by momentarily fixing a particular subset X C 2" (assumptions
on which will be forthcoming) and defining, for C C X,

B(C):={f10) : feCIU{f (1) : feX\C}.
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In this display, we are viewing elements of 2% not as subsets of x but rather
as functions k — 2 = {0, 1}.

If B(C) were to have the finite intersection property, then we can extend
B(C) to an ultrafilter U(C) on k. It then remains to show that C7 # Co
implies U(C1) # U(C2). Without loss of generality, we may take f € C '\
Cy. Then f~1(0) € B(Cy) C U(Cy) and f~1(1) € B(C2) C U(Cy); since
F7H0) N f~(1) = 0, this shows that U(Cy) # U(Co).

Consequently, the above proof hinges on the sets B(C') having the finite
intersection property. For this to happen, we would need to be able to
take arbitrary fi,...,fm € C and g1,...,9, € X \ C and find z € k such
that fi(z) = 0 and gj(x) = 1 for each i,j, whence it would follow that
z e NE, f7H0) N Nj=1 fj_l(l). Unfortunately, this statement is not true
for a general subset X of 2%. (Exercise!) Thankfully, we can show that there
is a set X C 2" such that | X| = 2" and such that the sets B(C) do have the
finite intersection property whenever C' C X, whence the above proof can
be rescued.

Definition 1.4.2. If A is a set, then a set of functions X C 24 is indepen-
dent if, for any finitely many distinct functions fi,..., f, € X and finitely
many elements y,...,y, € {0,1}, there is x € A such that f;(z) = y; for
1=1,...,n.

Remark 1.4.3. The terminology in the previous definition is motivated by
the fact that, given fi,...,f, € X, each of the 2" possible intersections
Ny £~ (i), as (y1,-..,yn) ranges over 2", is nonempty, whence these in-
tersections are independent in the sense of Venn diagrams.

From the above discussion, Theorem [[.4.1] will follow from the following
theorem:

Theorem 1.4.4. For any infinite cardinal k, there is an independent set
X C 2% with | X| = 2.

Proof. By set-theoretic trickery, it will suffice to find a set B with |B| = &
and an independent set X C 28 with |X| = 2%. Here is the B that will
work:

B:={(F,G,s) : FC kis finite, G C P(F), s 2°}.
It is an easy exercise to see that |[B| = k. For A C k, consider f4 € 25
defined by
s(ANF) ifANFeG

F,.G,s) =
fal ) {O otherwise.

We note that the function A — f4 is injective: if A; # As, we may take,
without loss of generality, = € A; \ As. Let F := {z}, G = {F}, and

s(F) =1. Then fa,(F,G,s) =1 while fa,(F,G,s) =0, so fa, # fa,.
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Thus {fa : A C k} is a subset of 2P of cardinality 2%. It remains to
see that it is an independent set. Toward this end, fix finitely many distinct
subsets Ai,..., Ay, of k and y1,...,y, € {0,1}. Foreach 1 <! <m < n,
take a;,, € AjAA,,. Let F' be the set of a;,,’s thus obtained, and let
G={AnNF : 1<m<n}. Notethat AANF # A, NF for l #m as a;m,
belongs to one but not the other. We are thus allowed to unambiguously
define s : G — {0,1} by s(A,,NF) := y,,. By definition, fa, (F,G,S) = ym,
as desired. (]

Since there are exactly x many principal ultrafilters on x, we immediately
obtain:

Corollary 1.4.5. For any infinite cardinal k, there are 22" many nonprin-
cipal ultrafilters on k.

Exercise 1.4.6. Prove that there are 22° many nonisomorphic nonprincipal
ultrafilters on k.

1.5. The ultrafilter number u

Recall the definition for a base for a filter given in Definition [LT.3]

Definition 1.5.1. The ultrafilter number u is the minimum of all car-
dinals k for which there is a nonprincipal ultrafilter on N with a base of
cardinality .

Exercise 1.5.2. Prove that X; <u <c¢.

By the preceding exercise, if the Continuum Hypothesis (CH) holds,
then u = Ny = ¢. Thus, it is only interesting to consider u in the case that
CH fails. Under the negation of CH, anything can happen, namely there are
models of the negation of CH where u = Ry (see, for example, [5]), where
u = ¢ (e.g., any model of Martin’s axiom, see [89], Section 23]), and where
Ny <u<c[15].

The ultrafilter number u is an example of a so-called cardinal charac-
teristic of the continuum, which, roughly speaking, is an example of a
cardinality reflecting some combinatorial property that holds for ¢ but not
for Ng. In general, one aims to see what comparisons hold between these
cardinal characteristics in Zermelo-Fraenkel set theory with choice (ZFC)
and which comparisons depend on further axioms. To give a feel for this
area, we give one such comparison as an exercise. First, a definition:

Definition 1.5.3. The unbounding number b is the minimal cardinality
of a family X C w® for which there does not exist g € w* with the property
that, for all f € w®, there is N € w such that f(n) < g(n) for all n > N.
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Exercise 1.5.4. Show that b < u. (Hint. For each X in a base B for a
nonprincipal ultrafilter on N, define fx € w® by fx(n) := the least m > n
that belongs to X. Prove that (fx)xep is unbounded.)

1.6. The Rudin-Keisler order

In this section, we introduce the Rudin-Keisler order <rx on the collection
of all ultrafilters. Roughly speaking, V <pg U indicates that V is “no more
complicated” than Y. It turns out that we have already met this notion in

Section [L.3t

Definition 1.6.1. If &/ and V are ultrafilters on the sets S and T, respec-
tively, then we say that V is below ¢/ in the Rudin-Keisler order, denoted
V <grk U, if there is a morphism from I to V in the category of ultrafilters,
that is, if there is a function f : S — T such that f(U) = V. We also write
U <pg Vtomean U <gg V but V Lrx U.

At first glance, it is not clear how this definition matches up with our
rough description at the beginning of this section. Let us take a moment to
elaborate further.

Exercise 1.6.2. Suppose that f: S — T and ¢1,g92 : T — U are functions
and U and V are ultrafilters on S and T, respectively, such that f(U) =V

and [g1]y o [flu = [g2]y © [f]u- Prove that [g1]y = [g2]y-

In category-theoretic terminology (see Appendix [C]), the above exercise
says that every morphism in the category of ultrafilters is an epimorphism.
In the category of sets, the epimorphisms are exactly the surjections (Exer-
cise!), whence the existence of an epimorphism from a set X to a set Y is
an indication that the set Y is “no larger than” or “no more complicated
than” X. It is for this reason that the existence of a morphism from U to V
(which is automatically an epimorphism) is an indication that V is no more
complicated than U.

Another heuristic behind the definition of <gy is that the function f
takes queries about whether or not a subset A of T belongs to V and converts
it into the question of whether or not f~1(A) belongs to . Thus, with total
knowledge about U, one can answer all queries about V, whence V is no
more complicated than U.

Exercise 1.6.3. Suppose that V is a principal ultrafilter. Prove that V <pg
U for any ultrafilter U.

It is clear that <pk is reflexive (U <grx U) and transitive (U <gg V
and V <gpg W implies U <px W), whence <p is a preorder on the set of
ultrafilters. It is not a partial order as U <gg V, and V <gg U does not
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imply that &/ = V. Following usual nomenclature with preorders, we write
U =gk V to mean that U <rg V and V <gg U. However, this notion is
not new to us, for Corollary [L3.13(1) implies the following:

Corollary 1.6.4. For any two ultrafilters U and V, we have that U =g V
if and only if U = V.

Consequently, <pk induces a partial order on the set of isomorphism
classes of ultrafilters. In what follows, we often blur this distinction and
speak of <rg both as the preorder on ultrafilters and the partial order on
the set of isomorphism classes of ultrafilters.

By Exercises [[3.8 and [[L6.3] there is a unique isomorphism class that
is a minimum under the ordering <pgg, namely the isomorhism class of
principal ultrafilters. In what follows, we discard this (uninteresting) class
and consider only the partial ordering on classes of nonprincipal ultrafilters.

The following questions naturally arise:

Question 1.6.5.
(1) Is <gg linear?
(2) Is there a <pg-maximal element?

(3) Is there a <pg-minimal element?

The answers are: No, no, and maybe!

Fact 1.6.6 (Rudin and Shelah [162]). There are 22" many <pgg-incompa-
rable elements in Sk.

The combinatorics involved in this result are quite intricate. Instead,
we prove here the following easier result. Note that we make an extra
(simplifying) set-theoretic assumption in the statement of the next result,
while the previous fact is indeed a theorem of ZFC.

Proposition 1.6.7. Assume that u = c¢. Then there are nonprincipal U,V €
ON that are <gg-incomparable.

Proof. Let (f, : « < ¢) enumerate all elements of w*. We construct filters
Fo and G, on N with the following properties:

(1) Fo = Go = the Fréchet filter on N;

(2) If B < a, then Fg C F, and Gz C Gq;
(3) Fu has cardinality < c;
(4)

4) If Y and V are any ultrafilters containing F, and G,, respectively,
then fo(U) #V and fo (V) # U.
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If we let U and V be any ultrafilters extending J, Fo and |, Ga, respec-
tively, then it follows that U and V are <gpgx-incomparable.

Suppose that Fg and Gg have been defined for all 3 < a; we show how
to define 7, and G,. If a = 8+ 1, set F := Fg. If a is a limit ordinal,
set F :=Jg., F3- Make the analogous definition for G. Since [F| < ¢, the
assumption that u = ¢ implies that F is not an ultrafilter. Consequently,
there is A C N such that A,N\ A ¢ F. Note that, by Exercise [[T.7, both
FU{A} and FU{N\ A} have the FIP. We consider three cases:

o If f71(A) € G, then we set F' to be the filter generated by F U
{N\ A} and we set G’ :=G.

o If f71(N\ A) € G, then we set F’ to be the filter generated by
FU{A} and we set G’ :=G.

e If neither of the above two cases hold, then we may set F’ to be
the filter generated by FU{N\ A} and G’ to be the filter generated

by GU{f7'(A)}.

At this point, we have guaranteed that f, (V) # U whenever U is an ultra-
filter extending F’ and V is an ultrafilter extending G’. Since |G| < ¢, we
can reverse the procedure to find 7, 2 F' and G, D G’ as desired. O

We now move on to the second question. First, some notation: given sets
Sand T,asubset Y CSxT,andte T, weset Vi:={seS : (s,t) e Y}

Definition 1.6.8. Suppose that U,V are ultrafilters on index sets .S and T'.
We define the product of &/ and V to be

UxV:={YCSXT : {teT : Y, eU} eV}

In other words, Y e U x V < (Vt)(Us)Y (s, ).
Exercise 1.6.9. Prove that &4 x V is an ultrafilter on S x T'.

A particular consequence of the next proposition is that there is no
<gr-maximal ultrafilter.

Proposition 1.6.10. For all ultrafilters U and V, we have U <gpx U X V
and V <gg U x V.

Proof. We only prove that U <pg U x V, the other assertion being anal-
ogous. Let m: S x T — S be the function 7(s,t) = s. Note then that, for
A C S, we have that 771(A) = Ax T and A x T € U x V if and only if
A e U. Tt follows that m(U x V) =U,soU <pg U X V. fU XV <gr U
were to hold, then by Corollary [L3.I3(1), [7]/xy would be an isomorphism,
contradicting Corollary and the fact that w [ Y is never injective for
any Y €U x V. O
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With more work, one can actually prove that every element of Sk has
22" many successors in Gk; see [83l, Theorem 11.9].

We address the last question in Section (.4l

1.7. Notes and references

The notion of ultrafilter was introduced by H. Cartan [23,24] in 1937 to
study convergence in topological spaces, a topic we will study in Chapter [Bl
The existence of a nonprincipal ultrafilter was first proven by Tarski in [173].
Our approach to the ultrafilter quantifier is motivated by Todorcevic’s book
[177]. Our treatment of the category of ultrafilters follows Blass’s thesis
[16]. The fact that there are the maximal possible number of ultrafilters on a
given set is due to Pospisil [144]. A nice survey on cardinal characteristics of
the continuum, including more information about the ultrafilter number, is
Blass’s survey [14]. The Rudin-Keisler order was independently introduced
by M. Rudin in [I50] and by Keisler in lectures given at UCLA.






Chapter 2

Arrow’s theorem
on fair voting

In this chapter, we give our first application of ultrafilters by proving Arrow’s
theorem, a classical result in voting theory. In Section 2.1l we introduce the
statement of the result, while in Section we explain the approach to
proving Arrow’s theorem via ultrafilters. In Section 2.3 we show how the
notion of block voting reduces the proof of Arrow’s theorem to its version
for at most three voters, and we prove this latter statement in Section [2.4]

2.1. Statement of the theorem

Throughout this chapter, V' denotes the set of voters in an election. The
voters are ranking their preferences amongst a finite set of, say, n candi-
dates, which we label, for the sake of simplicity, as 1,...,n. They express
their preference using a permutation o of the set {1,...,n}. We will refer
to the pair (V,n) as an election.

Example 2.1.1. If n = 4 and a voter has preference o such that o(1) = 2,
0(2) =4, 0(3) =3, and 0(4) = 1, then this means that they prefer candidate
4 the most, followed by candidate 1, then candidate 3, and finally they prefer
candidate 2 the least.

Remark 2.1.2. Whle permutation notation for voters’ preferences is math-
ematically natural, it leads to statements that appear counterintuitive. For
example, in the previous example, the fact that o(1) < ¢(2) actually signi-
fies that voters prefer candidate 1 over candidate 2, the appearance of the
< symbol might indicate that the opposite preference held.
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A state of the election is a function 7 : V' — S,,. (Recall that S,
is the set of permuations of the set {1,...,n}.) In other words, a state of
the election is simply a record of the preferences of each voter involved: for
v €V, m(v) is voter v’s preferences.

The following is the central question in this chapter: given a state of the
election, how does one get a final ranking of the candidates that takes into
account the individual voter rankings? Or even more to the point, one would
like to determine, in advance, a method of turning any state of the election
into a final ranking of the candidates. The following definition formalizes
this idea:

Definition 2.1.3. An election procedure is a function f : SV — S, that
is, for any state of the election 7, f(7) is the final ranking of the candidates.
An election procedure f is called fair if it satisfies:

(U) unanimity: if o € S, is such that 7(v) = o for all v € V, then
f(m) =0,

(TA) irrelevant alternatives: if m and 7’ are states of the election and
i,7 € {1,...,n} are such that, for all v € V, 7(v)(i) > w(v)(j) if
and only if 7/(v)(i) > 7'(v)(j), then f(7)(i) > f(r)(j) if and only
if f(') (@) > f(7')(3)-

In English, unanimity expresses the fact that if all voters have the same
preferences, then the outcome of the election is that common preference,
while irrelevant alternatives says that the final ranking of any two candidates
should only depend on how the voters feel about those two candidates.

Exercise 2.1.4. If f is a fair election procedure, prove that f further
satisfies local unanimity (LU): if 7(v)(i) > 7(v)(j) for all v € V, then

f(m) (@) > f(m)(5)-

At the (seemingly) opposite extreme of a fair election procedure is an
election procedure f that possesses a dictator, which is a voter v € V
such that, for every state of the election 7, we have f(7) = 7(v); in other
words, the outcome of the election is always v’s ranking of the candidates.
It would seem that a fair election procedure would preclude the existence of
a dictator. Such a sentiment is precisely why the following theorem of the
economist Kenneth Arrow is so intriguing:

Theorem 2.1.5 (Arrow’s theorem). Suppose that V is a finite set of voters,
n >3, and f: SV — S, is a fair election procedure. Then there is a dictator

for f.

It is the goal of this chapter to prove Theorem 2.1.7
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Remark 2.1.6. Note that we must assume n > 3. Indeed, if n = 2 and (for
simplicity) |V| is odd, we can let f : S — S, be the election procedure that
just picks the candidate with the most votes. It is clear that this election
procedure has no dictator.

2.2. The connection with ultrafilters

Arrow’s original proof of Theorem did not use ultrafilters, but the
most transparent explanation of the story does. Indeed, let us first take up
the question: how can one define an election procedure? One naive idea is
to just take the permutation that “appears most often” in the state of the
election. If V is infinite, then what does one mean by the permutation that
appears most often? Well, if we fix an ultrafilter U on V', then there is a
unique permutation o € S, such that {v € V' : 7(v) = o} € U (we are
using here that S, is finite!). We can then define an election procedure fi
by setting fi;(m) := this unique o.

Proposition 2.2.1. Given an ultrafilter U on V', the election procedure fy;
defined above is fair. Moreover, v € V is a dictator for fy if and only if U
is the principal ultrafilter generated by v.

Proof. (U) follows from the fact that V' € U. To prove (IA), fix states of the
election 7 and 7" and candidates 7,5 € {1,...,n} such that, for all v € V,
7(v)(i) > w(v)(j) if and only if 7'(v)(7) > 7'(v)(j). Suppose, without loss of
generality, that fi(7)(i) > fy(7)(5). Then {v € V : 7w(v)(i) > w(v)(j)} €
U. Since this set is precisely the same as {v € V' : #'(v)(i) > 7' (v)(4)}, it
follows that fy(7') (i) > fu(7)(j).

The second statement of the proposition is obvious from the definition
of . 0

We thus have a function U — f;; mapping the set of ultrafilters on V to
the set of fair election procedures which maps principal ultrafilters to those
election procedures possessing dictators. The key to the ultrafilter proof of
Arrow’s theorem is the assertion that this function is a bijection when n > 3:

Theorem 2.2.2. Ifn > 3, the map U — fy from the set of ultrafilters on
V' to the set of fair election procedures for the election (V,n) is a bijection.

Arrow’s theorem follows immediately from Theorem 2.2.2]

Proof of Theorem Suppose that V is a finite set of voters and
n > 3. Suppose further that f : SV — S, is a fair election procedure. By
Theorem 222 there is an ultrafilter & on V' such that f = fy;. Since V is
finite, by Exercise [LT.15] U is principal, whence f = f;; has a dictator. O
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Since Theorem [2.2.2] holds when V' is infinite as well, we can conclude:

Corollary 2.2.3. Suppose that V is an infinite set of voters. Then for any
n, there is a fair election procedure for (V,n) that does not have a dictator.

Proof. By Corollary [LT.I§ there is a nonprincipal ultrafilter & on V. The
corresponding election procedure f;; is fair and does not have a dictator. [J

Remark 2.2.4. The proof of the preceding corollary implicitly used the
axiom of choice. In Chapter B, we will see that there are models of set
theory in which no nonprincipal ultrafilters exist, whence some form of the
axiom of choice is needed in the previous result. Although not entirely
accurate, the following phrase provides a humorous summary: In a universe
without choice, there will always be a dictator!

We now work toward the proof of Theorem 2.2.2. We will proceed by
defining an inverse to the function U +— f;;. Until further notice, we fix an
election (V,n) with n > 3 and a fair election procedure f : S} — S,,. Here
is the key notion:

Definition 2.2.5. We call /' C V a decisive set of voters for f (or
simply decisive for f) if, whenever there is a state of the election 7w and
o € S, such that 7(v) = o for all v € F, we have f(7) = o.

In other words, F' is decisive for f if, whenever every member of F' votes
the same way, the outcome of the election procedure f is that common
preference. Note that (U) states that V' is decisive for f. Note also that, for
v € V, we have that {v} is decisive for f precisely when v is a dictator for

f.

Exercise 2.2.6. If U/ is an ultrafilter on V and f;; is the associated election
procedure, show that the decisive sets for f;; are precisely the elements of

Uu.

Let Uy := {F CV : Fis a decisive set of voters for f}. The previous
exercise can then be formulated as Uy, = U and gives us a hint as to how
to prove Theorem 2.2.2] namely we should prove the following theorem:

Theorem 2.2.7. Uy is an ultrafilter on V.

Exercise 2.2.8. Suppose that Theorem 2.2.7 has been proven. Prove that
Ju, = I

Thus, if we can prove Theorem 227, then the map f +— Uy is the desired
inverse to U > fy, finishing the proof of Theorem [2.2.2)
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2.3. Block voting

We now work toward proving Theorem 2271 Using Exercise [LT.11] it suf-
fices to prove the following statement:

(*) Whenever n > 3, f is a fair election procedure for (V,n), and V =
V1UVaU V3 with Vi, Vo, and V3 pairwise disjoint (and perhaps some V; = (),
then exactly one V; is decisive for f.

Set P := {V1, Vo, V3}, a partition of V into at most three pieces. The key
idea is to consider the new election (P, n) (which has at most three voters).
We can then associate to any state of the election 7 for (P, n) a state of the
election 7p for (V,n) by having all members of V; vote in the same manner
according to m, that is, for each ¢ = 1,2,3 and each v € V;, mp(v) = 7(V});
we refer to this situation as block voting. Note that any election procedure
f:8Y — S, gives rise to an election procedure fp : SF — S, by defining
fp(m) = f(7p).

The election (P,n) is significantly simpler than the original election
(V,n) as it has at most three voters; it turns out that one can prove this
case directly by hand:

Theorem 2.3.1 (Arrow’s theorem for few voters). If |[V| < 3 and n > 3,
then every fair election procedure for (V,n) has a dictator.

We will prove Theorem 2311 in the next section. In the remainder of
this section, we see how it implies statement () above.

Fix a set V of voters, n > 3, and a fair election procedure f for (V,n).
By Theorem 2311 fp has a dictator, say, without loss of generality, it is V4.
We will show that V; is decisive for f. At first glance, this is not obvious.
However, Vi does have the seemingly weaker property of being block decisive

for f:

Definition 2.3.2. F' C V is block decisive for f if, whenever 7 is a state
of the election for (V,n) such that 7 is constantly o on F and constantly o’
on V' \ F, then f(7) =o0.

Exercise 2.3.3. Verify that V; as above is block decisive for f.

Now, a minor miracle occurs:

Proposition 2.3.4. If F CV is block decisive, then it is decisive.

Proof. Suppose, toward a contradiction, that F' is block decisive but not
decisive. Since F' is not decisive, there is a state of the election 7 : V — S,
and a permutation ¢ € S, such that w(v) = o for all v € F and yet
f(m) # o. Take distinct 4,j € {1,...,n} such that (i) > o(j) and yet
F(m)G) < £()():
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Since n > 3, we may consider k € {1,...,n}\{i,j}. Let o’ € S,, be such
that o/(i) > o/(k) > o/(j). Let 7’ : V. — S,, be a new state of the election
such that:

e if v € F, then 7'(v) = o’;
o if v ¢ I, then
— ' (v)(k) < '(v) (i),
- m(v)(k) < '(U)( /), and
— 7'(v)(i) < 7'(v)(j) if and only if 7(v)(7) < 7(v)(j).
By (IA), we have that f(7')(i) < f(7')(j). By (LU), we have f(7')(i) >
f(@')(k), whence f(x')(j) > f(x') (k).
Finally, let ¢” € S,, be such that ¢”(j) > o ( ), and define a new state of
the election 7" : V' — S, such that 7/ (v) = ¢’ for all v € F and 7" (v) = ¢”
for all v € V' \ F. By (IA) again, f(m ’)(]) f(@")(k). However, since F

is block decisive, we have that f(7”) =o', so f(x")(k) > f(x")(j), yielding
the desired contradiction. O

Combining Exercise [2.3.3 and Proposition 2.3.4] we have that V7 is deci-
sive. Thus, we have succeeded in proving statement (*) using Theorem 23]
and, as mentioned above, statement () and Exercise [LT.11] imply Theorem

227

2.4. Finishing the proof

In this section, we finish the proof of Arrow’s theorem by proving Theorem
2371 Tt will behoove us to first prove the case of two voters. We do this in
a series of lemmas. First, one final definition:

Definition 2.4.1. Given v € V and distinct 4,5 € {1,...,n}, we call v

a decisive voter for f with respect to (i,j) if, for every state of the
election 7 for which 7 (v)(i) < w(v)(j), we have f(m)(i) < f(m)(j).

We also introduce some useful notation: when |V| = 2, we write V =
{v,w}. In this case, if i, j, k are candidates and f is some fixed election pro-
cedure for (V,n), we write (ijk,ikj) ~» kij as an abbreviation for the state-
ment: given a state 7 of the election (V,n) for which 7(v)(i) < 7(v)(j) <
m(v)(k) and w(w)(i) < w(w)(k) < w(w)(j), we have f(m)(k) < f(m)(i) <
f(m)(4). Note that, by (IA), this notation is well-defined and independent
of the choice of m. We use the same notation for all other possible permu-
tations and also in the case of preferences for two candidates.

Lemma 2.4.2. Suppose that |V| = 2, 4,4,k are distinct candidates, and f
is a fair election procedure for the election (V,n). If v is decisive for f with
respect to (i,7), then v is decisive for f with respect to both (i,k) and (j, k).
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Proof. By our assumption, we have (ij, ji) ~ ij. By (LU), we then have
(ijk, jki) ~ (ijk). By (IA), we then have (ik, ki) ~» ik, whence v is decisive
for f with respect to (i, k). Using (LU) again, we have that (jik, kji) ~ jik.
By (IA) again, we then have (jk, kj) ~» jk, whence v is decisive for f with
respect to (7, k). O

Lemma 2.4.3. Suppose that |V| = 2, i and j are distinct candidates, and
f is a fair election procedure for the election (V,n). If v is decisive for f
with respect to (i,7), then v is decisive for f with respect to (j,1).

Proof. Since n > 3, we may consider k € {1,...,n}\ {4,j}. By Lemma
[24.2] we have that v is decisive for f with respect to (4, k). By Lemma 242
again (applied to 7, k,7), we obtain that v is decisive for f with respect to
(4, 2)- O
Theorem 2.4.4 (Arrow’s theorem for two voters). Suppose that |V| = 2,
n >3, and f is a fair election procedure for (V,n). Then there is a dictator

for f.

Proof. Fix distinct candidates i and j. By (LU) and (IA), we see that either
v or w is decisive for f with respect to (i,7). Without loss of generality,
suppose it is v. We claim that v is a dictator for f. Indeed, this follows
immediately from Lemmas and O

Exercise 2.4.5. Verify the last sentence in the previous proof.

We are now ready to prove Theorem 2.3.1l In the proof, we extend our
above notation so that when |V| = 3, we write V' = {u,v,w} and we extend
our ~» notation in the obvious way.

Proof of Theorem [2.3.71 Suppose that |V| = 3, n > 3, and f is a fair
election procedure for (V,n). We define V,, := {u,vw}, where now vw is
treated as one single voter (so |V,| = 2) and a fair election procedure f,, for
(Vu,mn) as in the previous section on block voting (so v and w are always
voting in the same manner). We define the sets V, and V,, and the fair
election procedures f, and f, in the analogous way. By Theorem 2.4.4]
each of the election procedures f,, f,, and f,,, has a dictator.

Claim. There is x € V such that x is the dictator for f,.

Proof of Claim. Suppose that the Claim is false. Fix distinct candidates
i and j. By assumption, uw is the dictator for f,, whence we have:

(1) (ig, ji,ij) ~ ij.
Once again, by assumption, uv is the dictator for f,,, whence we have:

(2) (ig,ig,Ji) ~ ij.
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Consider now the set V' := {v,w}. Fix o € S, such that o(i) < o(j)
and define the fair election procedure f’ for (V' n) by setting f'(oy, ow) :=
f(o,0p,0u). By Theorem .44 again, there is a dictator for f’. If v is the
dictator for f’, then we get a contradiction to (1), while if w is the dictator
for f', we get a contradiction to (2). Thus, the Claim is proven.

By the Claim, we may assume, without loss of generality, that u is the
dictator for f,. But then {u} is block decisive for f, whence it is decisive
for f by Proposition 2.3.4] and thus u is the dictator for f. O

2.5. Notes and references

Arrow’s original proof can be found in [2]. Our treatment of the ultrafilter
proof of Arrow’s theorem has borrowed heavily from Galvin’s notes [64] and
the article of Komjath and Tatik [108].



Chapter 3

Ultrafilters in topology

In this chapter, we investigate some uses of ultrafilters in topology. In Sec-
tion B, we define the notion of an ultralimit of a sequence in a topological
space and show how this notion can be used to give nice characterizations of
familiar topological notions, such as the closure of a set, the compactness of
a space, and the continuity of a function. In Section B2l we show how the
set of ultrafilters on a discrete space can be topologized so that it becomes
the familiar Stone-Cech compactification of the discrete space; this analysis
is extended to the nondiscrete setting in Section 3.3l In Section B4l we in-
troduce the notion of an ultrafilter on a Boolean algebra so as to be able to
prove the Stone duality theorem, which expresses the dual equivalence of the
categories of Boolean algebras and compact, Hausdorff, totally disconnected
spaces (otherwise known as Stone spaces).

3.1. Ultralimits

Definition 3.1.1. For X a topological space, (x;);c; a sequence from X,
and U an ultrafilter on I, a U-ultralimit of (z;);cs is a point € X such
that, for all open neighborhoods U of x, we have {i € I : z; € U} € U.

Exercise 3.1.2. Suppose that (z;);es is a sequence from X and U is the
principal ultrafilter on I generated by j. Show that z; is a {{-ultralimit of
(xi)ier. If, in addition, X is a T space, prove that z; is the only ¢/-ultralimit
Of (.Ti)ie[.

Exercise 3.1.3. Suppose that X is Hausdorff. Show that, for any sequence
(zi)ier from X and any ultrafilter & on I, there can be at most one U-
ultralimit of (x;);er.
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By the previous exercise, in the case of Hausdorff spaces, we write limy, x;
(or limy; ¢ ;) for the U-ultralimit of (z;);c; when it exists.

Exercise 3.1.4. Suppose that (z,)nen is a sequence in a metric space X.
Suppose also that lim,_, x, = x. Show that for any nonprincipal ultrafilter
U on N, we have limy x,, = x.

Exercise 3.1.5. Suppose that (,)nen and (yn)nen are two sequences from
R and U/ is an ultrafilter on N such that limy x, and limy y, both exist.
Prove the following:

(1) limu(l‘n + yn) = (hmu xn) + (limu yn)

(2) limy(zy, - ypn) = (imy 2,) - (limyy yp ).

(3) If limyy, # 0, then y, # 0 for U-almost all n and limy, z—z =
limgy zq

limys yn *
of the equation even means!)

(Part of the exercise is to explain what the left hand side

Ultralimits become a convenient tool for speaking about limit points:

Theorem 3.1.6. Suppose that X is a topological space, A is a subset of X,
and x € X. Then x € A if and only if there is a sequence (x;)icr from A
and an ultrafilter U on I such that x is a U-ultralimit of (x;)icr.

Proof. First suppose that + € A. If x € A, then z is the ultralimit
of the constant sequence (z,z,z,...) with respect to any ultrafilter & on
N. Thus we may suppose that x is a limit point of A. For every open
neighborhood U of z, take zy € (ANU) \ {z}. For each open neigh-
borhood U of z, let Fy := {V C X : Visopenand V C U}. Set
D := {Fy : U an open neighborhood of z}. Note that D has the finite
intersection property as Fynyr € Fy N Fyr. Consequently, there is an ultra-
filter & on the set of open neighborhoods of x such that D C U. It is then
easy to verify that x is a U-ultralimit of (zy).

Conversely, suppose that z is a U-ultralimit of the sequence (z;);er from
A. Let U be an open neighborhood of z. Then there are U-many i (so in
particular one ¢) such that z; € U. It follows that x € A. g

Corollary 3.1.7. Suppose that (x,)nen s a sequence from a metric space
X and x € X. Then:

(1) x is a subsequential limit of (zp)nen if and only if there is a non-
principal ultrafilter U on N such that x = limy xy,.

(2) (zn)nen converges to x if and only if x = limy x,, for every non-
principal ultrafilter U on N.

Exercise 3.1.8. Prove the previous corollary.
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Ultralimits provide a very convenient characterization of compactness:

Theorem 3.1.9. For a topological space X, the following are equivalent:

(1) X is compact.

(2) Given any sequence (x;)icr from X and any ultrafilter U on I,
(z4)ier has a U-ultralimit in X.

Proof. (1) implies (2): Suppose that (x;)ics is a sequence from X and U is
an ultrafilter on I such that (z;);c; has no U-ultralimit. Consequently, for
each x € X, there is an open neighborhood U, of = such that {i € I : z; €
U} ¢ U. If there were a finite subcover X = J;_; Uy;, then we would have

n n

0= iGI:xZﬁéUij :ﬂ{iGI::Eigéij}GZ/l,

J=1 J=1

which is a contradiction. Thus X is not compact.

(2) implies (1): Suppose that X is not compact. Take an open cover
(U;)ier with no finite subcover. Without loss of generality, each U; # 0.
Let Y be the set of nonempty, finite subsets of I. For each i € I, let
Aj:={J €Y : ie J}. Observe that (4;);cr has the finite intersection
property, whence we may take an ultrafilter & on Y for which A; € U for
each i € I. Since (U;);es has no finite subcover, for each J € Y, we may fix
some z; € X \ U;e; Uj. We claim that (z;)sey has no U-ultralimit in X.
Indeed, suppose that x was a U-ultralimit of (zs)secs. Take i € I such that
x € U;. Then there is A € U such that z; € U; for all J € A. Since A; € U,
we have x; € U; for J € AN A;; but J € A; implies i € J, whence z; ¢ Uj,
yielding a contradiction. O

Theorem 3.1.10. A topological space X is compact and Hausdorff if and
only if, given any sequence (x;);cr from X and any ultrafilter U on I, (x;)icr
has a unique U-ultralimit.

Proof. The forward direction follows from Theorem and Exercise
B.I3l We now prove the backward direction. Suppose that X is not Haus-
dorff; we find some sequence from X and some ultrafilter on the index set
such that the sequence does not have a unique ultralimit with respect to
that ultrafilter. Since X is not Hausdorff, there are distinct z,y € X such
that every open neighborhood of x intersects every open neighborhood of y.
We let O, denote the set of open neighborhoods of x and similarly for O,,
and we let F := O, UQO,. By our assumption that every open neighborhood
of x intersects every open neighborhood of y, we have that F is a filter on
X. Let U be any ultrafilter on X extending F. We claim that  and y are
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both U-ultralimits of the sequence (z).cx. Indeed, if U is an open neigh-
borhood of z, then U € O, C F C U, whence z € U for U-almost all z € X.
Consequently, = is a U-ultralimit of the sequence. A symmetric argument
shows that y is also a U-ultralimit of the sequence. (I

The following special case of the previous theorem is worth recording:

Corollary 3.1.11. Suppose that (an)nen s a bounded sequence in R and U
is an ultrafilter on N. Then limy, a,, exists.

Thus, while regular limits (even of bounded sequences) need not exist,
ultralimits of bounded sequences always exist!

Exercise 3.1.12. Use ultralimits to show that a closed subspace of a com-
pact space is compact.

Theorem [3.1.9 also yields a very simple proof of Tychonoff’s theorem:

Theorem 3.1.13 (Tychonoff’s theorem). Given a family (X;)jcs of com-
pact spaces, the product space HjeJ X is also compact.

Proof. We use TheoremB.1.9/to prove that | [, ; X is compact. Let (z;)ier
be a sequence from [[,.; X; and write z; = (2i(j))jes. Let U be an ultra-
filter on I. Since each X is compact, we may consider a U-ultralimit z(j)
of the sequence (x;(j))icr. We show that = (2(j));es is a U-ultralimit of
(xi)icr. Take ji,...,jn € J and open sets Uy C X, containing x(jj) for
kE=1,...,n. Foreach k=1,...,n, there is Ay € U such that z;(ji) € Uy
for i € Ag. Let A= A;N---N A, Thenifi € A, we have z;(ji) € Uy
for all Kk =1,...,n, whence z; belongs to the basic open set determined by
Ui, ..., U 0

We next present the ultralimit characterization of continuity:

Theorem 3.1.14. Suppose that f : X — Y is a function between topological
spaces and x € X. Then f is continuous at x if and only if, for any sequence
(i)ier from X and any ultrafilter U on I for which x is a U-ultralimit of
(x4)icr, we have that f(x) is a U-ultralimit of (f(x;))ier.

Proof. First suppose that f is continuous at x and z is a U-ultralimit of
(zi)ier- Fix an open neighborhood U of f(z) and take an open neighborhood
V of z such that f(V) C U. Since {i € I : z; € V} € U, we have
{iel : f(x;) € U} € U; since U was an arbitrary neighborhood of f(x),
we have that f(x) is a U-ultralimit of (f(z;))ier.

Conversely, suppose that f is not continuous at x. Take an open neigh-

borhood U of f(z) such that, for every open neighborhood V of z, f(V) Z U.
Take zy € V such that f(zy) ¢ U. Let U be any ultrafilter on the set of
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open neighborhoods of x such that, for any given open neighborhood Vj
of z, we have {V : V C Vy} € U. Consequently, = is a U-ultralimit of
the sequence (zy), whence, by assumption, f(z) is a U-ultralimit of the
sequence (f(xy)). Since Y \ U is closed and f(xy) € Y\ U for all V, we
have f(x) € Y \ U, yielding a contradiction. O

We close this section with an application of Theorem B.1.9and Theorem
[B.I14 that will be useful in Chapter

Proposition 3.1.15. Suppose that f : X — Y is a surjective continuous
map between topological spaces. Further suppose that X is compact and
Hausdorff. Then there exists a closed subset K of X such that f(K) =Y
but f(K') #Y for any proper closed subset K' of K.

Proof. Let P denote the set of all closed subsets K of X such that f(K) =
Y. Note that P is nonempty since f is surjective. Put a partial order < on
P by declaring K1 < Ky if and only if K1 O Ks. Consequently, we seek a
maximal element in the partial order (P, <). To prove that such a maximal
element exists, we apply Zorn’s lemma. Toward that end, suppose that
(Kj)ier is a chain in P; we show that K := ("), K; is an upper bound for the
chain in P. Tt is clear that K is a closed subset of X. To see that f(K) =Y,
fix y € Y. For each i € I, take x; € K; such that f(x;) = y; this is possible
since f(K;) =Y foreachi € I. Foreachi € I,let D;:={j el : K; O Kj}.
Note that (D;);er has the FIP since (K;)cs is a chain. Consequently, there
is an ultrafilter &/ on I such that D; € U for all ¢ € I. Set z := limy z;.
Since f is continuous, Theorem B.I.T4limplies that f(z) = limy, f(x;) = y. It
remains to verify that z € K. To see this, suppose, toward a contradiction,
that © ¢ K; for some i € I. Since X \ K; is open, we have that z; € X \ K
for U-almost all j € I, contradicting that D; € U and the fact that K; C K;
for j € D;. O

3.2. The Stone-Cech compactification: the discrete case

Until further notice, we fix an infinite set X, which we also think of as a
topological space equipped with the discrete topology. For A C X, we set
Usg:={UepX : AcU}.

Theorem 3.2.1. The sets Uy form a neighborhood base for a topology on
BX. When equipped with this topology, we have the following:

(1) BX is Hausdorff.
(2) BX is zero-dimensional, that is, has a base of clopen subsets.
(3) BX is compact.

Setting v : X — BX to be the function defined by () := Uy, we also have:
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(4) For every x € X, t(x) is an isolated point of SX.
(5) ¢ is a homeomorphism between X and 1(X).

(6) «(X) is dense in BX.

Proof. The fact that Ugng C UaNUpg implies that the sets U4 form a base
for a topology on SX. We now prove the remaining items.

For (1), note that, if i,V are distinct elements of 53X, then taking A C X
for which A € U and X'\ A € V, we have that U4 and Ux\ 4 are disjoint open
sets containing U/ and V), respectively, whence the topology is Hausdorff.

(2) follows from the observation that Ux\ 4 1= 8X \ Ua.

To prove (3), it suffices to show, by Theorem [B.1.9, that given any se-
quence (U;)ier from BX (here, U; is not a principal ultrafilter but rather
some arbitrary element of SX) and ultrafilter V on I, that (U;);es has a
V-ultralimit. Let U denote those A C X such that A € U; for V almost all
i € I. We leave it to the reader to check that U is a V-ultralimit of (U4;);er.

(4) follows from the observation that i(x) = Uy,

(5) ¢ is injective as, whenever z,y € X are distinct, then {z} € U, \ U,.
¢t is continuous as X is discrete. To see that ¢ is a homeomorphism onto
1(X), it suffices to observe that, for any A C X, we have ¢(4) = Uy Nu(X).

(6) follows from the observation that, if A C X is nonempty and = € A,
then U, € Uy. O

Exercise 3.2.2. Verify the claims in the previous theorem left to the reader.

In what follows, we identify X with its image ¢(X).
Exercise 3.2.3. For A C X, the closure of A in X is Ugy.
Exercise 3.2.4. For U € X, we have lim, ;yx = U.

We recall the following:

Definition 3.2.5. If Y is a topological space and K is a compact space,
then K is a compactification of Y if Y is a dense subspace of K.

Theorem B.2.T] thus implies that X is a compactification of X whenever
X is an infinite discrete space. The reader may have encountered the one-
point compactification of a locally compact space, which is a very “small”
compactification for it merely adds one point. The compactification SX is
a much, much larger compactification of X.

Definition 3.2.6. Let Y be a topological space. A Hausdorff compactifica-
tion K of Y is called a Stone-Cech compactification of Y if, for every
compact Hausdorff space Z and every continuous function f : Y — Z, there
is a unique continuous function f : K — Z extending f.
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Exercise 3.2.7. Prove that a topological space Y can have at most one
Stone-Cech compactification in the following strong form: if K; and Ko are
both Stone-Cech compactifications of Y, then there is a unique homeomor-
phism @ : K1 — K> such that ®(y) =y forall y € Y.

By the previous exercise, we may unambiguously denote the Stone-Cech
compactification of a topological space Y, when it exists, by Y. The reader
may note that this is also the notation we used in Chapter [Il to denote the
set of all ultrafilters on a set. The reason that this double-use of notation is
not problematic is actually the main result of this section:

Theorem 3.2.8. For an infinite discrete set X, 8X is the Stone-Cech com-
pactification of X.

Proof. We already know that X is a Hausdorff compactification of X.
We now need to verify its “universal” property. Suppose that f: X — Y
is a continuous function into a compact Hausdorff space. Given U € X,
define f(U) := limy f(z), which exists by Theorem BI.I0 and the fact that
Y is compact and Hausdorff. Note that f extends f by Exercise We
must show that f is continuous. Since every point of X is isolated in 5X, it
suffices to show continuity at U for nonprincipal &. Toward this end, let U
be an open neighborhood of f(Z/{) inY. Let V C U be an open neighborhood
of f(U) in Y such that V C U. Take A € U such that f(z) € V for z € A.
Suppose V € Uy, so A € V; then limy f(z) € V C U, so f(Us) CU and f
is continuous at U.

For the the uniqueness of f , suppose that ¢ : X — Y is a continuous
function that extends f. By Theorem [B.I.14] and Exercise B.2.4 ¢g(U) =
g(limyy x) = limy, g(z) = limy, f(z) = f(U), whence g = f. O

Exercise 3.2.9. Suppose that f: I — J is a function. Then f extends to
a continuous function Sf : I — BJ. Show that, for all 4 € SI, we have
(Bf)U) = f(U), the pushforward ultrafilter.

3.3. z-ultrafilters and the Stone-Cech compactifications in
general

In this section, we turn to the problem of constructing the Stone-Cech com-
pactification in general, that is, for not necessarily discrete spaces. We first
take up the question: which spaces have Hausdorff compactifications? Note
that a space has a Hausdorff compactification if and only if it can be em-
bedded into a compact Hausdorff space.

How can one go about trying to embed a space X into a compact Haus-
dorff space? Set C':= C'(X) to be the set of continuous, real-valued functions
on the set X. Consider the mapping e : X — [0, 1] given by e(x)(f) = f(z).
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Since [0, I]C is a compact Hausdorff space, in order to show that X has a
compactification, it suffices to show that, under certain assumptions on X,
that e is a homeomorphism of X onto its image.

Continuity of the map e holds for any space X. Indeed, it suffices to
show, for a fixed f € C and open U C [0, 1], that the preimage of the
subbasic open set {F € [0,1]¢ : F(f) € U} under e is open in X. However,
this preimage is simply f~!(U), which is open by the continuity of f.

In order to check that e is injective, it suffices to know that, for any
distinct z,y € X, there is f € C such that f(x) # f(y). When this is indeed
the case for all z,y € X, we say that C'(X) separates points in X.

Finally, we want to know that e is a homeomorphism onto its image,
that is, e : X — e(X) is an open map. To verify this, take U C X open; we
must show that e(U) is open in e(X). Take x € U; we need e(z) to be in the
interior of e(U) as calculated in e(X). If there is f € C such that f =0 for
all y € X\ U while f(z) = 1, then, setting V to be the subbasic open subset
of [0, 1]¢ determined by the condition f > %, we have that V Ne(X) C e(U),
as desired.

The condition appearing in the previous paragraph has a name:

Definition 3.3.1. A topological space X is completely regular if, for
every closed C' C X and every x € X \ C, there is f € C(X) such that
f(y) =0 for all y € C while f(x)=1.

While it appears that complete regularity of a space X ensures that
C(X) separates points, this is only the case if points in X are closed, that
is, if X is T7.

Definition 3.3.2. A topological space X is called a Tychonoff space if it
is a completely regular T space.

The previous discussion shows:

Theorem 3.3.3. If X is a Tychonoff space, then X is homeomorphic to a
subspace of a compact Hausdorff space, whence has a Hausdorff compactifi-
cation.

Thankfully, the converse is also true and follows from the following two
exercises:

Exercise 3.3.4. A subspace of a Tychonoff space is completely regular.

Exercise 3.3.5. Compact Hausdorff spaces are Tychonoff spaces.

To summarize:

Theorem 3.3.6 (Tychonoff). A topological space X has a Hausdorff com-
pactification if and only if X is a Tychonoff space.
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The main theorem of this section is that for the spaces that do possess
Hausdorff compactifications, namely the Tychonoff spaces, the Stone-Cech
compactification also exists. The naive idea might be to mimic the construc-
tion of the Stone-Cech compactification of a discrete space except to deal
only with maximal filters of closed sets rather than all sets. It turns out
that this does not work in general (but does work if the space is perfectly
normal as defined below). Instead, we need to work with special kinds of
closed sets:

Definition 3.3.7.

(1) For f € C(X), we define the zeroset of f to be Z(f) :={z e X :
f(z) = 0}.

(2) We call Z C X a zeroset of X if there is f € C(X) such that
Z=2(f).

(3) We let Z(X) denote the set of zerosets in X.

Exercise 3.3.8. Show that Z(X) is closed under finite unions and inter-
sections.

Exercise 3.3.9. Suppose that X is completely regular, x € X, and C C X
is closed with ¢ C. Show that there is Z € Z(X) such that x € Z and
ZnC=90.

Clearly, every zeroset is closed. We say that X is perfectly normal if|
conversely, every closed set is a zeroset. We will not need to know too much
about perfectly normal spaces, but rather only the following:

Exercise 3.3.10. Show that [0, 1] is perfectly normal.

The importance of zerosets in completely regular spaces is explained by
the next theorem:

Theorem 3.3.11. X is completely reqular if and only if the zerosets of X
form a base for the closed sets of X.

Proof. First assume that X is completely regular. By the proof of Theorem
B33, we may assume that X is a subspace of [0,1]/ for some index set
I. Let C C X be closed. Then C is an intersection of sets of the form
Cy:={Ze€X : z; € C; for i€ J}, where J C [ is finite and each C; C [0, 1]
is closed. Since [0, 1] is perfectly normal, we may assume that C; := Z(f;)
for some f; € C(]0,1]). Then C; = Z(Zjngjz-), where g;(Z) = fj(z;).

For the converse, suppose that C' C X is closed and z € X \ C. By
assumption, there is f € C(X) such that f(y) = 0 for all y € C while
f(xz) # 0. By multiplying f by a suitable multiple, we may assume that
f(x) =1, whence X is completely regular. O
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In the rest of this section, we assume that X is a Tychonoff
space.

By the previous theorem, we see that zerosets play a fundamental role in
the theory of completely regular spaces. As we will now see, by proceeding as
in the previous section, but only working with zerosets, we can construct the
Stone-Cech compactification of X. Toward this end, we make the following
definition.

Definition 3.3.12. We call F C Z(X) \ {0} a z-filter on X if:

(1) 1,4y € F = Z1N2Zy €F;
(2) Z1€F,Zye Z(X)and Z) C Zy = Zy € F.

A maximal z-filter on X is called a z-ultrafilter on X. We let (X denote
the set of z-ultrafilters on X.

Exercise 3.3.13. Suppose that U/ is a z-filter on X. Prove that U/ is a
z-ultrafilter on X if and only if, whenever C € Z(X) is such that CNZ # ()
for all Z € U, then we have C' € U.

Exercise 3.3.14. Prove that any family (Z;);cs of elements of Z(X) with
the finite intersection property is contained in a z-ultrafilter on X.

We will soon see that (X “is” fX. We first need to put a topology
on (X. We take our cue from the discrete case: given Z € Z(X), we set
Cyz:={U e (X : ZecU}. We then give (X the topology where the Cy’s
form a base for the closed sets. Unlike the discrete case, the basic closed
sets are not also open. In fact, given an open set O C X, we set

Uo:={U €(X : Z CO for some Z € U}.
Exercise 3.3.15. Prove that (X \ Cz = Ux\ 2.

Consequently, Up, for O a complement of a zeroset, is a basic open set
in (X.

Theorem 3.3.16. (X is a compact Hausdorff space.

Proof. We first show that (X is Hausdorff. Toward this end, fix distinct
U,V € (X. By Exercise B313| there are Z1, Z € Z(X) such that Z; € U,
Zy €V and Z1NZy =0. Let f € C(X) be such that Z; = Z(f). Since Zs is
closed, there is some € > 0 such that f(x) > € for all z € Zy. Define g1, 92 €
C(X) by setting g1 (z) = max(§— f(z),0) and g2(z) = max(f(z)—5,0). Set
W1 = Z(g1) and Wy := Z(g2). Then, for i = 1,2, we have Z; C (X \ W;)
and (X \ W) N (X \ W2) = 0. We thus have that U/ x\w,) and Ux\w,) are
disjoint open neighborhood of &/ and V, whence (X is Hausdorff.
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To see that (X is compact, it suffices to show that any family (Cy, )icr
of basic closed subsets of (X with the finite intersection property has a
nonempty intersection. Since (Cy,)ics has the finite intersection property, it
follows that (Z;);cs has the finite intersection property: given iy,...,i, € I,
take U € (N}, Cz,, and note that Nj=1 Zi; € U, whence (\;_; Z;; # 0.
By Exercise B34, there is a z-ultrafilter U containing the family (Z;);er,
whence U € (,c; Cz,. O

We now show that (X is a compactification of X:
Theorem 3.3.17. Forz € X, set o(x):={Z € Z(X) : z € Z}. Then:
(1) «(z) € ¢X;
(2) the mapping ¢ : X — (X is a homeomorphism of X onto its image;
(3) «(X) is dense in (X.

Consequently, identifying X with 1(X), we have that (X is a compactifica-
tion of X.

Proof. (1) follows immediately from Exercises [3.3.9 and B.3.13

For (2), first notice that ¢ is injective: if z,y € X are distinct, then by
complete regularity, there are 71, Zo € Z(X) such that x € Z;, y € Z5, and
ZiNZy = 0. Tt follows that «(z) # t(y). To see that ¢ is continuous, it
suffices to notice that 1 ~1(Cyz) = Z. Finally, to check that « : X — ¢(X) is
open, it is enough to show that +(Z) is closed in «(X) for every Z € Z(X),
which follows from the fact that «(Z) = Cz N «(X).

For (3), take a nonempty basic open set Up and take U € Up. Take
Z € U such that Z C O and let « € Z. Then Z € «(z), so «(z) € Up. O

It remains to see that (X is the Stone-Cech compactification of X. To
prove this, it will be convenient to use a different characterization of X
due to Cech. First, we say that A, B C X are completely separated if
there is f € C(X) such that f(z) = 0 for all z € A while f(x) = 1 for all
r € B.

Theorem 3.3.18. 5X is the unique compactification of X such that com-
pletely separated subsets of X have disjoint closures in X .

Proof. We first show that X has the stated property. Indeed, suppose
that A, B C X are completely separated by f € C(X). Without loss of
generality, we may assume that f(X) C [0,1]. Note then that if z,y € fX
are in the closures of A and B, respectively, then 5f(x) = 0 while 5f(y) = 1,
whence = # y. (Here, Sf denotes the unique continuous extension of f to

5X.)
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Now suppose that K is a compactification of X with the stated property.
Let g : X — K be a continuous function that is the identity on X. Since X
is dense in K, it follows that g is onto. If we can show that g is also injective,
then since SX is compact and K is Hausdorff, it will follow that g is a
homeomorphism. Let p,q € X be distinct. Let f : X — [0, 1] be such that
f(p) =0and f(q) = 1. (This is possible since compact spaces are completely
regular.) Set A:={z € X : f(z)<iland B={ze€X : f(z) > 2}.
Note that A and B are completely separated. (Exercise.) Since p is in the
closure of A in fX, we have that g(p) is in the closure of A in K. Similarly,
g(q) is in the closure of B in K. By assumption, these closures are disjoint,
whence g(p) # g(q), as desired. O

In order to use the previous theorem, we need to understand what clo-
sures of zerosets in X inside (X look like:

Lemma 3.3.19. Given Z € Z(X), the closure of Z in (X is Cy.

Proof. Temporarily, set Z to be the closure of Z in (X. We clearly have
Z C Cy. To obtain the reverse direction, let Cy be a basic closed set
containing Z. Then W = Cy N X D Z, whence Cz C Cy. It follows that
CyCZ. O

Finally, we are ready to prove the main result of this section:

Theorem 3.3.20. (X is the Stone-Cech compactification of X.

Proof. Let A,B C X be completely separated. We show that A and B
have disjoint closures in (X. Since A and B are completely separated, there
are Z1,Z € Z(X) such that A C Zy, B C Zs, and Zy N Zy = (). It thus
suffices to show that Z; and Z3 have disjoint closures in (X . By the previous
lemma, we must show that Cz, N Cyz, = (. However, it is easy to see that
Cz, NCyz, = Cznz, =0, whence we are finished. O

3.4. The Stone representation theorem

When X is discrete, Theorem B.2.1] shows that SX is a Stone space in the
sense of the following definition:

Definition 3.4.1. A topological space is a Stone space if it is compact,
Hausdorff, and totally disconnected.

We remind the reader that a topological space is totally disconnected if
singletons are the only connected sets. In order to see that SX is indeed a
Stone space, we need:

Exercise 3.4.2. A zero-dimensional space is totally disconnected.
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In this section, we show that all Stone spaces can be obtained in this
manner provided we are willing to work with ultrafilters on arbitrary Boolean
algebras, as defined here:

Definition 3.4.3. A Boolean algebra is a structure B = (B, 0,1, A, V, ),
where 0 and 1 are elements of B, A and V are binary operations on B, and
= is a unary operation on B for which we have, for all a, b, c € B:

(1) aha=aVa=a.

(2) anb=bAaand aVb=>bV a.

(3) an(bAc)=(aAb)AcandaV (bVc)=(aVb)Ve

(4) an(aVvbd)=aV(aNb) =

(5) an(bVve)=(aNnb)V(aNnc)andaV (bAc)=(aVDb)A(aVc).

(6) 0ANa=0and 0Va=a.

(7Y 1Na=aand 1Va=1.

(8) aN—-a=0and aV-a=1.

Exercise 3.4.4. Given any set X, prove that (P(X),0, X,N,U, X \ -) is a
Boolean algebra.

We refer to a Boolean algebra as in the previous exercise as a powerset
algebra. A Boolean subalgebra (defined in the obvious way) of a powerset
algebra will be referred to as a concrete Boolean algebra. The Stone
representation theorem, to be proven below, will show that every Boolean
algebra is isomorphic to a concrete Boolean algebra.

Since Boolean algebras can be viewed as abstract generalizations of
power sets, we can further abstract the notion of an ultrafilter. First, since
the usual notion of an ultrafilter refers to the subset relation, we need to

identify the abstracted version of this relation. We take our cue from the
obvious fact that A C B if and only if AN B = A.

Definition 3.4.5. If B is a Boolean algebra, we define the binary relation
< on B by declaring a < b if and only if a A b = a.

Definition 3.4.6. If B is a Boolean algebra, a filter on B is a subset 7 C B
satisfying the following properties:

(1) 0¢ F, 1€ F.
(2) If a,b € B are such that a € F and a < b, then b € F.
(3) If a,b, € F, thenaAbe F.

Furthermore, F is called an ultrafilter on B if it also satisfies:

(4) For all a € B, either a € F or —a € F.
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We let S(B) denote the set of all ultrafilters on B and refer to it as the Stone
space of B.

As before, we often denote ultrafilters on Boolean algebras by U and V.

Exercise 3.4.7. Verify that, for a powerset algebra P(X), the Boolean al-
gebra notion of ultrafilter agrees with our earlier notion of ultrafilter, whence

S(P(X)) = BX.

Exercise 3.4.8. Prove the ultrafilter theorem for Boolean algebras:
for any Boolean algebra B and any filter F on B, there is an ultrafilter ¢/ on
B extending F.

We would like to define a topology on S(B) for B an arbitrary Boolean
algebra so that the resulting space is a Stone space (and agrees with the
earlier topology on X in the case of a powerset algebra). Taking our cue
from the case of powersets, we topologize S(B) by declaring the basic open
sets to be of the form U, for ¢ € B. Note that, in the case of powerset
algebras, this agrees with the usual topology on 5X.

In order to prove that S(B), when endowed with the above topology,
is a Stone space, it helps to introduce homomorphisms between Boolean
algebras:

Definition 3.4.9. If B and B’ are Boolean algebras and h : B — B’ is a
function, we say that h is a homomorphism if, h(0) = 0/, A(1) = 1/, and
for all a,b € B, we have:

(1) h(a Ab) = h(a) A h(b).

(2) h(aVb)=h(a)V h(b).

(3) h(—a) = —h(a).
Exercise 3.4.10. Suppose f : X — Y is a function. Show that hy : P(Y) —
P(X) given by h(A) := f~1(A) is a Boolean algebra homomorphism.
Definition 3.4.11. 2 is the unique Boolean algebra with two elements
{0,1}.
Exercise 3.4.12. If B is a Boolean algebra, then &/ C B is an ultrafilter on

B if and only if there is a Boolean algebra homomorphism h : B — 2 such
that Y = {a € B : h(a) =1}. In this case, the homomorphism & is unique.

In light of the above exercise, we may view S(B) as a subspace of 2B.
Notice that the topology on S(B) is the subspace topology it inherits from
2B,

Exercise 3.4.13. S(B) is a closed subspace of 2B.

Exercise 3.4.14. For any set X, 2% is a Stone space.
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Exercise 3.4.15. Any closed subspace of a Stone space is a Stone space.

Combining the previous exercises, we have proven:

Theorem 3.4.16. For any Boolean algebra B, S(B) is a Stone space.

In what follows, we consider the categories of Boolean algebras (where
morphisms are Boolean algebra homomorphisms) and Stone spaces (where
the morphisms are the continuous functions, yielding a full subcategory
of the category of topological spaces). The association B +— S(B) is then
a contravariant functor. To see this, note that, given a Boolean algebra
homomorphism h : B — B, we get a continuous function S(h) : S(B') —
S(B) given by S(h)(U) := h=1(U).

Exercise 3.4.17. Verify the validity of the last sentence in the previous
paragraph, namely that h~1(U/) is indeed an ultrafilter on B and that S(h)
is a continuous function.

Exercise 3.4.18. Using the notation from Exercise B.4Z.10, show that
S(hy)(U) = f(U), the pushfoward of U along f as defined in Definition
L3

Exercise 3.4.19. Verify that S is indeed a contravariant functor from the
category of Boolean algebras (with Boolean algebra homomorphisms) to the
category of Stone spaces (with continuous functions) by verifying:

(1) For all Boolean algebras B, S(idp) = idgg-

(2) For all Boolean algebras B, B’, and B” and Boolean algebra ho-
momorphisms h : B — B and A’ : B’ — B”, we have S(h/ o h) =
S(h) o S(I).

The main result of this section is that S witnesses that the categories
of Boolean algebras and Stone spaces are dually equivalent. In order to
establish this result, we need to define an “inverse” functor from the category
of Stone spaces to the category of Boolean algebras.

Definition 3.4.20. For any topological space X, we let C1(X) denote the
set of clopen subsets of X.

Exercise 3.4.21. For any topological space X, C1(X) is a Boolean subal-
gebra of P(X). Moreover, X is discrete if and only if C1(X) = P(X).

Just as in the case of S, Cl is a contravariant functor from the category
of topological spaces to the category of Boolean algebras: If f: X — Y is
a continuous function between topological spaces, we set Cl(f) : Cl(Y) —
CI(X) to be given by CI(f)(A) := f~1(A). (By continuity of f, f~1(A) is
indeed clopen when A is clopen.)
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Exercise 3.4.22. Verify that Cl(f) as above is indeed a Boolean algebra
homomorphism.

Exercise 3.4.23. Verify that Cl is indeed a contravariant functor from the
category of topological spaces to the category of Boolean algebras.

For some spaces, Cl(X) is very small:

Exercise 3.4.24. Prove that a topological space X is connected if and only
if C1(X) = 2.

In order to show that Cl, when restricted to the full subcategory of Stone
spaces, is indeed an inverse to S, we need to show that Cl(X) is quite large
when X is a Stone space.

Definition 3.4.25. Let X be a topological space and z € X. We set
Uy = {AeCl(X) : z €A}

Exercise 3.4.26. U, is an ultrafilter on the Boolean algebra CI1(X).

Note that, in the case that X is discrete, we have that this usage of
the terminology U, agrees with the previous usage, namely the principal
ultrafilter generated by .

Lemma 3.4.27. If X is a Stone space, then for every x € X, (U, = {x}.

Proof. Suppose, toward a contradiction, that (U, contained at least two
elements. Since X is totally disconnected, there are disjoint open sets
Up,Uy € X such that U, NU,U, NUz # O and (U, = (U N
Up) U (NUx NUsz). Since U, N (Uy U Us)¢ = (), by compactness there
are finitely many Vi,...,V,, € U, such that Vi N---NV, N (U UU2)¢ = 0.
Set V :=Vin---NV,. Suppose, without loss of generality, that x € Uj.
Note then that (V NU;)¢ = (VN Uz) UV whence V NU; is a clopen set
containing x, and thus (U, € V NU; C Uj, contradicting the fact that
ﬂux NUy # 0. O

Lemma 3.4.28. If X is a Stone space, then C1(X) forms a base for the
topology on X (whence X is zero dimensional).

Proof. Let U be an open subset of X and take x € U. By the previous
lemma, (U, N U = (), whence, by compactness, there are Uy,...,U, € U,
such that Uy N ---NU, NU° = . It follows that U; N--- N U, is a clopen
neighborhood of x contained in U. O

We now investigate what happens to objects in these categories when
they are evaluated on the compositions of the above functors.
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Lemma 3.4.29. For any Boolean algebra B, we have Cl(S(B)) = {U,
a € B}. Moreover, U, = Uy if and only if a = b.

Proof. Let U be a clopen subset of S(B). Since U is open, we may write
U =, Uq. Since U is closed (and thus compact), there are ay, ..., a, such
that U = Ua1 U---u Uan = Ug1V--Van-

For the moreover part, if a # b, then we have that a A =b # 0 or
b A —a # 0. Without loss of generality, assume that it is the former. Then,
by the ultrafilter theorem for Boolean algebras (Exercise B.4.8 above), there
is an ultrafilter & on B with a A =b € Y. It follows that U € U, \ Up. O

Lemma 3.4.30. For any Stone space X, we have S(C1(X)) = {U, : x € X}.
Moreover, U, = U, if and only if x = y.

Proof. Fix U € S(CI(X)). Since U has the finite intersection property, we
have that (YU # 0 by compactness of X. Fixing x € (U, we have that
U CU,, whence U = U,.

For the moreover part, assume that x # y. Then by Lemma [3.4.28|
there is a clopen set U C X such that € U and y € X \ U. It follows that
U el \Uy. O

Before proving our main theorem, the following calculations will be
relevant. Fix a Boolean algebra homomorphism h : B — B’ and a con-
tinuous function between Stone spaces f : X — X’. We then have that
(CloS)(h) : CI(S(B)) — CI(S(B')) is given by

(CloS)(h)(Ua) = CU(S(h))(Ua) = S(h) ™! (Ua) = Un(a)
and (SoCl)(f) : S(CI(X)) — S(C1(X")) is given by
(SoCL(f)(Us) = S(CUS))(Us) = CUf) ™ (Us) = Up(ay.

We are now ready to prove our main theorem, stating that the functors
S and Cl are “inverses” of one another. Note that this statement cannot
literally be true as (CloS)(B) is not literally B and similarly (So Cl)(X) is
not literally X. The next theorem states that (CloS)(B) is isomorphic to
B and (SoCl)(X) is homeomorphic to X, and that these isomorphisms and
homeomorphisms are “natural” in a precise sense.

Theorem 3.4.31 (Stone duality theorem). S and Cl witness that the cate-
gory of Boolean algebras and the category of Stone spaces are dually equiv-
alent. More precisely, for every Boolean algebra B and every Stone space
X, we have an isomorphism eg : (CloS)(B) — B and a homeomorphism
nx : (SoCl)(X) — X satisfying, for every Boolean algebra homomor-
phism h : B — B and every continuous function f : X — X', that
epr 0 (CloS)(h) = hoeg and nx: o (SoCl)(f) = fonx.
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Proof. By Lemma B.4.29, we may define a bijection eg : (CloS)(B) — B
by eg(U,) := a. It is also clear that this is a Boolean algebra homomor-
phism, whence an isomorphism. Also, the above calcluation shows that
(ewr o (CloS)(h))(Ua) = € (Up(a)) = h(a) = (h o ez)(Ua).

By Lemma B.4.30, we can define nx : (SoCl)(X) — X by nx(U) = =.
It is clear that nx is a bijection. 7y is continuous as ny'(U) = Uaser Ua,
whence it is open. Since the domain and range of nx are compact and
Hausdorft, it follows that nx is a homeomorphism. Finally, from the above
calculation, we have

(nxr 0 (Se CH(fN)U) = nx Up)) = f(z) = (f o nx) (Us). O
The following two results were promised earlier in this section:

Corollary 3.4.32. Every Stone space X is the Stone space of a unique (up
to isomorphism) Boolean algebra, namely C1(X).

Corollary 3.4.33 (Stone representation theorem). Every abstract Boolean
algebra B is isomorphic to a concrete Boolean algebra, namely C1(S(B)).

Exercise 3.4.34. Prove, without using the axiom of choice, that the ultra-
filter theorem is equivalent to the ultrafilter theorem for Boolean algebras.

3.5. Notes and References

As mentioned in Chapter [l the notion of ultrafilter was introduced by H.
Cartan [23/[24] in 1937 to study convergence in topological spaces. A more
thorough treatment of topology using filters and ultrafilters can be found in
Bourbaki [I9]. The Stone-Cech compactification of a space was introduced
by Stone [170] and Cech [25] in 1937. Our approach to the nondiscrete case
follows Gillman and Jerison’s book [67]. Stone’s representation theorem and
Stone duality were proven in his paper [169].



Chapter 4

Ramsey theory and
combinatorial number
theory

In this chapter, we give a taste of some combinatorial applications of ultra-
filters. In Section .1l we give an ultrafilter proof of the infinite version of
Ramsey’s theorem. In Section 2] we introduce a binary operation @& on
BZ and prove that sets that belong to elements of 87 that are idempotent
with respect to this operation have interesting combinatorial structure, ul-
timately leading to a proof of a celebrated theorem of Hindman. In Section
4.3 we introduce a measure of relative size of a set of integers known as Ba-
nach density and relate this notion of density to probability measures on SZ;
this analysis is then used in Section [4.4] to give a proof of the Furstenberg
correspondence principle, which is a technique used to translate combina-
torial questions about sets of integers into ergodic-theoretic questions in an
associated dynamical system. We illustrate this technique with a couple of
examples. In Section L5 we present a theorem of Jin known as the Sum-
set theorem. Instead of giving Jin’s original proof, which was phrased in
the language of nonstandard analysis (see Chapter [), we give Beiglbock’s
proof, which uses the connection between Banach density and measures on
BZ presented in Section [£3]

4.1. Ramsey’s theorem
In this section, we show how to use ultrafilters to give a very short proof

of the infinite version of Ramsey’s theorem. First, we need some notation:

45
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Given a set X and k € N, we let X[¥ denote the set of k-element subsets of
X. When X = N, we identify this with the set of tuples (nq,...,n) with
ni < - < ng.

Theorem 4.1.1 (Ramsey’s theorem, Infinite version). For every k € N and
every partition NIF = C LU Cy, there is i € {1,2} and infinite X C N such
that XM C C;.

This theorem is often stated in terms of colorings: if we color the k-
element subsets of N in two colors, then there will be some infinite subset
X of N that is homogeneous for the coloring, that is, all k-element subsets
from X receive the same color. Note that there is no real need to restrict to
two colors in the above theorem; indeed, by induction, one could prove the
same result using any finite number of colors. (Exercise.)

Proof of Theorem [4.1.11 For notational simplicity, let us assume that
k=3 and fix U € BN\N. For (z,y) € N let Ay =12 €N (1,y,2) €
C1}. Without loss of generality, we may assume that (Uz)(Uy)Aq,) € U.
(Otherwise we may switch the roles of C; and Cs.) For z € N, let B, :=
{yeN : Ay, €U} andlet C:={zr €N : B, € U}. By assumption, we
have that C € Y. Fix z; € C arbitrary and take 9 € B, NC with 2 > z1;
note that this is possible as By, N C € U and U is nonprincipal. Now take
T3 € A(z 2) N Bay N Bz, NC with 23 > x9. Now choose z4 belonging to

A(th) N A($1,JC3) N A(m’x?’) N Bxl N Bm N Bx3 nc

with x4 > x3. In this way, we construct an infinite set X := {x1,z2,...}
such that X C (1, as desired. O

Exercise 4.1.2. Turn the “vague” conclusion of the previous proof into
something rigorous by formulating a precise inductive construction of the
sequence and proving that this inductive construction can be continued in-
definitely.

Exercise 4.1.3. Prove Ramsey’s theorem for & > 3. (The proof is in the
same spirit as ours above, the inductive construction being slightly more
complicated to describe.)

In Section [6.4], we will show how to derive the finite version of Ramsey’s
theorem from the above infinite version.

4.2. Idempotent ultrafilters and Hindman’s theorem

In this section, we use a special kind of ultrafilter on Z to prove an important
theorem in Ramsey theory known as Hindman’s theorem. To state the
theorem, we need some definitions.
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Definition 4.2.1.
(1) Given a nonempty, finite subset F' C N and ¢ = (¢p)nez a sequence
of distinct elements from Z, define cp := ) pcn.

(2) Given a sequence ¢ = (¢p)nen of distinct elements from Z, set
FS(c) :={cr : F C N nonempty, finite}.

(3) We say that A C Z is an FS-set if there is a sequence ¢ = (¢, )nen
of distinct elements from Z such that FS(c) C A.

We are now ready to state the main combinatorial result of this section:

Theorem 4.2.2 (Hindman’s theorem). For every partition Z = CiU---UC,
of Z, there isi € {1,...,n} such that C; is an FS-set.

The key to proving the above theorem is the realization that, in the case
of the discrete space Z, 87 has some algebraic structure in addition to the
topological structure considered in the previous chapter. Indeed:

Definition 4.2.3. For A C Zand U € fZ,set A-U :={k € Z : A—k € U}.

In other words, k € A—U if and only if (Ul)(k+1 € A), that is, U-many
shifts of k are in A.

Definition 4.2.4. For U,V € BZ, we defineUdV :={ACZ : A-V € U}.
Exercise 4.2.5.
(1) f ACZ, then A e U@V if and only if (Uk)(VI)(k+1 € A), that
is, U-many shifts of A are V-large.
(2) For U,V € BZ, we have U ® V € BZ.
(3) @ is associative: for U, YV, W € BZ, U BV) W =UD(VEW).
(4) For U,V € BZ, U &V is principal if and only if both ¢ and V
are principal. In this case, if I and V are the principal ultrafilters

generated by k and [, respectively, then &/ & V is the principal
ultrafilter generated by k + [, that is, Uy & Uy = Uky.

(5) U DUy =U for all U € BZ.

The algebraic properties of & are quite complicated and interesting; see
the encyclopedia on the subject [83]. For the proof of Hindman’s theorem,
we need to know that @ behaves well with respect to the topology on SZ.
It would be nice if we could just say that @ is a continuous function, but
unfortunately that is not true. Thankfully, something weaker will be good
enough:

Proposition 4.2.6. ® is left semicontinuous, meaning that for all V € BZ,
the mapU —U DY : BZ — BZ is continuous.
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Proof. Fix V € 5Z and a basic open set U4 in S7Z. Its inverse image under
U UGBV is Ug_y, which is open. O

A crucial role in the use of ultrafilters in combinatorics is played by the
following kind of ultrafilter:

Definition 4.2.7. U € Z is idempotent if U U =U.

Exercise 4.2.8. Suppose that U € SZ is idempotent and principal. Prove
that U = Up.

Theorem 4.2.9. Nonprincipal idempotent ultrafilters exist.

Proof. Let Y :={Y C BZ\Z : Y is nonempty, closed, and Y @Y C Y'}.
Here, Y®Y :={U®V : U,V € Y}. By Theorem B.21[(4) and Exercise
M25(4), BZ\ Z € Y. By compactness of SZ \ Z, any descending chain in
Y has nonempty intersection. It follows from Zorn’s lemma that ) has a
minimal element Y. We show that every element of Y{ is idempotent (and
nonprincipal).

Fix U € Yy. We first claim that Yo @ U4 € ). Indeed, it is clearly
nonempty. By left semicontinuity, it is closed. Finally, using associativity
of @ and the fact that Y{ is closed under &, we have

YeU)o(Yel)C (YooYo)®(YoaoU)CYoalU.
Since Yy & U C Yy, minimality of Yy implies that Yo ® U = Y. Set
Yi={VeY, : Volu=U}.

We just showed that Y7 # (). Note also that Y; is closed as it is the preimage
of the closed set {{/} under the continuous map V — V @ U. Finally, if
Vi, Vs € Y7, then

WVieoW)eoU=Vo(VeoU)=VioU=U,
so Y1 @Y1 CYi. It follows that Y7 € Y; by minimality of Yy again, we have
that Y7 = Yy, whence Y € Y7 and U & U = U, as desired. O

Here is the connection between idempotent ultrafilters and FS-sets:

Theorem 4.2.10. If U is a nonprincipal idempotent ultrafilter, then every
A el is an FS-set.

Proof. We define a sequence ¢ = (¢p, )nen in strictly increasing order so that
FS(c) C A.

Suppose inductively that ¢; < --- < ¢, have been constructed so that,
for all nonempty F' C {1,...,n}, we have cp € A and A —cp € U. We show
how to continue this construction. First note that since U is idempotent,
we can conclude that A —cp —U € U. Using the fact that U is nonprincipal
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(and idempotent again), we may take ¢,4+1 > ¢, so that ¢,41 € AN(A—U)N
(A—cp)N(A—cp—U) for every F as above. Note then that c1,...,cpt1
is a valid continuation of the construction. O

The proof of Hindman’s theorem is now immediate:

Proof of Theorem [4.2.2l Fix a partition Z = C; L --- U (), and a non-
principal idempotent ultrafilter . Since Z € U, there is some i € {1,...,n}
such that C; € U, whence C; is an FS-set. O

If we work a bit harder, we can improve the previous statement. First,
a lemma:

Lemma 4.2.11. Suppose that ¢ = (¢p)nen @ a sequence of distinct elements
from Z. Then there is a nonprincipal idempotent ultrafilter U on Z such that
FS(c) e U.

Proof. For each m € N, let ¢ := (¢y)n>m and set Uy, := {U € BZ\Z
FS(¢™) € U}, a nonempty closed subset of SZ. Since Upy1 € Uy, by
compactness we have that S := (1, cyUm is a nonempty closed subset of

BZ.
Claim. S®& S CS.

Proof of Claim. Suppose that U,V € S; we show that Y &V € S. To see
this, fix m € N. We must show that FS(¢™) e U & V. Fix a € FS(¢™) and
write @ = cp; + -+ ¢p, With m < ny < ng < --- < ny. Note then that
FS(cmt1) C FS(¢™)—a. Since FS(c™*1) € V), it follows that FS(c™)—a € V.
Since a € FS(c™) was arbitrary and FS(¢™) € U, it follows that FS(¢™)—V €
U, whence FS(c™) e U @V, as desired. This proves the claim.

We may thus repeat the proof of Theorem [4.2.9] but this time only using
ultrafilters from S; it follows that the nonprincipal idempotent ultrafilter
thus constructed belongs to S, which, in particular, implies that FS(c) €

Uu. O

Corollary 4.2.12 (Strong Hindman’s theorem). Suppose that C' is an FS-
set and C' is partitioned into finitely many pieces C = Cy U ---UC,,. Then
there is i € {1,...,n} such that C; is an FS-set.

Proof. Take ¢ = (¢p)nen such that FS(c,) € C. Take a nonprincipal
idempotent ultrafilter U such that FS(c) € 4. Then C' € U as well, whence
C; € U for a unique i = 1,...,n, and this C; is itself an FS-set. O

In combinatorial terms, the above corollary shows that being an FS-set
is a partition regular property.
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Corollary 4.2.13. U € BZ is in the closure of the set of nonprincipal
idempotent ultrafilters if and only if every element of U is an FS-set.

Proof. First suppose that U is in the closure of the set of nonprincipal
idempotent ultrafilters and suppose that A € Y. Then U4 is a neighborhood
of U, whence there is V € U4 that is idempotent. Thus, A € V, whence A
is an FS-set by Theorem

Conversely, suppose that every element of U is an FS-set. Let U4 be a
basic neighborhood of U. By assumption, A is an FS-set, whence A € V for
some nonprincipal idempotent ultrafilter V by Lemma 2.1l It follows that
Y € Uy. Since Uy is an arbitrary basic open neighborhood of U, it follows
that U is in the closure of the set of nonprincipal idempotent ultrafilters. [

4.3. Banach density, means, and measures

A central notion in combinatorial number theory is the attempt to describe
“what proportion” of the integers lie in a given set A C Z. Since the set
A is presumably infinite, one cannot simply just consider the fraction %.
Instead, one must first consider what proportion of A lies in various finite
intervals and then use some limiting process. The resulting quantity is
referred to as a density of A. While there are many notions of densities for

subsets of Z, we will only concern ourselves with the following:
Definition 4.3.1. Given A C Z, the Banach density of A is the quantity

{yAmI|

BD(A) := lim max

n—oo

: I C Z an interval of length n} .
n

A few words are in order concerning the previous definition. Note
that, given an interval I C Z of length n, @ belongs to the finite set
{0, %, %, ..., 1}. Thus, as I ranges over all such intervals, the above fraction
takes a maximal value, which we temporarily denote by §(A,n).

Exercise 4.3.2. For A C Z and m,n € N, prove that §(A,m + n) <
d(A,m)+ (A, n).

An elementary real analysis fact known as Fekete’s lemma allows one to
conclude that lim,,_,~, 6(A, n) actually exists. This limit is then the Banach
density of A.

The following is a notion of largeness for subsets of Z:

Definition 4.3.3. A C Z is called thick if it contains arbitrarily long
intervals, that is, for each n € N, there is an interval I C Z with |I| > n
such that I C A.

Exercise 4.3.4. For A C Z, prove that BD(A) = 1 if and only if A is thick.
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Definition 4.3.5. Given A C Z, we say that a sequence of intervals (I,,) in Z
|ANT,|
1]

witness the Banach density of A if lim,,_, |I,| =00 and lim,,
BD(A).

While the notion of Banach density satisfies many natural properties
similar to those satisfied by measures, it differs from measures in many
unsatisfying ways. For example:

Exercise 4.3.6. Show that Banach density is subadditive, that is, for
A,B C Z, we have BD(AU B) < BD(A) + BD(B). Show that, even when
A and B are disjoint, BD(A U B) need not equal BD(A) + BD(B).

That is, while measures are additive (even countably additive), densi-
ties are merely subadditive. In the remainder of this section, we will show
how ultrafilters can be used to bring actual measures into the picture when
discussing density calculations.

Measures will be introduced using the Riesz representation theorem. To
explain this, first suppose that X is a compact Hausdorff space and p is a
finite Borel measure on X. Let C'(X) denote the R-vector space of contin-
uous functions X — R. Then we can consider the integration functional
¢, : C(X) — R given by £,(f) := [ fdu. The function ¢, is an R-linear
map which is moreover positive, meaning that if f > 0, then £,(f) > 0.
Also notice that ¢,,(1) = p(X), where 1 denotes the function on X that is
constantly 1. In particular, u is a probability measure if and only if /(1) = 1.

The Riesz representation theorem gives a converse to the previous para-
graph: given any positive linear functional ¢ : C'(X) — R, there is a finite
Borel measure p on X such that £ = ¢,,. (p is actually unique if one assumes
that it is a so-called regular measure.)

The above discussion motivates the need to produce positive linear func-
tionals on C'(X) for some compact space X. While Z is not compact, SZ
is compact, and it is this compact space for which we will apply the Riesz
representation theorem.

Given any set X, let B(X) denote the R-vector space of bounded func-
tions X — R.

Exercise 4.3.7. Prove that the map f — Sf : B(X) — C(BX) is an
isomorphism of R-vector spaces. Moreover, prove that:

(1) for f € B(X), we have f > 0 if and only if 5f > 0, and
(2) p1 =1.
Motivated by the previous discussion, we consider the following:

Definition 4.3.8. A mean on X is a positive linear functional ¢ : B(X) —
R such that ¢(1) = 1.
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We summarize this discussion as follows:

Theorem 4.3.9. For every mean £ on X, there is a Borel probability mea-
sure u on BX such that ¢(f) = fﬁx Bfdu for every f € B(X).

Thus, in order to produce measures on 8Z, we need a way of constructing
means on Z. The following is our main method of accomplishing this task:

Proposition 4.3.10. Suppose that T := (I,)nen 1S a sequence of nonempty,
finite subsets of 7 and U is an ultrafilter on N. For f € B(Z), define
0 f) =Llry(f) :=limy II_ln\ > wer, f(x). Then f is a mean on Z.

Exercise 4.3.11. Prove the previous proposition.

In Proposition [£.3.10) we think of ﬁ > wcr, () as the average of f(r)
on the set I, and then use the ultrafilter to see what those averages converge
to.

We will need to consider means on Z satisfying an extra property:

Definition 4.3.12. If £ is a mean on Z, we say that £ is an invariant mean
if 6(k.f)=4¢(f) for all k € Z and f € B(Z), where (k.f)(z) :== f(z — k).

Exercise 4.3.13. Suppose, using the notation from Proposition 310, that
each I, is an interval in Z and lim,,_, |I,| = co. Further suppose that U/ is
nonprincipal. Prove that /7, is an invariant mean on Z.

The invariant means 7, have a connection to Banach density:

Exercise 4.3.14. Suppose that Z and U are as in Exercise [1.3.13] and that
ACZ.

(1) Show that BD(A) > ¢134(14), where 14 denotes the characteristic
function of A.

(2) Suppose that Z witnesses the Banach density of A. Prove that
BD(A) =tz (14).

To round out the discussion, we mention the following:
Lemma 4.3.15. For any subset A C Z, we have 5(14) = 1y,.
Exercise 4.3.16. Prove the previous lemma.

Corollary 4.3.17. For any mean ¢ on 7Z, there is a Borel probability mea-
sure p on BZ such that, for any A C Z, we have £(14) = p(Ua).

We will use the fact that Banach densities can be mirrored by genuine
measures in the next two sections.
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4.4. Furstenberg’s correspondence principle

In this section, we explain an extremely powerful extension of the ideas
used in the previous section that has proven to be a valuable tool in the
application of ideas from ergodic theory to combinatorial number theory.
First, some definitions regarding measure-preserving transformations.

Definition 4.4.1. Given a probability space (2, ), a measurable map
T :Q — Q is called a measure-preserving transformation if, for each
measurable E C , we have u(E) = u(T~Y(E)).

To avoid multiple parentheses in the next result, for n € Z, we will
write T~ "E instead of the more cumbersome 7T~ "(F). Note that, for n > 0,
this means those z € Q for which T"(z) € E, where T™ denotes the map
ToTo---oT (n times), while for n < 0, this means the image of E under
the map T7".

Theorem 4.4.2 (Furstenberg’s correspondence principle). Given A C Z,
there is a probability space (2, p), a measure-preserving transformation
T:Q — Q, and a measurable set E such that:

(1) u(E£) =BD(A) and
(2) fOT all ll, o ,lk € Z, we have
BD(AN(A-l)N-N(A-l) 2w ENT"EN---nT "E).

Proof. Set Q := pBZ. Let T witness the Banach density of A, and let U
be a nonprincipal ultrafilter on N. Set ¢ := ¢7;; and let p be the proba-
bility measure on Z as in Corollary £.3.17 corresponding to ¢, except that
we restrict to the o-algebra generated by the basic open sets in 8Z. Let
T:Q — Qbe given by T(U) :==U ®U; and let F := Uy. We show that
these are as desired.

First, observe that T-Y(Ug) := Ug_1 for any B C Z. Indeed, U €
T~Y(Up) if and only if Y © Uy € Up if and only if B € U @ U, if and only
if B—1¢e U if and only if Y € Up_y. In particular, T is a measurable
map. Also, it follows by induction that T-"(Ug) = Up_,, for any n > 0.
Consequently, T~ (Ug) = Up_; for any [ € Z.

Next observe that u(T~'Ug) = u(Ug_1) = (1p_1) = £(15) = u(Up),
where the equality ¢(15_1) = ¢(1p) follows from invariance of ¢. Since we
have restricted attention to the o-algebra generated by the basic open sets,
it follows that T' is measure-preserving.

Item (1) now follows from the choice of u. To see (2), fix l1,...,l; € Z.
Since
ENT™MEN--NT™"E =Usna_iy)-nia—iy),
the desired inequality follows from Exercise [£.3.14(1). O
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Furstenberg originally introduced his correspondence principle to give
an ergodic theoretic proof of Szemerédi’s famous theorem on arithmetic
progressions. Recall that an arithmetic progression in Z of length k is a
sequence of the form a,a + n,...,a + (k — 1)n, where a € Z and n > 0.
Szemerédi proved the following amazing theorem:

Theorem 4.4.3 (Szemerédi’s theorem). If A C Z is such that BD(A) > 0,
then for any k € N, there is an arithmetic progression of length k contained
in A.

Having positive Banach density is a very mild condition assuring that
a set is “not too sparse”. For example, a set A having Banach density ﬁ
means that there are longer and longer intervals in Z in which the proportion
of the interval that lies in A hovers around ﬁ. While such a set can seem
quite small, Szemerédi’s theorem ensures that it must contain arbitrarily

long arithmetic progressions.

Szemerédi’s original proof was combinatorial and very (very!) compli-
cated. Furstenberg’s ergodic theoretic proof is conceptually much simpler,
combining the above correspondence principle with the following (difficult)
theorem in ergodic theory:

Theorem 4.4.4 (Furstenberg’s recurrence theorem). For any probabilty
space (2, 1), any measure-preserving transformation T : Q — Q, any mea-
surable E C Q with w(E) > 0, and any k € N, there is n > 0 such that
W(ENTT"ENT 2"EN---NT~*E) > 0.

Szemerédi’s theorem is now an immediate consequence of the correspon-
dence principle and the recurrence theorem. Indeed, let Q, u, F, and T be
as in the Furstenberg correspondence principle for A, and let n > 0 be as in
the Furstenberg recurrence theorem for this data and £ — 1. Then

BD(AN(A—n)Nn(A—=2n)N---N(A—(k—1)n)) > 0.
In particular, there isx € AN(A—n)N(A—2n)N---N(A—(k—1)n), that
is, x,z +n,x +2n,...,x + (k — 1)n, all belong to A, whence we have found
an arithmetic progression of length k in A.
We conclude this section with another application of Furstenberg’s cor-

respondence princple. First, we need another structural notion of largeness
for subsets of Z:

Definition 4.4.5. B C Z is called syndetic if there is m € N such that,
whenever I C Z is an interval with BN 1 = (), then [I| < m.

In other words, B is syndetic if there is a uniform bound on the size of
gaps of B. We use the Furstenberg correspondence principle to prove the
following:
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Theorem 4.4.6. Suppose that A C Z is such that BD(A) > 0. Then the
difference set

A-A={zx—y : z,ye€ A}
is syndetic.

We accomplish this as follows.

Definition 4.4.7. A A,-set is a set of the form {n; —n; : 1 <i<j<r},
where n; < --- < n, are nonnegative integers. A C Z is called a A}-set if
AN B # () for every A,-set B C Z.

Exercise 4.4.8. Prove that AJ-sets are syndetic.

Theorem 4.4.9. Suppose that (0, 1) is a probability space and T : Q — Q
is measure-preserving. Then for any measurable set E C Q with u(E) > 0,
the return set
Rp:={neZ : u(ENT"E) >0}
1

is a AY-set for any r > A In particular, Rg is piecewise syndetic.

Proof. Fix nonnegative integers n; < --- < n,. Suppose that
REﬁ{nj—ni : 1§i<j§7“}:®.

Then, for all 1 < ¢ < j < r, we have that u(T"™E NT™E) =

wWENT-=mE) =0, s0 1 > p(Ui_, (T"™E)) = r - u(E), whence

r < (B O

Proof of Theorem [4.4.6l Let ), u, E, and T be as in the Furstenberg
correspondence principle for A. If n € Rg, then BD(AN (A —n)) > 0, so
n € A—A. Thus A— A contains the syndetic set Rg, so is itself syndetic. [

4.5. Jin’s sumset theorem

In this section, we prove the following theorem of Jin, which is in a similar
spirit as Theorem [4.4.6l First, we need yet another structural notion of
largeness for subsets of Z:

Definition 4.5.1. C' C Z is called piecewise syndetic if there is m € N
and intervals Iy, Is, ... in Z satisfying:

(1) limp—yeo | 15| = 00, and
(2) for any n and any interval J C I, if CNJ =0, then |J| < m.

We thus see that piecewise syndeticity is a weakening of the notion of
syndeticity in that we only require that the gaps of C' have bounded size
on longer and longer intervals in Z. Although at first it might seem like a
strange notion, it is of extreme importance in combinatorial number theory
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and, in some sense, is a more natural notion. For example, one can prove
that piecewise syndeticity is a partition regular notion (as defined in Section
[4.2)), while neither thickness nor syndeticity are partition regular.

In what follows, given X,Y C Z, we define their sumset to be
X+Y ={z+y : ze€X,yeY}.

Exercise 4.5.2. Prove that C' C Z is piecewise syndetic if and only if there
is a finite set F' C Z such that, for all n € N, there is an interval I C F + C
with |I| > n.

Here is the main result of this section:

Theorem 4.5.3 (Jin’s sumset theorem). Suppose that A, B C Z are such
that BD(A),BD(B) > 0. Then A+ B is piecewise syndetic.

Jin’s original theorem used nonstandard analysis, a topic we discuss in
Chapter @ In fact, Jin’s theorem was one of the early successes of non-
standard analysis applied to combinatorial number theory and this area of
research is currently extremely active; see [42] for an entire monograph on
the subject.

Instead of following Jin’s original proof, we will use an ultrafilter proof
due to Beiglbock which makes substantial use of analysis on SZ and the
conversion from densities to means described in Section L3l The following
lemma, is the key to Beiglbock’s proof of Theorem [A.5.3]

Lemma 4.5.4. For any A, B C Z, there is U € BZ such that
BD(AN (B —-U)) > BD(A) - BD(B).

Proof. Fix an invariant mean ¢ on Z such that £(15) = BD(B), and let u be
the associated Borel probability measure on SZ. Let (I,,)nen be a sequence
of intervals witnessing the Banach density of A. Define f,, : 8Z — [0,1] by

)= 7 3 s

" keAnI,
Note that each f, is measurable. Set f(U) := limsup,, f»(U) (which is also
measurable) and note that () < BD(AN (B —U)) for allUd € SZ. Fatou’s
lemma implies

1

fd,uZlimsup/ A Z ly, dp = hmsup \I\ Z U1p_y).

BZ E€ANI, k€l,NA

Since ¢ is invariant, the latter term is equal to limsup,, V?m‘”‘ A(1p) =
BD(A) - BD(B). Thus, we have shown IBZ fdu > BD(A) - ( ). In

particular, there is some U € (Z such that f(U) > BD(A) - BD(B), as
desired. g
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Notice that, in the notation of the above proof, ©(Z) = 0, whence we
can take U as in the conclusion of the lemma to be nonprincipal.

Beiglbock’s proof of Theorem [4.5.3l Assume that BD(A), BD(B) > 0.
Apply Lemma [£5.4] with A replaced by —A (which has the same Banach
density), obtaining ¢ € BZ such that C' := (—A) N (B — U) has positive
Banach density. By Theorem [4.4.6, C — C is syndetic; since C — C C
A+ (B —U), we have that A+ (B —U) is also syndetic.

Suppose s € A+ (B —U). Then for some a € A, B— (s —a) € U,
whence a + B — s € U and hence A+ B — s € U. Thus, for any finite set
S1,...,8, € A+ (B —U), we have (;_,(A+ B —s;) € U, and, in particular,
is nonempty, meaning there is ¢ € Z such that ¢t + {s1,...,s,} C A+ B. We
claim that this implies that A+ B is piecewise syndetic. Indeed, take F' C Z
such that F+ A+ (B —U) = Z. By Exercise 5.2 it suffices to check that
F + A+ B contains arbitrarily long intervals. To see this, fix n € N and, for
i=1,...,n,take s; € A+(B—U) such that i € F+s;. Take t € Z such that
t+{s1,...,8n} € A+B. Thent+[l,n] Ct+F+{s1,...,sn} C F+(A+B),
completing the proof. O

4.6. Notes and references

An entire book devoted to the subject matter of this chapter is [42]. Ram-
sey’s theorem was proven in his paper [146]. Hindman’s theorem was proven
in his paper [82]. However, Hindman'’s original proof was purely combinato-
rial and very difficult to follow. (Hindman himself even once suggested that
one could torture a graduate student by asking them to read the original
proof.) That being said, Baumgartner gave a short combinatorial proof in
[4]. It had been previously observed by Galvin (see also [81]) that the exis-
tence of an idempotent ultrafilter (which was unknown at the time) yields
the conclusion of Hindman’s theorem. The existence of idempotent ultra-
filters was later established by Glazer; see [33]. The idempotent ultrafilter
proof of Hindman’s theorem paved the way for many results in Ramsey
theory; see [177] and [42].

The connection between measures on 57 and Banach density can be
found, for example, in Bergelson’s article [11]. Furstenberg’s correspon-
dence principle was originally proven in [62], where he gave his proof of
Szemerédi’s theorem, which itself was originally proven in [I71]. Our proof
of Theorem is based on the article [12]. Jin’s sumset theorem was
originally proven in [92]; our proof is based on that of Beiglbock given in
[8]. Many generalizations of Jin’s sumset theorem have been proven over
the years; see [42].






Chapter 5

Foundational concerns

In this chapter, we consider some foundational concerns related to the exis-
tence of nonprincipal ultrafilters. In Section E.], we give a detailed account
of the various ultrafilter existence axioms and how they compare in strength
with each other and with the axiom of choice. In Section (.2, we show that
there cannot exist a definable, in the sense of descriptive set theory, non-
principal ultrafilter on N, while in Section [5.3] we consider the connection
between the existence of nonprincipal ultrafilters on N and various forms
of the axiom of determinacy. In Section 5.4, we consider special kinds of
nonprincipal ultrafilters called selective ultrafilters and P-points, which are
ultrafilters whose existence is independent of ZFC.

5.1. The ultrafilter theorem and the axiom of choice: Part I

In Section [Tl we proved the ultrafilter theorem (UT), namely that every
filter on every set can be extended to an ultrafilter on that set. The proof
used Zorn’s lemma, one of the avatars of the axiom of choice (AC). In this
section, we describe, in more detail, the connection between UT and AC.
In particular, we will describe several variations of the UT and discuss their
relative strengths. Since all of the proofs of the results discussed involve set
theory way out of the scope of this book, we simply point the interested
reader to references. Our discussion here will involve the notion of consis-
tency strengths of axioms, and we refer the reader to Appendix [Bl for more
information.

We first recall from Appendix [Bl that AC is independent of the axioms

ZF of set theory, that is, ZF cannot prove nor disprove AC. In particular,
assuming the consistency of ZF, there is a model of ZF where AC is true
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(Godel’s constructible universe L) and there is a model of ZF where AC is
false (the so-called basic Cohen model).

We consider the following statements:
(1) WUT(X) is the statement: there is a nonprincipal ultrafilter on X.

We refer to this statement as the weak ultrafilter theorem for
X.

(2) WUT is the statement: there is an infinite X such that WUT(X)
holds. We refer to this statement as the weak ultrafilter theo-
rem.

(3) IUT is the statement: for every infinite X, WUT(X) holds. We
refer to this statement as the intermediate ultrafilter theorem.

(4) UT(X) is the statement: for every filter 7 on X, there is an ultra-
filter U on X extending F.

(5) UT is the statement: for every infinite set X, UT(X) holds.

Exercise 5.1.1. In ZF, show that UT(X) implies WUT(X). Consequently,
in ZF, UT implies IUT, which in turn implies WUT.

We thus see that WUT is the weakest possible ultrafilter existence axiom
one might hope to consider. We already have models of ZF where this axiom
is not true, as proven by Blass [13].

Theorem 5.1.2. There is a model of ZF where the WUT fails.

Of course, WUT(N) implies WUT. However, the converse is false:

Theorem 5.1.3. There is a model of ZF where the WUT is true but
WUT(N) fails, whence WUT is true but IUT is false.

Proof. For example, see the model constructed in [90, Chapter 5, Problem
24]. O

At this point, we can continue in two different directions.

Theorem 5.1.4. There is a model of ZF where WUT(N) is true but ITUT
is false.

Proof. This is [84, FM model N51]. O

The following is [90, Chapter 8, Problem 5].

Theorem 5.1.5. There is a model of ZF such that ITUT is true and yet UT
fails.

Going back to WUT(N), we note the following result proven in [77]:
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Theorem 5.1.6. There is a model of ZF where WUT(N) is true and yet
UT(N) fails.

Surprisingly, it is not known if there is any implication or lack thereof
between the statements WUT and UT(N).

Finally, we have:

Theorem 5.1.7. There is a model of ZF where UT is true and yet AC fails.
Proof. The basic Cohen model is in fact a model of UT. O

Thus, we really have seen that most of the various existence axioms for
nonprincipal ultrafilters are independent of one another.

We now turn to the notion of idempotent ultrafilters first defined in
Section The proof we gave that idempotent ultrafilters on N exist used
Zorn’s lemma in a seemingly essential way. However, with a more careful
analysis, the following was proven by Di Nasso and Tachtsis [43]:

Theorem 5.1.8. ZF plus UT(R) proves that there exist idempotent ultra-
filters on N.

For this to really be an improvement of the original proof, one needs to
know the following (see [79]):

Theorem 5.1.9. There is a model of ZF where UT(R) is true and yet UT
fails (whence AC fails).

It is seemingly strange to need to use UT(R) to prove a result about
certain kinds of ultrafilters on N. However, what was really used in the Di
Nasso and Tachtsis proof was the existence of a choice function which, to
each filter F on N, associated an ultrafilter & on N extending F. It is shown
in [43| Proposition 3.4] that UT(R) implies the existence of such a choice
function.

The exact strength of the existence of idempotent ultrafilters on N is
unknown. In particular, it is not known if one can replace the assumption
of UT(R) with the weaker hypothesis of UT(N), which is indeed a weaker
hypothesis (see, for example, [104]):

Theorem 5.1.10. There is a model of ZF where UT(N) is true and yet
UT(R) fails.

It is well known (see, for example, [90, Chapter 2, Problem 8]) that in
ZF, AC is equivalent to Tychnoff’s theorem (Theorem B.I1.13). We end this
section by mentioning the following interesting fact:

Theorem 5.1.11. In ZF, UT is equivalent to Tychnoff’s theorem for com-
pact Hausdorff spaces.
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Proof. The proof we gave of Theorem used AC in two places: (1)
to take an ultrafilter extending a given filter, and (2) to choose, for each
sequence in a particular family, an ultralimit of that sequence. However,
the Hausdorffness assumption implies that ultralimits are unique, whence
the second use of AC is not needed and the proof goes through under the
weaker assumption of UT.

We leave the converse as an exercise for the reader. O

Exercise 5.1.12. Finish the proof of the previous theorem by showing that,
in ZF, Tychonoff’s theorem for compact Hausdorff spaces implies UT. (Hint.
Filters on a set X are elements of 22X.)

We remark that some mathematicians are often hesitant about using
ultrafilters as they are “nonconstructive” in the sense that one cannot prove
(without some form of choice) that they exist and that they cannot name a
“concrete” nonprincipal ultrafilter. However, most mathematicians do not
even hesitate to use AC; since UT is strictly weaker than AC, proofs that
use UT should be viewed with less suspicion than those that use the full
strength of AC. Moreover, the fact that UT is equivalent to the statement of
Tychonoff’s theorem for compact Hausdorff spaces further solidifies (in this
author’s biased opinion) that arguments using the existence of nonprincipal
ultrafilters should not be viewed with any sort of prejudice.

5.2. Can there exist a “definable” ultrafilter on N7

Roughly speaking, descriptive set theory is the study of “definable” subsets
of R (and, more generally, Polish spaces, as defined below.) The word de-
finable in the previous sentence is somewhat imprecise and we will consider
some specific formalizations of it throughout this section. The motivation,
however, comes from the fact that the axiom of choice can be used to con-
struct “pathological” subsets of R, such as, for example, sets that are not
Lebesgue measurable. The hope is that if one restricts one’s attention to
“nice” sets, then the pathologies that arise from the axiom of choice should
disappear; e.g., all “nice” sets should be Lebesgue measurable.

Since we saw in the last section that the existence of nonprincipal ul-
trafilters on N is intimately tied up with the axiom of choice (although not
quite equivalent to it), it is natural to expect that there cannot be any non-
principal ultrafilters that are definable when viewed as subsets of 2V (which
is indeed a Polish space). We will see in this section that this intuition is
indeed correct for the most part, although that the situation becomes a lit-
tle murkier for certain notions of definability (and in certain models of set
theory).

We first define the spaces that are the subject of descriptive set theory.
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Definition 5.2.1. A Polish space is a separable topological space that
is moreover completely metrizable, meaning that there is some complete
metric on the space that induces the topology.

Examples 5.2.2. The following spaces are Polish spaces:
(1) R™ for any n > 1.
(2) Baire space NV,

(3) Cantor space 2". This is a compact subspace of Baire space and
is homeomorphic to the usual Cantor set in [0, 1].

Exercise 5.2.3. Prove that the above examples are indeed Polish spaces.

While there are many (many!) interesting examples of Polish spaces, we
will restrict our attention to those given above. We next define the most
basic class of definable sets:

Definition 5.2.4. Given a topological space X, the set of all Borel subsets
of X is the o-algebra generated by the open subsets of X, that is, the
smallest collection of subsets of X containing the open sets and closed under
complementation and countable unions.

We will soon see that no nonprincipal ultrafilter on N can be a Borel
subset of 2Y. First, we want to extend our definition of definable set to
allow for sets that are “almost Borel”. There are actually two ways of
accomplishing this, depending on whether we are speaking about measure
or category.

We first treat the case of measure. Although this can be made much
more general, we stick with the concrete case of Lebesgue measure A on R.
As noted above, Cantor space 2V is homeomorphic to the usual two-thirds
Cantor set in [0, 1]. Moreover, one can show that Lebesgue measure on [0, 1]
restricts to a measure on the two-thirds Cantor set which in fact agrees with
the usual product measure on 2" (after identifying the two spaces).

Definition 5.2.5.

(1) N C R is a null set if there is a Borel set B C R with \(B) =0
such that N C B.

(2) The set of Lebesgue measurable subsets of R is the o-algebra
generated by the Borel sets and the null sets.

Exercise 5.2.6. A C R is Lebesgue measurable if and only if there is a
Borel set B such that AAB is a null set.

We now treat the case of category.
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Definition 5.2.7. Let X be a topological space.

(1) We say that A C X is nowhere dense if the interior of the closure
of X is empty: int(X) = 0.
(2) We say that A C X is meager if it is a countable union of nowhere

dense sets. The complement of a meager sets is called comeager.

(3) The set of Baire measurable subsets of X is the o-algebra gen-
erated by the Borel sets and the meager sets.

Exercise 5.2.8. A C X is Baire measurable if and only if there is a Borel
set B such that AAB is a meager set.

The collections of null sets and meager sets both encompass notions
of “smallness,” whence we can view a Lebesgue measurable set or a Baire
measurable set as a set that is “almost” Borel in that it differs from a Borel
set from a very small set. The precise definition of small is captured by the
following notion dual to that of a filter:

Definition 5.2.9. If X is a set, then Z C P(X) is called an ideal on X if
{X\A : AeT}is afilter on X.

Note that ideals are closed under finite unions. If we demand closure
under countable unions, we arrive at:

Definition 5.2.10. An ideal is called a o-ideal if it is also closed under
countable unions.

Exercise 5.2.11. Prove that the collections of null sets and meager sets are
(possibly improper) o-ideals.
We will need the following fact, which is a special case of the Baire

category theorem:

Fact 5.2.12. If X is a Polish space, then X is not a meager subset of itself.
In other words, no subset of X can be both meager and comeager.

We now move toward the proof that no nonprincipal ultrafilter on N can
be almost Borel. We first need a few more facts.

Definition 5.2.13. A C 2V is a tail set if, whenever (2,)neny € A and
(Yn)nen € 2V are such that z,, = y,, eventually, then (y,)nen € A.

Exercise 5.2.14. If U is a nonprincipal ultrafilter on N, then U (viewed as
a subset of 2V) is a tail set.

Finally, we need the following important facts (see [96]):

Fact 5.2.15 (0-1 laws). Suppose that A C 2V is a tail set.
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(1) If A is Lebesgue measurable, then A\(A) =0 or A(A) = 1.

(2) If A is Baire measurable, then A is either meager or comeager.

We can now prove our first nondefinability result for nonprincipal ultra-
filter on N:

Theorem 5.2.16. IfU is a nonprincipal ultrafilter on N, then U, viewed as
a subset of 2N, is neither Lebesque measurable nor Baire measurable.

Proof. We prove only the assertion for Baire measurability, the assertion
for Lebesgue measurability being nearly identical. Suppose, toward a con-
tradiction, that U is Baire measurable. By Exercise [(.2.14] and Fact B.2.15],
we have that U is either meager or comeager. Let f : 2N — 2N be the
map defined by f(z,) := 1 — z,. In other words, f flips the digits of all
the coordinates. Since U is an ultrafilter, we have that f(U) = 2V \U. As
f is clearly a homeomorphism of 2, we have that I/ is both meager and
comeager, contradicting Fact O

There is a wider class of definable sets beyond the class of Borel sets,
namely the class of projective sets.

Definition 5.2.17. We define, by recursion on n, the classes of 3 and IT}
subsets of Polish spaces as follows. Throughout the definition, X is a Polish
space.

(1) A C X is 3! if there is a Polish space Y and a Borel subset B of
X x Y such that A= {x € X : thereis y € Y such that (z,y) €
B}.

(2) AC X isIILif X\ Ais X}.

(3) AC X is 3L, if there is a Polish space Y and a II} subset B of

X x Y such that A= {x € X : thereisy €Y such that (z,y) €
B}.

For a subset A of a Polish space X, we say that A is projective if it is X1
or IT! for some n. We also define the class AL to consist of those sets which
belong to both 3! and IT!.

In some sense, the class of projective sets is what one gets from the class
of Borel sets if one is allowed to quantify over Polish spaces. In order to get
a picture for this class of sets, we mention the following:

Fact 5.2.18.

(1) The class A} coincides with the class of Borel sets.

(2) For every n, we have £}, UII} C Al ;.
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(3) If X is a perfect Polish space, then for every n, we can find a subset
of X that is ! but not II}.

The projective sets provide a natural class of definable sets properly ex-
tending the class of Borel sets. It is thus natural to wonder if a nonprincipal
ultrafilter on N could be a projective subset of 2V,

The following is one of the central early results in descriptive set theory
(see [96]):

Fact 5.2.19. If X is a Polish space, then every X1 subset and every IT}
subset of X is Baire measurable.

Using the previous fact and Theorem [5.2.16, we have:

Corollary 5.2.20. IfU is a nonprincipal ultrafilter on N, then U is neither
a X1 nor a TI} subset of 2.

Can we say more? Can we go higher in the projective hierarchy? Un-
fortunately not in ZFC:

Fact 5.2.21. The statement “there is a nonprincipal ultrafilter I/ that is a
32 subset of 2" is independent of ZFC.

While the proof of the above fact is beyond the scope of this book, let
us at least roughly indicate why it is true. First, in L (see Appendix [BI),
there is a 3 well-ordering of P(N); this ordering can be used to construct
a nonprincipal ultrafilter 4 on N that is 31. On the other hand, in [129],
Martin and Solovay proved that the statement “every i subset of 2N g
Baire measurable” is consistent with ZFC. It follows from this statement
and Theorem that ZFC cannot prove that there is a nonprincipal
ultrafilter that is a X3 subset of 2.

5.3. The ultrafilter game

Fix a set X and a subset D C XN, We consider a two-player game G(D)
defined as follows. Players I and II take turns playing elements of X: Player
I plays ag € X, then player II responds with a; € X, then player I responds
with as € X, etc.... They play this game for countably many rounds, pro-
ducing a play of the game a = (ag, a1, as,...,) € XN. We say that player I
wins this play of the game if the play of the game a belongs to D; otherwise,
player II wins.

A strategy for player I is, informally speaking, a rule that tells player I
what play to make at a given stage given what moves have been made thus
far in the game. A strategy for player I is called winning if, regardless of
how player II plays, player I follows the strategy, then they are guaranteed to
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win. The notions of strategy and winning strategy for player II are defined
in the analogous way.

We say that D C XN is determined if one of the two players has a
winning strategy for the game G(D). (Note that not both players can have
a winning strategy.)

Using the axiom of choice, one can show that not all sets are determined:

Exercise 5.3.1. Show that there is D C NV that is not determined. (Hint.
“Diagonalize” over all possible strategies.)

Once again, we continue our theme that pathologies occurring due to
the axiom of choice continue to occur if instead we merely consider the
existence of a nonprincipal ultrafilter. First, given an increasing sequence
a = (ag,a1,...) € NN, we define a set A, C N by

o0
A, = U [agn_l,agn) = [O,ao) U [al, CLQ) U [ag, CL4) e,
n=0
where we set a_q := 0 for convenience. Given an ultrafilter &/ on N, we set
Dy € NN to consist of all sequences a € NN such that either:

e ¢ is not strictly increasing and the minimal n such that a,, < a,_1
is odd, or

e ¢ is strictly increasing and A, belongs to U.

Theorem 5.3.2. If U is a nonprincipal ultrafilter on N, then Dy s not
determined.

Proof. We will only show that player II cannot have a winning strategy in
G(Dy) and leave it as an exercise to show that player I also cannot have a
winning strategy.

Suppose, toward a contradiction, that player II has a winning strategy.
Note, in particular, that this strategy forces player II to always play a natural
number strictly larger than player I's previous move. The argument now
proceeds by so-called “strategy stealing”. We consider two runs of the game
being played simultaneously as follows: first, player I plays ap € N and then
II responds with a; € N according to the winning strategy. Now the players
start a second run of the game and player I’s first move af, is actually player
IT’s first move from the first game, that is, aj, = a;. Now player II responds
with a) € N according to their winning strategy. The players now return to
the first game and player I’s next move in this game is player II's first move
from the second game, that is, ag := af, with which player II responds with
as € N according to their winning strategy.

The players continue playing both games in this manner, each time
player I playing player II's previous move from the other game and then
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player II always responding according to their winning strategy. By as-
sumption, player II wins both runs of the game, that is, N\ A, and N\ A,
both belong to U.

The two plays of the game (a,) and (a},) satisfy the equations ag, =
ah, 1 and ah, = agpt1. In particular, for any n, we have a), = anpy1. It
follows that

Aq = U [a/2n—17 azn 0 ,ap) U a2n-1, 2n)
n=0 n=1
= [07 CL()) U U [a/Qm a/2n+1) = [07 ao) U (N \ Aa’)'
n=0

Since [0, ap) is finite and U is nonprincipal, we see that A, € U if and only
if N\ A, € U, contradicting the fact that player II won both games. ([l

Exercise 5.3.3. Complete the proof of Theorem [(.3.2] by showing that
player I cannot have a winning strategy in G(Dy/) when U is nonprincipal.

Definition 5.3.4. The axiom of determinacy (AD) is the axiom that
states that every subset of NV is determined.

As we have just seen, AD is incompatible with both AC and the existence
of nonprincipal ultrafilters on N. At first glance, it might seem strange
to consider an axiom that lies in such drastic contradistinction with AC.
However, by considering axioms of definable determinacy, that is, versions
of the axiom of determinacy that only ask for definable sets to be determined,
a lot of insight into definable subsets of the reals can be drawn.

By a pointclass, we mean some class of subsets of Polish spaces of a
certain kind, e.g., the pointclass of Borel sets, the pointclass of E% sets,
etc.. ..

Definition 5.3.5. If I' is a pointclass, then the axiom of determinacy
for T', denoted AD(T"), states that every subset of NN that belongs to I' is
determined.

We say that a pointclass I' is preserved under continuous substitution if,
whenever f : X — Y is a continuous function between Polish spaces and
A CY belongs to I', then so does f~1(A) C X.

Exercise 5.3.6. Show that the class of Borel sets is closed under continuous
substitution as are the pointclasses X} and II}. for each n > 1.

Exercise 5.3.7. Suppose that I' is a pointclass closed under continuous
substitution. Show that if the nonprincipal ultrafilter U, viewed as a subset
of 2N, belongs to I', then Dy, as a subset of NV, also belongs to T.
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An immediate corollary of the previous exercise and Theorem [5.3.2 is
the following:

Corollary 5.3.8. Suppose that " is a pointclass closed under continuous
substitution. Then ZFC+AD(T") implies that there is no nonprincipal ultra-
filter on N that belongs to I'.

The previous corollary has earlier predecessors:

Fact 5.3.9. Assume that I' is an adequate pointclass and that AD(I") holds.
Then:

(1) (Banach, Mazur, Oxtoby) Every subset of R in I" is Baire measur-
able.

(2) (Mycielski, Swierczkowski) Every subset of R in I' is Lebesgue mea-
surable.

In fact, these results remain true even for sets in the pointclass I*T", which is
the class of sets A C X, X a Polish space, for which there exists Y C X xR
such that Y belongs to I' and A is the projection of Y onto X. (See [96] for
details.)

It is of course natural to wonder for which pointclasses I' is AD(T") a
sensible axiom. It turns out, for the most basic class of definable sets,
namely the Borel sets, definable determinacy is not an axiom at all, but
rather a theorem of ZFC:

Fact 5.3.10 (Martin). AD(A}) is a theorem of ZFC. (See [96, Theorem
20.5] for a proof.)

Combining the previous theorem with Fact [5.3.9 implies that X1 subsets
of R are Baire and Lebesgue measurable, a fact we referred to in the previous
section.

Martin’s theorem cannot be extended to the next level of the projec-
tive hierarchy. Indeed, again using Fact [£.3.9] if AD(II}) were an axiom of
ZFC, then every 32 subset of R would be both Baire and Lebesgue measur-
able; however, we mentioned in the previous section that this latter fact is
independent of ZFC. That being said, if one assumes the existence of a mea-
surable cardinal (a certain kind of large cardinal that we discuss in greater
detail in Chapter [[7), then one can in fact prove AD(IT}). In fact, from
even stronger large cardinal assumptions, one can prove that, in a certain
model called L(R), all sets are determined (whence there are no nonprincipal
ultrafilters at all!).
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5.4. Selective ultrafilters and P-points

In the previous sections, we concerned ourselves with the connection between
the axiom of choice and the existence of nonprincipal ultrafilters on N. In
this section, we will consider the existence of nonprincipal ultrafilters on N
satisfying some extra natural properties. Surprisingly, the existence of such
ultrafilters will be independent of ZFC.

We begin by introducing three kinds of ultrafilters that appear frequently
throughout the literature.

Definition 5.4.1. Let U be a nonprincipal ultrafilter on N. We say that U
is selective if, whenever N = | | A; is a partition with each A; ¢ U, then
there is B € U such that |B N A;| <1 for each i € N.

Note that, if each A; is nonempty in the above definition, then by adding
one element of A; to B in case BN A; = (), we can ensure that |[BN A4;| =1
for each i; in this way, B selects one element of each A;, whence the name.
Here is a useful reformulation of the notion of selective ultrafilter:

Exercise 5.4.2. Suppose that I/ is a nonprincipal ultrafilter on N. Then U
is selective if and only if, whenever f : N — N is a function, then f is either
constant on a set in U or injective on a set in U.

Our next kind of ultrafilter asks us to be able to witness the truth of
Ramsey’s theorem (see Section []]) using an ultrafilter:

Definition 5.4.3. Let U be a nonprincipal ultrafilter on N. We say that U
is Ramsey if, for each k£ € N and each 2-coloring of NI¥I| there is X e U
such that X is homogeneous for the coloring.

We have encountered our final kind of ultrafilter back in Section

Definition 5.4.4. Let U be a nonprincipal ultrafilter on N. We say that U
is minimal if there is no nonprincipal ultrafilter V on N such that V <gpg U.

It turns out that the three kinds of ultrafilters above are actually the
same. We prove this equivalence in the next theorem, along with two other
equivalent formulations:

Theorem 5.4.5. For U a nonprincipal ultrafilter on N, the following are
equivalent:

(1) U is Ramsey.

(2) If R is a binary relation on N satisfying, for each m € N, the prop-

erty that (Un)R(m,n), then there is A € U such that, enumerating
A = (an)nen in increasing order, we have R(ay,any1) for each n.
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(3) U is selective.
(4) U is minimal.

(5) U is quasi-normal: for every family (Ay)nen of members of U,
there is a set A € U such that, for all m,n € A, if m > n, then
meE Ay.

Proof. (1) implies (2): Fix R as in (2) and define a coloring ¢ : NI — {0,1}
such that ¢({m,n}) = 1 if and only if R(m,n) (and m < n). Since U is
Ramsey, there is A € U homogeneous for ¢; by assumption, A must be
homogeneous of color 1, whence this A is as desired.

(2) implies (3): Take a partition N = | |?°) A; with each A; ¢ U and
define a binary relation R on N by R(m,n) if and only if there is k < [
with m € A, and n € A;. Setting B; := (,; A%, we see that B; € U and
every element of A; is R-related to every element of B; (as the A;’s form
a partition). Thus, by (2), there is B € U such that, when enumerated in
increasing order as (by)nen, we have R(by, by11) for every ¢ € N. It is clear
that B is as desired in the conclusion of selective ultrafilter.

(3) implies (4): Suppose that U is selective and let f : N — N be a
function that is not constant on a U-large set (so f(U) is not principal). We
must show that f(U) =rx U. However, Exercise implies that there is
B € U such that f [ B is injective, whence f(U) =rx U by Corollary

(4) implies (5): Suppose that ¢ is minimal and suppose that (A, )pen
is a family of elements of &. We are looking for A € U such that, for all
z,y € A, if z < y, then y € A,. Without loss of generality, we may assume
that (,cn Az = 0. Thus, we may define f : N — N by f(y) equals the least =
such that y ¢ A,. Since each A, € U, it follows that f cannot be constant on
any set in U, whence, by minimality, there is B € U such that f is injective on
B. Let g : N — N be defined by g(z) = max(max{y € B : f(y) < z},z+1),
which is a legitimate definition since f is injective on B. By construction,
g is increasing, g(xz) > z, and, for y € B, if y > g(z), then f(y) > =z,
whence y € A,. Recursively define a sequence (ay,)nen by setting ag = 0
and an4+1 = g(ay). Define h : N — N by h(y) equals the least n such that
y < ay. Note that h is not constant on any set in U (as h constant on a
set implies that the set is bounded), whence, by minimality, h is injective
on some C' € U. To create some space, we take A € U such that A C BNC
and h(A) contains no two consecutive integers. We claim that this A is as
desired. Suppose that z,y € A and = < y. Since h injective on C, we have
that h(xz) < h(y), whence h(z) + 1 < h(y) (since x,y € A). Then

T < ap(z) = 9(2) < g(an()) = Wna)+1-
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Since h(z) + 1 < h(y), we have that a1 < y, whence g(x) < y; since
y € B, it follows from our earlier observation that y € A,.

(5) implies (1): We proceed by induction on k, the case k = 1 be-
ing immediate from the definition of ultrafilter. So suppose that NF+1 ig
partitioned into P; and P,. For each x € N and (y1,...,yx) € N say
that Py(z)(y1,...,yx) holds precisely when = < y; and Pi(z,y1,...,Yk);
otherwise, Py(z)(y1,...,yx) holds. By induction, for each x € N, there is
Az € U and i(x) € {1,2} such that, for all (yi,...,yx) € A;[Ek], we have
that (y1,...,yr) € Pi)(x). Without loss of generality, we may assume
that y > x for all y € A,; making this assumption has the nice bene-
fit of yielding that (y1,...,yx) € [A]* implies that (z,y1,...,yx) € Pi(z)-
Let A € U witness quasi-normality of U for the family (A;).eny and let
i € {1,2} and B € U be such that i(z) is constantly i on B. It follows
that, for (z,y1,...,yx) € (AN B)[k“], we have that (yi,...,yx) € A;[Ek]
(by quasi-normality), whence (x,y1,...,yx) € Py, = P; (since z € B), as
desired. O

From now on, we refer to the ultrafilters in the above theorem as selective
(for the sake of definiteness). We now turn to the question of the existence
of selective ultrafilters. We first need a bit of terminology and an exercise.

Given A, B C N, we write A C* B if A\ B is finite. (Thus, A4 is “almost
contained” in B.)

Exercise 5.4.6. Prove that C* is a transitive relation on subsets of N: if
C C*BC* A, then C C* A.

Given a family (B;);cs of subsets of N, a pseudo-intersection of the
family is a set A such that A C* B; for all i € I.

Exercise 5.4.7. Suppose that a is a countable ordinal and (Bg)s<q is a
family of infinite subsets of N such that Bg C* B, for all v < 8 < .. Prove
that the family (B3)g<q has an infinite pseudo-intersection.

Theorem 5.4.8. If CH holds, then there exists a selective ultrafilter.

Proof. By CH, we may enumerate all countable partitions of N (as in the
definition of selective ultrafilter) by (Aa)a<w,. We now construct a sequence
(Xa)a<w, of infinite subsets of N so that X3 C* X, for all & < f < w; as
follows. Set Xy := N. Suppose that X, has been constructed. If there is
A € A, for which X, N A is infinite, then set X,11 := X, N A for some
such A. Otherwise, take infinite X411 C X, such that |X,+1 N A| <1 for
all A€ A,. Note that X,41 C* Xp for all § < o by Exercise .46l Assume
now that « is a limit ordinal and that X3 has been defined for all § < a in
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such a way that X, C* X3 for all 8 < v < . We now take X, to be an
infinite pseudo-intersection of (Xg)g<q; this is possible by Exercise 5.4.7

Now that (X4 )a<w, has been defined, we note that (X, )a<w, has the FIP
and in fact each finite intersection has infinitely many elements, whence, by
Exercise [LT.19] there is a nonprincipal ultrafilter U generated by the family
(Xa)a<w1 .

We claim that U is selective. Indeed, first note that, since each X, is
infinite, we have that U is nonprincipal. To see the main defining property
of being selective, consider a partition N = | |/ A; into countably many
sets A; with A; ¢ U for each i. Take o < w; such that this partition is A,.
If X, N A were infinite for some A € A,, then X411 = X,NA for such an A;
since Xq+1 € U, it would follow that A € U, yielding a contradiction. Thus,
XoNAis finite for each A € A,41, whence, by construction, |X,+1NA| <1
for all A € A,4+1. Since X441 € U, we have that U is selective. O

As a result, the statement “there is a selective ultrafilter on N” is con-
sistent with ZFC. We will soon see that it is also consistent that selective
ultrafilters do not exist. In fact, we will see that it is consistent that there are
no ultrafilters satisfying the following weakening of the notion of selectivity:

Definition 5.4.9. A nonprincipal ultrafilter i on N is weakly selective if,
whenever N = | |72 A; is a partition with each A; ¢ U, then there is B € U
such that B N A; is finite for each ¢ € N.

Clearly, a selective ultrafilter is weakly selective, whence CH implies that
weakly selective ultrafilters exist.

Remark 5.4.10. In general, being weakly selective is a genuine weakening
of being selective. For example, in [132], Mathias proved that, under CH,
there is a weakly selective ultrafilter that is not selective. In [135], Miller
proved that, in certain models of set theory, there are weakly selective ultra-
filters but no selective ultrafilters. On the other hand, it can happen that, in
certain models of set theory, the two notions coincide. In fact, in [161] Sec-
tion XVIII.4], Shelah constructed a model where there exists exactly one
weakly selective ultrafilter (up to isomorphism), which is, in fact, actually
selective.

The following definition is standard in topology:

Definition 5.4.11. If X is a topological space, then x € X is a P-point
if, for every countable family (U, )nen of neighborhoods of z, we have that
(Mnen Un is also a neighborhood of .

Theorem 5.4.12. For a nonprincipal ultrafilter U on N, the following are
equivalent:
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(1) U is weakly selective.
(2) U is a P-point of SN\ N.

Proof. In this proof, we slightly abuse notation and write Uy for those
elements of SN\ N that contain A. (In other words, we are identifying U4
with Ug N (AN '\ N).)

First assume that U is weakly selective. We show that U is a P-point.
Notice that it suffices to assume that, whenever each U, is a basic open
neighborhood of U, we have that (), Un is also a neighborhood of U.
Take A, C N such that U, = Uy,. Since U € U, for each n, we have that
A¢ ¢ U. Since U is weakly selective, there is B € U such that BN A¢ is finite
for all n. Set U := Ug. Then U4 € U. We claim that U C U, for each n.
Indeed, if V € U, then B € V; since B N Af, is finite and V is nonprincipal,
we have that AS ¢ V, so V € U, as desired.

Now suppose that U/ is a P-point and that A,, ¢ U for each n. Let U, :=
Uac be an open neighborhood of ¢. Take B € U such that Up C N, Un.
If BN A, were infinite, then there would be a nonprincipal ultrafilter V
containing B N A,,, whence V € Up \ U,, a contradiction. O

From now on, we refer to nonprincipal ultrafilters on N that are P-points
of SN\ N as simply P-points.

Exercise 5.4.13. If U is a P-point and V is a nonprincipal ultrafilter on N
such that V <gpg U, then V is also a P-point.

The original interest in P-point ultrafilters was that they were used to
settle a question about the topological space SN\ N. Before explaining this,
we need an exercise:

Exercise 5.4.14. Suppose that X is a Hausdorff topological space such
that every point is a P-point. Prove that:

(1) Every countable union of closed sets is closed.

(2) Every countable set is discrete.

Conclude that if X is also compact, then it is finite.

The following is immediate from the previous exercise applied to SN\ N:

Corollary 5.4.15. Not every nonprincipal ultrafilter on N is a P-point.

One can actually describe a nonprincipal ultrafilter on N that is not a
P-point:

Exercise 5.4.16. Let (X,,),en be a partition of N into infinitely many
infinite sets. Set F to be those Z C N such that, for all but finitely many
n € N, we have that X,, C* Z. Prove that:
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(1) Fis a filter on N containing the Frechet filter.
(2) No ultrafilter extending F is a P-point.

Corollary 5.4.17 (Kunen [112]). Assuming CH, SN \ N is not point-
homogeneous, that is, there are U,V € BN\ N for which there does not
exist a self-homeomorphism o of BN\ N with o(U) =V .

Proof. Let U € SN\N be a P-point. Observe that, for any homeomorphism
o of BN\N, o(U) is also a P-point. Consequently, by Corollary 5.4.15] there
is some V € N\ N that is not of the form o (i) for some homeomorphism
o of SN\ N. O

In [61], Frolik obtained the same conclusion as in the previous corollary
without assuming CH.

As shown above, it is consistent with ZFC that weakly selective ultra-
filters exist. On the other hand, we have the following difficult theorem of
Shelah [159] VI, §4]:

Theorem 5.4.18 (Shelah). The existence of a weakly selective ultrafilter
cannot be proven in ZFC.

We conclude this section by describing an interesting connection between
weakly selective ultrafilters and the idempotent ultrafilters introduced in
Section Recall that every element of an idempotent ultrafilter on N is
an FS-set, meaning that it contains FS(c) for some sequence ¢ = (¢, )pen of
distinct elements of N. (Technically speaking, we worked with ultrafilters
on Z, but the exact same analysis works for ultrafilters on N.) Let us call an
ultrafilter on N for which every member is an FS-set a weakly summable
ultrafilter. (By Corollary L.2.13] these are precisely the ultrafilters that are
in the closure of the set of idempotent ultrafilters.) It is natural to consider
the following variation:

Definition 5.4.19. An ultrafilter ¢ on N is called strongly summable if
for every A € U, there is a sequence ¢ = (¢y)nen of distinct elements of N
such that FS(c) C A and FS(c) € U.

Surprisingly, this seemingly harmless improvement leads us to a kind of
ultrafilter that cannot be proven to exist in ZFC:

Theorem 5.4.20. The existence of a strongly summable ultrafilter implies
the existence of a weakly selective ultrafilter. Consequently, the existence of
strongly summable ultrafilters cannot be proven in ZFC.

Remark 5.4.21. It is, on the other hand, consistent with ZFC that strongly
summable ultrafilters exist; see [83, Theorem 12.29].
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We sketch a proof of Theorem [5.4.20now. The proof goes via a different
kind of ultrafilter. First, if F = (F},)nen is a sequence of subsets of N, we
write

FU(]:)::{U F, : G C N finite }
ned

Definition 5.4.22. I/ is a union ultrafilter if it is a nonprincipal ultrafilter
on P¢(N) and, for each A € U, there is a sequence F = (F},),en of pairwise
disjoint elements of Pf(N) such that FU(F) C A and FU(F) € U.

We will need the following fact [83, Theorems 12.31 and 12.35]:

Theorem 5.4.23. A strongly summable ultrafilter exists if and only if a
union ultrafilter exists.

The proof of the previous theorem is not difficult and involves some
arithmetic trickery. Thus, we are left to show:

Theorem 5.4.24. If a union ultrafilter exists, then a weakly selective ultra-
filter exists.

Proof. Let ¢ be a union ultrafilter. Let max : P;(N) — N be the usual
maximum function and consider its unique continuous extension [ max :

BPs(N) — BN. We show that V := (f max)(U) is a P-point.

We first observe that V is nonprincipal: if ¥V = U,, for some n € N, then
max 1 ({n}) € U. Since max~!({n}) is a finite set (there are only finitely
many finite sets whose maximum is n), this would imply that ¢/ is principal,
leading to a contradiction.

In the remainder of the proof, we abuse notation by writing, for any
A CN, Uy instead of Ug N (AN '\ N).

We now check the defining property of being a P-point. Fix a sequence
(Ap)nen from V; we seek B € V such that Ug C (72, Ua,. Without loss of
generality, we may suppose that Ag =N, A, 11 C A,,, and n ¢ A,,1; for all
n. These conditions ensure that (), .y An = 0, which allows us to consider
f: N — N given by

neN

f(z) :=max{neN : z € A,}.
Set B:={F € P¢(N) : f(maxF) < min F}.
Claim. B¢ U.
Proof of Claim. Suppose, toward a contradiction, that B € . Since U is
a union ultrafilter, there is F = (F})nen, a collection of pairwise disjoint

elements of P¢(N), such that FU(F) € B and FU(F) € Y. Without loss
of generality, we may suppose that min ¥, < min F,;; for all n. Note that
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{max F,, : n €N} ={maxG : G € FU(F)} € V as FU(F) € U. Now pick
k € N such that, for all n > k, we have max F;,, > max Fj. It then follows
that {max F,, : n >k} € V. Set [ := min Fy. Then A;; € V, whence there
is n > k such that max F,, € A;;1. But then

[+ 1< f(max Fp,) = f(max(F, U Fy)) < min(F, U Fy) = min Fy = [,

a contradiction.

By the Claim, we have that B¢ € U. Once again, take F = (F},)nen, a
collection of pairwise disjoint elements of P¢(N) with min F;, < min F;,; for
all n, such that FU(F) C B¢ and FU(F) € U. Set B := {max F,, : n€ N} €
V; we claim that this B is as desired. Indeed, suppose that n and k are such
that max F,, € B\ A;. We then have that n < min F),, < f(maxF},) (this
latter fact following from the fact that F,, € B¢). However, f(max F,) < k
since max F,, ¢ Ai. We thus see that if max F,, € B\ Ag, then n < k.
Consequently, |B\ Ag| < k whence B C* Ay, for each k and thus Ug C Uy,
as desired. O

5.5. Notes and references

A great reference for the various weakenings of the axiom of choice, the
connections with ultrafilters, and an introduction to forcing with a perspec-
tive on such statements is Jech’s book [90]. The fact that there can be no
measurable ultrafilter on N is essentially due to Sierpinski [163]. A more
thorough treatment of descriptive set theory can be found in Kechris’s book
[96]. We stumbled upon the ultrafilter game in a mathstackexchange of
Noah Schweber

https://mathoverflow.net/questions/109739/determinacy-and-
definable-ultrafilters.

A nice article about large cardinals and determinacy (and their philosophical
implications) can be found at

https://plato.stanford.edu/entries/large-cardinals-
determinacy/.

Our treatment of Ramsey ultrafilters and P-points is a mixture of Blass’s
thesis [16] and Booth’s article [18], the latter of which contains other inter-
esting reformulations of these notions. Our proof of Theorem [5.4.8] is taken
from [89, Theorem 7.8].
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Chapter 6

Classical ultraproducts

In this chapter, we introduce the fundamental construction of taking the
ultraproduct of a family of structures in a given first-order language. In
Section[6.1] we motivate the idea behind the construction by considering the
Stone duality theorem from Section [B.4] applied to the Lindenbaum algebra
of a first-order language. In Section [6.2] we undertake the construction of
an ultraproduct of a family of sets and then extend the construction to
a family of structures in a given language in Section [6.3 In Section
we prove the Fundamental Theorem of Ultraproducts, otherwise known as
Lo$’s theorem, which states that truth in an ultraproduct is given by almost-
everywhere truth in the individual structures. In Section [6.5, we revisit the
discussion from Section [B.]] connecting the ultrafilter theorem and the axiom
of choice, now using Lo$’s theorem and the compactness theorem as two new
players in the story. In Section [6.6] we consider the question of when an
ultrapower of a set is the same as the set itself, leading to the notion of
(in)complete ultrafilters. Section re-examines the Rudin-Keisler order
introduced in Section through the lens of embeddings of ultrapowers of
structures. Section presents some results concerning the cardinalities
of ultraproducts, while Section considers the possibility of iterating the
ultrapower construction. In Section [6.10] we consider a category-theoretic
take on the ultraproduct construction, allowing us to generalize beyond the
case of first-order structures as well as to consider a dual version of the
construction known as the ultracoproduct construction. Finally, in Section
[6.17], we present the proof of the Feferman-Vaught theorem, which is a result
in the spirit of Lo§’s theorem connecting truth in a reduced product with
truth in the constituent structures.
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6.1. Motivating the definition of ultraproducts

Fix a first-order language £. The collection of all £-sentences very closely
resembles a Boolean algebra, with the Boolean operations being interpreted
by conjunction, disjunction, and negation. However, it is not entirely clear
which sentences should play the roles of 0 and 1. For example, since
Va(x = z) is true in all L-structures, perhaps it should play the role of 1. But
then again, the sentence Jz(z = x) possesses the same feature. This leads
us to consider not the set of L-sentences as a Boolean algebra, but rather
equivalence classes [o] of L-sentences modulo the notion of logical equiva-
lence, where L-sentences o and 7 are logically equivalent if M |= (o > 1) for
all L-structures M. The operations of conjunction, disjunction, and nega-
tion yield well-defined operations on the equivalence classes and it is readily
verified that the resulting structure is indeed a Boolean algebra, called the
Lindenbaum algebra for £, denoted B.

Exercise 6.1.1. Check all of the assertions made in the previous paragraph.

The Stone space S(B) of B, is essentially the same as the set of com-
plete L-theories. More precisely, given an ultrafilter &/ on B,, the set
Ty = {o : [o] € U} is readily verified to be a complete L-theory. Con-
versely, given any complete L-theory T, the set {[o] : o € T'} is an ultrafilter
on B,. In what follows, we will blur the distinction between these two sets
and simply consider elements of S(B.) as complete L-theories. In this way,
one obtains a compact topology on the set of complete L-theories whose
basic open sets are those of the form U, :={T' € S(B.) : o € T}.

Since S(B) is a compact Hausdorff space, given any family (7;);c; from
S(B,) and ultrafilter U on I, we can consider the complete £-theory limy, T5,
which is characterized by the property that, given any £L-sentence o, we have
o € limy T; if and only if o € T; for U-almost all 7. Said differently, given
models M; = T; and an L-structure M, we have that M |= limy, T; if and
only if, for any L-sentence o, if M; = o for U-almost all i, then M = o.
Any such M can be considered a U-ultralimit of the L-structures M;.

We now ask the question: given a family (M;);e; of L-structures
and an ultrafilter & on I, how can we construct some model limy; M; of
limys Th(M;), where Th(M;) denotes the complete theory of M; as defined
in Definition [AZ2.9 (The notation lim;; M, is not any sort of official nota-
tion, but is merely a notation that we are using for the current discussion.)
The idea in constructing lim; M; that eventually will work comes about by
asking us to strengthen the connection between the model limy; M; of the
limiting theory and the original family (M;);c; of models by considering
formulae with parameters rather than just sentences. For example, given an
L-formula ¢(z) and elements a(i) € M;, if M; = ¢(a(i)) for U-almost all 7,
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then the desired structure limy; M; should behave as if this is true as well.
But what does that even mean?!? Such an assertion somehow implies that
the structure limy; M; has access to the element a € Hiel M;.

Based on the last sentence of the previous paragraph, one might wonder
if some direct product construction might yield the desired model. However,
this approach can be quickly dismissed:

Example 6.1.2. Suppose that £ = {-}, where - is a binary function symbol.
Suppose that, for each n € N, G, is a group and that G, is abelian for n > 0
while Gy is not abelian. Then [], .y Gn | J23y(zy # yx). However, if U is
any nonprincipal ultrafilter on N, then G,, = -3x3y(zy # yz) for U-almost
all n.

The issue with the direct product construction is that it pays too much
attention to what happens in particular structures. It turns out, however,
that a modification of the direct product construction that only keeps track
of what happens on a U-large set of coordinates will indeed yield the desired
result.

Returning to our earlier idea, consider the formula ¢(z,y) that is simply
r = y and two elements a,b € [[;c; M;. If M; |= a(i) = b(i) for U-almost
all ¢, then we want our structure lim;; M; to also believe this is the case.
In other words, the (possibly) distinct elements a,b € [[;c; M; should be
identified in the model we wish to construct. This quotient of the cartesian
product is known as the ultraproduct of the family (M;);c; with respect
to the ultrafilter U and is the subject of the next section. In Section [6.3]
we show that this ultraproduct of sets is naturally the universe of an L-
structure, called the ultraproduct of the family (M;);c; with respect to U,
which will indeed be the structure lim; M; we have been searching for.

6.2. Ultraproducts of sets

In this section, we carry out the first part of the plan laid out at the end of
the previous section. Fix a family (M;);cr of sets and a filter F on I. We

define a relation ~r on the cartesian product [[,.; M; by declaring
a~rbe{icl : a(i)=0b(i)} € F.

In other words, a ~r b holds when a and b agree on an F-large set of
coordinates.

Example 6.2.1. Suppose that F = {I}. Then a ~x b if and only if a = b.

Example 6.2.2. Suppose that F = U}, the principal ultrafilter generated
by j. Then a ~x b if and only if a(j) = b(j).
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The next exercise is integral in what is to follow; it simply uses the
axioms for being a filter.

Exercise 6.2.3. Prove that ~7 is an equivalence relation on [[;.; M;.

We denote the ~z-equivalence class of f by [a]r (or sometimes simply
[a] if F is clear from context).

Definition 6.2.4. The reduced product of the family (M;);c; with re-
spect to the filter F is the set of equivalence classes [a]r and is denoted
by [[-M;. When F is an ultrafilter, we refer to the reduced produced as
an ultraproduct. When each M; = M for some fixed set M, we refer to
the reduced product (resp., ultraproduct) as the reduced power (resp.,
ultrapower) of the set M with respect to M, denoted M7 (resp., Mu).

Example 6.2.5. By Example[6.2.1], when F = {I}, we have that [a]r = {a}
for each a € [[;c; M;, whence [[» M; = [[,c; M; (after identifying [a] 7 with
a itself).

Example 6.2.6. When F = U;, then the map [a]y; — a(j) is a bijection
between HU], M; and M;.

Remark 6.2.7. Recall from Exercise[L. T.9that ultrafilters on I are the same
thing as {0, 1}-valued finitely additive probability measures on I. Thus, the
ultrapower MY is the result of considering the set of functions I — M and
identifying two such functions if they agree on a set of measure 1 (in the
sense of p1z¢). This procedure is very common in measure theory, e.g., in the
study of LP-spaces.

For reasons that will become clear in Section [6.4], ultraproducts are a
much more useful tool than arbitrary reduced products. In the rest of this
section (and essentially the rest of this book with the exception of Section
[6.11]), we restrict our attention to ultraproducts and ultrapowers.

Given a set M, an element x € M, and an index set I, we let a, :
I — M be the function that is constantly equal to x. If we are also given
an ultrafilter & on I, we then have a function d : M — MY given by
d(x) := [az)u-
Exercise 6.2.8. Prove that d : M — MY is injective.

Definition 6.2.9. The function d above is referred to as the diagonal
embedding of M into its ultrapower MY.

In the remainder of this book, we often identify M with its image in MY
and view M as literally contained in its ultrapowers. For applications, we
usually want ultrapowers to be bigger (and usually much bigger) than the
original sets themselves. In other words, we do not want d to be onto. We
will characterize when this happens in Section
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6.3. Ultraproducts of structures

Suppose now that we have a family (M;);er of L-structures and a filter F
on I. We set N := [[» M;, the reduced product of the underlying universes
with respect to F. We would like to make N the underlying universe of an
L-structure N in a natural way.

When F := {I}, N is simply the direct product of the family (M;);er,
and in many algebraic settings, the natural structure to put on the direct
product is simply that of pointwise operations. We would like to take our
cue from this particular instance of the reduced product and define the inter-
pretation of the symbols from £ in N to be those induced by the pointwise
operations. For this to work, we need to know that this is independent of
representatives:

Exercise 6.3.1. Suppose that R is an n-ary relation symbol from £ and that
F' is an n-ary function symbol from £. Suppose that a1,...,a,,b1,...,b, €
[Lic; M; are such that a; ~x b; for all i = 1,...,n. Prove that:

(1) {i el : (ar(i),...,an(i)) € RMi} € F if and only if {i € I
(by(i),...,by(i)) € RMi} € F.
(2) {iel : FMi(ay(i),...,an(i)) = FMi(by(3),...,ba(i))} € F.

By the previous exercise, we are entitled to consider the structure N
whose underlying universe is N and which interprets symbols as follows:
Suppose that [a1]7,...,[a,]Fr € N.

e If R is an n-ary relation symbol in £, then ([a1]7, ..., [an]7) € RV
if and only if

{iel : RMi(a1(i),...,a,(i))} € F.

e If F'is an n-ary function symbol in £, then FN([al];, o lan]F) =
[b] 7, where b € N satisfies b(i) := FMi(ay(i),. .., an(i)).

Definition 6.3.2. The structure N defined above is referred to as the re-
duced product of the family (M;);cs of structures and is denoted [] » M;.
One defines ultraproducts, reduced powers, and ultrapowers of struc-
tures analogously as in Definition

Example 6.3.3. If F = {I}, then the reduced product of the family (M;);er
is referred to as the direct product of the structures.

Example 6.3.4. If 7 = U;, then the bijection [a]y, — a(j) yields an
isomorphism between the ultraproduct Huj M and the structure M.

Exercise 6.3.5. Show that the diagonal embedding d : M — MY yields an
embedding of L-structures d : M — MY,
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In some algebraic cases, the reduced product can be rephrased in alge-
braic terms:

Exercise 6.3.6. Suppose that (G;);er is a family of groups and F is a filter
on I. Let

Nr:={a€ HGi c{iel : ai)=eqg,} € F}.
i€l
Show that N is a normal subgroup of [[,.; G; and [[,.; Gi/Nr = [[r G;
(as structures in the language of groups). Conclude that []r G; is a group.

For the next exercise, we recall the notion of induced ultrafilter from
Exercise [[L1.12

Exercise 6.3.7. Suppose that U is an ultrafilter on I and J € U. Show
that the map
lalu = [a | Tuns - [JMi = T M
u unJ
is an isomorphism.

By the previous exercise and Exercise [L1.22] in connection with ul-
traproducts, one may essentially always assume that one is working with
uniform ultrafilters.

The following simple exercise can be quite useful in various situations
(see, for example, Example R.6.5)); it simply says that taking ultraproducts
commutes with taking reducts.

Exercise 6.3.8. Suppose that (M;);cr is a family of L-structures, Lo C L
a sublanguage, and U an ultrafilter on I. Prove that the identity map
[T, M; — 1, M; yields an isomorphism ([[,, M;) | Lo = [T, (M | Lo).

6.4. Los’s theorem

In this section, we prove the principal result explaining the connection be-
tween truth in ultraproducts and truth in the individual models. This the-
orem is called Lo$’s theorem or sometimes the Fundamental Theorem
of Ultraproducts and is the connection alluded to in the discussion in
Section 1.

To motivate this theorem and why it is specific to ultraproducts (rather
than arbitrary reduced products), let us consider an example.

Suppoose that (K;)icr is a family of fields. In a first course in algebra,
one encounters the sad fact that the direct product [];.; K; is no longer a
field (although it is still a commutative ring with unity). Indeed, if ig € I is
a fixed index and one considers the element a € [[,.; K; for which a(i) = 1
for all i # i and a(ip) = 0, then a has no multiplicative inverse in [ [, ; K;.
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In this example, a “bad” phenomenon in one coordinate ruined the pos-
sibility that the corresponding element of the direct product could be invert-
ible. However, from the point of view of an ultraproduct, such an isolated
occurrence would have no effect on the corresonding element of the ultra-
product. In fact, the ultraproduct [[,, K; is a field! Let us check only the
fact that every nonzero entry has a multiplicative inverse. Suppose that
la]u € [[ K; is nonzero. This means that a(i) € K; \ {0} for ¢/-almost
all i € I. For these 4, set b(i) := a(i)~!; for the U-small set of i for which
a(i) = 0, define b(i) € K; arbitrarily. It follows that a(i)b(i) = 1 for U-
almost all i, whence [a]y - [b]zs = [1]y and [b] is the multiplicative inverse
of [a]y.

Lo$’s theorem provides an explanation for the previous example and
many other applications of ultraproducts throughout mathematics: if the
structures involved all satisfy some particular first-order property, then so
will the ultraproduct.

Theorem 6.4.1 (Lo$’s theorem). Suppose that (M;)icr is a family of L-
structures and U is an ultrafilter on I. Further suppose that ¢(x1,...,Tm)
is an L-formula and [a1]y, - .., [am]u € [1y Mi. Then

[TM: = ellanlu. - lamlu) < i€ I« M = p(ai(i),. .. am(i)} €U.
u

Proof. We proceed by induction on the complexity of ¢. Observe that the
statement of Los§’s theorem when ¢ is atomic follows immediately from the
definition of interpretations in ultraproducts. (Exercise.)

We now assume that ¢ = —) and that the theorem holds for ¥. We
then have that the following statements are equivalent:

(1) Ty Mi = ella]us, - - - [am]u)
(2) [Ty Mi = d([ar]us - - -, [am]u)
B){iel : MiEY(ai(i),...,am(i)} ¢U
4) {iel : M;E=plai(i),...,am(i))} €U

The equivalence between (2) and (3) follows from the induction hypothesis
applied to ¢ while the equivalence between (3) and (4) follows from the fact
that U is an ultrafilter (rather than just a filter).

We now assume that ¢ = ¥ A 6 and that the theorem holds for
and 6. First assume that [[,, M; E o([ai]u,-- -, [am]u), so [[, Mi =
Y(latlus - - [am]u) and [[,; M = 0(la1]u, - - -, [am]u). By induction, each
of the sets Xy := {i € I : M; = ¥(a1(i),...,am(i))} and Xy := {i €
I : M; E 0(ai(i),...,am(i))} belong to U. Since {i € I : M; E
(ai(i),...,an(i))} is precisely the intersection X,,NXy, we are finished with
this direction. Conversely, assume that {i € I : M; = p(ai1(i),...,am(i))}
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belongs to U. Since this set is contained in X, and X,, we can con-
clude that each of those sets belong to U. It follows by induction that
[Ty M = ¥(a]us---,lamlu) and T, Mi = 0(la1]u, - - -, [am]u), whence
[Ty Mi b= e(laa]u - - [am]u)-

We now finish by dealing with the case that ¢ is Jyi(Z,y) and that the
theorem holds for ¢. First assume that [[,, M; = ¢([ailu, .., [am]u). It
follows that there is [b]y € [[;, M; such that

[T M b vlailun - famlu. B,
u

whence by induction, {i € I : M; = ¥(ai1(i),...,am(i),b(7))} belongs to
U. Since the latter set is included in {i € I : M; | p(ai(i),...,am (7))},
we are finished with this direction. Conversely, suppose that {i € I

M = p(ai(i),...,am(i))} € U. For each i in that set, choose b; € M; such
that M; = ¥(a1(3),...,am(i),b(:)). For the other (U-small set of) i, let
b(i) € M; be arbitrary. Then {i € I : M; =¥ (a1(i),...,am(i),b(i))} € U,
so by induction [[,, M; = ¥ ([a1]u, - - -, [am]u, [blu), which of course implies
[ Mi b= (latlies- - [amua): 0

Remark 6.4.2. We note that in the proof of the existential case above, we
used the axiom of choice to pick witnesses to the existential statements in
each of the models for which that existential statement was true. In Section
6.5 we will go further into the connection between the axiom of choice and
Lo$’s theorem and show that this use of choice is unavoidable.

Exercise 6.4.3. Show that the diagonal embedding d : M — MY is an
elementary embedding.

It is worth singling out the special case of Lo$’s theorem for sentences:
Corollary 6.4.4. Suppose that (M;)icr is a family of L-structures and U

is an ultrafilter on I. Further suppose that o is an L-sentence. Then

HMZ- FEoeliel : M;Eo}tel.
u

The previous corollary in particular implies that
Th i | = lim Th(M;

in the Stone space S(B.) as discussed in Section 1.

Exercise 6.4.5. Suppose that, for each i € I, f; : M; — N is an ele-
mentary embedding. Further suppose that U is an ultrafilter on I. Prove
that the ultraproduct embedding [],, fi : [[,, M:i — [[, /i defined by
(I1y fi)([alu) = [blu, where b(i) := fi(a(i)), is an elementary embedding.
In particular, if M; < N for all i € I, then [],, M; < [[,,N:.
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Using Lo$’s theorem, we can fulfill a promise made in Section [4.1k

Theorem 6.4.6 (Ramsey’s theorem, finite version). Givenn,k,l € N, there
is m € N such that whenever X is a set with |X| > m and
X[k = |_|i:1 X; is a partition of XF into | pieces, there is Y C X with
Y| >n and i€ {1,...,1} such that Y¥ C X;.

Proof. For notational simplicity, we assume that k =1 = 2. (The proof of
the general case is no more complicated, just notationally messier.) Suppose,
toward a contradiction, that no such m exists. Then for each m € N, we may
find a finite set X (m) with | X (m)| > m and a partition X (m)!? = X;(m)U
Xa(m) such that there is no Y C X (m) with |Y| > n homogeneous for the
partition. Let I/ be any nonprincipal ultrafilter on N and let Z := [[,, X (m).
Note that Z is infinite. We define a partition Z 2l = 7, U Zy as follows. If
{[a)u, [blu} € Z12, then we have that {a(m),b(m)} € X (m)P? for U-almost
all m. There is then a unique ¢ € {1, 2} such that {a(m),b(m)} € X;(m) for
U-almost all m, and then we declare {[a]y, [b]y} € Z; for this i.

By the infinite version of Ramsey’s theorem (Theorem [4.1.7]), there is
an infinite set Y C Z homogeneous for this coloring, say, without loss of
generality, that Y C Z;. Fix distinct elements [a1]y, ..., [an]y from Y.
It follows that there is a U-large set of m such that aj(m),...,an(m) are
distinct elements of X (m) such that {a;(m),a;(m)} € Xi(m) forall 1 <i <
7 < n, yielding the desired contradiction. (I

Exercise 6.4.7. Explain exactly how Los’s theorem was used in the previous
proof.

Another nice application of Lo$’s theorem is an ultraproduct proof of
the compactness theorem:

Theorem 6.4.8 (Compactness theorem). If T' is a finitely satisfiable set of
L-sentences, then T is satisfiable.

Exercise 6.4.9. Prove the compactness theorem directly from Lo$’s the-
orem by finding a suitable ultrafilter & on I := P¢(T') such that, letting
Ma = A for each A € I, we have [[,, Ma ET.

This proof of the compactness theorem used AC via Lo$’s theorem. In
the next section, we offer a different proof of the compactness theorem that
reduces the use of AC to UT.

6.5. The ultrafilter theorem and the axiom of choice: Part I1

We return to our study of the connection between AC and UT from Section
5.1 and show how the two new characters, Los’s theorem (Lo$) and the
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compactness theorem (CT), are connected. Our first main result is the
following:

Theorem 6.5.1. In ZF, the following are equivalent:

(1) For every Boolean algebra B, S(B) is compact.
(2) CT.
(3) UT.

Before proving this result, we need a quick detour.

Definition 6.5.2. Suppose that T" is an L-theory. We say that T is:

(1) Maximal finitely satisfiable if T is finitely satisfiable and, for
every L-sentence o, either o € T or —o € T

(2) Henkin if, for every L£-formula ¢(z), there is a constant symbol ¢
such that the L-sentence Jzp(x) — ¢(c) belongs to T.

Fact 6.5.3 (ZF). Suppose that 7' is a maximal finitely satisfiable Henkin
theory. Then T is satisfiable.

Fact 6.5.4 (ZF). For any finitely satisfiable £-theory T, there is a language
L' containing £ and a finitely satisfiable Henkin £'-theory T” containing 7.

Proof of Theorem First suppose that (1) holds and T is a finitely
satisfiable set of L-sentences. We wish to show that T is satisfiable. By
Fact [6.5.4] we may as well assume that T is also a Henkin theory. We may
also assume that T is closed under logical implication, that is, if 0 € T
and ¢ — 7 is logically valid, then 7 € T. By finite satisfiability of T,
the collection (Uy)gser of basic closed sets in S(B.) has the FIP, whence,
by compactness of S(B.), there is T" € (\,cp Us. Note then that T" is
a maximal finitely satisfiable set of L-sentences containing 7" which is still
Henkin. Thus, by Fact [6.5.3], 7" is satisfiable, whence so is T'.

Now suppose that (2) holds and let F be a filter on a set I. Let £ be
the language with constant symbols c4 for all A C I and a single unary
predicate symbol P. Let T be the following set of L-sentences:

o P(cy) for all A e F;

e P(ca) AN P(cg) — P(canB);

e P(ca) — P(cp) whenever A C B;

e P(ca)V P(epa) for all AC .
We leave it as an exercise to check that T is finitely satisfiable, whence it is
satisfiable by CT. Fix M |= T and define U by setting A € U if and only if

M = P(cy). It is immediate from the definition of 7" that I/ is an ultrafilter
on I extending F.



6.5. The ultrafilter theorem and the axiom of choice: Part II 91

Finally, suppose that (3) holds and fix a Boolean algebra B. We men-
tioned in Section E.Ilthat Tychonoff’s theorem for compact Hausdorff spaces
is equivalent to UT, whence 2% is compact. Since the proof that S(B) is
closed in 2% does not make any use of AC, it follows that S(B) is also com-
pact. O

Exercise 6.5.5. Prove that 7" in the (2)-implies-(3) direction of the above
proof is finitely satisfiable.

We now turn to the question about the connection between AC and
Lo$. One might wonder if there is not a more clever proof of Lo$ that uses
a weaker version of AC, perhaps UT? It turns out that this is not the case:

Theorem 6.5.6 (ZF). UT + Los implies AC, whence AC is equivalent to
UT + Los.

Proof. Work in ZF 4+ UT + Los. Suppose, toward a contradiction, that X is
a set of nonempty sets without a choice function. Without loss of generality,
we may assume that the sets in X are pairwise disjoint and no element of
X is itself an element of an element of X. Let £ = {R}, where R is a single
binary relation symbol. We consider the L-structure M which has universe
X UU X, where | X denotes the set of elements of elements of X, and such
that (t,y) € R if and only if either (i) y € X andt € yor (2) t =y € JX.
Set
F:={2C X : X\ z has a choice function}.

Clearly, X € F (as the emptyset has a choice function) and by assumption
0¢ F. If z€ F and z C w, then X \ w C X \ z, whence X \ w has a choice
function (the restriction of the choice function on X \ z), whence w € F.
Finally, if w, z € F, then (X \ w) U (X \ z) has a choice function (exercise),
whence wNz € F.

It follows that F is a filter on X, whence we may extend it to an ul-
trafilter & on X by UT. Since M |= Vy3tR(t,y), we conclude from Lo$
that MY |= Vy3tR(t,y). We apply this in the case that y = [idx]y, which
makes sense as an element of MY since the index set for the filter is X
and X is a subset of the universe of M. We thus have f : X — M such
that MY |= R([f]u,[idx]u). By the definition of RM, this means that
{yeX : fly) eyt elU. But {y € X : f(y) € y} has a choice function
(tautologically!), whence its complement belongs to F and thus U, yielding
a contradiction. O

Corollary 6.5.7. There is a model of ZF where Los is true but AC is false.

Proof. In a model of ZF where WUT fails, Lo$ holds vacuously (as all
ultraproducts are principal) but AC fails (else WUT would hold). O
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Corollary 6.5.8. There is a model of ZF+UT in which Los fails.

Proof. If ZF4+UT proved Lo, then ZF+UT proves AC by Theorem [6.5.6]
which we know it does not. (I

6.6. Countably incomplete ultrafilters

In this section, we return to the question discussed at the end of Section
When is the diagonal embedding d : M — MY onto?

In the case of a finite set, we have the following result:

Exercise 6.6.1. Suppose that M is finite. Then for any index set I and
any ultrafilter U on I, prove that d : M — MY is a bijection.

In the case of a countable index set, it is easy to verify when d is onto:

Exercise 6.6.2. Suppose that M is an infinite set, I is a countable set, and
U is an ultrafilter on I. Prove that d : M — MY is a bijection if and only if
U is a principal ultrafilter.

To answer the above question for an arbitrary index set, we need some
new definitions:

Definition 6.6.3. Suppose that U is an ultrafilter and x is a cardinal.
We say that U is k-complete if whenever Y C U is such that |Y| < &,
then Y € U. (In other words, U is k-complete if and only if U is closed
under intersections of families of size < k.) Nj-complete ultrafilters are often
referred to as countably complete and an ultrafilter that is not countably
complete is called countably incomplete.

Some exercises to get us acquainted:
Exercise 6.6.4. Prove that every ultrafilter is Ng-complete.
Exercise 6.6.5. Prove that an ultrafilter I/ is x-complete for all « if and
only if U is principal.
Exercise 6.6.6. Suppose that U/ is k-complete and A < . Prove that U is

also A-complete.

Exercise 6.6.7. Prove that an ultrafilter ¢ on the index set I is countably
incomplete if and only if there is a sequence (E,)nen from U such that
I:E[)QEl QEQQ and mnENE":(D‘

Exercise 6.6.8. Suppose that U is k-complete and V <grg U. Prove that
V is k-complete.

The next lemma shows us that a nonprincipal ultrafilter on a set of size

k is never kT-complete.
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Lemma 6.6.9. Suppose that U is an ultrafilter on an a set I with |I| = k.
If U is k*-complete, then U is principal. In particular, an ultrafilter on a
countable set is countably incomplete if and only if it is nonprincipal.

Proof. Suppose that U is nonprincipal. Then for each ¢ € I, we have that
I\ {i} € U. Since N;c;(I\ {i}) = 0 and |I| = &, we see that U is not
kT-complete. O

Remark 6.6.10. By the previous lemma, the most complete that a non-
principal ultrafilter on a set of cardinality « can be is k-complete. A cardinal
k that posesses a nonprincipal x-complete ultrafilter is called measurable.
The existence of an uncountable measurable cardinal cannot be proven in
ZFC. In fact, if there exists an uncountable cardinal that possesses a count-
ably complete ultrafilter, then there exists a measurable cardinal. (All of
these facts will be discussed and proven in Chapter [[71) For this reason,
when one restricts one’s attention to countably incomplete ultrafilters, this
is really no loss of generality if one wants to stay within the confines of ZFC.

Exercise 6.6.11. Prove that an ultrafilter I/ is countably incomplete if and
only if there is a nonprincipal ultrafilter V on N such that V <gpx U. (Hint.
For the forward direction, let (E,),en be as in Exercise and define
f: I — Nby f(x) equals the maximal n such that x € E,,. Show that f(U)
is nonprincipal.)

It will be useful to reformulate the notion of xk-completeness in terms of
partitions of the index set:

Lemma 6.6.12. Suppose that U is an ultrafilter on the index set I. Then U
is k-complete if and only if, for every partition of I into fewer than k many
pieces, exactly one of the pieces belongs to U.

Proof. First suppose that U/ is k-complete and I = |J, ., Xa, where X < &.
Note then that (),.\(I \ Xo) = 0. Since U is s-complete, it follows that
I\ X, ¢ U for some o < A\, whence X, € Y. The uniqueness of X, follows
from the fact that the X, ’s are pairwise disjoint.

Suppose now that for every partition of I into fewer than x many pieces,
exactly one of the pieces belongs to Y. We show that U is x-complete.
Suppose that Y C U is such that |Y| < k. Enumerate Y = {Y, : a < A},
where A < k. We define a partition (Xa)aeruqry of I as follows. First, set
X):=NY. Next, if i ¢ Y, we put i € X,, if o < X is least with i ¢ Y.
By our assumption, X, € U for a unique @ < A. However, for a < A, since
XoNY, =0 and Y, € U, we see that X, ¢ U. Consequently, X\ =Y € U,
as desired. O
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We are now ready to see the connection between complete ultrafilters
and the surjectivity of the diagonal embedding.

Proposition 6.6.13. Suppose that U is an ultrafilter on I.

(1) IfU is countably complete, then for any countable set M, d : M —
MY s onto.

(2) If there is an infinite M such that d : M — MY is onto, then U is
countably complete.

Proof. (1) Suppose that U is countably complete and M is countable. Fix
a : I — M; we show that [a]y is in the image of d. Enumerate M =
{z; + 7 €N} and set X; := {i € I : a(i) = z;}. Then X; forms a
countable partition of I, whence, by Lemma [6.6.12] there is a unique j for
which X; € U, and hence [a]y = d(z;).

(2) Suppose that M is an infinite set such that d is onto and that (X;);en
is a countable partition of I. Let (z;);en be a collection of pairwise distinct
elements of M and define a : I — M by setting a(i) = x; if and only if
i € Xj. Take j such that [a]y = d(x;); it follows that X; € U, whence U is
countably complete by Lemma O

Exercise 6.6.14. Adapt the proof of the previous proposition to show the
following: If M is a set with |M| = x and U is an ultrafilter on a set I, then
the diagonal embedding d : M — MY is onto if and only if I/ is kT-complete.

6.7. Revisiting the Rudin-Keisler order

In this section, we show that there is a connection between the Rudin-Keisler
order introduced in Section and the embeddability relation between ul-
trapowers. More precisely, we have:

Theorem 6.7.1. Suppose that U and V are ultrafilters on I and J, respec-
tively. We then have:

(1) U <grk V if and only if, for every structure M (in any language),
MY elementarily embeds into MY .

(2) U =rr V if and only if, for every structure M (again, in any
language), MY = MY,

Proof. First suppose that Y <px V and take f : J — I such thatU = f(V).
Fix a structure M. We check that the map [a]y — [ao f]y : MY — MY
is an elementary embedding, proving the forward direction of (1). Indeed,
suppose that MY = o([a1]uy, - -, [an]u). By Loé’s theorem, we have that
{iel |MEyp(ai(i),...,an(i))} € U. By the choice of f, we have that the
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preimage of this latter set under f belongs to V, that is,

{ied : MEoela(f(), - an(f(G)} €V,
whence MY = o([a1 o fly,...,[an o fly), as desired.

Suppose, in addition, that V <gg U. We claim that the above embed-
ding of MY into MY is actually surjective, whence an isomorphism between
MY and MY, proving the forward direction of (2). By Corollary [L3.16] we
may assume that f can be chosen so that there is X € V such that f [ X
is injective. Fix [b]y € MY; we seek [a]y € MY such that [a o f]y = [b]y.
For i € f(X), define a(i) := b(f~1(4)), which is well defined as f is injective
on X. Fori e I\ f(X), define a(i) arbitrarily. For j € X, we then have
a(f(3)) = b(j), whence [ao f]y = [b]y, as desired.

We now suppose that MY elementarily embeds into MY for every struc-
ture M, and we show that U <pg V. Let L; be the language with a unary
predicate P4 for each A C I. Let Z be the structure with universe I and
for which P¥ = A. Let e : Z — IV be an elementary embedding, which
exists by our assumption. Let id denote the identity function on I and let
f+J — I be such that e([id]y/) = [f]y. We then note that, for A C I, the
folllowing are equivalent:

o AcU,

e {icl : TEPs(i)} el

o T |= Pa([id]y);

o IV = Pa([flv);

e {jed : TEPA(fU))}EV;
° f_l(A) ev.

It follows that U = f(V), so U <gk V, proving the backward direction
of (1).

Finally, if MY 22 MY for every M, then by the previous paragraph,
U <prg V and V <pg U, whence U =rx V, proving the backward direction
of (2). O

We can use the above interpretation to give a nice characterization of
minimal ultrafilters in terms of substructures of the corresponding ultrapow-
ers. First, some preparation.

We fix an infinite structure M, a nonprincipal ultrafilter &/ on I, and we
set N := MY, Foreach f : I — M, weset N'[f] := {[goflu : g: M — M}.
This is a substitute for the substructure of A/ generated [f]y. In fact:

Exercise 6.7.2. If each function M — M is the interpretation of a function
symbol in the language, prove that N[f] is the substructure of ' generated

by [flu-
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The following exercise highlights some properties of the above construc-
tion:

Exercise 6.7.3.

(1) Suppose that f,h: I — M and h(U) <gx f(U). Then [h]y € N[f].

(2) If f is a constant function, then N[f] = M (viewed as a substruc-
ture of A/ via the diagonal embedding).

(3) N[f] is an elementary substructure of A" and N[f] = M/ via
the isomorphism [g o fly = [g | f(I)] f(u0)-

The following theorem highlights the connection between the Rudin-
Keisler ordering and the substructure N[f]:

Theorem 6.7.4. If f(U) =gx U, then N[f] = N. If |I| < |M]|, then the
converse holds.

Proof. First suppose that f(U) =rx U. By Corollary [[3T6, we may
suppose that f is chosen so that there is X € U such that f | X is injective.
As argued in the proof of Theorem [6.7.1] given any h : I — M, there is
g: M — M such that [go f]y = [h]y. Tt follows that N[f] = N.

For the converse, assume that |I| < |M| and that N[f] = N. Fix an
injective function h : I — M and take g : M — M such that [h]y = [go flu-
By Exercise [[.3.4] we have that h(U) = (go f)(U) = g(f(UL)), whence
h(U) <rrx f(U). On the other hand, since h is injective, we have that
U =rr h(U). Clearly, f(U) <grrx U. Altogether, we have f(U) =rx U, as
desired. ]

Here is the promised characterization of minimal ultrafilters in terms of

the corresponding ultrapowers:

Corollary 6.7.5. Suppose that M is an infinite structure, U a nonprincipal
ultrafilter over N, and set N := MY. Then U is minimal if and only if, for
every f : N — M, either N[f] = M or N[f] = N. In particular, if M has
function symbols for every function M — M, then U is minimal if and only

if the only substructures of N are M and N .
Exercise 6.7.6. Prove Corollary [6.7.5]

6.8. Cardinalities of ultraproducts

In this section, we discuss some results concerning the cardinalities of ultra-
products. First, some easy facts:

Exercise 6.8.1. Let U be an ultrafilter on the index set I.
(1) If |M;| = |N;| for all i € I, then |[],, M;| = |1, Ni|-
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(2) If |M;| < |N;| for all i € I, then |[[,, M;| < |T1, Nil-

(3) 11z Mi| < | Tlier Mil.
(4) |M] < |MY) < | M|

Exercise 6.8.2. Prove that [[,, M; is finite if and only if there is n € N
such that |M;| < n for U-almost all i € I.

The next theorem shows that ultraproducts are usually always large in
size:

Theorem 6.8.3. Suppose that U is a countably incomplete ultrafilter over
an index set I and (M;)icr is a family of sets. Then [[,, M; is either finite
or has size at least ¢.

Proof. Suppose that [];, M; is infinite. We separate into two cases:

Case 1. M; is finite for U-almost all i. Without loss of generality, we
may assume that M; is finite for all ¢ € I. For each i € I, set n; =
|M;|. By Exercise [6.8.2] we know that lim;n; = co. By Exercise [6.81],
we may assume that M; = [n;] := {0,1,...,n; — 1}. Define a function
f 11y M; — [0,1] by defining f([a]y) = limy %i) It suffices to show that
[0, 1) is contained in the range of f. Toward this end, given x € [0, 1), define
az € [Lie; Mi by ar(i) = k, where k € [n;] is such that nﬁz <z < k‘n—tl Note
that |af1—(:) —z| < n% for all i € I. We claim that f([az]y) = =. To see this,
fix N € N and note that n; > N for U-almost all ¢ € I. For these i € I, we
have that |aj1—(:) —z| < n% < %, whence |f([az]u) — 2| < +. Since N € N
was arbitrary, we see that f([az]y) = =, as desired.

Case 2. M; is infinite for U-almost all 7. In this case, by Exercise [6.8.1], it is
enough to show that |NY| > ¢. By Exercise and Theorem B.7.1] it is
enough to assume that U is a nonprincipal ultrafilter on N. (It is here that
we have used that U is countably incomplete.) However, by Case [ [[,,[n]
has cardinality > ¢, whence, by Exercise again, so does NY. O

The following corollary of the previous theorem is worth singling out:

Corollary 6.8.4. Suppose that U is a nonprincipal ultrafilter on N and
(My)nen is a family of sets with |My| < ¢ for all n € N. Then [[,, M, is
either finite or has size exactly c.

Proof. The result follows immediately from Theorem and the fact that
[1;; My, has size at most ¢ under the current assumptions as its cardinality
is bounded by the cardinality of the direct product [[,,cy My, which has size
at most ¢ = ¢, O
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The following theorem can often be used to show that a particular struc-
ture is not an ultrapower.

Theorem 6.8.5. Suppose that U is a countably incomplete ultrafilter on I
and M is an infinite set such that MY has cardinality . Then * = k. In
particular, cof(k) > w.

Proof. Set N := M<%. Since [N| = | M|, it suffices to prove that % < |NY|.
Since U is countably incomplete, by Exercise [6.6.7, we may fix I = Xy D
X1 D Xy 2 -+ with each X, € U and (,cyXn = 0. This allows us to
define, for each ¢ € I, the number n(i) := the maximal n such that i € X,.

We now define o : (M1)® — N by setting
a(9)(@) = (9(1)(@); -, g(n(2)) (7).

We would like to define a sort of “inverse” to o, but at the level of ultra-
powers. More specifically, set Ny C N¥ to consist of those elements of the
form [o(g)]y for some g € (M1)*. We would like to define 7 : Ng — (MY)¥
by setting 7([o(9)]u) := ([9(0)]w, [g(1)]u, - - .). If this is possible, then since
T is clearly surjective, we achieve the desired result. In order for 7 to be
well defined, we need to know that o(g) =y o(h) implies that g(n) =y h(n)
for all n. So suppose that o(g) =y o(h) and set X :={i €1 : o(g)(i) =
o(h)(i)} € U. Fix n; we aim to show that g(n) =y h(n). For i € X N X,,,
we have that n < n(i), whence g(n)(i) = h(n)(i). Since X N X,, € U, the
desired result follows. O

We will present one more result on cardinalities of ultraproducts in Sec-

tion [R3l
6.9. Iterated ultrapowers

It is natural to wonder what happens if you take an ultrapower of an ul-
trapower. It turns out that the resulting structure is itself an ultrapower,
as the next theorem indicates. (We ask the reader to recall the notion of
product ultrafilter from Exercise [[L6.9])

Theorem 6.9.1. Suppose that M is a structure and U andV are ultrafilters
on sets I and J, respectively. Then (MY)Y = MUXV,

Exercise 6.9.2. Prove Theorem [6.9.11 (Hint. For a : I x J — M, set
aj : I — M to be the function a;(i) := a(i, j). Show that the map [a]zxy —
[a*]y, where a*(j) := [a;]y, is an isomorphism.)

Remark 6.9.3. In Section B4 we will see examples of ultrafilters & and
V such that U x V is not Rudin-Keisler equivalent to V x Y. Consequently,
by Theorem [B.7.1], there will be a structure M such that MY*V 2 pY>¥U
whence (MY)Y 2 (MU,
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Exercise 6.9.4. Prove that the product operation on ultrafilters is asso-
ciative. More precisely, if U, V, and W are ultrafilters on sets I, J, and
K, prove that (U x V) x W and U x (V x W) are the same ultrafilter on
IxJxK.

By Theorem and Exercise [6.9.4] given any ultrafilters Uy, ...,U,
and any structure M, the structure one gets by iterating the ultrapower
construction relative to the various U;’s is isomorphic to the ultrapower
MUXxUn T other words, finite iterated ultrapowers do not yield us gen-
uinely new structures in the sense that they are just isomorphic to ordinary
ultrapowers. However, it turns out that there is a construction of iterated
ultrapowers for an arbitrary linearly ordered set of ultrafilters which can
produce structures that are not obtainable as ordinary ultrapowers. We
now explain this procedure.

Fix a linearly ordered set (X, <) and, for each z € X, suppose that U,
is an ultrafilter on some set I,. For each nonempty finite Y C X, we let
Uy = Uy, X -+ XUy, , where y; < --- <y, is an increasing enumeration of
Y. When Y = (), we define MUY := M.

Viewing Pr(X) as a directed set under inclusion, given any structure
M, we notice that there are natural embeddings MY — MYz whenever
Y C Z belong to Ps(X). Indeed, for simplicity, suppose that y; < --- < y,
is an increasing enumeration of Y and that Z = YU{z}. (The general case is
no more difficult, just notationally messier.). Suppose that i € {1,...,n} is
such that y; < z < y;+1. (If i = 0, this just means that z < yo while if i = n,
this just means that vy, < z.). Set Y1 := {y1,...,ui}, Y2 := {¥i+1,-- -, Un},
and Z; = Y1 U {z}. Then MYz = (M")= Let i : M1 — MY21 be
the elementary embedding obtained by composing the diagonal embedding
of M¥1 into (M1 )4z with the isomorphism (M“1)¥= — MHz1 given in
the proof of Theorem [6.9.1l By Exercise [6.4.5] we have that the ultrapower
embedding Y2 : (MU )2 — (MYU21)U, s an elementary embedding. By
using the isomorphisms from Theorem again, this yields an elementary
embedding MY — MYZ as desired.

We define the direct limit of the directed system from the previous para-
graph to be the iterated ultrapower of the structure M relative to the
family (U,)zcx and denoted it by MYX. We warn the reader that this is
simply notation and that there is not actually an ultrafilter Ux being de-
fined. We also note that the natural embeddings of each MY into MYX are
elementary. In particular, the natural embedding M — MYX is elementary.

There is a special case of the above construction that is especially ap-
pealing. First, a couple of definitions:
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Definition 6.9.5.

(1) Suppose that M is a substructure of a structure N'. We say that
N is an ultrapower extension of M if the diagonal embedding
d: M — MY can be extended to an isomorphism d’ : N — MHY.

(2) An ultrapower chain over M is a chain of structures M C M; C
My C - such that each M, is an ultrapower extension of M,,.
We will refer to the limit of this chain as M.

It is clear that an ultrapower extension is an elementary extension and
thus an ultrapower chain is an elementary chain, whence the limit M, is an
elementary extension of M. Consequently, if M and A are structures for
which there are ultrapower chains over M and N, respectively, whose limits
M and N are isomorphic, then M and N are elementarily equivalent.
It turns out that the converse is also true, which we will prove in Section

B3t

Fact 6.9.6. Structures M and N are elementarily equivalent if and only if
there are ultrapower chains over M and N/, respectively, whose limits M,
and N are isomorphic.

Returning to iterated ultrapowers, we now suppose that (X, <) = (N, <).
Fix a structure M. For each n € N, fix ultrafilters ,, on index sets I,, and
set M,, = MUoxxUn  Note then that M C My € M; C --- is an
ultrapower chain over M.

Exercise 6.9.7. In the notation from the paragraph preceding Fact [6.9.6]
prove that the iterated ultraproduct MYX is isomorphic to the limit Moo
of the ultrapower chain from above.

Combining Fact [6.9.6] and Exercise [6.9.7], we arrive at:

Corollary 6.9.8. Structures M and N are elementarily equivalent if and
only if they have isomorphic iterated ultrapowers.

The appeal of the previous corollary is that it provides a reformulation
of elementary equivalence that does not mention first-order logic and only
mentions the “algebraic” notion of iterated ultrapower. In Chapter [I6, we
will improve upon this latter fact by proving the Keisler-Shelah theorem,
which states that structures M and N are elementarily equivalent if and only
if they have isomorphic ultrapowers. While the statement of the Keisler-
Shelah theorem is obviously more aesthetically pleasing than Corollary [6.9.8],
it is much more difficult to prove.

Finally, we use Exercise[6.9.7 to show that not every iterated ultrapower
is obtainable as an ordinary ultrapower, although we will need to borrow a
notion and a result from Section
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Proposition 6.9.9. For any countable structure M, there is an iterated
ultrapower of M that is not isomorphic to any ultrapower of M.

Proof. First, we define a sequence of cardinals (k,)nen by setting ko := Ng
. cof (kn) " . . . .
and Kp11 = Kn . By Proposition [B:3.21] (k5 )nen is a strictly increasing
sequence of cardinals. For each n € w, let U, be a regular ultrafilter on
cof(ky). (We will define the notion of regular ultrafilter in Section [B3]).
Recursively define a sequence (M,,),en of structures by setting Mgy := M
and M,;1 := MY By Theorem B39, |M,11| = | M| ") whence, by
induction, we see that |M,| = K, for all n € w. Note that (My)pen is an
ultrapower chain over M whose limit M, is thus an iterated ultrapower
of M whose cardinality has cofinality w by construction. Theorem
shows that M, cannot be isomorphic to an ultrapower of M with respect
to a countably incomplete ultrafilter. An ultrapower of M with respect to
a countably complete ultrafilter is isomorphic to M, and thus countable
whence it is not isomorphic to M,. Thus M, is an iterated ultrapower of
M not isomorphic to any ultrapower of M. O

6.10. A category-theoretic perspective on ultraproducts

In this section, we consider a category-theoretic perspective on ultraproducts
that allows us to take ultraproducts of families of objects besides first-order
structures. Moreover, this perspective will allow us to consider a dual notion
of the ultraproduct, naturally called the ultracoproduct, which leads to other
interesting examples. We will freely use the language of category theory as
discussed in Appendix

Let us begin by considering a simple example, namely the ultraproduct
construction for groups. Consider a family of groups (G;);c; and an ultra-
filter U« on I. For each J € U, consider the group G := [[;c; Gi, the direct
product of groups. We consider the set I/ as a directed set under reverse
inclusion, that is, for J, K € U, we set J < K if and only if J O K. Notice
that U is indeed a directed set, for given J, K € U, we have that J < JNK
and K < JNK. Given J < K (that is, J O K), we have a homomorphism
fix + G5 — Gk given by restriction, that is, fjx(a) := a [ K. It is clear
that (G, fsx) form a directed system, that is, each f;; is the identity on
GJ and fKL o fJK = fJL whenever J S K S L.

We can thus consider the direct limit G := lim G 5 of the directed system.
It will not be necessary to recall the exact construction of the direct limit
(although it is given in Appendix[C]) but rather that it satisfies the following
universal properties:

(1) For each J € U, there are homomorphisms g; : G; — G such that
g7 = gk © frx whenever J < K.
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(2) Whenever H is a group equipped with homomorphisms h; : G; —
H satisfying hy = hi o fjK, then there is a unique homomorphism
¢ : G — H such that pogy=hy for all J € U.

The direct limit of groups is unique up to unique isomorphism and this
isomorphism commutes with the morphisms above.

Theorem 6.10.1. In the notation of the discussion above, we have that

Proof. We need to verify that [[,, G; satisfies the universal property of the
direct limit given above. To verify property (1), given J € U, we define
g7 Gy — [l Gi by setting gj(a) := [b]yy, where b € Gy is such that
fr7(b) = a. (In other words, b is an arbitrary extension of a that is defined
on all of I rather than only on the subset J.) We leave it as an exercise to
check that, if J < K, then g5 = gx o fixk.

To verify property (2), suppose that H is a group equipped with mor-
phisms hy : G; — H satisfying hy = hx o fjx. Let ¢ : [[,,G; — H be
given by ¢([a]y) := hr(a). To see that this map is well defined, notice that
if [aly = [d']y, then there is J € U such that fr;(a) = frs(a’), whence
hi(a) = hy(frj(a)) = hy(frs(a’)) = hi(a’), as desired. It is clear that ¢ is
a group homomorphism. Moreover, for a € G, we have

(¢0g7)(a) = ¢(lalu) = hi(a) = hy(f11(a)) = hi(a),
as desired. If ¢’ is another such function, then, in particular, ¢’ o g; = hy,
that is, ¢'([aly) = hi(a) = ¢([a]y), completing the proof. O

The preceding discussion motivates us to generalize the notion of ul-
traproduct to certain categories. Suppose that C is a category that has
arbitrary products and direct limits. Fix a family (A;);cr of objects from C
and an ultrafilter & on I. For J € U, we set A; to be the product (in the
category-theoretic sense) of the family (A;);cs. By the universal property
of product, if J < K, there is a canonical morphism f;x : Ay — Ag. As
above, the family (Ay, f;x) forms a directed system.

Definition 6.10.2. Suppose that C is a category that has products and
direct limits. Given a family (A;);er of objects from C and an ultrafilter
U on I, we define the ultraproduct of the family with respect to
U, denoted [];, Ai, to be the direct limit of the directed system (Aj, fik)
above.

Let us say a few words as to why this categorical ultraproduct really
is a generalization of our earlier model-theoretic ultraproduct. Fix a first-
order language £. Given two L-structures M and A/, a homomorphism
f from M to N is defined exactly like an embedding from M to N except
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that one only requires (ay,...,a,) € RM implies (f(a1),..., f(an)) € RV.
In particular, homomorphisms need not be injective. We let Cz denote the
category of L-structures, where morphisms are homomorphisms in the above
sense.

Exercise 6.10.3. Suppose that (M;);cr is a directed family of L-structures.
Let M be the direct limit of the sets (M;);c;. Explain how to view M as the
universe of an L-structure M such that M is the direct limit of the family
(M;)ier in the category Cr.

Exercise 6.10.4. Suppose that (M;);cr is a family of L-structures and U
is an ultrafilter on I. Show that the model-theoretic ultraproduct [[,, M;
coincides with the category-theoretic ultraproduct of the family (M;);er
with respect to U.

Now that we have abstracted things to the category-theoretic level, there
is nothing stopping us from considering the dual situation. Suppose that C
is a category that has coproducts and inverse limits. Fix a family (A;);er of
objects from C and an ultrafilter U on I. For J € U, we set Ay :=[],.; A;
to be the coproduct of the family (A;);cs. By the universal property of
coproducts, if J < K, there is a morphism f;x : Ax — A;. Now the family
(A, fri) forms an inverse system.

Definition 6.10.5. Suppose that C is a category that has coproducts and
inverse limits. Given a family (A;);er of objects from C and an ultrafilter
U on I, we define the ultracoproduct of the family with respect to
U, denoted [];, A;, to be the inverse limit of the inverse system (Aj, fix)
above.

Exercise 6.10.6. Suppose that F' : C — D yields an equivalence of cat-
egories. Then whenever an ultraproduct [[,, A; (resp., an ultracoproduct
[1; As) of objects of C exists, we have that F/(]],, A;) = [[;, #(4;) (resp.,
F(I1,, Ai) = 11y F(A;)). Similarly, if ' : C — D yields a dual equivalence of
categories, then whenever an ultraproduct [[,, A; (resp., an ultracoproduct
[1, As) of objects of C exists, we have that F(]],, A;) = [1;, #(4;) (resp.,

F([Ly A1) = [Ty F(A)).

Example 6.10.7. Recall from Section 3.4 that the functors S and Cl yield a
dual equivalence of categories between the category of Boolean algebras and
the category of Stone spaces. By Exercises and [6.10.6] it follows that
ultracoproducts exist in the category of Stone spaces: if (X;);er is a family
of Stone spaces and U is an ultrafilter on 7, then [[,, X; is once again a Stone

space. Moreover, S([[,, CI(X;)) =[], X; and CI([[,, Xs) = [[;, CL(X5).
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The category of Stone spaces is a full subcategory of the category of
compact Hausdorff spaces. It is natural to wonder if this larger category has
an ultracoproduct construction. This is indeed the case:

Example 6.10.8. The category of compact Hausdorff spaces is closed under
coproducts and inverse limits. To see the former, recall that if (X;);cr is a
family of topological spaces, then one can consider the direct sum @, ; X,
which as a set is the disjoint union | |, ; X;, and whose topology is given by
declaring U C | |;c; X; to be open if and only if U N X; is an open subset
of X; for each ¢ € I. Unfortunately, if each X; is compact, @iel X; need
not be compact. Nevertheless, @, ; X; is a Tychonoff space, whence one
can consider its Stone-Cech compactification 3 (B,cr Xi). We leave it to the
reader to check that [[,.; Xi = B(B,c; Xa).

It is a standard fact that the category of compact spaces admits inverse
limits. We merely outline here what the inverse limit construction is. Sup-
pose that (X;);es is an inverse limit of compact Hausdorff spaces. Let X
denote the inverse limit of the sets (X;)ier. One can then endow X with
the smallest topology so that all projection maps X — X; are continuous.
It can then be verified that X is once again a compact Hausdorff space.

It follows that the category of compact Hausdorff spaces has ultraco-
products.

Exercise 6.10.9. Fill in the details in the previous example.

It is natural to wonder if Stone duality, the dual equivalence of categories
between Stone spaces and Boolean algebras, “extends” to a dual equivalence
of categories between all compact Hausdorff spaces and some other category
of “algebraic” objects. This is indeed the case, and this dual equivalence
of categories is given by Gelfand duality, the algebraic objects being so-
called C*-algebras. The category of C*-algebras has a natural ultraproduct
construction and the Gelfand functor takes ultraproducts of C*-algebras to
the ultracoproducts of the corresponding compact Hausdorff spaces. We will
explore this in more detail in Section 4.3

6.11. The Feferman-Vaught theorem

Although the remainder of this book is about ultraproducts, we would be re-
miss if we did not mention one of the more important results about arbitrary
reduced products, namely the Feferman-Vaught theorem, which is the ana-
logue of the Lo$ theorem for arbitrary reduced products in that it connects
truth in the reduced product with truth in the individual structures.

There are two main complications in generalizing the Lo$ theorem to
arbitrary reduced products. First, the truth of a formula ¢ in an ultraprod-
uct depends on the truth of ¢ itself in the individual structures. In the case
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of reduced products, we will have to relate the truth of ¢ in the reduced
product to the truth of some related formulas 1, ..., ¥, in the individual
structures. It is worth noting that the ¢;’s depend only on ¢ and not on
the actual reduced product or parameters involved. (In some sense, one can
“effectively” calculate 11, ..., ¢, from ¢.)

Secondly, while ¢ is true in an ultraproduct if and only if it is true in
almost every structure, the analogous statement is not true in the reduced
product structure, even when replacing ¢ by the aforementioned formu-
lae ¥1,...,%y. This is essentially because the quotient Boolean algebra
P(I)/U (to be defined below) has only two elements, which are determined
by whether or not a set belongs to /. In the case of an arbitrary filter F on
I, the quotient Boolean algebra P(I)/F is much more complicated and thus,
in general, it will be some complicated Boolean algebra statement about the
truths of the various v;’s that will determine whether or not ¢ is true in the
reduced product.

We now make the above discussion precise and prove the Feferman-
Vaught theorem. First, suppose that we have a set I and a filter F on
I. We define a relation ~x on P(I) by declaring X ~rx Y if and only if
Xx ~F Xy, where xx : I — {0, 1} is the characteristic function of X and
similarly for Y.

Exercise 6.11.1. Prove that X ~x Y if and only if I\ (XAY) € F.

In other words, X and Y are “almost equal” since their symmetric dif-
ference is “small”, where “small” here means has “large complement” where
“large” means belongs to F.

Exercise 6.11.2. Prove that ~r is an equivalence relation on P(I).

Exercise 6.11.3. Suppose that X;,Y; € P(I) for i = 1,2 are such that
X; ~r Y;. Show that X1 UXo ~r Y7UYs5, XiNXy ~r Y1 NY5, and
I\NXy ~rI\Y.

We let P(I)/F denote the set of equivalence classes and set [X|r for
the equivalence class of X. By the previous exercise, we may define [X]r A
[Y]r :=[X NY]r, and similarly for V and —.

Exercise 6.11.4. Prove that (P(I)/F,A,V,—, [I]F, [0]F) is a Boolean alge-
bra that is naturally isomorphic to 27, the reduced power of the Boolean
algebra 2. In particular, if F is an ultrafilter, prove that P(I)/F is isomor-
phic to 2.

We also let Lpa := {0, 1, A, V,—} denote the natural first-order language
for studying Boolean algebras. The axioms introduced in Section [3.4] are ob-
viously first order; we let Tga denote the Lga-theory axiomatizing Boolean
algebras.
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Definition 6.11.5. An Lpa-formula y(y1, ...,y ) is monotonic if

Tea =Yy1, .., Vym Va1 - Ve (Y (Y1, - -, Ym) A /\ yi < zi) —=y(215 -0, Zm))-

i=1

In other words, thinking of concrete Boolean algebras, if v(A1,..., An)
is true, where A1, ..., A,, are subsets of some set, and one enlarges each A;
to some superset B;, then v(Bjy,. .., By,) still holds true.

We now fix an arbitrary language £. The next definition makes precise
the intuition from the introduction of this section.

Definition 6.11.6. Given L-formulae ¢(x1,...,2,), ¥Yi(x1,...,2pn), ...,
Ym(x1,...,2y) and a monotonic Lpa-formula y(y1,...,ym), we say that
¢ is determined by (7v;¢1,...,1¥n) if, given any filter F on any set I,
any family (M;);cr of L-structures and any ay,...,a, € [[;c; M;, setting
Xj={iel : MjE=v¢jai(i),...,an(i))}, we have

[IMi k= ellails. .- lanl7) & PU)/F EA(XilF - [XalF).
]:

We say that ¢ is determined if there are ¥1, ..., ¥, and v such that ¢ is
determined by (v;91,...,1%n).

We are now ready for the main result of this section:

Theorem 6.11.7 (Feferman-Vaught). Fvery L-formula is determined.

Proof. We proceed by induction on the complexity of the formula . We
leave it to the reader to check that, when ¢ is atomic, ¢ is determined by

(y="19).
Now suppose that ¢ is determined by (v;¢1,...,¥m). Set
6(y1s -5 ym) =YWL, TYm)-
We show that —¢ is determined by (0; =1, ..., 7y, ). Set
Xj={iel : MjkE=—vYjla(i),...,an(i))}.
It remains to notice that the following statements are equivalent:

o [[» Mi E—p(lar]F, ..., [an]F),

o [[x MiE o(lar]F,. ... [an]F),

o P(I)/F EAv([~X1]r, -, [ Xm]F),
e P(I)/F E~y([-XalFs -, [ Xm]F),
e P(I)/F E([Xd]F, .-, [Xm]F)
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Note that the equivalence between the second and third line is exactly
the inductive assumption that ¢ is determined by (v;11,...,¥m).

We leave the proof of the conjunction case to the reader. We come
to the final, and hardest, part of the proof, the existential case. Sup-
pose that p(w,x1,...,x,) is determined by (v;¢1,...,%m). We show that
Jwep(w, x1,...,2Ty) is determined.

Let s1,...,s9m enumerate P({1,...,m}) with s; = {i} for each i =
1,...,m. For each k € {1,...,2™}, define the formula

Op(z1,...,xy) = Jw /\ Yi(w,x1,. .., Tp).

JESK

We now set § to be the formula

32’132’2m A (Zkgyk)/\ /\ (Zi/\Zj:Zk)/\’Y(Zla-..7Zm)
1<k<2m siUsj=sk

Note that ¢ is clearly a monotonic formula. The following claim finishes the
proof of the theorem.

Claim. Jwy is determined by (9;01,...,02m).

Proof of Claim. Fix L-structures (M;);c; and a filter F on I. For k =
L...,2M set Yy :={iel : M; [ 0(ai(i),...,an(i))}.

First suppose that [[ M; = Jwe(w,[a1]F,. .., [a.]F). Take [b]lr €
[I=M; such that [[-M; = o(blF, lailr, ..., lan)F). Set Z = {i €
I+ Mi | Njes, ¥i(0(i),a1(), ... ,an(i))}. Note, in particular, that for
E=1,...,m,that Zy = {i el : M; =9p(b(i),a1(i),...,an(i)). It is clear
that Z;, C V) for all k = 1,...,2™ and Z; N Z; = Z;, whenever s; Us; =
sg. Also, since (y;¢1,...,%,) determines ¢, we have that P(I)/F E
’7([Z1]_7:, ce [Zm]]:). It follows that P(I)/f ): 5([1/1]_7:, cee [Ym]]:)

We now suppose that P(I)/F = 6([Yilr,...,[Ym]r) as witnessed by
[Zk]F for k = 1,...,2™. Note that, for example, [Z1]r < [Y1]F does not
imply that Z; C Y7 but merely that there is a set X € F such that Z1NX C

Y. However, since there are only finitely many such conditions, we can find
X € F such that:

(1) ZrNX CYyfork=1,...,2™ and
(2) ZinZjN X = Z; N X whenever s; Usj = sj.

Fix i € X. Let t; consist of those j = 1,...,m for which i € Z;. Let [ be
such that ¢; = s;. Since t; = Ujeti sj, (2) above tells us that i € Z;, whence
by (1), i € ¥, that is, M; = Jw A\, ¥ (w,a1(i), ..., an(i)). Fix b(i) € M;
such that M; = A, ¥j(b(i), a1(i), - .., an(i)). For i ¢ X, define b(i) € M;



108 6. Classical ultraproducts

arbitrarily. Now, for Kk =1,...,m, set

Wy = {Z el : M; ): ’(ﬁk(b(i),al(i), e ,am(z))}
Note that Z,NX C Wy, for each k = 1,..., m, whence [Z]r < [Wi]|£. Since
PI)/F E v([Zi)F,---,[Zm|F) and ~ is monotonic, we have P(I)/F E
Y([Wilg, ..., [Wimlr). Since (v;¢1,...,1%y) determined ¢, we have that
[I- M = (b7, [a1]F, .., [an]7), and hence

HMi = Jwe(w, [ai1] 7, . . ., [aa]F),
f

as desired. O

Exercise 6.11.8. Verify the atomic and conjunction cases in the previous
proof.

Here is a sample application of the Feferman-Vaught theorem:

Exercise 6.11.9. Suppose that M; = N for all i € I. Then for any filter
F on I, prove that [T M; = [[N;.

6.12. Notes and references

The idea behind the ultraproduct construction goes back to Skolem’s work
[164] from 1934 on nonstandard models of arithmetic. In 1948, Hewitt [80]
studies ultraproducts of fields. The ultraproduct construction for general
first-order structures is due to Lo$ [113], where he also proved what is
now known as Lo$’s theorem. The proof of the compactness theorem using
ultraproducts is from [59]. Theorem is based on a similar discussion in
[90, Theorem 2.2]. Theorem is from the article [85]. Much of Section
comes from the book [28]. Theorem [6.7.1] comes from Blass’s thesis
[16]. The discussion around the model NV[f] comes from Keisler’s article
[102]. Most of Section [6.8 comes from the book [28], although the proof
of Theorem we believe to be our own. Our presentation of iterated
ultrapowers borrows substantially from [28], although we simplify things in
many respects. The category-theoretic perspective on ultraproducts seems
to be well known but we struggled to find a precise reference. The notion of
ultracoproducts of compact spaces seems to be discussed for the first time
in [76]. Feferman and Vaught proved their theorem in [56], although our
treatment follows that of [28] very closely.



Chapter 7

Applications to
geometry, commutative
algebra, and number
theory

In this chapter, we present three applications of the ultraproduct construc-
tion of an algebraic nature. In Section [[I] we present Ax’s theorem on
polynomial functions, which is an ingenious use of ultraproducts that trans-
fers a problem about the field of complex numbers to a problem about
finite fields. Section [[.2] presents several results about bounds in the the-
ory of polynomial rings, whose proofs are obtained by contradiction using
a commutative-algebraic analysis of an ultraproduct of counterexamples.
In Section [7.3] we list some number-theoretic applications of ultraproducts
by discussing simple instances of a powerful result in model-theoretic alge-
bra known as the Ax-Kochen theorem. The material in this last section
is considerably more advanced and so we merely content ourselves with a
presentation of the results and refer the interested reader elsewhere for full
proofs.

7.1. Ax’s theorem on polynomial functions
We start this chapter with a seemingly silly exercise:

Exercise 7.1.1. Suppose that X is a finite set and f : X — X is a function.
Prove that f is injective if and only if f is surjective.

109
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Why would we start the chapter this way? The answer is that, surpris-
ingly, it is one of the key steps in the proof of the following, significantly
deeper, result:

Theorem 7.1.2 (Ax’s theorem). Suppose that f : C* — C" is a polynomial
function. If f is injective, then f is surjective.

Here, when we say that f is a polynomial function, we mean that there
are polynomials P(X),...,P,(X) € C[X1,...,Xp,] such that, for all & €
C™, we have f(Z) = (P1(Z),..., P(Z)).

How do we connect these seemingly disparate situations? Well, ultra-
products, of course! First, some intermediate steps.

Fact 7.1.3. If K; and K> are two algebraically closed fields of the same
characteristic and the same uncountable cardinality, then K; = Ks.

Exercise 7.1.4. If (K;);c; is a family of algebraically closed fields and U is
an ultrafilter on I, prove that [[,, K; is also an algebraically closed field.

For each prime p, let ]F_p denote the algebraic closure of the finite field
[F,,. Putting this all together, we have:

Theorem 7.1.5. For any nonprincipal ultrafilter U on the set of prime
numbers, we have [[,,F, = C.

Proof. By Exercise [[ 1.4l we have that HME is an algebraically closed
field. Furthermore, it must have characteristic 0, for, given any prime p, the
sentence p-1 # 0 is true in all but one of the fields involved, whence by Lo$’s
theorem it is true in the ultraproduct. Finally, by Corollary [6.8.4] HME
has cardinality ¢. Thus, by Fact .13, [],, F, = C. O

We are thus left proving Ax’s theorem for the field HMIF_p.

Exercise 7.1.6. For all m,n € N, prove that there is a sentence o, 5, in the
language of rings so that, for any field K, we have K |= o,y 5 if and only if,
for any polynomial function f : K™ — K™ with degrees bounded by m, if f
is injective, then f is surjective.

Recall now that F, = J, F.

Lemma 7.1.7. For any prime number p and any polynomial function
f: Eﬂ — Fpn, if [ is injective, then f is surjective.

Proof. Fix a prime p and consider an injective polynomial function
f: IET," — F_pn. Let ¢ be such that all of the coefficients of f belong to F:. It
follows that for any s > ¢, we can consider the function fs : Fs — Fj. which
is simply the restriction of f. Since f is injective, so is each fs, whence each
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fs is also surjective by Exercise [[.1.Il However, if each fs is surjective, it
follows immediately that f is also surjective. O

The previous lemma can be restated by saying that F_p = om,p for all
primes p and all m,n. By Lo§’s theorem, it follows that [[,,F, = om for
each m, n, whence C |= o, p, for all m,n, and thus Ax’s theorem is proved.

With minimal effort, we can extend Ax’s theorem to a broader class of
functions. First, we say that X C C" is definable if there is a formula
©(Z,7) and elements b € C such that X = {@ € C" : C k= o(a@,b)}. Also,
given X C C", we say that a function f : X — C” is definable if the graph

of f, which is the set {(z, f(z)) : = € X}, is a definable subset of C".

Exercise 7.1.8. If f : X — C" is a definable function, then X is a definable
set.

Theorem 7.1.9 (Strong form of Ax’s theorem). Suppose that X C C™ is a
definable set and f : X — X is an injective definable function. Then f is
surjective.

Exercise 7.1.10. Prove the strong form of Ax’s theorem.

The definable sets in C™ have clear geometric meaning. Indeed, define
X C C" to be Zariski closed if there are polynomials Py, ..., P, € (C[)Z' ]
such that
X=A{{z2eC" : P(&)=---=Pp,(¥) =0}.

We then say that X is constructible if X can be obtained from Zariski
closed sets by taking (finite) unions, intersections, and complements. Clearly,
constructible sets are definable. It is a fact (known as the Chevalley-Tarski
theorem) that, conversely, every definable set is constructible. (This holds,
more generally, for any algebraically closed field.) Thus, defining a function
to be constructible if its graph is constructible, we can restate the strong
form of Ax’s theorem in the following geometric form: if f : X — X is an
injective constructible function, then f is surjective.

7.2. Bounds in the theory of polynomial rings

In this section, we will be considering the following situation: R is a com-
mutative ring with unity, A is a k x [ matrix with entries from R, and we
are looking at the linear homogeneous system

(%) A= 0.

Associated to the system (x) is the solution submodule

Sps:=84(R):={FeR : A.-7=0}.
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We say that 771,...,7, € Sa generate Sy if, for every ¥ € Sy, there are
51,...,8p € R such that ¥ = s17 + --- 4 s,7. If there are finitely many
T1,...,Tp € S that generate S4, we say that Sy is finitely generated.

Fact 7.2.1. If R is Noetherian, then S, is finitely generated.

In this chapter, we will be interested in the case R = K[X1,..., X,],
where K is a field. By the Hilbert basis theorem, R is Noetherian, whence
Sa is finitely generated. Thus, there is clearly a bound « on the degrees
of the polynomials in the generating set for S4. In theory, this bound «
depends on many of the characters involved: a bound d on the degrees of
the polynomials appearing in A, the dimensions k£ and [ of the matrix A,
the number n of indeterminates in K[X1, ..., X,], the field K itself, and the
coefficients of the polynomials in the matrix A. The main theorem in this
section is that, in fact, the bound « depends only on n, d, and k:

Theorem 7.2.2. Given n,d,k € N, there is a« = a(n,d, k) € N such that
the following holds: Suppose that K is a field and A is a k x l-matriz over
K[Xy,...,X,] such that each polynomial in A has degree at most d. Then
the solution submodule Sa is generated by polynomials of degree at most .

Remark 7.2.3. It is quite clear that any system (x) as above where all
polynomials involved have degree at most d is equivalent to one where [
equals the number of monomials X' --- X with e + -+ + e, < d. We
refer to this quantity as A(n, d).

The key to the proof of Theorem [7.2.2]is the following algebraic concept.

Definition 7.2.4. Suppose that R C S are rings. We say that S is flat
over R if, for any system (x) (where the entries in A come from R) and any
solution § € S4(S), there are 71,...,7, € S4(R) and by,...,b, € S such
that 8= b171 + - - + by

In other words, S is flat over R if any solution in S to a linear system
with coefficients in R is equal to an S-linear combination of solutions in R.
We will need the following two standard facts about flatness. While these
results are not difficult, their proofs would take us too far afield. We refer
the reader to [133].

Facts 7.2.5. Suppose that R C S are rings.

(1) S is flat over R if and only if the criteria in the definition holds
for systems with k& = 1 (that is, for a single linear homogeneous
equation).

(2) If S is flat over R, then S[X] is flat over R[X].
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For us, here are the rings R and S that are going to be relevant to the
proof of Theorem [[.2.2l Fix a family (K})cn of fields and & € SN\ N. Set
K =], K: and R := K[Xy,...,X,]. Thus, R is an ordinary polynomial
ring over a field K, where the field K happens to be an ultraproduct of
a family of fields. What is the ring S7 Well, we can instead consider the
ordinary polynomial rings K;[X7, ..., X,] over the fields K; and then take
the ultraproduct of these rings, yielding the ring S := [[,, (K[ X1, ..., Xy,]).
There is an obvious way of viewing R as a subring of S, namely by the
identification

> iin Ol Xi - X o [ Y e X Xy

U1yeenyin U1yeenyin

Note that R is indeed a proper subring of S. For example, the polynomial
[X1]y is an element of S that is not an element of R. We can view this
element as a “nonstandard polynomial” (see Chapter [0) whose “degree” is
the element [id];; € N4. Since [id]y; > n for all n € N, this polynomial can
be thought of as having “infinite degree”.

Exercise 7.2.6. Prove that the elements of R are precisely the elements of
S of finite degree.

Here is the main algebraic fact underlying the proof of Theorem [7.2.2]

Theorem 7.2.7. Let (K;)ien be a family of fields and let U € SN\N. Then
[T, (K[ X, ..., X)) is flat over ([T, K¢)[ X1, ..., Xl

First, we will need a change of variable trick. In the lemma that follows,
K is an arbitrary field. We view an element of K[Xj,...,X,] as an element
of K[X1,...,X,-1][Xy], that is, as a polynomial in the variable X, whose
coefficients come from the ring K[Xi,...,X,—1]. It thus makes sense to
speak of the leading coefficient of such a polynomial. We also use the multi-
index notation for polynomials in K[Xj,...,X,], namely a term of such
a polynomial may be written as anj instead of the more cumbersome
notation ajhm,an{l X

there

Lemma 7.2.8. Given f € K[X1,...,X,] = K[Xl,.. ][X]
X for i =

are numbers dy,...,d,—1 > 0 such that, setting Z; =
1,...,.n—-1, Z, = X, and

A2y, Zn) = f(Z1+ 28, Zyr + 201, Z,),

we have that f#(Zy,...,Z,) has an element of K as its leading coefficient
(as opposed to an element of K[Z1,..., Zn-1]).
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Proof. Write f = Zj a; X7 with each a; # 0. Using the change of variable
appearing in the statement of the lemma, we have

FH(Zr, . Zn) = aj(Zo+ ZPV - (Znoy + Zit ) Zn,
J

Rewriting this, we have

(21, ... Zy) = (Z angle...ernfljnfljJrjn) +9(Zh,.... Z),
J

where g has no occurrence of a monomial of the form c¢Z* (c € K). If we
choose d > 0 large enough and set d; := d" %, we leave it to the reader to
verify that none of the exponents d1j1 +- - -+ dp_1Jn—1+jn are equal. Thus,
the leading coefficient of f# is a; for some j, proving the lemma. O

Proof of Theorem [T.2.7. We proceed by induction on n. When n = 0,
there is nothing to prove. Now assume that n > 0 and the theorem is true
for n — 1; we show that it is true for n. For simplicity, set K := [],, K,
R = K[X1,...,X,], and S := [[,(K¢X1,...,X,]). By Facts [L2ZH(1),

it is enough to prove the following: given fi,...,f; € R and a solution
g=1(g1,---,q1) € S of
(t) hYi+-+ i1 =0,

then g is an S-linear combination of solutions to (1) in R!. Without loss of
generality, X,, appears in f;. By Lemmal[l.2.8 we may make a change of co-
ordinates and thus assume, without loss of generality, that f is monic in X,
that is, when f; is viewed as a polynomial in (][], K;)[X1, ..., Xn—1][Xn],
its leading coefficient is 1. (We leave it to the reader to verify that this
change of coordinates is harmless for the task at hand.)

Set d :=degy, f1. Fori=2,3,...,1, let fl € R! be the vector with — f;
in the first component, f; in the ith component, and zeroes elsewhere, e.g.,
fo= (—f2, f1,0,0,...,0). Note that each f; is a solution to the equation (1)
in R!. By choosing ho, ..., h; € S appropriately, we see that § := §— hgfg —
.- .—hy f; is a solution to the equation (1) with degx, (95),--.,degx, (g),) < d.
Since figi + -+ + fig = 0, it follows that degx (g}) is also finite. In
other words, each component of g’ is an ordinary polynomial in the variable
X, with coefficients in the ring [],,(K[X1,...,X,—1]). By the inductive
hypothesis, [],,(K:[X1,...,X,—1]) is flat over K[X1,..., X,,_1], whence, by
Facts [.2.5(2),

(I X, - X)X

is flat over
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It follows that ¢’ is a [],,(K¢[X1,..., Xn-1])[Xy]-linear combination of so-
lutions to equation (f) in R; in particular, g’ is an S-linear combination of
solutions to equation (1) in R'. Since § = §' 4 hofo + - -+ + hyfi, we have
that § is also an S-linear combination of solutions to equation (1) in R!, as
desired. ]

Proof of Theorem By Remark[7.2.3] we may assume that, in equa-
tion (x), we have that | = A(n,d). Suppose that Theorem is false for
a given n,d, k. For each t, let Ky be a field, and let A(t) be a k x l-matrix
with entries from K;[X1,...,X,] with degrees bounded by d such that (x)
has a solution §(¢) from K;[X,...,X,] that is not a linear combination of
solutions of degree bounded by t. Let K, R, and S be as defined in the
proof of Theorem [C.27l Let A be the matrix over S whose entries are the
ultraproducts of the entries from A(t), that is, A;; = [A(t)i;]y. Since all
entries of each A(t) have degree bounded by d, it follows that A is actu-
ally a matrix over R. Now [5(t)]y is a solution of A-¢ = 0 in S, whence,
by Theorem [7.2.7, there are solutions 7,...,7m € R of A-¢§ = 0 and
[s1]uts -y [Smlu € S such that [8]y = [s1]u™ + - + [Sm]uTm. Let ¢ € N be
an upper bound for the degrees of 71,...,7,. Foreach t and i =1,...,m,
let 7i(t) € K¢[X1,...,Xy) be such that 7 = [F;(t)]y. Since U is nonprinci-
pal, there is t > ¢ such that 7 (¢), ..., 7n(t) are solutions of A(t)-7 = 0 and
S(t) = s1(t)71(t) 4+ - - - + Sm(t)Tim(t), contradicting the choice of 5(t). O

There is also something to be said about nonhomogeneous equations.
This time, we consider the equation

(+1) A-g=T,

where each entry from A and each entry from f come from the ring R. The
relevant algebraic notion is the following:

Definition 7.2.9. If R C § are rings, we say that S is faithfully flat over
R if S is flat over R and every system (+1) with a solution in S! also has a
solution in R'.

The proof of the next theorem is more difficult than the proof of Theorem
(.27 and we refer the reader to [180] for a proof:

Theorem 7.2.10. Let (Ki)ien be a family of fields and let U € BN\ N.
Then [, (K¢ X1,...,Xy]) is faithfully flat over (I, K¢)[ X1, .., Xn].

Corollary 7.2.11. Given n,d,k € N, there is f = B(n,d, k) € N such that
the following holds: whenever K is a field and (11) is such that all entries
from A and f come from K[X1,...,X,] and have degree at most d, then if
(t1) has a solution, it has a solution with all entries of degree at most 5.
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Exercise 7.2.12. Prove Corollary [[.2.11] from Theorem [.2.10

When k£ = 1, we can reformulate the conclusion of the previous corollary
in terms of ideals.

Corollary 7.2.13. Given n,d € N, there is v = ~(n,d) such that the
following holds: whenever K is a field and f, f1,...,fi € K[X1,...,X»]
all have degree at most d, then f € (fi,...,fi) if and only if there are
hi,...,h € K[X1,...,X,] of degree at most v with f = hyfi1 + -+ h fi.

Exercise 7.2.14. Suppose that K is a field. Then, for any fo, f1,..., fm €
Z|C,X], we have {c € K" : fo(c,X) € (fi(c,X),..., fm(c, X))} is defin-
able. In particular, if K is algebraically closed, then this set is constructible.

There are many other results of the kind described in this section. How-
ever, the algebraic arguments needed are beyond the scope of this book and
for that we reason we have chosen to only describe the aforementioned re-
sults in detail. Still, one of the results from [180] is compelling enough to
state here, without proof.

Theorem 7.2.15. Let (Ki)ien be a family of fields and let U € BN\ N. Fiz
also fi,..., fm € (I1y Ke)[ X1, ..., Xn]. Then fi,..., fm generate a prime
ideal of ([1y Ki)[X1,...,Xn] if and only if they generate a prime ideal of
[, (KX, X))

Exercise 7.2.16. Use the previous theorem to prove the following “bounds”
result: given n,d € N, there is § = d(n,d) € N such that the following holds:
if K is a field and f1,..., fm € K[X1,...,X,] all have degree at most d and

gh € (f1,..., fm) implies g € (f1,..., fm) or h € (f1,..., fm) for all g, h of
degree at most d, then (fi,..., fin) is a pri