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Preface

What is this book about?

This book is about ultrafilters. So what is an ultrafilter? Given a set X,
an ultrafilter on X is simply a “sensible” division of all of the subsets of X
into two categories: small and large. For this division to be sensible, one
should impose some axioms:

• X should be a large subset of X, while ∅ should be a small subset
of X.

• If Y is a large subset of X and Y ⊆ Z ⊆ X, then Z should also be
large; that is, a set containing a large set should also be large.

• If Y and Z are two large subsets of X, then so is Y ∩ Z.

The last axiom is perhaps not entirely intuitive, but becomes more in-
tuitive when stated in terms of small sets: the union of two small sets is
once again small. The axioms also imply that a set is large precisely when
its complement is small.

Why write a book about such a seemingly simple notion? It turns out
that this notion is very useful for describing limits of various objects. For
example, much to the chagrin of many calculus students, one knows that
there are many sequences (an)n∈N from [0, 1] that have no limit. However,
limit in the usual sense is very restrictive in that it requires an to be close to
the limit for a large number of n, where large here means for all but finitely
many n. Note that this restrictive notion of largeness does not lead to an
ultrafilter on N as there are certainly sets that are infinite and which have
infinite complement. However, if one works with a notion of largeness as
given by an ultrafilter, then all of a sudden every sequence in [0, 1] has a

xiii



xiv Preface

limit! This fact can be used as a powerful tool in analytic and topological
endeavors.

The notion of ultrafilter also allows one to consider limits of families of
structures like groups, rings, graphs, or Banach spaces. The limiting struc-
tures alluded to here are called ultraproducts and will become a central
part of this book. These limiting objects can be very useful in solving prob-
lems, for often various desirable properties are approximately true in the
individual structures of the family, while in the limit they become exactly
true.

Who should read this book?

The short answer is: everyone! More precisely, the thesis of this book is
that, while ultrafilters and ultraproducts are often relegated to graduate-
level courses in logic, we believe that this practice is entirely misguided.
Indeed, the notion of ultrafilter and ultraproduct are entirely accessible to
an advanced undergraduate or beginning graduate student in mathematics
(the target audience of this book). Moreover, as we will see throughout
the course of this book, ultrafilters and ultraproducts have had numerous
applications to nearly every area of mathematics. Thus, no matter what area
of mathematics the reader is interested in, it is quite likely that ultrafilters
and ultraproducts have made an impact in that area. An attempt has been
made to present as diverse a sample of such applications as possible.

That being said, this book is being written by a logician, and ultrafil-
ters present numerous fascinating foundational concerns, many of which are
discussed in this book. If the reader is purely interested in mathematical
applications, they may safely skip the portions of this book discussing these
metamathematical issues.

What is in this book?

Let us briefly summarize the contents of this book. Part 1 is entirely de-
voted to ultrafilters. Chapter 1 introduces the basic facts about ultrafilters,
including what it means for them to be isomorphic and how many of them
there are. Chapter 2 provides one with a first application of ultrafilters,
namely to a proof of Arrow’s theorem on fair voting. This application is
nice in the sense that it requires little to no mathematical background and
yet exemplifies a perfect use of ultrafilters. Chapter 3 introduces the use of
ultrafilters in topology, including the aforementioned facts about generalized
limits. This chapter also shows how ultrafilters can be used to describe the
important Stone-Čech compactification construction. Chapter 4 is a brief
introduction to how ultrafilters can be used in certain parts of combinatorics;
a much more detailed investigation of that line of research can be found in
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the book [42], written by the author with Mauro Di Nasso and Martino
Lupini. Chapter 5, the last chapter in Part 1 of the book, discusses many of
the interesting foundational issues presented by the existence of ultrafilters.

Part 2 of the book is concerned with the classical ultraproduct construc-
tion. As alluded to above, this construction allows one to take the limit
of families of objects such as groups, rings, graphs, etc., . . . The lengthy
Chapter 6 introduces this construction and proves the Fundamental The-
orem of Ultraproducts (otherwise known as �Loś’s theorem), which states
that the truth of a first-order sentence in an ultraproduct is determined by
whether or not the sentence is true in a large (as measured by the ultrafilter)
number of the individual structures. This chapter includes many other im-
portant facts about ultraproducts, including cardinalities of ultraproducts
and a discussion of what happens when one tries to iterate the ultraproduct
construction.

Chapter 7 gives one a first look at how ultraproducts can be used “in
practice.” The applications in this chapter are all algebraic in nature, and
include Ax’s theorem on polynomial functions and the Ax-Kochen theorem
relating the rings Zp of p-adic integers with the power series rings Fp[[T ]].
One important feature of ultraproducts is that they are often very “rich”
in the precise sense of being saturated. Chapter 8 gives a detailed discus-
sion of exactly how saturated ultraproducts can be. Chapter 9 gives a brief
introduction to nonstandard analysis. While nonstandard analysis is a sub-
ject of its own, it is often presented using ultraproducts and we discuss this
approach here. This chapter is far from a complete story on nonstandard
analysis and we refer the interested reader to [42] for a more thorough dis-
cussion. Chapter 10 discusses the class of subgroups of nonstandard (in
the sense of Chapter 9) free groups; the finitely generated such subgroups
are called limit groups and have become a widely studied class of groups in
geometric group theory.

The ultraproduct construction referred to above is suitable for discrete
spaces such as those arising in algebra and combinatorics, but is not very
useful for structures appearing in analysis. Part 3 of the book is concerned
with a modification of the ultraproduct construction for structures based on
metric spaces. Chapter 11 introduces this metric ultraproduct and discusses
some of its basic properties. That chapter also includes a discussion of a
relatively new logic, aptly called continuous logic, which is the logic naturally
connected to this metric ultraproduct construction.

The remainder of Part 3 details several applications of the metric ultra-
product construction. Chapter 12 describes a fascinating theorem of Gro-
mov from geometric group theory, where the key ingredient to the proof
is a particular metric ultraproduct called an asymptotic cone. Chapter 13
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discusses the class of sofic groups, which can be defined in terms of metric
ultraproducts of symmetric groups. Chapter 14, the final chapter of Part 3,
discusses some applications of metric ultraproducts to functional analysis.
One might argue that functional analysis is an area of mathematics where
ultraproducts have played an increasingly more important role. Unfortu-
nately, the mathematical background needed by the reader is much larger
in this area of mathematics and thus this section cannot quite do justice to
the importance of ultraproducts in functional analysis.

Part 4, the last part of this book, is devoted to three advanced top-
ics. Chapter 15 discusses a question that often arises to many people seeing
ultraproducts for the first time: does the ultraproduct depend on the ultra-
filter being used? The answer to this question is surprisingly subtle and a
more or less complete answer to a specific case of this question is discussed.
Chapter 16 discusses the fantastic Keisler-Shelah theorem, which shows how
elementary equivalence, a notion from logic, can be reformulated in terms
of isomorphic ultrapowers, a purely algebraic notion. This chapter also in-
cludes a few applications of the Keisler-Shelah theorem. Chapter 17, the
final chapter of the book, shows how the study of large cardinals in set the-
ory can be recast in terms of ultrafilters satisfying certain extra properties.
This part of the book might require a bit more maturity and/or background
from the reader.

What are the prerequisites for reading this book?

We have no illusions that any one student has all of the prerequisites neces-
sary to read the entire book. However, this fact is by design! As discussed
above, we are trying to convey to the reader that ultrafilters and ultraprod-
ucts are applicable in most areas of mathematics and thus we have tried to
describe a wide variety of applications.

That being said, we have assumed that the reader is familiar with some
basic facts from real analysis, topology, and algebra. Any facts that we
believe are not part of the usual curricula from those disciplines are often
described in full detail here. Sometimes certain topics are outside of the
scope of this book and we provide references to the reader for places in
the literature where they can learn more. It is also our hope that a reader
interested in, for example, algebra sees the chapter on, say, functional anal-
ysis, and finds the general idea interesting enough that they decide to learn
more about this area. In today’s mathematical world, breadth is everything
and an aspiring mathematician should keep their eyes open to all areas of
mathematics.

In discussing ultrafilters, one cannot hide the fact that logic and set
theory play an important role. Moreover, there is a high probability that
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the average reader might not have the requisite knowledge in these areas to
follow the main parts of this book. For the reader’s convenience, appendices
on these subjects are included in this book. Also, occasionally in the text,
very basic parts of category theory are needed and the necessary facts from
category theory are collected in the final appendix.

How to read this book

Some later chapters rely somewhat heavily on earlier chapters. The follow-
ing flowchart lists some of these dependencies. The blue arrows indicate
dependencies that are not strictly necessary but possibly helpful.

Ultrafilter
basics

1Arrow’s
theorem

2 Foundational
concerns

5

Classical
ultraproducts

6Ultrafilters
in topology

3

Ramsey
theory

4

Large car-
dinals

17

Applications
to algebra

7

Ultraproducts
and saturation

8Metric
ultraproducts

11

Gromov’s
theorem

12 Nonstandard
analysis

9

Limit groups10Sofic groups13Functional
analysis

14

Ultrafilter
dependence

15

Keisler-Shelah16

Exercises

Rather than ending each section or chapter with a list of exercises, we have
instead sprinkled them throughout the text itself. Some of the exercises
are simply checks for understanding, but others are more involved. Often,
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the exercises themselves will be used in the proofs of later results. We
recommend that the reader stop reading when they encounter an exercise
and attempt a solution at that moment. Solutions to a handful of exercises
appear in Appendix D but we urge the reader not to consult these solutions
unless the situation becomes dire!
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Part 1

Ultrafilters
and their applications





Chapter 1

Ultrafilter basics

In this chapter, we present the basic theory of ultrafilters. Section 1.1 con-
tains the basic definitions of filters and ultrafilters and proves the existence
of a nonprincipal ultrafilter on an infinite set. Section 1.2 is a short section
devoted to explaining how one can view an ultrafilter on a set as a kind of
quantifier. Section 1.3 gives a category-theoretic perspective on ultrafilters.
In Section 1.4, we compute the cardinality of the set of ultrafilters on a
given set. In Section 1.5, we introduce the cardinal characteristic u, which,
roughly speaking, is the smallest number of sets needed to specify a nonprin-
cipal ultrafilter on N, while in Section 1.6, we introduce the Rudin-Keisler
ordering on the collection of all ultrafilters, which is a relative measure of
complexity for ultrafilters.

1.1. Basic definitions

Throughout this section, we let S denote a set.

Definition 1.1.1. A (proper) filter on S is a set F of subsets of S (that
is, F ⊆ P(S)) such that:

(1) ∅ /∈ F but S ∈ F ;

(2) if A,B ∈ F , then A ∩B ∈ F ;

(3) if A ∈ F and A ⊆ B, then B ∈ F .

We think of elements of F as “big” sets (because that is what filters
do, they catch the big objects). The first and third axioms are (hopefully)
intuitive properties of big sets. Perhaps the second axiom is not as intuitive,
but if one thinks of the complement of a big set as a “small” set, then the

3



4 1. Ultrafilter basics

second axiom asserts that the union of two small sets is small (which is
hopefully more intuitive).

Exercise 1.1.2. Suppose that S is infinite. Set F := {A ⊆ S | S \ A
is finite}. Prove that F is a filter on S, called the Fréchet or cofinite filter
on S.

One often describes a filter by specifying a base:

Definition 1.1.3. Suppose that F is a filter on S. Then a base for F is
a collection B of subsets of S such that F = {A ⊆ S : B ⊆ A for some
B ∈ B}.
Exercise 1.1.4. Suppose that B is a collection of nonempty subsets of S.
Prove that B is a base for a (necessarily unique) filter on S if and only if,
for any A,B ∈ B, there is C ∈ B such that C ⊆ A ∩B.

In practice, one has a collection D of subsets of S which they would like
to belong to some filter F on S but which does not satisfy the criterion in
the previous exercise for being a base for a filter. One can of course try
to force D to satisfy the criterion by closing D under finite intersections.
However, a base for a filter is required to consist of nonempty sets and, in
closing D under finite intersections, one may accidentally stumble upon the
emptyset. Thus, the following definition becomes crucial:

Definition 1.1.5. Suppose that D is a collection of subsets of S. We say
that D has the finite intersection property (or FIP for short) if, when-
ever D1, . . . , Dn ∈ D, we have D1 ∩ · · · ∩Dn �= ∅.

The previous discussion thus establishes:

Theorem 1.1.6. Suppose that D is a collection of subsets of S with the
finite intersection property. Then {D1 ∩ · · · ∩Dn : D1, . . . , Dn ∈ D} is a
base for a filter on S, called the filter generated by D, denoted 〈D〉.

To be explicit, we have

〈D〉 = {E ⊆ S : D1 ∩ · · · ∩Dn ⊆ E for some D1, . . . , Dn ∈ D}.
Exercise 1.1.7. Suppose that F is a filter on S and A ⊆ S. Prove that
F ∪ {A} has the FIP if and only if (S \A) /∈ F .

If F is a filter on S, then a subset of S cannot be simultaneously big
and small (that is, both it and its complement belong to F), but there is
no requirement that one of the two be big. It will be desirable (for reasons
that will become clear in a moment) to add this as an additional property:

Definition 1.1.8. If F is a filter on S, then F is an ultrafilter if, for any
A ⊆ S, either A ∈ F or S \A ∈ F (but not both!).
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Ultrafilters are usually denoted by U or V, and the set of ultrafilters on
S is usually denoted βS (for a topological reason that we will discuss in
Chapter 3). Observe that the Fréchet filter on S is not an ultrafilter since
there are sets A ⊆ S such that A and S \A are both infinite.

Exercise 1.1.9 (For those who are familiar with measure theory). Given a
set S and a collection U of subsets of S, we have that U is an ultrafilter on
S if and only if there is a finitely additive probability measure μ on S that
only takes the values 0 or 1 such that, for all A ⊆ S, we have A ∈ U if and
only if μ(A) = 1. In this case, μ is unique, whence we may denote it by μU .

Exercise 1.1.10. Suppose that U is an ultrafilter on S and A1, . . . , An are
subsets of S such that A1 ∪ · · · ∪An ∈ U . Prove that there is i ∈ {1, . . . , n}
such that Ai ∈ U . Moreover, if the A1, . . . , An are pairwise disjoint, prove
that there is a unique such i.

There is actually a strong converse to the previous exercise that we will
use in Chapter 2:

Exercise 1.1.11. Suppose that U is a collection of nonempty subsets of S
with the following property: Whenever A1, A2, and A3 are pairwise disjoint
subsets of S with S = A1 ∪ A2 ∪ A3 (with perhaps one or more of the
Ai = ∅), then there is exactly one i ∈ {1, 2, 3} with Ai ∈ U . Prove that U is
an ultrafilter on S. (Hint. This is a fun exercise with Venn diagrams.)

Exercise 1.1.12. Suppose that U is an ultrafilter on S and that A ∈ U .
Prove that

A ∩ U := {A ∩B : B ∈ U}
is an ultrafilter on A, called the ultrafilter on A induced by U .

We have yet to see an example of an ultrafilter. Here is a “trivial” source
of ultrafilters:

Definition 1.1.13. Given s ∈ S, set Us := {A ⊆ S | s ∈ A}.

Exercise 1.1.14. For s ∈ S, prove that Us is an ultrafilter on S, called the
principal ultrafilter generated by s.

We say that an ultrafilter U on S is principal if U = Us for some s ∈ S;
otherwise, we say that U is nonprincipal. Although principal ultrafilters
settle the question of the existence of ultrafilters, they will turn out to be
useless for most purposes, as we will see later on. From a philosophical
viewpoint, principal ultrafilters fail to capture the idea that sets belonging
to the ultrafilter are large, for {s} belongs to the ultrafilter Us and yet hardly
anyone would dare say that the set {s} is large!
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Exercise 1.1.15. Prove that an ultrafilter U on S is principal if and only if
there is a finite set A ⊆ S such that A ∈ U . In particular, every ultrafilter
on a finite set is principal.

Exercise 1.1.16. Suppose that F is a filter on S. Then F is an ultrafilter
on S if and only if it is a maximal filter, that is, if and only if, whenever F ′

is a filter on S such that F ⊆ F ′, we have F = F ′.

Fix a filter F . Since it is readily verified that the union of an increasing
chain of filters on S containing F is once again a filter on S containing F , the
previous exercise and Zorn’s lemma (see Appendix B) yield the following:

Corollary 1.1.17. Given any filter F on S, there is an ultrafilter U on S
such that F ⊆ U .

We refer to the previous statement as the ultrafilter theorem for
S. By the ultrafilter theorem, we mean the statement that the ultrafilter
theorem for S holds for every set S. We will have a lot more to say about
the ultrafilter theorem from a foundational perspective in Chapter 5. For
now, we note that, by applying the ultrafilter theorem for S to the Fréchet
filter on S (when S is infinite), we obtain the following:

Corollary 1.1.18. If S infinite, then there is a nonprincipal ultrafilter on
S.

Exercise 1.1.19. Suppose that S is an infinite set and D is a collection
of subsets of S such that D1 ∩ · · · ∩ Dn is infinite for any finitely many
D1, . . . , Dn ∈ D. Prove that there is a nonprincipal ultrafilter U on S such
that D ⊆ U .
Exercise 1.1.20. Prove that there is an ultrafilter U on N such that, for
every A ∈ U , we have that

∑
n∈A

1
n diverges.

Definition 1.1.21. An ultrafilter U on I is called uniform if |A| = |I| for
every A ∈ U .
Exercise 1.1.22. Suppose that U is an ultrafilter on I and J ∈ U has
minimal cardinality (amongst sets in U). Prove that U ∩ J is a uniform
ultrafilter on J .

1.2. The ultrafilter quantifier

In this section, given A ⊆ S, we view A both as a subset of S and a relation
on S, and thus the expressions “s ∈ A” and “A(s)” are synonymous.

Definition 1.2.1. Given a set S, a subset A of S, and an ultrafilter U on
S, we write (Us)A(s) if A ∈ U , and we say that “U -almost all s in S satisfy
A(s)”.
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Remark 1.2.2. Using the notation from Exercise 1.1.9, we have that
(Us)A(s) holds if and only if A(s) holds μU -almost everywhere.

We think of the formation Us as a quantifier of sorts. We can translate
many of the basic properties of ultrafilters into properties of the ultrafilter
quantifier.

Exercise 1.2.3. Prove the following properties of the ultrafilter quantifier:

(1) (∀sA(s))⇒ (Us)A(s).
(2) ¬((Us)A(s))⇔ (Us)(¬A(s)).
(3) (Us)(A(s) ∧B(s))⇔ ((Us)A(s) ∧ (Us)B(s)).

(4) (Us)(A(s) ∨B(s))⇔ ((Us)A(s) ∨ (Us)B(s)).

One must take care in manipulations with the ultrafilter quantifier as it
does not always behave like its more familiar counterparts ∀ and ∃:

Exercise 1.2.4. Fix an ultrafilter U on N.

(1) If U is nonprincipal, prove that the quantifiers Us and Ut do not
commute, that is, there is A ⊆ N2 such that (Us)(Ut)A(s, t) but
¬(Ut)(Us)A(s, t).

(2) For any n ∈ N and any B ⊆ N2, prove that (Us)(Unt)B(s, t) holds
if and only if (Unt)(Us)B(s, t) holds. In other words, the ultrafilter
quantifier corresponding to a principal ultrafilter commutes with
any other ultrafilter quantifier.

At first glance, it might seem that what we have defined is a sort of
universal quantifier. Temporarily, let us rewrite our quantifier as ∀ U , that is,
(∀ Us)A(s) holds precisely when {s ∈ S : A(s) holds} ∈ U . In analogy with
the usual quantifiers, one might be tempted to then define the corresponding
existential quantifier ∃ U by declaring (∃ Us)A(s) holds if and only if it is not
the case that (∀ Us)A(s) fails, or symbolically, ∃ Us = ¬∀ Us¬.

Exercise 1.2.5. Prove that the quantifier ∃ U coincides with the quantifier
∀ U , that is, for any set S, any subset A ⊆ S, and any ultrafilter U on S,
prove that (∃ Us)A(s) holds if and only if (∀ Us)A(s) holds.

For this reason, we only consider the single ultrafilter quantifier intro-
duced above.

1.3. The category of ultrafilters

In this section, we define what it means for two ultrafilters to be isomorphic.
Näıvely speaking, one might expect ultrafilters U and V on index sets S and
T to be isomorphic if there is a bijection f : S → T such that, for A ⊆ S,
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we have A ∈ U if and only if f(A) ∈ V. However, this turns out to be a bit
too restrictive and does not quite capture the spirit of things needing only
to occur on “large” sets.

To aid ourselves in coming up with the correct notion of isomorphic
ultrafilters, it behooves us to take a categorical perspective on the matter.
(The reader unfamiliar with basic category theory may consult Appendix
C.)

Definition 1.3.1.

(1) If f : S → T is a function and U is an ultrafilter on S, then the
pushfoward of U along f is the ultrafilter f(U) on T defined by
setting, for A ⊆ T :

A ∈ f(U)⇔ f−1(A) ∈ U .

(2) Given two functions f, f ′ : S → T , we say that f and f ′ are equal
modulo U , written f =U f ′, if (Us)(f(s) = f ′(s)).

Remark 1.3.2. Using the notation from Exercise 1.1.9, the pushfoward ul-
trafilter f(U) is the ultrafilter of measure 1 sets corresponding to the push-
foward measure f∗μU on T .

Exercise 1.3.3. Suppose that f : S → T is a function and s ∈ S. Prove
that f(Us) = Uf(s).

Exercise 1.3.4.

(1) Prove that =U is an equivalence relation on functions from S to T .
We denote the equivalence class of f : S → T by [f ]U .

(2) Prove that if f =U f ′, then f(U) = f ′(U).
(3) If f : S → T and g : T → U are functions and U is an ultrafilter on

S, prove that (g ◦ f)(U) = g(f(U)).
(4) If f, f ′ : S → T and g, g′ : T → U are functions, U is an ultrafilter

on S, and f =U f ′ and g =f(U) g
′, prove that g ◦ f =U g′ ◦ f ′.

Definition 1.3.5. Given two ultrafilters U and V on sets S and T , respec-
tively, a morphism between U and V is an equivalence class [f ]U such that
f(U) = V. As is customary in category theory, we write [f ]U : U → V if
[f ]U is a morphism.

By Exercise 1.3.4(2), this notion is well-defined, that is, independent
of representative. Moreover, Exercise 1.3.4(3) allows us to unambiguously
define the composition of two morphisms [f ]U and [g]V to be [g]V ◦ [f ]U :=
[g ◦ f ]U (defined when f(U) = V). It is easy to see that this notion of
composition is associative. Moreover, denoting the identity function on S
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by idS , we see that [idS ]U is an identity morphism for U . Summarizing, we
thus have:

Theorem 1.3.6. The collection of all ultrafilters equipped with the above
notion of morphism forms a category.

Now that we have a category, we obtain a natural notion of isomorphism
between ultrafilters:

Definition 1.3.7. If U and V are ultrafilters on index sets S and T , we say
that U and V are isomorphic, denoted U ∼= V, if they are isomorphic in
the category-theoretic sense, that is, if there are morphisms [f ]U : U → V
and [g]V : V → U such that [g]V ◦ [f ]U = [idS ]U and [f ]U ◦ [g]V = [idT ]V .

Exercise 1.3.8. Prove that any two principal ultrafilters are isomorphic but
that a principal ultrafilter is never isomorphic to a nonprincipal ultrafilter.

Remark 1.3.9. A particular consequence of the preceding exercise is that
ultrafilters on index sets of different cardinalities can still be isomorphic.

It is desirable to have a more concrete description of isomorphic ul-
trafilters that avoids category-theoretic language. An essential tool in this
endeavor is the following:

Theorem 1.3.10. If U is a nonprincipal ultrafilter on S, then the only
morphism from U to itself is [idS ]U . In other words, if f : S → S is such
that f(U) = U , then f =U idS.

To prove Theorem 1.3.10, we need to prove a combinatorial fact. First,
we establish a piece of notation that will be used many times throughout
this book:

Notation 1.3.11. Given any set S, we let Pf (S) denote the set of finite
subsets of S.

Lemma 1.3.12. Suppose that S is infinite and g : S → S is fixed-point free,
that is, g(s) �= s for all s ∈ S. Then there is a partition of S := S1 ∪S2 ∪S3

such that, for all n = 1, 2, 3, if s ∈ Sn, then g(s) /∈ Sn.

Proof. We first establish the following:

Claim. For every finite subset F ⊆ S, there is a partition F = S1,F ∪S2,F ∪
S3,F such that, for all s ∈ F and n = 1, 2, 3, if s ∈ Sn,F and g(s) ∈ F , then
g(s) /∈ Sn,F .

Proof of Claim. We prove the Claim by induction on |F |. The Claim is
obvious when |F | = 1. Now suppose that |F | > 1 and the Claim has been
proven for all finite sets of smaller size. By the pigeonhole principle, there
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is s ∈ F such that there is at most one t ∈ F such that g(t) = s. Set
G := F \ {s}. By induction, we may find a partition G = S1,G ∪ S2,G ∪ S3,G

as in the statement of the Claim. We now take n ∈ {1, 2, 3} such that
g(s), g(t) /∈ Sn, where t is the unique element of G such that g(t) = s,
should it exist. Set Sn,F = Sn,G ∪ {s} for this n and set Sm,F := Sm,G for
m ∈ {1, 2, 3} \ {n}. It is clear that this partition of F is as desired. Thus,
the Claim is proven.

For each s ∈ S, let As := {F ∈ Pf (S) : s ∈ F}. Since the family
(As)s∈S has the finite intersection property (as {s1, . . . , sn} ⊆

⋂n
i=1Asi for

any finitely many s1, . . . , sn ∈ S), there is an ultrafilter U on Pf (S) such
that As ∈ U for all s ∈ S. We use U to define a partition S = S1 ∪ S2 ∪ S3

as follows. Given s ∈ S, put s ∈ Sn if and only if n is the unique number
in {1, 2, 3} such that s ∈ Sn,F for U -almost all F ∈ As, where Sn,F is as
in the Claim. Note that this partition is as desired: if g(s) ∈ Sn as well,
then for U -almost all F ∈ Pf (S), we have s, g(s) ∈ F and s, g(s) ∈ Sn,F ,
contradicting the choice of partition Sn,F . �

Proof of Theorem 1.3.10. Suppose that f(U) = U and yet, toward a
contradiction, that f �=U idS . Thus, there is A ∈ U such that f(s) �= s for
all s ∈ A. Let g : S → S be fixed-point free and such that g(s) = f(s)
for all s ∈ A, whence g =U f . Since U is nonprincipal (by assumption),
S is infinite. Let S = S1 ∪ S2 ∪ S3 be the partition of S as guaranteed by
Lemma 1.3.12. By Exercise 1.1.10, there is a unique n such that Sn ∈ U .
Since f(U) = U , we have that f−1(Sn) ∈ U , whence A ∩ Sn ∩ f−1(Sn) ∈ U .
In particular, there is s ∈ A ∩ Sn such that f(s) ∈ Sn, contradicting the
defining property of the partition and the fact that f(s) = g(s) for this
particular s. �

Corollary 1.3.13. Suppose that U and V are ultrafilters on the sets I and J ,
respectively, and that there are morphisms [f ]U : U → V and [g]V : V → U .

(1) [f ]U and [g]V are inverse isomorphisms.

(2) [f ]U is the only morphism from U to V, and [g]V is the only mor-
phism from V to U .

Proof. Item (1) is clear when U and V are principal, and it follows immedi-
ately from Theorem 1.3.10 when they are nonprincipal. For (2), notice that
if [f ′]U : U → V were also a morphism, then by item (1) (applied to [f ′]U
and [g]V), we would have that [f ′]U is the inverse of [g]V ; by uniqueness
of inverses, we have that [f ]U = [f ′]U . The analogous statement for [g]V
follows by the same argument. �
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Corollary 1.3.14. If U is an ultrafilter on S and f : S → T is a function,
then [f ]U is an isomorphism if and only if there is A ∈ U such that f � A is
injective.

Proof. First suppose that [f ]U is an isomorphism with inverse [g]V , where
V := f(U). Let

A := {s ∈ S : (g ◦ f)(s) = s}.
Since g ◦ f =U idS , we have that A ∈ U . It remains to note that f � A is
injective.

Conversely, suppose that A ∈ U is such that f � A is injective. Let
g : T → S be such that g � f(A) is the inverse of the bijection f � A : A→
f(A). We leave it to the reader to check that [g]V is the inverse of [f ]U . �

Exercise 1.3.15. Finish the proof of the previous corollary by checking
that [g]V is indeed the inverse of [f ]U .

We can now provide a more concrete description of isomorphic ultrafil-
ters:

Corollary 1.3.16. If U and V are ultrafilters on sets S and T , respectively,
then U ∼= V if and only if there is a function f : S → T such that f(U) = V
and for which there is A ∈ U such that f � A is injective.

Note that, in the notation from the previous corollary, we have that
U ∼= V if and only if f � A witnesses that U ∩A and V ∩f(A) are isomorphic
in the näıve sense introduced in the beginning of this section (where U∩A :=
{B ∩ A : B ∈ U} is the ultrafilter on A induced by U as introduced in
Exercise 1.1.12 and likewise for V ∩ f(A)).

1.4. The number of ultrafilters

Fix an infinite cardinal κ. Since the set of ultrafilters on κ is a subset of
P(P(κ)), a näıve upper bound for the cardinality of the set of ultrafilters on
κ is 22

κ
. In this section, we show that this upper bound is actually achieved:

Theorem 1.4.1. For any infinite cardinal κ, there are 22
κ
many ultrafilters

on κ.

The plan of the proof is as follows. For each C ⊆ 2κ, we would like to
construct an ultrafilter U(C) on κ such that C1 �= C2 implies U(C1) �= U(C2),
whence there will be at least (and hence exactly) 22

κ
many ultrafilters on

κ. We start by momentarily fixing a particular subset X ⊆ 2κ (assumptions
on which will be forthcoming) and defining, for C ⊆ X,

B(C) := {f−1(0) : f ∈ C} ∪ {f−1(1) : f ∈ X \ C}.
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In this display, we are viewing elements of 2κ not as subsets of κ but rather
as functions κ→ 2 = {0, 1}.

If B(C) were to have the finite intersection property, then we can extend
B(C) to an ultrafilter U(C) on κ. It then remains to show that C1 �= C2

implies U(C1) �= U(C2). Without loss of generality, we may take f ∈ C1 \
C2. Then f−1(0) ∈ B(C1) ⊆ U(C1) and f−1(1) ∈ B(C2) ⊆ U(C2); since
f−1(0) ∩ f−1(1) = ∅, this shows that U(C1) �= U(C2).

Consequently, the above proof hinges on the sets B(C) having the finite
intersection property. For this to happen, we would need to be able to
take arbitrary f1, . . . , fm ∈ C and g1, . . . , gn ∈ X \ C and find x ∈ κ such
that fi(x) = 0 and gj(x) = 1 for each i, j, whence it would follow that

x ∈
⋂m

i=1 f
−1
i (0) ∩

⋂n
j=1 f

−1
j (1). Unfortunately, this statement is not true

for a general subset X of 2κ. (Exercise!) Thankfully, we can show that there
is a set X ⊆ 2κ such that |X| = 2κ and such that the sets B(C) do have the
finite intersection property whenever C ⊆ X, whence the above proof can
be rescued.

Definition 1.4.2. If A is a set, then a set of functions X ⊆ 2A is indepen-
dent if, for any finitely many distinct functions f1, . . . , fn ∈ X and finitely
many elements y1, . . . , yn ∈ {0, 1}, there is x ∈ A such that fi(x) = yi for
i = 1, . . . , n.

Remark 1.4.3. The terminology in the previous definition is motivated by
the fact that, given f1, . . . , fn ∈ X, each of the 2n possible intersections⋂n

i=1 f
−1(yi), as (y1, . . . , yn) ranges over 2n, is nonempty, whence these in-

tersections are independent in the sense of Venn diagrams.

From the above discussion, Theorem 1.4.1 will follow from the following
theorem:

Theorem 1.4.4. For any infinite cardinal κ, there is an independent set
X ⊆ 2κ with |X| = 2κ.

Proof. By set-theoretic trickery, it will suffice to find a set B with |B| = κ
and an independent set X ⊆ 2B with |X| = 2κ. Here is the B that will
work:

B := {(F,G, s) : F ⊆ κ is finite, G ⊆ P(F ), s ∈ 2G}.
It is an easy exercise to see that |B| = κ. For A ⊆ κ, consider fA ∈ 2B

defined by

fA(F,G, s) =

{
s(A ∩ F ) if A ∩ F ∈ G

0 otherwise.

We note that the function A �→ fA is injective: if A1 �= A2, we may take,
without loss of generality, x ∈ A1 \ A2. Let F := {x}, G = {F}, and
s(F ) = 1. Then fA1(F,G, s) = 1 while fA2(F,G, s) = 0, so fA1 �= fA2 .
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Thus {fA : A ⊆ κ} is a subset of 2B of cardinality 2κ. It remains to
see that it is an independent set. Toward this end, fix finitely many distinct
subsets A1, . . . , An of κ and y1, . . . , yn ∈ {0, 1}. For each 1 ≤ l < m ≤ n,
take al,m ∈ Al�Am. Let F be the set of al,m’s thus obtained, and let
G = {Am ∩F : 1 ≤ m ≤ n}. Note that Al ∩F �= Am ∩F for l �= m as al,m
belongs to one but not the other. We are thus allowed to unambiguously
define s : G→ {0, 1} by s(Am∩F ) := ym. By definition, fAm(F,G, s) = ym,
as desired. �

Since there are exactly κmany principal ultrafilters on κ, we immediately
obtain:

Corollary 1.4.5. For any infinite cardinal κ, there are 22
κ
many nonprin-

cipal ultrafilters on κ.

Exercise 1.4.6. Prove that there are 22
κ
many nonisomorphic nonprincipal

ultrafilters on κ.

1.5. The ultrafilter number u

Recall the definition for a base for a filter given in Definition 1.1.3.

Definition 1.5.1. The ultrafilter number u is the minimum of all car-
dinals κ for which there is a nonprincipal ultrafilter on N with a base of
cardinality κ.

Exercise 1.5.2. Prove that ℵ1 ≤ u ≤ c.

By the preceding exercise, if the Continuum Hypothesis (CH) holds,
then u = ℵ1 = c. Thus, it is only interesting to consider u in the case that
CH fails. Under the negation of CH, anything can happen, namely there are
models of the negation of CH where u = ℵ1 (see, for example, [5]), where
u = c (e.g., any model of Martin’s axiom, see [89, Section 23]), and where
ℵ1 < u < c [15].

The ultrafilter number u is an example of a so-called cardinal charac-
teristic of the continuum, which, roughly speaking, is an example of a
cardinality reflecting some combinatorial property that holds for c but not
for ℵ0. In general, one aims to see what comparisons hold between these
cardinal characteristics in Zermelo-Fraenkel set theory with choice (ZFC)
and which comparisons depend on further axioms. To give a feel for this
area, we give one such comparison as an exercise. First, a definition:

Definition 1.5.3. The unbounding number b is the minimal cardinality
of a family X ⊆ ωω for which there does not exist g ∈ ωω with the property
that, for all f ∈ ωω, there is N ∈ ω such that f(n) ≤ g(n) for all n ≥ N .
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Exercise 1.5.4. Show that b ≤ u. (Hint. For each X in a base B for a
nonprincipal ultrafilter on N, define fX ∈ ωω by fX(n) := the least m ≥ n
that belongs to X. Prove that (fX)X∈B is unbounded.)

1.6. The Rudin-Keisler order

In this section, we introduce the Rudin-Keisler order ≤RK on the collection
of all ultrafilters. Roughly speaking, V ≤RK U indicates that V is “no more
complicated” than U . It turns out that we have already met this notion in
Section 1.3:

Definition 1.6.1. If U and V are ultrafilters on the sets S and T , respec-
tively, then we say that V is below U in the Rudin-Keisler order, denoted
V ≤RK U , if there is a morphism from U to V in the category of ultrafilters,
that is, if there is a function f : S → T such that f(U) = V. We also write
U <RK V to mean U ≤RK V but V �≤RK U .

At first glance, it is not clear how this definition matches up with our
rough description at the beginning of this section. Let us take a moment to
elaborate further.

Exercise 1.6.2. Suppose that f : S → T and g1, g2 : T → U are functions
and U and V are ultrafilters on S and T , respectively, such that f(U) = V
and [g1]V ◦ [f ]U = [g2]V ◦ [f ]U . Prove that [g1]V = [g2]V .

In category-theoretic terminology (see Appendix C), the above exercise
says that every morphism in the category of ultrafilters is an epimorphism.
In the category of sets, the epimorphisms are exactly the surjections (Exer-
cise!), whence the existence of an epimorphism from a set X to a set Y is
an indication that the set Y is “no larger than” or “no more complicated
than” X. It is for this reason that the existence of a morphism from U to V
(which is automatically an epimorphism) is an indication that V is no more
complicated than U .

Another heuristic behind the definition of ≤RK is that the function f
takes queries about whether or not a subset A of T belongs to V and converts
it into the question of whether or not f−1(A) belongs to U . Thus, with total
knowledge about U , one can answer all queries about V, whence V is no
more complicated than U .

Exercise 1.6.3. Suppose that V is a principal ultrafilter. Prove that V ≤RK

U for any ultrafilter U .

It is clear that ≤RK is reflexive (U ≤RK U) and transitive (U ≤RK V
and V ≤RK W implies U ≤RK W), whence ≤RK is a preorder on the set of
ultrafilters. It is not a partial order as U ≤RK V, and V ≤RK U does not
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imply that U = V. Following usual nomenclature with preorders, we write
U ≡RK V to mean that U ≤RK V and V ≤RK U . However, this notion is
not new to us, for Corollary 1.3.13(1) implies the following:

Corollary 1.6.4. For any two ultrafilters U and V, we have that U ≡RK V
if and only if U ∼= V.

Consequently, ≤RK induces a partial order on the set of isomorphism
classes of ultrafilters. In what follows, we often blur this distinction and
speak of ≤RK both as the preorder on ultrafilters and the partial order on
the set of isomorphism classes of ultrafilters.

By Exercises 1.3.8 and 1.6.3, there is a unique isomorphism class that
is a minimum under the ordering ≤RK , namely the isomorhism class of
principal ultrafilters. In what follows, we discard this (uninteresting) class
and consider only the partial ordering on classes of nonprincipal ultrafilters.

The following questions naturally arise:

Question 1.6.5.

(1) Is ≤RK linear?

(2) Is there a ≤RK -maximal element?

(3) Is there a ≤RK -minimal element?

The answers are: No, no, and maybe!

Fact 1.6.6 (Rudin and Shelah [162]). There are 22
κ
many ≤RK-incompa-

rable elements in βκ.

The combinatorics involved in this result are quite intricate. Instead,
we prove here the following easier result. Note that we make an extra
(simplifying) set-theoretic assumption in the statement of the next result,
while the previous fact is indeed a theorem of ZFC.

Proposition 1.6.7. Assume that u = c. Then there are nonprincipal U ,V ∈
βN that are ≤RK-incomparable.

Proof. Let (fα : α < c) enumerate all elements of ωω. We construct filters
Fα and Gα on N with the following properties:

(1) F0 = G0 = the Fréchet filter on N;

(2) If β < α, then Fβ ⊆ Fα and Gβ ⊆ Gα;
(3) Fα has cardinality < c;

(4) If U and V are any ultrafilters containing Fα and Gα, respectively,
then fα(U) �= V and fα(V) �= U .
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If we let U and V be any ultrafilters extending
⋃

α Fα and
⋃

α Gα, respec-
tively, then it follows that U and V are ≤RK -incomparable.

Suppose that Fβ and Gβ have been defined for all β < α; we show how
to define Fα and Gα. If α = β + 1, set F := Fβ. If α is a limit ordinal,
set F :=

⋃
β<αFβ. Make the analogous definition for G. Since |F| < c, the

assumption that u = c implies that F is not an ultrafilter. Consequently,
there is A ⊆ N such that A,N \ A /∈ F . Note that, by Exercise 1.1.7, both
F ∪ {A} and F ∪ {N \A} have the FIP. We consider three cases:

• If f−1
α (A) ∈ G, then we set F ′ to be the filter generated by F ∪

{N \ A} and we set G′ := G.
• If f−1

α (N \ A) ∈ G, then we set F ′ to be the filter generated by
F ∪ {A} and we set G′ := G.

• If neither of the above two cases hold, then we may set F ′ to be
the filter generated by F ∪{N\A} and G′ to be the filter generated
by G ∪ {f−1

α (A)}.
At this point, we have guaranteed that fα(V) �= U whenever U is an ultra-
filter extending F ′ and V is an ultrafilter extending G′. Since |G′| < c, we
can reverse the procedure to find Fα ⊇ F ′ and Gα ⊇ G′ as desired. �

We now move on to the second question. First, some notation: given sets
S and T , a subset Y ⊆ S × T , and t ∈ T , we set Yt := {s ∈ S : (s, t) ∈ Y }.

Definition 1.6.8. Suppose that U ,V are ultrafilters on index sets S and T .
We define the product of U and V to be

U × V := {Y ⊆ S × T : {t ∈ T : Yt ∈ U} ∈ V}.

In other words, Y ∈ U × V ⇔ (Vt)(Us)Y (s, t).

Exercise 1.6.9. Prove that U × V is an ultrafilter on S × T .

A particular consequence of the next proposition is that there is no
≤RK-maximal ultrafilter.

Proposition 1.6.10. For all ultrafilters U and V, we have U <RK U × V
and V <RK U × V.

Proof. We only prove that U <RK U × V, the other assertion being anal-
ogous. Let π : S × T → S be the function π(s, t) = s. Note then that, for
A ⊆ S, we have that π−1(A) = A × T and A × T ∈ U × V if and only if
A ∈ U . It follows that π(U × V) = U , so U ≤RK U × V. If U × V ≤RK U
were to hold, then by Corollary 1.3.13(1), [π]U×V would be an isomorphism,
contradicting Corollary 1.3.16 and the fact that π � Y is never injective for
any Y ∈ U × V. �
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With more work, one can actually prove that every element of βκ has
22

κ
many successors in βκ; see [83, Theorem 11.9].

We address the last question in Section 5.4.

1.7. Notes and references

The notion of ultrafilter was introduced by H. Cartan [23, 24] in 1937 to
study convergence in topological spaces, a topic we will study in Chapter 3.
The existence of a nonprincipal ultrafilter was first proven by Tarski in [173].
Our approach to the ultrafilter quantifier is motivated by Todorcevic’s book
[177]. Our treatment of the category of ultrafilters follows Blass’s thesis
[16]. The fact that there are the maximal possible number of ultrafilters on a
given set is due to Posṕı̌sil [144]. A nice survey on cardinal characteristics of
the continuum, including more information about the ultrafilter number, is
Blass’s survey [14]. The Rudin-Keisler order was independently introduced
by M. Rudin in [150] and by Keisler in lectures given at UCLA.





Chapter 2

Arrow’s theorem
on fair voting

In this chapter, we give our first application of ultrafilters by proving Arrow’s
theorem, a classical result in voting theory. In Section 2.1, we introduce the
statement of the result, while in Section 2.2 we explain the approach to
proving Arrow’s theorem via ultrafilters. In Section 2.3, we show how the
notion of block voting reduces the proof of Arrow’s theorem to its version
for at most three voters, and we prove this latter statement in Section 2.4.

2.1. Statement of the theorem

Throughout this chapter, V denotes the set of voters in an election. The
voters are ranking their preferences amongst a finite set of, say, n candi-
dates, which we label, for the sake of simplicity, as 1, . . . , n. They express
their preference using a permutation σ of the set {1, . . . , n}. We will refer
to the pair (V, n) as an election.

Example 2.1.1. If n = 4 and a voter has preference σ such that σ(1) = 2,
σ(2) = 4, σ(3) = 3, and σ(4) = 1, then this means that they prefer candidate
4 the most, followed by candidate 1, then candidate 3, and finally they prefer
candidate 2 the least.

Remark 2.1.2. Whle permutation notation for voters’ preferences is math-
ematically natural, it leads to statements that appear counterintuitive. For
example, in the previous example, the fact that σ(1) < σ(2) actually signi-
fies that voters prefer candidate 1 over candidate 2, the appearance of the
< symbol might indicate that the opposite preference held.

19
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A state of the election is a function π : V → Sn. (Recall that Sn

is the set of permuations of the set {1, . . . , n}.) In other words, a state of
the election is simply a record of the preferences of each voter involved: for
v ∈ V , π(v) is voter v’s preferences.

The following is the central question in this chapter: given a state of the
election, how does one get a final ranking of the candidates that takes into
account the individual voter rankings? Or even more to the point, one would
like to determine, in advance, a method of turning any state of the election
into a final ranking of the candidates. The following definition formalizes
this idea:

Definition 2.1.3. An election procedure is a function f : SV
n → Sn, that

is, for any state of the election π, f(π) is the final ranking of the candidates.
An election procedure f is called fair if it satisfies:

(U) unanimity: if σ ∈ Sn is such that π(v) = σ for all v ∈ V , then
f(π) = σ.

(IA) irrelevant alternatives: if π and π′ are states of the election and
i, j ∈ {1, . . . , n} are such that, for all v ∈ V , π(v)(i) > π(v)(j) if
and only if π′(v)(i) > π′(v)(j), then f(π)(i) > f(π)(j) if and only
if f(π′)(i) > f(π′)(j).

In English, unanimity expresses the fact that if all voters have the same
preferences, then the outcome of the election is that common preference,
while irrelevant alternatives says that the final ranking of any two candidates
should only depend on how the voters feel about those two candidates.

Exercise 2.1.4. If f is a fair election procedure, prove that f further
satisfies local unanimity (LU): if π(v)(i) > π(v)(j) for all v ∈ V , then
f(π)(i) > f(π)(j).

At the (seemingly) opposite extreme of a fair election procedure is an
election procedure f that possesses a dictator, which is a voter v ∈ V
such that, for every state of the election π, we have f(π) = π(v); in other
words, the outcome of the election is always v’s ranking of the candidates.
It would seem that a fair election procedure would preclude the existence of
a dictator. Such a sentiment is precisely why the following theorem of the
economist Kenneth Arrow is so intriguing:

Theorem 2.1.5 (Arrow’s theorem). Suppose that V is a finite set of voters,
n ≥ 3, and f : SV

n → Sn is a fair election procedure. Then there is a dictator
for f .

It is the goal of this chapter to prove Theorem 2.1.5.



2.2. The connection with ultrafilters 21

Remark 2.1.6. Note that we must assume n ≥ 3. Indeed, if n = 2 and (for
simplicity) |V | is odd, we can let f : SV

n → Sn be the election procedure that
just picks the candidate with the most votes. It is clear that this election
procedure has no dictator.

2.2. The connection with ultrafilters

Arrow’s original proof of Theorem 2.1.5 did not use ultrafilters, but the
most transparent explanation of the story does. Indeed, let us first take up
the question: how can one define an election procedure? One näıve idea is
to just take the permutation that “appears most often” in the state of the
election. If V is infinite, then what does one mean by the permutation that
appears most often? Well, if we fix an ultrafilter U on V , then there is a
unique permutation σ ∈ Sn such that {v ∈ V : π(v) = σ} ∈ U (we are
using here that Sn is finite!). We can then define an election procedure fU
by setting fU(π) := this unique σ.

Proposition 2.2.1. Given an ultrafilter U on V , the election procedure fU
defined above is fair. Moreover, v ∈ V is a dictator for fU if and only if U
is the principal ultrafilter generated by v.

Proof. (U) follows from the fact that V ∈ U . To prove (IA), fix states of the
election π and π′ and candidates i, j ∈ {1, . . . , n} such that, for all v ∈ V ,
π(v)(i) > π(v)(j) if and only if π′(v)(i) > π′(v)(j). Suppose, without loss of
generality, that fU(π)(i) > fU(π)(j). Then {v ∈ V : π(v)(i) > π(v)(j)} ∈
U . Since this set is precisely the same as {v ∈ V : π′(v)(i) > π′(v)(j)}, it
follows that fU (π′)(i) > fU (π′)(j).

The second statement of the proposition is obvious from the definition
of fU . �

We thus have a function U �→ fU mapping the set of ultrafilters on V to
the set of fair election procedures which maps principal ultrafilters to those
election procedures possessing dictators. The key to the ultrafilter proof of
Arrow’s theorem is the assertion that this function is a bijection when n ≥ 3:

Theorem 2.2.2. If n ≥ 3, the map U �→ fU from the set of ultrafilters on
V to the set of fair election procedures for the election (V, n) is a bijection.

Arrow’s theorem follows immediately from Theorem 2.2.2:

Proof of Theorem 2.1.5. Suppose that V is a finite set of voters and
n ≥ 3. Suppose further that f : SV

n → Sn is a fair election procedure. By
Theorem 2.2.2, there is an ultrafilter U on V such that f = fU . Since V is
finite, by Exercise 1.1.15, U is principal, whence f = fU has a dictator. �
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Since Theorem 2.2.2 holds when V is infinite as well, we can conclude:

Corollary 2.2.3. Suppose that V is an infinite set of voters. Then for any
n, there is a fair election procedure for (V, n) that does not have a dictator.

Proof. By Corollary 1.1.18, there is a nonprincipal ultrafilter U on V . The
corresponding election procedure fU is fair and does not have a dictator. �

Remark 2.2.4. The proof of the preceding corollary implicitly used the
axiom of choice. In Chapter 5, we will see that there are models of set
theory in which no nonprincipal ultrafilters exist, whence some form of the
axiom of choice is needed in the previous result. Although not entirely
accurate, the following phrase provides a humorous summary: In a universe
without choice, there will always be a dictator!

We now work toward the proof of Theorem 2.2.2. We will proceed by
defining an inverse to the function U �→ fU . Until further notice, we fix an
election (V, n) with n ≥ 3 and a fair election procedure f : SV

n → Sn. Here
is the key notion:

Definition 2.2.5. We call F ⊆ V a decisive set of voters for f (or
simply decisive for f) if, whenever there is a state of the election π and
σ ∈ Sn such that π(v) = σ for all v ∈ F , we have f(π) = σ.

In other words, F is decisive for f if, whenever every member of F votes
the same way, the outcome of the election procedure f is that common
preference. Note that (U) states that V is decisive for f . Note also that, for
v ∈ V , we have that {v} is decisive for f precisely when v is a dictator for
f .

Exercise 2.2.6. If U is an ultrafilter on V and fU is the associated election
procedure, show that the decisive sets for fU are precisely the elements of
U .

Let Uf := {F ⊆ V : F is a decisive set of voters for f}. The previous
exercise can then be formulated as UfU = U and gives us a hint as to how
to prove Theorem 2.2.2, namely we should prove the following theorem:

Theorem 2.2.7. Uf is an ultrafilter on V .

Exercise 2.2.8. Suppose that Theorem 2.2.7 has been proven. Prove that
fUf

= f .

Thus, if we can prove Theorem 2.2.7, then the map f �→ Uf is the desired
inverse to U �→ fU , finishing the proof of Theorem 2.2.2.
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2.3. Block voting

We now work toward proving Theorem 2.2.7. Using Exercise 1.1.11, it suf-
fices to prove the following statement:

(∗) Whenever n ≥ 3, f is a fair election procedure for (V, n), and V =
V1∪V2∪V3 with V1, V2, and V3 pairwise disjoint (and perhaps some Vi = ∅),
then exactly one Vi is decisive for f .

Set P := {V1, V2, V3}, a partition of V into at most three pieces. The key
idea is to consider the new election (P, n) (which has at most three voters).
We can then associate to any state of the election π for (P, n) a state of the
election πP for (V, n) by having all members of Vi vote in the same manner
according to π, that is, for each i = 1, 2, 3 and each v ∈ Vi, πP(v) = π(Vi);
we refer to this situation as block voting. Note that any election procedure
f : SV

n → Sn gives rise to an election procedure fP : SP
n → Sn by defining

fP(π) := f(πP).

The election (P, n) is significantly simpler than the original election
(V, n) as it has at most three voters; it turns out that one can prove this
case directly by hand:

Theorem 2.3.1 (Arrow’s theorem for few voters). If |V | ≤ 3 and n ≥ 3,
then every fair election procedure for (V, n) has a dictator.

We will prove Theorem 2.3.1 in the next section. In the remainder of
this section, we see how it implies statement (∗) above.

Fix a set V of voters, n ≥ 3, and a fair election procedure f for (V, n).
By Theorem 2.3.1, fP has a dictator, say, without loss of generality, it is V1.
We will show that V1 is decisive for f . At first glance, this is not obvious.
However, V1 does have the seemingly weaker property of being block decisive
for f :

Definition 2.3.2. F ⊆ V is block decisive for f if, whenever π is a state
of the election for (V, n) such that π is constantly σ on F and constantly σ′

on V \ F , then f(π) = σ.

Exercise 2.3.3. Verify that V1 as above is block decisive for f .

Now, a minor miracle occurs:

Proposition 2.3.4. If F ⊆ V is block decisive, then it is decisive.

Proof. Suppose, toward a contradiction, that F is block decisive but not
decisive. Since F is not decisive, there is a state of the election π : V → Sn

and a permutation σ ∈ Sn such that π(v) = σ for all v ∈ F and yet
f(π) �= σ. Take distinct i, j ∈ {1, . . . , n} such that σ(i) > σ(j) and yet
f(π)(i) < f(π)(j).
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Since n ≥ 3, we may consider k ∈ {1, . . . , n}\{i, j}. Let σ′ ∈ Sn be such
that σ′(i) > σ′(k) > σ′(j). Let π′ : V → Sn be a new state of the election
such that:

• if v ∈ F , then π′(v) = σ′;

• if v /∈ F , then
– π′(v)(k) < π′(v)(i),
– π′(v)(k) < π′(v)(j), and
– π′(v)(i) < π′(v)(j) if and only if π(v)(i) < π(v)(j).

By (IA), we have that f(π′)(i) < f(π′)(j). By (LU), we have f(π′)(i) >
f(π′)(k), whence f(π′)(j) > f(π′)(k).

Finally, let σ′′ ∈ Sn be such that σ′′(j) > σ′′(k), and define a new state of
the election π′′ : V → Sn such that π′′(v) = σ′ for all v ∈ F and π′′(v) = σ′′

for all v ∈ V \ F . By (IA) again, f(π′′)(j) > f(π′′)(k). However, since F
is block decisive, we have that f(π′′) = σ′, so f(π′′)(k) > f(π′′)(j), yielding
the desired contradiction. �

Combining Exercise 2.3.3 and Proposition 2.3.4, we have that V1 is deci-
sive. Thus, we have succeeded in proving statement (∗) using Theorem 2.3.1
and, as mentioned above, statement (∗) and Exercise 1.1.11 imply Theorem
2.2.7.

2.4. Finishing the proof

In this section, we finish the proof of Arrow’s theorem by proving Theorem
2.3.1. It will behoove us to first prove the case of two voters. We do this in
a series of lemmas. First, one final definition:

Definition 2.4.1. Given v ∈ V and distinct i, j ∈ {1, . . . , n}, we call v
a decisive voter for f with respect to (i, j) if, for every state of the
election π for which π(v)(i) < π(v)(j), we have f(π)(i) < f(π)(j).

We also introduce some useful notation: when |V | = 2, we write V =
{v, w}. In this case, if i, j, k are candidates and f is some fixed election pro-
cedure for (V, n), we write (ijk, ikj) � kij as an abbreviation for the state-
ment: given a state π of the election (V, n) for which π(v)(i) < π(v)(j) <
π(v)(k) and π(w)(i) < π(w)(k) < π(w)(j), we have f(π)(k) < f(π)(i) <
f(π)(j). Note that, by (IA), this notation is well-defined and independent
of the choice of π. We use the same notation for all other possible permu-
tations and also in the case of preferences for two candidates.

Lemma 2.4.2. Suppose that |V | = 2, i, j, k are distinct candidates, and f
is a fair election procedure for the election (V, n). If v is decisive for f with
respect to (i, j), then v is decisive for f with respect to both (i, k) and (j, k).
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Proof. By our assumption, we have (ij, ji) � ij. By (LU), we then have
(ijk, jki) � (ijk). By (IA), we then have (ik, ki) � ik, whence v is decisive
for f with respect to (i, k). Using (LU) again, we have that (jik, kji) � jik.
By (IA) again, we then have (jk, kj) � jk, whence v is decisive for f with
respect to (j, k). �

Lemma 2.4.3. Suppose that |V | = 2, i and j are distinct candidates, and
f is a fair election procedure for the election (V, n). If v is decisive for f
with respect to (i, j), then v is decisive for f with respect to (j, i).

Proof. Since n ≥ 3, we may consider k ∈ {1, . . . , n} \ {i, j}. By Lemma
2.4.2, we have that v is decisive for f with respect to (j, k). By Lemma 2.4.2
again (applied to j, k, i), we obtain that v is decisive for f with respect to
(j, i). �

Theorem 2.4.4 (Arrow’s theorem for two voters). Suppose that |V | = 2,
n ≥ 3, and f is a fair election procedure for (V, n). Then there is a dictator
for f .

Proof. Fix distinct candidates i and j. By (LU) and (IA), we see that either
v or w is decisive for f with respect to (i, j). Without loss of generality,
suppose it is v. We claim that v is a dictator for f . Indeed, this follows
immediately from Lemmas 2.4.2 and 2.4.3. �

Exercise 2.4.5. Verify the last sentence in the previous proof.

We are now ready to prove Theorem 2.3.1. In the proof, we extend our
above notation so that when |V | = 3, we write V = {u, v, w} and we extend
our � notation in the obvious way.

Proof of Theorem 2.3.1. Suppose that |V | = 3, n ≥ 3, and f is a fair
election procedure for (V, n). We define Vu := {u, vw}, where now vw is
treated as one single voter (so |Vu| = 2) and a fair election procedure fu for
(Vu, n) as in the previous section on block voting (so v and w are always
voting in the same manner). We define the sets Vv and Vw and the fair
election procedures fv and fw in the analogous way. By Theorem 2.4.4,
each of the election procedures fu, fv, and fw, has a dictator.

Claim. There is x ∈ V such that x is the dictator for fx.

Proof of Claim. Suppose that the Claim is false. Fix distinct candidates
i and j. By assumption, uw is the dictator for fv, whence we have:

(1) (ij, ji, ij) � ij.

Once again, by assumption, uv is the dictator for fw, whence we have:

(2) (ij, ij, ji) � ij.
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Consider now the set V ′ := {v, w}. Fix σ ∈ Sn such that σ(i) < σ(j)
and define the fair election procedure f ′ for (V ′, n) by setting f ′(σv, σw) :=
f(σ, σv, σw). By Theorem 2.4.4 again, there is a dictator for f ′. If v is the
dictator for f ′, then we get a contradiction to (1), while if w is the dictator
for f ′, we get a contradiction to (2). Thus, the Claim is proven.

By the Claim, we may assume, without loss of generality, that u is the
dictator for fu. But then {u} is block decisive for f , whence it is decisive
for f by Proposition 2.3.4, and thus u is the dictator for f . �

2.5. Notes and references

Arrow’s original proof can be found in [2]. Our treatment of the ultrafilter
proof of Arrow’s theorem has borrowed heavily from Galvin’s notes [64] and
the article of Komjàth and Tatik [108].



Chapter 3

Ultrafilters in topology

In this chapter, we investigate some uses of ultrafilters in topology. In Sec-
tion 3.1, we define the notion of an ultralimit of a sequence in a topological
space and show how this notion can be used to give nice characterizations of
familiar topological notions, such as the closure of a set, the compactness of
a space, and the continuity of a function. In Section 3.2, we show how the
set of ultrafilters on a discrete space can be topologized so that it becomes
the familiar Stone-Čech compactification of the discrete space; this analysis
is extended to the nondiscrete setting in Section 3.3. In Section 3.4, we in-
troduce the notion of an ultrafilter on a Boolean algebra so as to be able to
prove the Stone duality theorem, which expresses the dual equivalence of the
categories of Boolean algebras and compact, Hausdorff, totally disconnected
spaces (otherwise known as Stone spaces).

3.1. Ultralimits

Definition 3.1.1. For X a topological space, (xi)i∈I a sequence from X,
and U an ultrafilter on I, a U-ultralimit of (xi)i∈I is a point x ∈ X such
that, for all open neighborhoods U of x, we have {i ∈ I : xi ∈ U} ∈ U .

Exercise 3.1.2. Suppose that (xi)i∈I is a sequence from X and U is the
principal ultrafilter on I generated by j. Show that xj is a U -ultralimit of
(xi)i∈I . If, in addition, X is a T1 space, prove that xj is the only U -ultralimit
of (xi)i∈I .

Exercise 3.1.3. Suppose that X is Hausdorff. Show that, for any sequence
(xi)i∈I from X and any ultrafilter U on I, there can be at most one U -
ultralimit of (xi)i∈I .

27
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By the previous exercise, in the case of Hausdorff spaces, we write limU xi
(or limi,U xi) for the U -ultralimit of (xi)i∈I when it exists.

Exercise 3.1.4. Suppose that (xn)n∈N is a sequence in a metric space X.
Suppose also that limn→∞ xn = x. Show that for any nonprincipal ultrafilter
U on N, we have limU xn = x.

Exercise 3.1.5. Suppose that (xn)n∈N and (yn)n∈N are two sequences from
R and U is an ultrafilter on N such that limU xn and limU yn both exist.
Prove the following:

(1) limU(xn ± yn) = (limU xn)± (limU yn).

(2) limU(xn · yn) = (limU xn) · (limU yn).

(3) If limU yn �= 0, then yn �= 0 for U -almost all n and limU
xn
yn

=
limU xn

limU yn
. (Part of the exercise is to explain what the left hand side

of the equation even means!)

Ultralimits become a convenient tool for speaking about limit points:

Theorem 3.1.6. Suppose that X is a topological space, A is a subset of X,
and x ∈ X. Then x ∈ A if and only if there is a sequence (xi)i∈I from A
and an ultrafilter U on I such that x is a U-ultralimit of (xi)i∈I .

Proof. First suppose that x ∈ A. If x ∈ A, then x is the ultralimit
of the constant sequence (x, x, x, . . .) with respect to any ultrafilter U on
N. Thus we may suppose that x is a limit point of A. For every open
neighborhood U of x, take xU ∈ (A ∩ U) \ {x}. For each open neigh-
borhood U of x, let FU := {V ⊆ X : V is open and V ⊆ U}. Set
D := {FU : U an open neighborhood of x}. Note that D has the finite
intersection property as FU∩U ′ ⊆ FU ∩FU ′ . Consequently, there is an ultra-
filter U on the set of open neighborhoods of x such that D ⊆ U . It is then
easy to verify that x is a U -ultralimit of (xU ).

Conversely, suppose that x is a U -ultralimit of the sequence (xi)i∈I from
A. Let U be an open neighborhood of x. Then there are U -many i (so in
particular one i) such that xi ∈ U . It follows that x ∈ A. �

Corollary 3.1.7. Suppose that (xn)n∈N is a sequence from a metric space
X and x ∈ X. Then:

(1) x is a subsequential limit of (xn)n∈N if and only if there is a non-
principal ultrafilter U on N such that x = limU xn.

(2) (xn)n∈N converges to x if and only if x = limU xn for every non-
principal ultrafilter U on N.

Exercise 3.1.8. Prove the previous corollary.
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Ultralimits provide a very convenient characterization of compactness:

Theorem 3.1.9. For a topological space X, the following are equivalent:

(1) X is compact.

(2) Given any sequence (xi)i∈I from X and any ultrafilter U on I,
(xi)i∈I has a U-ultralimit in X.

Proof. (1) implies (2): Suppose that (xi)i∈I is a sequence from X and U is
an ultrafilter on I such that (xi)i∈I has no U -ultralimit. Consequently, for
each x ∈ X, there is an open neighborhood Ux of x such that {i ∈ I : xi ∈
Ux} /∈ U . If there were a finite subcover X =

⋃n
j=1 Uxj , then we would have

∅ =

⎧⎨
⎩i ∈ I : xi /∈

n⋃
j=1

Uxj

⎫⎬
⎭ =

n⋂
j=1

{i ∈ I : xi /∈ Uxj} ∈ U ,

which is a contradiction. Thus X is not compact.

(2) implies (1): Suppose that X is not compact. Take an open cover
(Ui)i∈I with no finite subcover. Without loss of generality, each Ui �= ∅.
Let Y be the set of nonempty, finite subsets of I. For each i ∈ I, let
Ai := {J ∈ Y : i ∈ J}. Observe that (Ai)i∈I has the finite intersection
property, whence we may take an ultrafilter U on Y for which Ai ∈ U for
each i ∈ I. Since (Ui)i∈I has no finite subcover, for each J ∈ Y , we may fix
some xJ ∈ X \

⋃
j∈J Uj . We claim that (xJ)J∈Y has no U -ultralimit in X.

Indeed, suppose that x was a U -ultralimit of (xJ)J∈J . Take i ∈ I such that
x ∈ Ui. Then there is A ∈ U such that xJ ∈ Ui for all J ∈ A. Since Ai ∈ U ,
we have xJ ∈ Ui for J ∈ A ∩Ai; but J ∈ Ai implies i ∈ J , whence xJ /∈ Ui,
yielding a contradiction. �

Theorem 3.1.10. A topological space X is compact and Hausdorff if and
only if, given any sequence (xi)i∈I from X and any ultrafilter U on I, (xi)i∈I
has a unique U-ultralimit.

Proof. The forward direction follows from Theorem 3.1.9 and Exercise
3.1.3. We now prove the backward direction. Suppose that X is not Haus-
dorff; we find some sequence from X and some ultrafilter on the index set
such that the sequence does not have a unique ultralimit with respect to
that ultrafilter. Since X is not Hausdorff, there are distinct x, y ∈ X such
that every open neighborhood of x intersects every open neighborhood of y.
We let Ox denote the set of open neighborhoods of x and similarly for Oy,
and we let F := Ox∪Oy. By our assumption that every open neighborhood
of x intersects every open neighborhood of y, we have that F is a filter on
X. Let U be any ultrafilter on X extending F . We claim that x and y are
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both U -ultralimits of the sequence (z)z∈X . Indeed, if U is an open neigh-
borhood of x, then U ∈ Ox ⊆ F ⊆ U , whence z ∈ U for U -almost all z ∈ X.
Consequently, x is a U -ultralimit of the sequence. A symmetric argument
shows that y is also a U -ultralimit of the sequence. �

The following special case of the previous theorem is worth recording:

Corollary 3.1.11. Suppose that (an)n∈N is a bounded sequence in R and U
is an ultrafilter on N. Then limU an exists.

Thus, while regular limits (even of bounded sequences) need not exist,
ultralimits of bounded sequences always exist!

Exercise 3.1.12. Use ultralimits to show that a closed subspace of a com-
pact space is compact.

Theorem 3.1.9 also yields a very simple proof of Tychonoff’s theorem:

Theorem 3.1.13 (Tychonoff’s theorem). Given a family (Xj)j∈J of com-
pact spaces, the product space

∏
j∈J Xj is also compact.

Proof. We use Theorem 3.1.9 to prove that
∏

j∈J Xj is compact. Let (xi)i∈I
be a sequence from

∏
j∈J Xj and write xi = (xi(j))j∈J . Let U be an ultra-

filter on I. Since each Xj is compact, we may consider a U -ultralimit x(j)
of the sequence (xi(j))i∈I . We show that x = (x(j))j∈J is a U -ultralimit of
(xi)i∈I . Take j1, . . . , jn ∈ J and open sets Uk ⊆ Xjk containing x(jk) for
k = 1, . . . , n. For each k = 1, . . . , n, there is Ak ∈ U such that xi(jk) ∈ Uk

for i ∈ Ak. Let A = A1 ∩ · · · ∩ An. Then if i ∈ A, we have xi(jk) ∈ Uk

for all k = 1, . . . , n, whence xi belongs to the basic open set determined by
U1, . . . , Un. �

We next present the ultralimit characterization of continuity:

Theorem 3.1.14. Suppose that f : X → Y is a function between topological
spaces and x ∈ X. Then f is continuous at x if and only if, for any sequence
(xi)i∈I from X and any ultrafilter U on I for which x is a U-ultralimit of
(xi)i∈I , we have that f(x) is a U-ultralimit of (f(xi))i∈I .

Proof. First suppose that f is continuous at x and x is a U -ultralimit of
(xi)i∈I . Fix an open neighborhood U of f(x) and take an open neighborhood
V of x such that f(V ) ⊆ U . Since {i ∈ I : xi ∈ V } ∈ U , we have
{i ∈ I : f(xi) ∈ U} ∈ U ; since U was an arbitrary neighborhood of f(x),
we have that f(x) is a U -ultralimit of (f(xi))i∈I .

Conversely, suppose that f is not continuous at x. Take an open neigh-
borhood U of f(x) such that, for every open neighborhood V of x, f(V ) �⊆ U .
Take xV ∈ V such that f(xV ) /∈ U . Let U be any ultrafilter on the set of
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open neighborhoods of x such that, for any given open neighborhood V0

of x, we have {V : V ⊆ V0} ∈ U . Consequently, x is a U -ultralimit of
the sequence (xV ), whence, by assumption, f(x) is a U -ultralimit of the
sequence (f(xV )). Since Y \ U is closed and f(xV ) ∈ Y \ U for all V , we
have f(x) ∈ Y \ U , yielding a contradiction. �

We close this section with an application of Theorem 3.1.9 and Theorem
3.1.14 that will be useful in Chapter 15:

Proposition 3.1.15. Suppose that f : X → Y is a surjective continuous
map between topological spaces. Further suppose that X is compact and
Hausdorff. Then there exists a closed subset K of X such that f(K) = Y
but f(K ′) �= Y for any proper closed subset K ′ of K.

Proof. Let P denote the set of all closed subsets K of X such that f(K) =
Y . Note that P is nonempty since f is surjective. Put a partial order ≤ on
P by declaring K1 ≤ K2 if and only if K1 ⊇ K2. Consequently, we seek a
maximal element in the partial order (P,≤). To prove that such a maximal
element exists, we apply Zorn’s lemma. Toward that end, suppose that
(Ki)i∈I is a chain in P ; we show thatK :=

⋂
i∈I Ki is an upper bound for the

chain in P . It is clear that K is a closed subset of X. To see that f(K) = Y ,
fix y ∈ Y . For each i ∈ I, take xi ∈ Ki such that f(xi) = y; this is possible
since f(Ki) = Y for each i ∈ I. For each i ∈ I, let Di := {j ∈ I : Ki ⊇ Kj}.
Note that (Di)i∈I has the FIP since (Ki)i∈I is a chain. Consequently, there
is an ultrafilter U on I such that Di ∈ U for all i ∈ I. Set x := limU xi.
Since f is continuous, Theorem 3.1.14 implies that f(x) = limU f(xi) = y. It
remains to verify that x ∈ K. To see this, suppose, toward a contradiction,
that x /∈ Ki for some i ∈ I. Since X \Ki is open, we have that xj ∈ X \Ki

for U -almost all j ∈ I, contradicting that Di ∈ U and the fact that Kj ⊆ Ki

for j ∈ Di. �

3.2. The Stone-Čech compactification: the discrete case

Until further notice, we fix an infinite set X, which we also think of as a
topological space equipped with the discrete topology. For A ⊆ X, we set
UA := {U ∈ βX : A ∈ U}.

Theorem 3.2.1. The sets UA form a neighborhood base for a topology on
βX. When equipped with this topology, we have the following:

(1) βX is Hausdorff.

(2) βX is zero-dimensional, that is, has a base of clopen subsets.

(3) βX is compact.

Setting ι : X → βX to be the function defined by ι(x) := Ux, we also have:
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(4) For every x ∈ X, ι(x) is an isolated point of βX.

(5) ι is a homeomorphism between X and ι(X).

(6) ι(X) is dense in βX.

Proof. The fact that UA∩B ⊆ UA∩UB implies that the sets UA form a base
for a topology on βX. We now prove the remaining items.

For (1), note that, if U ,V are distinct elements of βX, then taking A ⊆ X
for which A ∈ U and X \A ∈ V, we have that UA and UX\A are disjoint open
sets containing U and V, respectively, whence the topology is Hausdorff.

(2) follows from the observation that UX\A := βX \ UA.

To prove (3), it suffices to show, by Theorem 3.1.9, that given any se-
quence (Ui)i∈I from βX (here, Ui is not a principal ultrafilter but rather
some arbitrary element of βX) and ultrafilter V on I, that (Ui)i∈I has a
V-ultralimit. Let U denote those A ⊆ X such that A ∈ Ui for V almost all
i ∈ I. We leave it to the reader to check that U is a V-ultralimit of (Ui)i∈I .

(4) follows from the observation that ι(x) = U{x}.

(5) ι is injective as, whenever x, y ∈ X are distinct, then {x} ∈ Ux \ Uy.
ι is continuous as X is discrete. To see that ι is a homeomorphism onto
ι(X), it suffices to observe that, for any A ⊆ X, we have ι(A) = UA ∩ ι(X).

(6) follows from the observation that, if A ⊆ X is nonempty and x ∈ A,
then Ux ∈ UA. �
Exercise 3.2.2. Verify the claims in the previous theorem left to the reader.

In what follows, we identify X with its image ι(X).

Exercise 3.2.3. For A ⊆ X, the closure of A in βX is UA.

Exercise 3.2.4. For U ∈ βX, we have limx,U x = U .

We recall the following:

Definition 3.2.5. If Y is a topological space and K is a compact space,
then K is a compactification of Y if Y is a dense subspace of K.

Theorem 3.2.1 thus implies that βX is a compactification of X whenever
X is an infinite discrete space. The reader may have encountered the one-
point compactification of a locally compact space, which is a very “small”
compactification for it merely adds one point. The compactification βX is
a much, much larger compactification of X.

Definition 3.2.6. Let Y be a topological space. A Hausdorff compactifica-
tion K of Y is called a Stone-Čech compactification of Y if, for every
compact Hausdorff space Z and every continuous function f : Y → Z, there
is a unique continuous function f̃ : K → Z extending f .
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Exercise 3.2.7. Prove that a topological space Y can have at most one
Stone-Čech compactification in the following strong form: if K1 and K2 are
both Stone-Čech compactifications of Y , then there is a unique homeomor-
phism Φ : K1 → K2 such that Φ(y) = y for all y ∈ Y .

By the previous exercise, we may unambiguously denote the Stone-Čech
compactification of a topological space Y , when it exists, by βY . The reader
may note that this is also the notation we used in Chapter 1 to denote the
set of all ultrafilters on a set. The reason that this double-use of notation is
not problematic is actually the main result of this section:

Theorem 3.2.8. For an infinite discrete set X, βX is the Stone-Čech com-
pactification of X.

Proof. We already know that βX is a Hausdorff compactification of X.
We now need to verify its “universal” property. Suppose that f : X → Y
is a continuous function into a compact Hausdorff space. Given U ∈ βX,
define f̃(U) := limU f(x), which exists by Theorem 3.1.10 and the fact that

Y is compact and Hausdorff. Note that f̃ extends f by Exercise 3.1.2. We
must show that f̃ is continuous. Since every point of X is isolated in βX, it
suffices to show continuity at U for nonprincipal U . Toward this end, let U
be an open neighborhood of f̃(U) in Y . Let V ⊆ U be an open neighborhood

of f̃(U) in Y such that V ⊆ U . Take A ∈ U such that f(x) ∈ V for x ∈ A.

Suppose V ∈ UA, so A ∈ V; then limV f(x) ∈ V ⊆ U , so f̃(UA) ⊆ U and f̃
is continuous at U .

For the the uniqueness of f̃ , suppose that g : X̃ → Y is a continuous
function that extends f . By Theorem 3.1.14 and Exercise 3.2.4, g(U) =

g(limU x) = limU g(x) = limU f(x) = f̃(U), whence g = f̃ . �
Exercise 3.2.9. Suppose that f : I → J is a function. Then f extends to
a continuous function βf : βI → βJ . Show that, for all U ∈ βI, we have
(βf)(U) = f(U), the pushforward ultrafilter.

3.3. z-ultrafilters and the Stone-Čech compactifications in
general

In this section, we turn to the problem of constructing the Stone-Čech com-
pactification in general, that is, for not necessarily discrete spaces. We first
take up the question: which spaces have Hausdorff compactifications? Note
that a space has a Hausdorff compactification if and only if it can be em-
bedded into a compact Hausdorff space.

How can one go about trying to embed a space X into a compact Haus-
dorff space? Set C := C(X) to be the set of continuous, real-valued functions
on the setX. Consider the mapping e : X → [0, 1]C given by e(x)(f) = f(x).
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Since [0, 1]C is a compact Hausdorff space, in order to show that X has a
compactification, it suffices to show that, under certain assumptions on X,
that e is a homeomorphism of X onto its image.

Continuity of the map e holds for any space X. Indeed, it suffices to
show, for a fixed f ∈ C and open U ⊆ [0, 1], that the preimage of the
subbasic open set {F ∈ [0, 1]C : F (f) ∈ U} under e is open in X. However,
this preimage is simply f−1(U), which is open by the continuity of f .

In order to check that e is injective, it suffices to know that, for any
distinct x, y ∈ X, there is f ∈ C such that f(x) �= f(y). When this is indeed
the case for all x, y ∈ X, we say that C(X) separates points in X.

Finally, we want to know that e is a homeomorphism onto its image,
that is, e : X → e(X) is an open map. To verify this, take U ⊆ X open; we
must show that e(U) is open in e(X). Take x ∈ U ; we need e(x) to be in the
interior of e(U) as calculated in e(X). If there is f ∈ C such that f = 0 for
all y ∈ X \U while f(x) = 1, then, setting V to be the subbasic open subset
of [0, 1]C determined by the condition f > 1

2 , we have that V ∩e(X) ⊆ e(U),
as desired.

The condition appearing in the previous paragraph has a name:

Definition 3.3.1. A topological space X is completely regular if, for
every closed C ⊆ X and every x ∈ X \ C, there is f ∈ C(X) such that
f(y) = 0 for all y ∈ C while f(x) = 1.

While it appears that complete regularity of a space X ensures that
C(X) separates points, this is only the case if points in X are closed, that
is, if X is T1.

Definition 3.3.2. A topological space X is called a Tychonoff space if it
is a completely regular T1 space.

The previous discussion shows:

Theorem 3.3.3. If X is a Tychonoff space, then X is homeomorphic to a
subspace of a compact Hausdorff space, whence has a Hausdorff compactifi-
cation.

Thankfully, the converse is also true and follows from the following two
exercises:

Exercise 3.3.4. A subspace of a Tychonoff space is completely regular.

Exercise 3.3.5. Compact Hausdorff spaces are Tychonoff spaces.

To summarize:

Theorem 3.3.6 (Tychonoff). A topological space X has a Hausdorff com-
pactification if and only if X is a Tychonoff space.
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The main theorem of this section is that for the spaces that do possess
Hausdorff compactifications, namely the Tychonoff spaces, the Stone-Čech
compactification also exists. The näıve idea might be to mimic the construc-
tion of the Stone-Čech compactification of a discrete space except to deal
only with maximal filters of closed sets rather than all sets. It turns out
that this does not work in general (but does work if the space is perfectly
normal as defined below). Instead, we need to work with special kinds of
closed sets:

Definition 3.3.7.

(1) For f ∈ C(X), we define the zeroset of f to be Z(f) := {x ∈ X :
f(x) = 0}.

(2) We call Z ⊆ X a zeroset of X if there is f ∈ C(X) such that
Z = Z(f).

(3) We let Z(X) denote the set of zerosets in X.

Exercise 3.3.8. Show that Z(X) is closed under finite unions and inter-
sections.

Exercise 3.3.9. Suppose that X is completely regular, x ∈ X, and C ⊆ X
is closed with x /∈ C. Show that there is Z ∈ Z(X) such that x ∈ Z and
Z ∩ C = ∅.

Clearly, every zeroset is closed. We say that X is perfectly normal if,
conversely, every closed set is a zeroset. We will not need to know too much
about perfectly normal spaces, but rather only the following:

Exercise 3.3.10. Show that [0, 1] is perfectly normal.

The importance of zerosets in completely regular spaces is explained by
the next theorem:

Theorem 3.3.11. X is completely regular if and only if the zerosets of X
form a base for the closed sets of X.

Proof. First assume that X is completely regular. By the proof of Theorem
3.3.3, we may assume that X is a subspace of [0, 1]I for some index set
I. Let C ⊆ X be closed. Then C is an intersection of sets of the form
CJ := {	x ∈ X : xi ∈ Ci for i ∈ J}, where J ⊆ I is finite and each Ci ⊆ [0, 1]
is closed. Since [0, 1] is perfectly normal, we may assume that Ci := Z(fi)
for some fi ∈ C([0, 1]). Then CJ = Z(

∑
j∈J g

2
j ), where gj(	x) = fj(xj).

For the converse, suppose that C ⊆ X is closed and x ∈ X \ C. By
assumption, there is f ∈ C(X) such that f(y) = 0 for all y ∈ C while
f(x) �= 0. By multiplying f by a suitable multiple, we may assume that
f(x) = 1, whence X is completely regular. �
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In the rest of this section, we assume that X is a Tychonoff
space.

By the previous theorem, we see that zerosets play a fundamental role in
the theory of completely regular spaces. As we will now see, by proceeding as
in the previous section, but only working with zerosets, we can construct the
Stone-Čech compactification of X. Toward this end, we make the following
definition.

Definition 3.3.12. We call F ⊆ Z(X) \ {∅} a z-filter on X if:

(1) Z1, Z2 ∈ F ⇒ Z1 ∩ Z2 ∈ F ;

(2) Z1 ∈ F , Z2 ∈ Z(X) and Z1 ⊆ Z2 ⇒ Z2 ∈ F .

A maximal z-filter on X is called a z-ultrafilter on X. We let ζX denote
the set of z-ultrafilters on X.

Exercise 3.3.13. Suppose that U is a z-filter on X. Prove that U is a
z-ultrafilter on X if and only if, whenever C ∈ Z(X) is such that C ∩Z �= ∅
for all Z ∈ U , then we have C ∈ U .

Exercise 3.3.14. Prove that any family (Zi)i∈I of elements of Z(X) with
the finite intersection property is contained in a z-ultrafilter on X.

We will soon see that ζX “is” βX. We first need to put a topology
on ζX. We take our cue from the discrete case: given Z ∈ Z(X), we set
CZ := {U ∈ ζX : Z ∈ U}. We then give ζX the topology where the CZ ’s
form a base for the closed sets. Unlike the discrete case, the basic closed
sets are not also open. In fact, given an open set O ⊆ X, we set

UO := {U ∈ ζX : Z ⊆ O for some Z ∈ U}.

Exercise 3.3.15. Prove that ζX \ CZ = UX\Z .

Consequently, UO, for O a complement of a zeroset, is a basic open set
in ζX.

Theorem 3.3.16. ζX is a compact Hausdorff space.

Proof. We first show that ζX is Hausdorff. Toward this end, fix distinct
U ,V ∈ ζX. By Exercise 3.3.13, there are Z1, Z2 ∈ Z(X) such that Z1 ∈ U ,
Z2 ∈ V and Z1∩Z2 = ∅. Let f ∈ C(X) be such that Z1 = Z(f). Since Z2 is
closed, there is some ε > 0 such that f(x) ≥ ε for all x ∈ Z2. Define g1, g2 ∈
C(X) by setting g1(x) = max( ε2−f(x), 0) and g2(x) = max(f(x)− ε

2 , 0). Set
W1 := Z(g1) and W2 := Z(g2). Then, for i = 1, 2, we have Zi ⊆ (X \Wi)
and (X \W1) ∩ (X \W2) = ∅. We thus have that U(X\W1) and U(X\W2) are
disjoint open neighborhood of U and V, whence ζX is Hausdorff.



3.3. z-ultrafilters and the Stone-Čech compactifications in general 37

To see that ζX is compact, it suffices to show that any family (CZi)i∈I
of basic closed subsets of ζX with the finite intersection property has a
nonempty intersection. Since (CZi)i∈I has the finite intersection property, it
follows that (Zi)i∈I has the finite intersection property: given i1, . . . , in ∈ I,
take U ∈

⋂n
j=1CZij

and note that
⋂n

j=1 Zij ∈ U , whence
⋂n

j=1 Zij �= ∅.
By Exercise 3.3.14, there is a z-ultrafilter U containing the family (Zi)i∈I ,
whence U ∈

⋂
i∈I CZi . �

We now show that ζX is a compactification of X:

Theorem 3.3.17. For x ∈ X, set ι(x) := {Z ∈ Z(X) : x ∈ Z}. Then:

(1) ι(x) ∈ ζX;

(2) the mapping ι : X → ζX is a homeomorphism of X onto its image;

(3) ι(X) is dense in ζX.

Consequently, identifying X with ι(X), we have that ζX is a compactifica-
tion of X.

Proof. (1) follows immediately from Exercises 3.3.9 and 3.3.13.

For (2), first notice that ι is injective: if x, y ∈ X are distinct, then by
complete regularity, there are Z1, Z2 ∈ Z(X) such that x ∈ Z1, y ∈ Z2, and
Z1 ∩ Z2 = ∅. It follows that ι(x) �= ι(y). To see that ι is continuous, it
suffices to notice that ι−1(CZ) = Z. Finally, to check that ι : X → ι(X) is
open, it is enough to show that ι(Z) is closed in ι(X) for every Z ∈ Z(X),
which follows from the fact that ι(Z) = CZ ∩ ι(X).

For (3), take a nonempty basic open set UO and take U ∈ UO. Take
Z ∈ U such that Z ⊆ O and let x ∈ Z. Then Z ∈ ι(x), so ι(x) ∈ UO. �

It remains to see that ζX is the Stone-Čech compactification of X. To
prove this, it will be convenient to use a different characterization of βX
due to Čech. First, we say that A,B ⊆ X are completely separated if
there is f ∈ C(X) such that f(x) = 0 for all x ∈ A while f(x) = 1 for all
x ∈ B.

Theorem 3.3.18. βX is the unique compactification of X such that com-
pletely separated subsets of X have disjoint closures in βX.

Proof. We first show that βX has the stated property. Indeed, suppose
that A,B ⊆ X are completely separated by f ∈ C(X). Without loss of
generality, we may assume that f(X) ⊆ [0, 1]. Note then that if x, y ∈ βX
are in the closures of A and B, respectively, then βf(x) = 0 while βf(y) = 1,
whence x �= y. (Here, βf denotes the unique continuous extension of f to
βX.)
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Now suppose that K is a compactification of X with the stated property.
Let g : βX → K be a continuous function that is the identity on X. Since X
is dense in K, it follows that g is onto. If we can show that g is also injective,
then since βX is compact and K is Hausdorff, it will follow that g is a
homeomorphism. Let p, q ∈ βX be distinct. Let f : βX → [0, 1] be such that
f(p) = 0 and f(q) = 1. (This is possible since compact spaces are completely
regular.) Set A := {x ∈ X : f(x) ≤ 1

3} and B = {x ∈ X : f(x) ≥ 2
3}.

Note that A and B are completely separated. (Exercise.) Since p is in the
closure of A in βX, we have that g(p) is in the closure of A in K. Similarly,
g(q) is in the closure of B in K. By assumption, these closures are disjoint,
whence g(p) �= g(q), as desired. �

In order to use the previous theorem, we need to understand what clo-
sures of zerosets in X inside ζX look like:

Lemma 3.3.19. Given Z ∈ Z(X), the closure of Z in ζX is CZ .

Proof. Temporarily, set Z to be the closure of Z in ζX. We clearly have
Z ⊆ CZ . To obtain the reverse direction, let CW be a basic closed set
containing Z. Then W = CW ∩X ⊇ Z, whence CZ ⊆ CW . It follows that
CZ ⊆ Z. �

Finally, we are ready to prove the main result of this section:

Theorem 3.3.20. ζX is the Stone-Čech compactification of X.

Proof. Let A,B ⊆ X be completely separated. We show that A and B
have disjoint closures in ζX. Since A and B are completely separated, there
are Z1, Z2 ∈ Z(X) such that A ⊆ Z1, B ⊆ Z2, and Z1 ∩ Z2 = ∅. It thus
suffices to show that Z1 and Z2 have disjoint closures in ζX. By the previous
lemma, we must show that CZ1 ∩ CZ2 = ∅. However, it is easy to see that
CZ1 ∩ CZ2 = CZ1∩Z2 = ∅, whence we are finished. �

3.4. The Stone representation theorem

When X is discrete, Theorem 3.2.1 shows that βX is a Stone space in the
sense of the following definition:

Definition 3.4.1. A topological space is a Stone space if it is compact,
Hausdorff, and totally disconnected.

We remind the reader that a topological space is totally disconnected if
singletons are the only connected sets. In order to see that βX is indeed a
Stone space, we need:

Exercise 3.4.2. A zero-dimensional space is totally disconnected.
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In this section, we show that all Stone spaces can be obtained in this
manner provided we are willing to work with ultrafilters on arbitrary Boolean
algebras, as defined here:

Definition 3.4.3. A Boolean algebra is a structure B = (B, 0, 1,∧,∨,¬),
where 0 and 1 are elements of B, ∧ and ∨ are binary operations on B, and
¬ is a unary operation on B for which we have, for all a, b, c ∈ B:

(1) a ∧ a = a ∨ a = a.

(2) a ∧ b = b ∧ a and a ∨ b = b ∨ a.

(3) a ∧ (b ∧ c) = (a ∧ b) ∧ c and a ∨ (b ∨ c) = (a ∨ b) ∨ c.

(4) a ∧ (a ∨ b) = a ∨ (a ∧ b) = a.

(5) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

(6) 0 ∧ a = 0 and 0 ∨ a = a.

(7) 1 ∧ a = a and 1 ∨ a = 1.

(8) a ∧ ¬a = 0 and a ∨ ¬a = 1.

Exercise 3.4.4. Given any set X, prove that (P(X), ∅, X,∩,∪, X \ ·) is a
Boolean algebra.

We refer to a Boolean algebra as in the previous exercise as a powerset
algebra. A Boolean subalgebra (defined in the obvious way) of a powerset
algebra will be referred to as a concrete Boolean algebra. The Stone
representation theorem, to be proven below, will show that every Boolean
algebra is isomorphic to a concrete Boolean algebra.

Since Boolean algebras can be viewed as abstract generalizations of
power sets, we can further abstract the notion of an ultrafilter. First, since
the usual notion of an ultrafilter refers to the subset relation, we need to
identify the abstracted version of this relation. We take our cue from the
obvious fact that A ⊆ B if and only if A ∩B = A.

Definition 3.4.5. If B is a Boolean algebra, we define the binary relation
≤ on B by declaring a ≤ b if and only if a ∧ b = a.

Definition 3.4.6. If B is a Boolean algebra, a filter on B is a subset F ⊆ B
satisfying the following properties:

(1) 0 /∈ F , 1 ∈ F .

(2) If a, b ∈ B are such that a ∈ F and a ≤ b, then b ∈ F .

(3) If a, b,∈ F , then a ∧ b ∈ F .

Furthermore, F is called an ultrafilter on B if it also satisfies:

(4) For all a ∈ B, either a ∈ F or ¬a ∈ F .
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We let S(B) denote the set of all ultrafilters on B and refer to it as the Stone
space of B.

As before, we often denote ultrafilters on Boolean algebras by U and V.
Exercise 3.4.7. Verify that, for a powerset algebra P(X), the Boolean al-
gebra notion of ultrafilter agrees with our earlier notion of ultrafilter, whence
S(P(X)) = βX.

Exercise 3.4.8. Prove the ultrafilter theorem for Boolean algebras:
for any Boolean algebra B and any filter F on B, there is an ultrafilter U on
B extending F .

We would like to define a topology on S(B) for B an arbitrary Boolean
algebra so that the resulting space is a Stone space (and agrees with the
earlier topology on βX in the case of a powerset algebra). Taking our cue
from the case of powersets, we topologize S(B) by declaring the basic open
sets to be of the form Ua for a ∈ B. Note that, in the case of powerset
algebras, this agrees with the usual topology on βX.

In order to prove that S(B), when endowed with the above topology,
is a Stone space, it helps to introduce homomorphisms between Boolean
algebras:

Definition 3.4.9. If B and B′ are Boolean algebras and h : B → B′ is a
function, we say that h is a homomorphism if, h(0) = 0′, h(1) = 1′, and
for all a, b ∈ B, we have:

(1) h(a ∧ b) = h(a) ∧ h(b).

(2) h(a ∨ b) = h(a) ∨ h(b).

(3) h(¬a) = ¬h(a).
Exercise 3.4.10. Suppose f : X → Y is a function. Show that hf : P(Y )→
P(X) given by hf (A) := f−1(A) is a Boolean algebra homomorphism.

Definition 3.4.11. 2 is the unique Boolean algebra with two elements
{0, 1}.
Exercise 3.4.12. If B is a Boolean algebra, then U ⊆ B is an ultrafilter on
B if and only if there is a Boolean algebra homomorphism h : B → 2 such
that U = {a ∈ B : h(a) = 1}. In this case, the homomorphism h is unique.

In light of the above exercise, we may view S(B) as a subspace of 2B.
Notice that the topology on S(B) is the subspace topology it inherits from
2B.

Exercise 3.4.13. S(B) is a closed subspace of 2B.

Exercise 3.4.14. For any set X, 2X is a Stone space.
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Exercise 3.4.15. Any closed subspace of a Stone space is a Stone space.

Combining the previous exercises, we have proven:

Theorem 3.4.16. For any Boolean algebra B, S(B) is a Stone space.

In what follows, we consider the categories of Boolean algebras (where
morphisms are Boolean algebra homomorphisms) and Stone spaces (where
the morphisms are the continuous functions, yielding a full subcategory
of the category of topological spaces). The association B �→ S(B) is then
a contravariant functor. To see this, note that, given a Boolean algebra
homomorphism h : B → B′, we get a continuous function S(h) : S(B′) →
S(B) given by S(h)(U) := h−1(U).

Exercise 3.4.17. Verify the validity of the last sentence in the previous
paragraph, namely that h−1(U) is indeed an ultrafilter on B and that S(h)
is a continuous function.

Exercise 3.4.18. Using the notation from Exercise 3.4.10, show that
S(hf )(U) = f(U), the pushfoward of U along f as defined in Definition
1.3.1.

Exercise 3.4.19. Verify that S is indeed a contravariant functor from the
category of Boolean algebras (with Boolean algebra homomorphisms) to the
category of Stone spaces (with continuous functions) by verifying:

(1) For all Boolean algebras B, S(idB) = idS(B).

(2) For all Boolean algebras B, B′, and B′′ and Boolean algebra ho-
momorphisms h : B → B′ and h′ : B′ → B′′, we have S(h′ ◦ h) =
S(h) ◦ S(h′).

The main result of this section is that S witnesses that the categories
of Boolean algebras and Stone spaces are dually equivalent. In order to
establish this result, we need to define an “inverse” functor from the category
of Stone spaces to the category of Boolean algebras.

Definition 3.4.20. For any topological space X, we let Cl(X) denote the
set of clopen subsets of X.

Exercise 3.4.21. For any topological space X, Cl(X) is a Boolean subal-
gebra of P(X). Moreover, X is discrete if and only if Cl(X) = P(X).

Just as in the case of S, Cl is a contravariant functor from the category
of topological spaces to the category of Boolean algebras: If f : X → Y is
a continuous function between topological spaces, we set Cl(f) : Cl(Y ) →
Cl(X) to be given by Cl(f)(A) := f−1(A). (By continuity of f , f−1(A) is
indeed clopen when A is clopen.)
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Exercise 3.4.22. Verify that Cl(f) as above is indeed a Boolean algebra
homomorphism.

Exercise 3.4.23. Verify that Cl is indeed a contravariant functor from the
category of topological spaces to the category of Boolean algebras.

For some spaces, Cl(X) is very small:

Exercise 3.4.24. Prove that a topological space X is connected if and only
if Cl(X) ∼= 2.

In order to show that Cl, when restricted to the full subcategory of Stone
spaces, is indeed an inverse to S, we need to show that Cl(X) is quite large
when X is a Stone space.

Definition 3.4.25. Let X be a topological space and x ∈ X. We set
Ux := {A ∈ Cl(X) : x ∈ A}.

Exercise 3.4.26. Ux is an ultrafilter on the Boolean algebra Cl(X).

Note that, in the case that X is discrete, we have that this usage of
the terminology Ux agrees with the previous usage, namely the principal
ultrafilter generated by x.

Lemma 3.4.27. If X is a Stone space, then for every x ∈ X,
⋂
Ux = {x}.

Proof. Suppose, toward a contradiction, that
⋂
Ux contained at least two

elements. Since X is totally disconnected, there are disjoint open sets
U1, U2 ⊆ X such that

⋂
Ux ∩ U1,

⋂
Ux ∩ U2 �= ∅ and

⋂
Ux = (

⋂
Ux ∩

U1) ∪ (
⋂
Ux ∩ U2). Since

⋂
Ux ∩ (U1 ∪ U2)

c = ∅, by compactness there
are finitely many V1, . . . , Vn ∈ Ux such that V1 ∩ · · · ∩ Vn ∩ (U1 ∪ U2)

c = ∅.
Set V := V1 ∩ · · · ∩ Vn. Suppose, without loss of generality, that x ∈ U1.
Note then that (V ∩ U1)

c = (V ∩ U2) ∪ V c, whence V ∩ U1 is a clopen set
containing x, and thus

⋂
Ux ⊆ V ∩ U1 ⊆ U1, contradicting the fact that⋂

Ux ∩ U2 �= ∅. �

Lemma 3.4.28. If X is a Stone space, then Cl(X) forms a base for the
topology on X (whence X is zero dimensional).

Proof. Let U be an open subset of X and take x ∈ U . By the previous
lemma,

⋂
Ux ∩ U c = ∅, whence, by compactness, there are U1, . . . , Un ∈ Ux

such that U1 ∩ · · · ∩ Un ∩ U c = ∅. It follows that U1 ∩ · · · ∩ Un is a clopen
neighborhood of x contained in U . �

We now investigate what happens to objects in these categories when
they are evaluated on the compositions of the above functors.
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Lemma 3.4.29. For any Boolean algebra B, we have Cl(S(B)) = {Ua :
a ∈ B}. Moreover, Ua = Ub if and only if a = b.

Proof. Let U be a clopen subset of S(B). Since U is open, we may write
U =

⋃
a Ua. Since U is closed (and thus compact), there are a1, . . . , an such

that U = Ua1 ∪ · · · ∪ Uan = Ua1∨···∨an .

For the moreover part, if a �= b, then we have that a ∧ ¬b �= 0 or
b ∧ ¬a �= 0. Without loss of generality, assume that it is the former. Then,
by the ultrafilter theorem for Boolean algebras (Exercise 3.4.8 above), there
is an ultrafilter U on B with a ∧ ¬b ∈ U . It follows that U ∈ Ua \ Ub. �

Lemma 3.4.30. For any Stone space X, we have S(Cl(X)) = {Ux : x ∈ X}.
Moreover, Ux = Uy if and only if x = y.

Proof. Fix U ∈ S(Cl(X)). Since U has the finite intersection property, we
have that

⋂
U �= ∅ by compactness of X. Fixing x ∈

⋂
U , we have that

U ⊆ Ux, whence U = Ux.
For the moreover part, assume that x �= y. Then by Lemma 3.4.28,

there is a clopen set U ⊆ X such that x ∈ U and y ∈ X \U . It follows that
U ∈ Ux \ Uy. �

Before proving our main theorem, the following calculations will be
relevant. Fix a Boolean algebra homomorphism h : B → B′ and a con-
tinuous function between Stone spaces f : X → X ′. We then have that
(Cl ◦S)(h) : Cl(S(B))→ Cl(S(B′)) is given by

(Cl ◦S)(h)(Ua) = Cl(S(h))(Ua) = S(h)−1(Ua) = Uh(a)

and (S ◦Cl)(f) : S(Cl(X))→ S(Cl(X ′)) is given by

(S ◦Cl)(f)(Ux) = S(Cl(f))(Ux) = Cl(f)−1(Ux) = Uf(x).
We are now ready to prove our main theorem, stating that the functors
S and Cl are “inverses” of one another. Note that this statement cannot
literally be true as (Cl ◦S)(B) is not literally B and similarly (S ◦Cl)(X) is
not literally X. The next theorem states that (Cl ◦S)(B) is isomorphic to
B and (S ◦Cl)(X) is homeomorphic to X, and that these isomorphisms and
homeomorphisms are “natural” in a precise sense.

Theorem 3.4.31 (Stone duality theorem). S and Cl witness that the cate-
gory of Boolean algebras and the category of Stone spaces are dually equiv-
alent. More precisely, for every Boolean algebra B and every Stone space
X, we have an isomorphism εB : (Cl ◦S)(B) → B and a homeomorphism
ηX : (S ◦Cl)(X) → X satisfying, for every Boolean algebra homomor-
phism h : B → B′ and every continuous function f : X → X ′, that
εB′ ◦ (Cl ◦S)(h) = h ◦ εB and ηX′ ◦ (S ◦Cl)(f) = f ◦ ηX .
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Proof. By Lemma 3.4.29, we may define a bijection εB : (Cl ◦S)(B) → B
by εB(Ua) := a. It is also clear that this is a Boolean algebra homomor-
phism, whence an isomorphism. Also, the above calcluation shows that
(εB′ ◦ (Cl ◦S)(h))(Ua) = εB′(Uh(a)) = h(a) = (h ◦ εB)(Ua).

By Lemma 3.4.30, we can define ηX : (S ◦Cl)(X) → X by ηX(Ux) = x.
It is clear that ηX is a bijection. ηX is continuous as η−1

X (U) =
⋃

a∈U Ua,
whence it is open. Since the domain and range of ηX are compact and
Hausdorff, it follows that ηX is a homeomorphism. Finally, from the above
calculation, we have

(ηX′ ◦ (S ◦Cl)(f))(U) = ηX′(Uf(x)) = f(x) = (f ◦ ηX)(Ux). �

The following two results were promised earlier in this section:

Corollary 3.4.32. Every Stone space X is the Stone space of a unique (up
to isomorphism) Boolean algebra, namely Cl(X).

Corollary 3.4.33 (Stone representation theorem). Every abstract Boolean
algebra B is isomorphic to a concrete Boolean algebra, namely Cl(S(B)).

Exercise 3.4.34. Prove, without using the axiom of choice, that the ultra-
filter theorem is equivalent to the ultrafilter theorem for Boolean algebras.

3.5. Notes and References

As mentioned in Chapter 1, the notion of ultrafilter was introduced by H.
Cartan [23,24] in 1937 to study convergence in topological spaces. A more
thorough treatment of topology using filters and ultrafilters can be found in
Bourbaki [19]. The Stone-Čech compactification of a space was introduced
by Stone [170] and Čech [25] in 1937. Our approach to the nondiscrete case
follows Gillman and Jerison’s book [67]. Stone’s representation theorem and
Stone duality were proven in his paper [169].



Chapter 4

Ramsey theory and
combinatorial number
theory

In this chapter, we give a taste of some combinatorial applications of ultra-
filters. In Section 4.1, we give an ultrafilter proof of the infinite version of
Ramsey’s theorem. In Section 4.2, we introduce a binary operation ⊕ on
βZ and prove that sets that belong to elements of βZ that are idempotent
with respect to this operation have interesting combinatorial structure, ul-
timately leading to a proof of a celebrated theorem of Hindman. In Section
4.3, we introduce a measure of relative size of a set of integers known as Ba-
nach density and relate this notion of density to probability measures on βZ;
this analysis is then used in Section 4.4 to give a proof of the Furstenberg
correspondence principle, which is a technique used to translate combina-
torial questions about sets of integers into ergodic-theoretic questions in an
associated dynamical system. We illustrate this technique with a couple of
examples. In Section 4.5, we present a theorem of Jin known as the Sum-
set theorem. Instead of giving Jin’s original proof, which was phrased in
the language of nonstandard analysis (see Chapter 9), we give Beiglböck’s
proof, which uses the connection between Banach density and measures on
βZ presented in Section 4.3.

4.1. Ramsey’s theorem

In this section, we show how to use ultrafilters to give a very short proof
of the infinite version of Ramsey’s theorem. First, we need some notation:

45
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Given a set X and k ∈ N, we let X [k] denote the set of k-element subsets of
X. When X = N, we identify this with the set of tuples (n1, . . . , nk) with
n1 < · · · < nk.

Theorem 4.1.1 (Ramsey’s theorem, Infinite version). For every k ∈ N and
every partition N[k] = C1 � C2, there is i ∈ {1, 2} and infinite X ⊆ N such

that X [k] ⊆ Ci.

This theorem is often stated in terms of colorings: if we color the k-
element subsets of N in two colors, then there will be some infinite subset
X of N that is homogeneous for the coloring, that is, all k-element subsets
from X receive the same color. Note that there is no real need to restrict to
two colors in the above theorem; indeed, by induction, one could prove the
same result using any finite number of colors. (Exercise.)

Proof of Theorem 4.1.1. For notational simplicity, let us assume that
k = 3 and fix U ∈ βN\N. For (x, y) ∈ N[2], let A(x,y) := {z ∈ N : (x, y, z) ∈
C1}. Without loss of generality, we may assume that (Ux)(Uy)A(x,y) ∈ U .
(Otherwise we may switch the roles of C1 and C2.) For x ∈ N, let Bx :=
{y ∈ N : A(x,y) ∈ U} and let C := {x ∈ N : Bx ∈ U}. By assumption, we
have that C ∈ U . Fix x1 ∈ C arbitrary and take x2 ∈ Bx1 ∩C with x2 > x1;
note that this is possible as Bx1 ∩ C ∈ U and U is nonprincipal. Now take
x3 ∈ A(x1,x2) ∩Bx1 ∩Bx2 ∩ C with x3 > x2. Now choose x4 belonging to

A(x1,x2) ∩A(x1,x3) ∩A(x2,x3) ∩Bx1 ∩Bx2 ∩Bx3 ∩ C

with x4 > x3. In this way, we construct an infinite set X := {x1, x2, . . .}
such that X [k] ⊆ C1, as desired. �

Exercise 4.1.2. Turn the “vague” conclusion of the previous proof into
something rigorous by formulating a precise inductive construction of the
sequence and proving that this inductive construction can be continued in-
definitely.

Exercise 4.1.3. Prove Ramsey’s theorem for k > 3. (The proof is in the
same spirit as ours above, the inductive construction being slightly more
complicated to describe.)

In Section 6.4, we will show how to derive the finite version of Ramsey’s
theorem from the above infinite version.

4.2. Idempotent ultrafilters and Hindman’s theorem

In this section, we use a special kind of ultrafilter on Z to prove an important
theorem in Ramsey theory known as Hindman’s theorem. To state the
theorem, we need some definitions.
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Definition 4.2.1.

(1) Given a nonempty, finite subset F ⊆ N and c = (cn)n∈Z a sequence
of distinct elements from Z, define cF :=

∑
n∈F cn.

(2) Given a sequence c = (cn)n∈N of distinct elements from Z, set

FS(c) := {cF : F ⊆ N nonempty, finite}.
(3) We say that A ⊆ Z is an FS-set if there is a sequence c = (cn)n∈N

of distinct elements from Z such that FS(c) ⊆ A.

We are now ready to state the main combinatorial result of this section:

Theorem 4.2.2 (Hindman’s theorem). For every partition Z = C1�· · ·�Cn

of Z, there is i ∈ {1, . . . , n} such that Ci is an FS-set.

The key to proving the above theorem is the realization that, in the case
of the discrete space Z, βZ has some algebraic structure in addition to the
topological structure considered in the previous chapter. Indeed:

Definition 4.2.3. ForA ⊆ Z and U ∈ βZ, setA−U := {k ∈ Z : A−k ∈ U}.

In other words, k ∈ A−U if and only if (U l)(k+ l ∈ A), that is, U -many
shifts of k are in A.

Definition 4.2.4. For U ,V ∈ βZ, we define U⊕V := {A ⊆ Z : A−V ∈ U}.
Exercise 4.2.5.

(1) If A ⊆ Z, then A ∈ U ⊕ V if and only if (Uk)(Vl)(k + l ∈ A), that
is, U -many shifts of A are V-large.

(2) For U ,V ∈ βZ, we have U ⊕ V ∈ βZ.

(3) ⊕ is associative: for U ,V,W ∈ βZ, (U ⊕ V)⊕W = U ⊕ (V ⊕W).

(4) For U ,V ∈ βZ, U ⊕ V is principal if and only if both U and V
are principal. In this case, if U and V are the principal ultrafilters
generated by k and l, respectively, then U ⊕ V is the principal
ultrafilter generated by k + l, that is, Uk ⊕ Ul = Uk+l.

(5) U ⊕ U0 = U for all U ∈ βZ.

The algebraic properties of ⊕ are quite complicated and interesting; see
the encyclopedia on the subject [83]. For the proof of Hindman’s theorem,
we need to know that ⊕ behaves well with respect to the topology on βZ.
It would be nice if we could just say that ⊕ is a continuous function, but
unfortunately that is not true. Thankfully, something weaker will be good
enough:

Proposition 4.2.6. ⊕ is left semicontinuous, meaning that for all V ∈ βZ,
the map U �→ U ⊕ V : βZ→ βZ is continuous.
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Proof. Fix V ∈ βZ and a basic open set UA in βZ. Its inverse image under
U �→ U ⊕ V is UA−V , which is open. �

A crucial role in the use of ultrafilters in combinatorics is played by the
following kind of ultrafilter:

Definition 4.2.7. U ∈ βZ is idempotent if U ⊕ U = U .

Exercise 4.2.8. Suppose that U ∈ βZ is idempotent and principal. Prove
that U = U0.

Theorem 4.2.9. Nonprincipal idempotent ultrafilters exist.

Proof. Let Y := {Y ⊆ βZ \ Z : Y is nonempty, closed, and Y ⊕ Y ⊆ Y }.
Here, Y ⊕ Y := {U ⊕ V : U ,V ∈ Y }. By Theorem 3.2.1(4) and Exercise
4.2.5(4), βZ \ Z ∈ Y . By compactness of βZ \ Z, any descending chain in
Y has nonempty intersection. It follows from Zorn’s lemma that Y has a
minimal element Y0. We show that every element of Y0 is idempotent (and
nonprincipal).

Fix U ∈ Y0. We first claim that Y0 ⊕ U ∈ Y . Indeed, it is clearly
nonempty. By left semicontinuity, it is closed. Finally, using associativity
of ⊕ and the fact that Y0 is closed under ⊕, we have

(Y0 ⊕ U)⊕ (Y0 ⊕ U) ⊆ (Y0 ⊕ Y0)⊕ (Y0 ⊕ U) ⊆ Y0 ⊕ U .
Since Y0 ⊕ U ⊆ Y0, minimality of Y0 implies that Y0 ⊕ U = Y0. Set

Y1 := {V ∈ Y0 : V ⊕ U = U}.
We just showed that Y1 �= ∅. Note also that Y1 is closed as it is the preimage
of the closed set {U} under the continuous map V �→ V ⊕ U . Finally, if
V1,V2 ∈ Y1, then

(V1 ⊕ V2)⊕ U = V1 ⊕ (V2 ⊕ U) = V1 ⊕ U = U ,
so Y1 ⊕ Y1 ⊆ Y1. It follows that Y1 ∈ Y ; by minimality of Y0 again, we have
that Y1 = Y0, whence U ∈ Y1 and U ⊕ U = U , as desired. �

Here is the connection between idempotent ultrafilters and FS-sets:

Theorem 4.2.10. If U is a nonprincipal idempotent ultrafilter, then every
A ∈ U is an FS-set.

Proof. We define a sequence c = (cn)n∈N in strictly increasing order so that
FS(c) ⊆ A.

Suppose inductively that c1 < · · · < cn have been constructed so that,
for all nonempty F ⊆ {1, . . . , n}, we have cF ∈ A and A− cF ∈ U . We show
how to continue this construction. First note that since U is idempotent,
we can conclude that A− cF −U ∈ U . Using the fact that U is nonprincipal
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(and idempotent again), we may take cn+1 > cn so that cn+1 ∈ A∩(A−U)∩
(A− cF ) ∩ (A− cF − U) for every F as above. Note then that c1, . . . , cn+1

is a valid continuation of the construction. �

The proof of Hindman’s theorem is now immediate:

Proof of Theorem 4.2.2. Fix a partition Z = C1 � · · · � Cn and a non-
principal idempotent ultrafilter U . Since Z ∈ U , there is some i ∈ {1, . . . , n}
such that Ci ∈ U , whence Ci is an FS-set. �

If we work a bit harder, we can improve the previous statement. First,
a lemma:

Lemma 4.2.11. Suppose that c = (cn)n∈N is a sequence of distinct elements
from Z. Then there is a nonprincipal idempotent ultrafilter U on Z such that
FS(c) ∈ U .

Proof. For each m ∈ N, let cm := (cn)n≥m and set Um := {U ∈ βZ \ Z :
FS(cm) ∈ U}, a nonempty closed subset of βZ. Since Um+1 ⊆ Um, by
compactness we have that S :=

⋂
m∈N Um is a nonempty closed subset of

βZ.

Claim. S ⊕ S ⊆ S.

Proof of Claim. Suppose that U ,V ∈ S; we show that U ⊕ V ∈ S. To see
this, fix m ∈ N. We must show that FS(cm) ∈ U ⊕ V. Fix a ∈ FS(cm) and
write a = cn1 + · · · + cnl

with m ≤ n1 < n2 < · · · < nl. Note then that
FS(cnl+1) ⊆ FS(cm)−a. Since FS(cnl+1) ∈ V, it follows that FS(cm)−a ∈ V.
Since a ∈ FS(cm) was arbitrary and FS(cm) ∈ U , it follows that FS(cm)−V ∈
U , whence FS(cm) ∈ U ⊕ V, as desired. This proves the claim.

We may thus repeat the proof of Theorem 4.2.9, but this time only using
ultrafilters from S; it follows that the nonprincipal idempotent ultrafilter
thus constructed belongs to S, which, in particular, implies that FS(c) ∈
U . �

Corollary 4.2.12 (Strong Hindman’s theorem). Suppose that C is an FS-
set and C is partitioned into finitely many pieces C = C1 � · · · � Cn. Then
there is i ∈ {1, . . . , n} such that Ci is an FS-set.

Proof. Take c = (cn)n∈N such that FS(cn) ⊆ C. Take a nonprincipal
idempotent ultrafilter U such that FS(c) ∈ U . Then C ∈ U as well, whence
Ci ∈ U for a unique i = 1, . . . , n, and this Ci is itself an FS-set. �

In combinatorial terms, the above corollary shows that being an FS-set
is a partition regular property.
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Corollary 4.2.13. U ∈ βZ is in the closure of the set of nonprincipal
idempotent ultrafilters if and only if every element of U is an FS-set.

Proof. First suppose that U is in the closure of the set of nonprincipal
idempotent ultrafilters and suppose that A ∈ U . Then UA is a neighborhood
of U , whence there is V ∈ UA that is idempotent. Thus, A ∈ V, whence A
is an FS-set by Theorem 4.2.10.

Conversely, suppose that every element of U is an FS-set. Let UA be a
basic neighborhood of U . By assumption, A is an FS-set, whence A ∈ V for
some nonprincipal idempotent ultrafilter V by Lemma 4.2.11. It follows that
V ∈ UA. Since UA is an arbitrary basic open neighborhood of U , it follows
that U is in the closure of the set of nonprincipal idempotent ultrafilters. �

4.3. Banach density, means, and measures

A central notion in combinatorial number theory is the attempt to describe
“what proportion” of the integers lie in a given set A ⊆ Z. Since the set

A is presumably infinite, one cannot simply just consider the fraction |A|
|Z| .

Instead, one must first consider what proportion of A lies in various finite
intervals and then use some limiting process. The resulting quantity is
referred to as a density of A. While there are many notions of densities for
subsets of Z, we will only concern ourselves with the following:

Definition 4.3.1. Given A ⊆ Z, the Banach density of A is the quantity

BD(A) := lim
n→∞

max

{
|A ∩ I|

n
: I ⊆ Z an interval of length n

}
.

A few words are in order concerning the previous definition. Note

that, given an interval I ⊆ Z of length n, |A∩I|
n belongs to the finite set

{0, 1
n ,

2
n , . . . , 1}. Thus, as I ranges over all such intervals, the above fraction

takes a maximal value, which we temporarily denote by δ(A, n).

Exercise 4.3.2. For A ⊆ Z and m,n ∈ N, prove that δ(A,m + n) ≤
δ(A,m) + δ(A, n).

An elementary real analysis fact known as Fekete’s lemma allows one to
conclude that limn→∞ δ(A, n) actually exists. This limit is then the Banach
density of A.

The following is a notion of largeness for subsets of Z:

Definition 4.3.3. A ⊆ Z is called thick if it contains arbitrarily long
intervals, that is, for each n ∈ N, there is an interval I ⊆ Z with |I| ≥ n
such that I ⊆ A.

Exercise 4.3.4. For A ⊆ Z, prove that BD(A) = 1 if and only if A is thick.
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Definition 4.3.5. Given A ⊆ Z, we say that a sequence of intervals (In) in Z

witness the Banach density of A if limn→∞ |In|=∞ and limn→∞
|A∩In|
|In| =

BD(A).

While the notion of Banach density satisfies many natural properties
similar to those satisfied by measures, it differs from measures in many
unsatisfying ways. For example:

Exercise 4.3.6. Show that Banach density is subadditive, that is, for
A,B ⊆ Z, we have BD(A ∪ B) ≤ BD(A) + BD(B). Show that, even when
A and B are disjoint, BD(A ∪B) need not equal BD(A) + BD(B).

That is, while measures are additive (even countably additive), densi-
ties are merely subadditive. In the remainder of this section, we will show
how ultrafilters can be used to bring actual measures into the picture when
discussing density calculations.

Measures will be introduced using the Riesz representation theorem. To
explain this, first suppose that X is a compact Hausdorff space and μ is a
finite Borel measure on X. Let C(X) denote the R-vector space of contin-
uous functions X → R. Then we can consider the integration functional
�μ : C(X) → R given by �μ(f) :=

∫
fdμ. The function �μ is an R-linear

map which is moreover positive, meaning that if f ≥ 0, then �μ(f) ≥ 0.
Also notice that �μ(1) = μ(X), where 1 denotes the function on X that is
constantly 1. In particular, μ is a probability measure if and only if �(1) = 1.

The Riesz representation theorem gives a converse to the previous para-
graph: given any positive linear functional � : C(X) → R, there is a finite
Borel measure μ on X such that � = �μ. (μ is actually unique if one assumes
that it is a so-called regular measure.)

The above discussion motivates the need to produce positive linear func-
tionals on C(X) for some compact space X. While Z is not compact, βZ
is compact, and it is this compact space for which we will apply the Riesz
representation theorem.

Given any set X, let B(X) denote the R-vector space of bounded func-
tions X → R.

Exercise 4.3.7. Prove that the map f �→ βf : B(X) → C(βX) is an
isomorphism of R-vector spaces. Moreover, prove that:

(1) for f ∈ B(X), we have f ≥ 0 if and only if βf ≥ 0, and

(2) β1 = 1.

Motivated by the previous discussion, we consider the following:

Definition 4.3.8. A mean on X is a positive linear functional � : B(X)→
R such that �(1) = 1.
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We summarize this discussion as follows:

Theorem 4.3.9. For every mean � on X, there is a Borel probability mea-
sure μ on βX such that �(f) =

∫
βX βfdμ for every f ∈ B(X).

Thus, in order to produce measures on βZ, we need a way of constructing
means on Z. The following is our main method of accomplishing this task:

Proposition 4.3.10. Suppose that I := (In)n∈N is a sequence of nonempty,
finite subsets of Z and U is an ultrafilter on N. For f ∈ B(Z), define
�(f) := �I,U (f) := lim U

1
|In|
∑

x∈In f(x). Then f is a mean on Z.

Exercise 4.3.11. Prove the previous proposition.

In Proposition 4.3.10, we think of 1
|In|
∑

x∈In f(x) as the average of f(x)

on the set In and then use the ultrafilter to see what those averages converge
to.

We will need to consider means on Z satisfying an extra property:

Definition 4.3.12. If � is a mean on Z, we say that � is an invariant mean
if �(k.f) = �(f) for all k ∈ Z and f ∈ B(Z), where (k.f)(x) := f(x− k).

Exercise 4.3.13. Suppose, using the notation from Proposition 4.3.10, that
each In is an interval in Z and limn→∞ |In| =∞. Further suppose that U is
nonprincipal. Prove that �I,U is an invariant mean on Z.

The invariant means �I,U have a connection to Banach density:

Exercise 4.3.14. Suppose that I and U are as in Exercise 4.3.13 and that
A ⊆ Z.

(1) Show that BD(A) ≥ �I,U(1A), where 1A denotes the characteristic
function of A.

(2) Suppose that I witnesses the Banach density of A. Prove that
BD(A) = �I,U(1A).

To round out the discussion, we mention the following:

Lemma 4.3.15. For any subset A ⊆ Z, we have β(1A) = 1UA
.

Exercise 4.3.16. Prove the previous lemma.

Corollary 4.3.17. For any mean � on Z, there is a Borel probability mea-
sure μ on βZ such that, for any A ⊆ Z, we have �(1A) = μ(UA).

We will use the fact that Banach densities can be mirrored by genuine
measures in the next two sections.
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4.4. Furstenberg’s correspondence principle

In this section, we explain an extremely powerful extension of the ideas
used in the previous section that has proven to be a valuable tool in the
application of ideas from ergodic theory to combinatorial number theory.
First, some definitions regarding measure-preserving transformations.

Definition 4.4.1. Given a probability space (Ω, μ), a measurable map
T : Ω → Ω is called a measure-preserving transformation if, for each
measurable E ⊆ Ω, we have μ(E) = μ(T−1(E)).

To avoid multiple parentheses in the next result, for n ∈ Z, we will
write T−nE instead of the more cumbersome T−n(E). Note that, for n > 0,
this means those x ∈ Ω for which Tn(x) ∈ E, where Tn denotes the map
T ◦ T ◦ · · · ◦ T (n times), while for n < 0, this means the image of E under
the map T−n.

Theorem 4.4.2 (Furstenberg’s correspondence principle). Given A ⊆ Z,
there is a probability space (Ω, μ), a measure-preserving transformation
T : Ω→ Ω, and a measurable set E such that:

(1) μ(E) = BD(A) and

(2) for all l1, . . . , lk ∈ Z, we have

BD(A ∩ (A− l1) ∩ · · · ∩ (A− lk)) ≥ μ(E ∩ T−l1E ∩ · · · ∩ T−lkE).

Proof. Set Ω := βZ. Let I witness the Banach density of A, and let U
be a nonprincipal ultrafilter on N. Set � := �I,U and let μ be the proba-
bility measure on βZ as in Corollary 4.3.17 corresponding to �, except that
we restrict to the σ-algebra generated by the basic open sets in βZ. Let
T : Ω → Ω be given by T (U) := U ⊕ U1 and let E := UA. We show that
these are as desired.

First, observe that T−1(UB) := UB−1 for any B ⊆ Z. Indeed, U ∈
T−1(UB) if and only if U ⊕ U1 ∈ UB if and only if B ∈ U ⊕ U1 if and only
if B − 1 ∈ U if and only if U ∈ UB−1. In particular, T is a measurable
map. Also, it follows by induction that T−n(UB) = UB−n for any n > 0.
Consequently, T−l(UB) = UB−l for any l ∈ Z.

Next observe that μ(T−1UB) = μ(UB−1) = �(1B−1) = �(1B) = μ(UB),
where the equality �(1B−1) = �(1B) follows from invariance of �. Since we
have restricted attention to the σ-algebra generated by the basic open sets,
it follows that T is measure-preserving.

Item (1) now follows from the choice of μ. To see (2), fix l1, . . . , lk ∈ Z.
Since

E ∩ T−l1E ∩ · · · ∩ T−lkE = UA∩(A−l1)···∩(A−lk),

the desired inequality follows from Exercise 4.3.14(1). �
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Furstenberg originally introduced his correspondence principle to give
an ergodic theoretic proof of Szemerédi’s famous theorem on arithmetic
progressions. Recall that an arithmetic progression in Z of length k is a
sequence of the form a, a + n, . . . , a + (k − 1)n, where a ∈ Z and n > 0.
Szemerédi proved the following amazing theorem:

Theorem 4.4.3 (Szemerédi’s theorem). If A ⊆ Z is such that BD(A) > 0,
then for any k ∈ N, there is an arithmetic progression of length k contained
in A.

Having positive Banach density is a very mild condition assuring that
a set is “not too sparse”. For example, a set A having Banach density 1

100
means that there are longer and longer intervals in Z in which the proportion
of the interval that lies in A hovers around 1

100 . While such a set can seem
quite small, Szemerédi’s theorem ensures that it must contain arbitrarily
long arithmetic progressions.

Szemerédi’s original proof was combinatorial and very (very!) compli-
cated. Furstenberg’s ergodic theoretic proof is conceptually much simpler,
combining the above correspondence principle with the following (difficult)
theorem in ergodic theory:

Theorem 4.4.4 (Furstenberg’s recurrence theorem). For any probabilty
space (Ω, μ), any measure-preserving transformation T : Ω → Ω, any mea-
surable E ⊆ Ω with μ(E) > 0, and any k ∈ N, there is n > 0 such that
μ(E ∩ T−nE ∩ T−2nE ∩ · · · ∩ T−knE) > 0.

Szemerédi’s theorem is now an immediate consequence of the correspon-
dence principle and the recurrence theorem. Indeed, let Ω, μ, E, and T be
as in the Furstenberg correspondence principle for A, and let n > 0 be as in
the Furstenberg recurrence theorem for this data and k − 1. Then

BD(A ∩ (A− n) ∩ (A− 2n) ∩ · · · ∩ (A− (k − 1)n)) > 0.

In particular, there is x ∈ A∩ (A−n)∩ (A− 2n)∩ · · · ∩ (A− (k− 1)n), that
is, x, x+ n, x+ 2n, . . . , x+ (k− 1)n, all belong to A, whence we have found
an arithmetic progression of length k in A.

We conclude this section with another application of Furstenberg’s cor-
respondence princple. First, we need another structural notion of largeness
for subsets of Z:

Definition 4.4.5. B ⊆ Z is called syndetic if there is m ∈ N such that,
whenever I ⊆ Z is an interval with B ∩ I = ∅, then |I| ≤ m.

In other words, B is syndetic if there is a uniform bound on the size of
gaps of B. We use the Furstenberg correspondence principle to prove the
following:
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Theorem 4.4.6. Suppose that A ⊆ Z is such that BD(A) > 0. Then the
difference set

A−A := {x− y : x, y ∈ A}
is syndetic.

We accomplish this as follows.

Definition 4.4.7. A Δr-set is a set of the form {nj −ni : 1 ≤ i < j ≤ r},
where n1 < · · · < nr are nonnegative integers. A ⊆ Z is called a Δ∗

r-set if
A ∩B �= ∅ for every Δr-set B ⊆ Z.

Exercise 4.4.8. Prove that Δ∗
r-sets are syndetic.

Theorem 4.4.9. Suppose that (Ω, μ) is a probability space and T : Ω → Ω
is measure-preserving. Then for any measurable set E ⊆ Ω with μ(E) > 0,
the return set

RE := {n ∈ Z : μ(E ∩ T−nE) > 0}
is a Δ∗

r-set for any r > 1
μ(A) . In particular, RE is piecewise syndetic.

Proof. Fix nonnegative integers n1 < · · · < nr. Suppose that

RE ∩ {nj − ni : 1 ≤ i < j ≤ r} = ∅.
Then, for all 1 ≤ i < j ≤ r, we have that μ(T−niE ∩ T−njE) =

μ(E ∩ T−(nj−ni)E) = 0, so 1 ≥ μ(
⋃r

i=1 μ(T
−niE)) = r · μ(E), whence

r ≤ 1
μ(E) . �

Proof of Theorem 4.4.6. Let Ω, μ, E, and T be as in the Furstenberg
correspondence principle for A. If n ∈ RE , then BD(A ∩ (A − n)) > 0, so
n ∈ A−A. Thus A−A contains the syndetic set RE , so is itself syndetic. �

4.5. Jin’s sumset theorem

In this section, we prove the following theorem of Jin, which is in a similar
spirit as Theorem 4.4.6. First, we need yet another structural notion of
largeness for subsets of Z:

Definition 4.5.1. C ⊆ Z is called piecewise syndetic if there is m ∈ N
and intervals I1, I2, . . . in Z satisfying:

(1) limn→∞ |In| =∞, and

(2) for any n and any interval J ⊆ In, if C ∩ J = ∅, then |J | ≤ m.

We thus see that piecewise syndeticity is a weakening of the notion of
syndeticity in that we only require that the gaps of C have bounded size
on longer and longer intervals in Z. Although at first it might seem like a
strange notion, it is of extreme importance in combinatorial number theory
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and, in some sense, is a more natural notion. For example, one can prove
that piecewise syndeticity is a partition regular notion (as defined in Section
4.2), while neither thickness nor syndeticity are partition regular.

In what follows, given X,Y ⊆ Z, we define their sumset to be

X + Y := {x+ y : x ∈ X, y ∈ Y }.
Exercise 4.5.2. Prove that C ⊆ Z is piecewise syndetic if and only if there
is a finite set F ⊆ Z such that, for all n ∈ N, there is an interval I ⊆ F +C
with |I| ≥ n.

Here is the main result of this section:

Theorem 4.5.3 (Jin’s sumset theorem). Suppose that A,B ⊆ Z are such
that BD(A),BD(B) > 0. Then A+B is piecewise syndetic.

Jin’s original theorem used nonstandard analysis, a topic we discuss in
Chapter 9. In fact, Jin’s theorem was one of the early successes of non-
standard analysis applied to combinatorial number theory and this area of
research is currently extremely active; see [42] for an entire monograph on
the subject.

Instead of following Jin’s original proof, we will use an ultrafilter proof
due to Beiglböck which makes substantial use of analysis on βZ and the
conversion from densities to means described in Section 4.3. The following
lemma is the key to Beiglböck’s proof of Theorem 4.5.3.

Lemma 4.5.4. For any A,B ⊆ Z, there is U ∈ βZ such that

BD(A ∩ (B − U)) ≥ BD(A) · BD(B).

Proof. Fix an invariant mean � on Z such that �(1B) = BD(B), and let μ be
the associated Borel probability measure on βZ. Let (In)n∈N be a sequence
of intervals witnessing the Banach density of A. Define fn : βZ→ [0, 1] by

fn(U) :=
1

|In|
∑

k∈A∩In

1UB−k
(U).

Note that each fn is measurable. Set f(U) := lim supn fn(U) (which is also
measurable) and note that f(U) ≤ BD(A∩ (B−U)) for all U ∈ βZ. Fatou’s
lemma implies∫

βZ
fdμ ≥ lim sup

n

∫
βZ

1

|In|
∑

k∈A∩In

1UB−k
dμ = lim sup

n

1

|In|
∑

k∈In∩A
�(1B−k).

Since � is invariant, the latter term is equal to lim supn
|A∩In|
|In| · �(1B) =

BD(A) · BD(B). Thus, we have shown
∫
βZ fdμ ≥ BD(A) · BD(B). In

particular, there is some U ∈ βZ such that f(U) ≥ BD(A) · BD(B), as
desired. �
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Notice that, in the notation of the above proof, μ(Z) = 0, whence we
can take U as in the conclusion of the lemma to be nonprincipal.

Beiglböck’s proof of Theorem 4.5.3. Assume that BD(A),BD(B) > 0.
Apply Lemma 4.5.4 with A replaced by −A (which has the same Banach
density), obtaining U ∈ βZ such that C := (−A) ∩ (B − U) has positive
Banach density. By Theorem 4.4.6, C − C is syndetic; since C − C ⊆
A+ (B − U), we have that A+ (B − U) is also syndetic.

Suppose s ∈ A + (B − U). Then for some a ∈ A, B − (s − a) ∈ U ,
whence a + B − s ∈ U and hence A + B − s ∈ U . Thus, for any finite set
s1, . . . , sn ∈ A+(B−U), we have

⋂n
i=1(A+B− si) ∈ U , and, in particular,

is nonempty, meaning there is t ∈ Z such that t+ {s1, . . . , sn} ⊆ A+B. We
claim that this implies that A+B is piecewise syndetic. Indeed, take F ⊆ Z
such that F +A+ (B − U) = Z. By Exercise 4.5.2, it suffices to check that
F +A+B contains arbitrarily long intervals. To see this, fix n ∈ N and, for
i = 1, . . . , n, take si ∈ A+(B−U) such that i ∈ F+si. Take t ∈ Z such that
t+{s1, . . . , sn} ⊆ A+B. Then t+[1, n] ⊆ t+F+{s1, . . . , sn} ⊆ F+(A+B),
completing the proof. �

4.6. Notes and references

An entire book devoted to the subject matter of this chapter is [42]. Ram-
sey’s theorem was proven in his paper [146]. Hindman’s theorem was proven
in his paper [82]. However, Hindman’s original proof was purely combinato-
rial and very difficult to follow. (Hindman himself even once suggested that
one could torture a graduate student by asking them to read the original
proof.) That being said, Baumgartner gave a short combinatorial proof in
[4]. It had been previously observed by Galvin (see also [81]) that the exis-
tence of an idempotent ultrafilter (which was unknown at the time) yields
the conclusion of Hindman’s theorem. The existence of idempotent ultra-
filters was later established by Glazer; see [33]. The idempotent ultrafilter
proof of Hindman’s theorem paved the way for many results in Ramsey
theory; see [177] and [42].

The connection between measures on βZ and Banach density can be
found, for example, in Bergelson’s article [11]. Furstenberg’s correspon-
dence principle was originally proven in [62], where he gave his proof of
Szemerédi’s theorem, which itself was originally proven in [171]. Our proof
of Theorem 4.4.6 is based on the article [12]. Jin’s sumset theorem was
originally proven in [92]; our proof is based on that of Beiglböck given in
[8]. Many generalizations of Jin’s sumset theorem have been proven over
the years; see [42].





Chapter 5

Foundational concerns

In this chapter, we consider some foundational concerns related to the exis-
tence of nonprincipal ultrafilters. In Section 5.1, we give a detailed account
of the various ultrafilter existence axioms and how they compare in strength
with each other and with the axiom of choice. In Section 5.2, we show that
there cannot exist a definable, in the sense of descriptive set theory, non-
principal ultrafilter on N, while in Section 5.3 we consider the connection
between the existence of nonprincipal ultrafilters on N and various forms
of the axiom of determinacy. In Section 5.4, we consider special kinds of
nonprincipal ultrafilters called selective ultrafilters and P-points, which are
ultrafilters whose existence is independent of ZFC.

5.1. The ultrafilter theorem and the axiom of choice: Part I

In Section 1.1, we proved the ultrafilter theorem (UT), namely that every
filter on every set can be extended to an ultrafilter on that set. The proof
used Zorn’s lemma, one of the avatars of the axiom of choice (AC). In this
section, we describe, in more detail, the connection between UT and AC.
In particular, we will describe several variations of the UT and discuss their
relative strengths. Since all of the proofs of the results discussed involve set
theory way out of the scope of this book, we simply point the interested
reader to references. Our discussion here will involve the notion of consis-
tency strengths of axioms, and we refer the reader to Appendix B for more
information.

We first recall from Appendix B that AC is independent of the axioms
ZF of set theory, that is, ZF cannot prove nor disprove AC. In particular,
assuming the consistency of ZF, there is a model of ZF where AC is true

59
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(Gödel’s constructible universe L) and there is a model of ZF where AC is
false (the so-called basic Cohen model).

We consider the following statements:

(1) WUT(X) is the statement: there is a nonprincipal ultrafilter on X.
We refer to this statement as the weak ultrafilter theorem for
X.

(2) WUT is the statement: there is an infinite X such that WUT(X)
holds. We refer to this statement as the weak ultrafilter theo-
rem.

(3) IUT is the statement: for every infinite X, WUT(X) holds. We
refer to this statement as the intermediate ultrafilter theorem.

(4) UT(X) is the statement: for every filter F on X, there is an ultra-
filter U on X extending F .

(5) UT is the statement: for every infinite set X, UT(X) holds.

Exercise 5.1.1. In ZF, show that UT(X) implies WUT(X). Consequently,
in ZF, UT implies IUT, which in turn implies WUT.

We thus see that WUT is the weakest possible ultrafilter existence axiom
one might hope to consider. We already have models of ZF where this axiom
is not true, as proven by Blass [13].

Theorem 5.1.2. There is a model of ZF where the WUT fails.

Of course, WUT(N) implies WUT. However, the converse is false:

Theorem 5.1.3. There is a model of ZF where the WUT is true but
WUT(N) fails, whence WUT is true but IUT is false.

Proof. For example, see the model constructed in [90, Chapter 5, Problem
24]. �

At this point, we can continue in two different directions.

Theorem 5.1.4. There is a model of ZF where WUT(N) is true but IUT
is false.

Proof. This is [84, FM model N51]. �

The following is [90, Chapter 8, Problem 5].

Theorem 5.1.5. There is a model of ZF such that IUT is true and yet UT
fails.

Going back to WUT(N), we note the following result proven in [77]:
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Theorem 5.1.6. There is a model of ZF where WUT(N) is true and yet
UT(N) fails.

Surprisingly, it is not known if there is any implication or lack thereof
between the statements WUT and UT(N).

Finally, we have:

Theorem 5.1.7. There is a model of ZF where UT is true and yet AC fails.

Proof. The basic Cohen model is in fact a model of UT. �

Thus, we really have seen that most of the various existence axioms for
nonprincipal ultrafilters are independent of one another.

We now turn to the notion of idempotent ultrafilters first defined in
Section 4.2. The proof we gave that idempotent ultrafilters on N exist used
Zorn’s lemma in a seemingly essential way. However, with a more careful
analysis, the following was proven by Di Nasso and Tachtsis [43]:

Theorem 5.1.8. ZF plus UT(R) proves that there exist idempotent ultra-
filters on N.

For this to really be an improvement of the original proof, one needs to
know the following (see [79]):

Theorem 5.1.9. There is a model of ZF where UT(R) is true and yet UT
fails (whence AC fails).

It is seemingly strange to need to use UT(R) to prove a result about
certain kinds of ultrafilters on N. However, what was really used in the Di
Nasso and Tachtsis proof was the existence of a choice function which, to
each filter F on N, associated an ultrafilter U on N extending F . It is shown
in [43, Proposition 3.4] that UT(R) implies the existence of such a choice
function.

The exact strength of the existence of idempotent ultrafilters on N is
unknown. In particular, it is not known if one can replace the assumption
of UT(R) with the weaker hypothesis of UT(N), which is indeed a weaker
hypothesis (see, for example, [104]):

Theorem 5.1.10. There is a model of ZF where UT(N) is true and yet
UT(R) fails.

It is well known (see, for example, [90, Chapter 2, Problem 8]) that in
ZF, AC is equivalent to Tychnoff’s theorem (Theorem 3.1.13). We end this
section by mentioning the following interesting fact:

Theorem 5.1.11. In ZF, UT is equivalent to Tychnoff’s theorem for com-
pact Hausdorff spaces.
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Proof. The proof we gave of Theorem 3.1.13 used AC in two places: (1)
to take an ultrafilter extending a given filter, and (2) to choose, for each
sequence in a particular family, an ultralimit of that sequence. However,
the Hausdorffness assumption implies that ultralimits are unique, whence
the second use of AC is not needed and the proof goes through under the
weaker assumption of UT.

We leave the converse as an exercise for the reader. �
Exercise 5.1.12. Finish the proof of the previous theorem by showing that,
in ZF, Tychonoff’s theorem for compact Hausdorff spaces implies UT. (Hint.

Filters on a set X are elements of 22
X
.)

We remark that some mathematicians are often hesitant about using
ultrafilters as they are “nonconstructive” in the sense that one cannot prove
(without some form of choice) that they exist and that they cannot name a
“concrete” nonprincipal ultrafilter. However, most mathematicians do not
even hesitate to use AC; since UT is strictly weaker than AC, proofs that
use UT should be viewed with less suspicion than those that use the full
strength of AC. Moreover, the fact that UT is equivalent to the statement of
Tychonoff’s theorem for compact Hausdorff spaces further solidifies (in this
author’s biased opinion) that arguments using the existence of nonprincipal
ultrafilters should not be viewed with any sort of prejudice.

5.2. Can there exist a “definable” ultrafilter on N?

Roughly speaking, descriptive set theory is the study of “definable” subsets
of R (and, more generally, Polish spaces, as defined below.) The word de-
finable in the previous sentence is somewhat imprecise and we will consider
some specific formalizations of it throughout this section. The motivation,
however, comes from the fact that the axiom of choice can be used to con-
struct “pathological” subsets of R, such as, for example, sets that are not
Lebesgue measurable. The hope is that if one restricts one’s attention to
“nice” sets, then the pathologies that arise from the axiom of choice should
disappear; e.g., all “nice” sets should be Lebesgue measurable.

Since we saw in the last section that the existence of nonprincipal ul-
trafilters on N is intimately tied up with the axiom of choice (although not
quite equivalent to it), it is natural to expect that there cannot be any non-
principal ultrafilters that are definable when viewed as subsets of 2N (which
is indeed a Polish space). We will see in this section that this intuition is
indeed correct for the most part, although that the situation becomes a lit-
tle murkier for certain notions of definability (and in certain models of set
theory).

We first define the spaces that are the subject of descriptive set theory.
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Definition 5.2.1. A Polish space is a separable topological space that
is moreover completely metrizable, meaning that there is some complete
metric on the space that induces the topology.

Examples 5.2.2. The following spaces are Polish spaces:

(1) Rn for any n ≥ 1.

(2) Baire space NN.

(3) Cantor space 2N. This is a compact subspace of Baire space and
is homeomorphic to the usual Cantor set in [0, 1].

Exercise 5.2.3. Prove that the above examples are indeed Polish spaces.

While there are many (many!) interesting examples of Polish spaces, we
will restrict our attention to those given above. We next define the most
basic class of definable sets:

Definition 5.2.4. Given a topological spaceX, the set of allBorel subsets
of X is the σ-algebra generated by the open subsets of X, that is, the
smallest collection of subsets of X containing the open sets and closed under
complementation and countable unions.

We will soon see that no nonprincipal ultrafilter on N can be a Borel
subset of 2N. First, we want to extend our definition of definable set to
allow for sets that are “almost Borel”. There are actually two ways of
accomplishing this, depending on whether we are speaking about measure
or category.

We first treat the case of measure. Although this can be made much
more general, we stick with the concrete case of Lebesgue measure λ on R.
As noted above, Cantor space 2N is homeomorphic to the usual two-thirds
Cantor set in [0, 1]. Moreover, one can show that Lebesgue measure on [0, 1]
restricts to a measure on the two-thirds Cantor set which in fact agrees with
the usual product measure on 2N (after identifying the two spaces).

Definition 5.2.5.

(1) N ⊆ R is a null set if there is a Borel set B ⊆ R with λ(B) = 0
such that N ⊆ B.

(2) The set of Lebesgue measurable subsets of R is the σ-algebra
generated by the Borel sets and the null sets.

Exercise 5.2.6. A ⊆ R is Lebesgue measurable if and only if there is a
Borel set B such that A�B is a null set.

We now treat the case of category.
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Definition 5.2.7. Let X be a topological space.

(1) We say that A ⊆ X is nowhere dense if the interior of the closure
of X is empty: int(X) = ∅.

(2) We say that A ⊆ X is meager if it is a countable union of nowhere
dense sets. The complement of a meager sets is called comeager.

(3) The set of Baire measurable subsets of X is the σ-algebra gen-
erated by the Borel sets and the meager sets.

Exercise 5.2.8. A ⊆ X is Baire measurable if and only if there is a Borel
set B such that A�B is a meager set.

The collections of null sets and meager sets both encompass notions
of “smallness,” whence we can view a Lebesgue measurable set or a Baire
measurable set as a set that is “almost” Borel in that it differs from a Borel
set from a very small set. The precise definition of small is captured by the
following notion dual to that of a filter:

Definition 5.2.9. If X is a set, then I ⊆ P(X) is called an ideal on X if
{X \A : A ∈ I} is a filter on X.

Note that ideals are closed under finite unions. If we demand closure
under countable unions, we arrive at:

Definition 5.2.10. An ideal is called a σ-ideal if it is also closed under
countable unions.

Exercise 5.2.11. Prove that the collections of null sets and meager sets are
(possibly improper) σ-ideals.

We will need the following fact, which is a special case of the Baire
category theorem:

Fact 5.2.12. If X is a Polish space, then X is not a meager subset of itself.
In other words, no subset of X can be both meager and comeager.

We now move toward the proof that no nonprincipal ultrafilter on N can
be almost Borel. We first need a few more facts.

Definition 5.2.13. A ⊆ 2N is a tail set if, whenever (xn)n∈N ∈ A and
(yn)n∈N ∈ 2N are such that xn = yn eventually, then (yn)n∈N ∈ A.

Exercise 5.2.14. If U is a nonprincipal ultrafilter on N, then U (viewed as
a subset of 2N) is a tail set.

Finally, we need the following important facts (see [96]):

Fact 5.2.15 (0-1 laws). Suppose that A ⊆ 2N is a tail set.
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(1) If A is Lebesgue measurable, then λ(A) = 0 or λ(A) = 1.

(2) If A is Baire measurable, then A is either meager or comeager.

We can now prove our first nondefinability result for nonprincipal ultra-
filter on N:

Theorem 5.2.16. If U is a nonprincipal ultrafilter on N, then U , viewed as
a subset of 2N, is neither Lebesgue measurable nor Baire measurable.

Proof. We prove only the assertion for Baire measurability, the assertion
for Lebesgue measurability being nearly identical. Suppose, toward a con-
tradiction, that U is Baire measurable. By Exercise 5.2.14 and Fact 5.2.15,
we have that U is either meager or comeager. Let f : 2N → 2N be the
map defined by f(xn) := 1 − xn. In other words, f flips the digits of all
the coordinates. Since U is an ultrafilter, we have that f(U) = 2N \ U . As
f is clearly a homeomorphism of 2N, we have that U is both meager and
comeager, contradicting Fact 5.2.12. �

There is a wider class of definable sets beyond the class of Borel sets,
namely the class of projective sets.

Definition 5.2.17. We define, by recursion on n, the classes of Σ1
n and Π1

n

subsets of Polish spaces as follows. Throughout the definition, X is a Polish
space.

(1) A ⊆ X is Σ1
1 if there is a Polish space Y and a Borel subset B of

X × Y such that A = {x ∈ X : there is y ∈ Y such that (x, y) ∈
B}.

(2) A ⊆ X is Π1
n if X \A is Σ1

n.

(3) A ⊆ X is Σ1
n+1 if there is a Polish space Y and a Π1

n subset B of
X × Y such that A = {x ∈ X : there is y ∈ Y such that (x, y) ∈
B}.

For a subset A of a Polish space X, we say that A is projective if it is Σ1
n

or Π1
n for some n. We also define the class Δ1

n to consist of those sets which
belong to both Σ1

n and Π1
n.

In some sense, the class of projective sets is what one gets from the class
of Borel sets if one is allowed to quantify over Polish spaces. In order to get
a picture for this class of sets, we mention the following:

Fact 5.2.18.

(1) The class Δ1
1 coincides with the class of Borel sets.

(2) For every n, we have Σ1
n ∪Π1

n ⊆Δ1
n+1.
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(3) If X is a perfect Polish space, then for every n, we can find a subset
of X that is Σ1

n but not Π1
n.

The projective sets provide a natural class of definable sets properly ex-
tending the class of Borel sets. It is thus natural to wonder if a nonprincipal
ultrafilter on N could be a projective subset of 2N.

The following is one of the central early results in descriptive set theory
(see [96]):

Fact 5.2.19. If X is a Polish space, then every Σ1
1 subset and every Π1

1

subset of X is Baire measurable.

Using the previous fact and Theorem 5.2.16, we have:

Corollary 5.2.20. If U is a nonprincipal ultrafilter on N, then U is neither
a Σ1

1 nor a Π1
1 subset of 2N.

Can we say more? Can we go higher in the projective hierarchy? Un-
fortunately not in ZFC:

Fact 5.2.21. The statement “there is a nonprincipal ultrafilter U that is a
Σ2

1 subset of 2N” is independent of ZFC.

While the proof of the above fact is beyond the scope of this book, let
us at least roughly indicate why it is true. First, in L (see Appendix B),
there is a Σ1

2 well-ordering of P(N); this ordering can be used to construct
a nonprincipal ultrafilter U on N that is Σ1

2. On the other hand, in [129],
Martin and Solovay proved that the statement “every Σ1

2 subset of 2N is
Baire measurable” is consistent with ZFC. It follows from this statement
and Theorem 5.2.16 that ZFC cannot prove that there is a nonprincipal
ultrafilter that is a Σ1

2 subset of 2N.

5.3. The ultrafilter game

Fix a set X and a subset D ⊆ XN. We consider a two-player game G(D)
defined as follows. Players I and II take turns playing elements of X: Player
I plays a0 ∈ X, then player II responds with a1 ∈ X, then player I responds
with a2 ∈ X, etc.. . . They play this game for countably many rounds, pro-
ducing a play of the game a = (a0, a1, a2, . . . , ) ∈ XN. We say that player I
wins this play of the game if the play of the game a belongs to D; otherwise,
player II wins.

A strategy for player I is, informally speaking, a rule that tells player I
what play to make at a given stage given what moves have been made thus
far in the game. A strategy for player I is called winning if, regardless of
how player II plays, player I follows the strategy, then they are guaranteed to
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win. The notions of strategy and winning strategy for player II are defined
in the analogous way.

We say that D ⊆ XN is determined if one of the two players has a
winning strategy for the game G(D). (Note that not both players can have
a winning strategy.)

Using the axiom of choice, one can show that not all sets are determined:

Exercise 5.3.1. Show that there is D ⊆ NN that is not determined. (Hint.
“Diagonalize” over all possible strategies.)

Once again, we continue our theme that pathologies occurring due to
the axiom of choice continue to occur if instead we merely consider the
existence of a nonprincipal ultrafilter. First, given an increasing sequence
a = (a0, a1, . . .) ∈ NN, we define a set Aa ⊆ N by

Aa :=

∞⋃
n=0

[a2n−1, a2n) = [0, a0) ∪ [a1, a2) ∪ [a3, a4) ∪ · · · ,

where we set a−1 := 0 for convenience. Given an ultrafilter U on N, we set
DU ⊆ NN to consist of all sequences a ∈ NN such that either:

• a is not strictly increasing and the minimal n such that an ≤ an−1

is odd, or

• a is strictly increasing and Aa belongs to U .
Theorem 5.3.2. If U is a nonprincipal ultrafilter on N, then DU is not
determined.

Proof. We will only show that player II cannot have a winning strategy in
G(DU) and leave it as an exercise to show that player I also cannot have a
winning strategy.

Suppose, toward a contradiction, that player II has a winning strategy.
Note, in particular, that this strategy forces player II to always play a natural
number strictly larger than player I’s previous move. The argument now
proceeds by so-called “strategy stealing”. We consider two runs of the game
being played simultaneously as follows: first, player I plays a0 ∈ N and then
II responds with a1 ∈ N according to the winning strategy. Now the players
start a second run of the game and player I’s first move a′0 is actually player
II’s first move from the first game, that is, a′0 = a1. Now player II responds
with a′1 ∈ N according to their winning strategy. The players now return to
the first game and player I’s next move in this game is player II’s first move
from the second game, that is, a2 := a′1, with which player II responds with
a3 ∈ N according to their winning strategy.

The players continue playing both games in this manner, each time
player I playing player II’s previous move from the other game and then
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player II always responding according to their winning strategy. By as-
sumption, player II wins both runs of the game, that is, N \Aa and N \Aa′

both belong to U .
The two plays of the game (an) and (a′n) satisfy the equations a2n =

a′2n−1 and a′2n = a2n+1. In particular, for any n, we have a′n = an+1. It
follows that

Aa =

∞⋃
n=0

[a′2n−1, a
′
2n) = [0, a0) ∪

∞⋃
n=1

[a2n−1, a2n)

= [0, a0) ∪
∞⋃
n=0

[a′2n, a
′
2n+1) = [0, a0) ∪ (N \Aa′).

Since [0, a0) is finite and U is nonprincipal, we see that Aa′ ∈ U if and only
if N \Aa ∈ U , contradicting the fact that player II won both games. �

Exercise 5.3.3. Complete the proof of Theorem 5.3.2 by showing that
player I cannot have a winning strategy in G(DU) when U is nonprincipal.

Definition 5.3.4. The axiom of determinacy (AD) is the axiom that
states that every subset of NN is determined.

As we have just seen, AD is incompatible with both AC and the existence
of nonprincipal ultrafilters on N. At first glance, it might seem strange
to consider an axiom that lies in such drastic contradistinction with AC.
However, by considering axioms of definable determinacy, that is, versions
of the axiom of determinacy that only ask for definable sets to be determined,
a lot of insight into definable subsets of the reals can be drawn.

By a pointclass, we mean some class of subsets of Polish spaces of a
certain kind, e.g., the pointclass of Borel sets, the pointclass of Σ1

1 sets,
etc.. . .

Definition 5.3.5. If Γ is a pointclass, then the axiom of determinacy
for Γ, denoted AD(Γ), states that every subset of NN that belongs to Γ is
determined.

We say that a pointclass Γ is preserved under continuous substitution if,
whenever f : X → Y is a continuous function between Polish spaces and
A ⊆ Y belongs to Γ, then so does f−1(A) ⊆ X.

Exercise 5.3.6. Show that the class of Borel sets is closed under continuous
substitution as are the pointclasses Σ1

n and Π1
n for each n ≥ 1.

Exercise 5.3.7. Suppose that Γ is a pointclass closed under continuous
substitution. Show that if the nonprincipal ultrafilter U , viewed as a subset
of 2N, belongs to Γ, then DU , as a subset of NN, also belongs to Γ.



5.3. The ultrafilter game 69

An immediate corollary of the previous exercise and Theorem 5.3.2 is
the following:

Corollary 5.3.8. Suppose that Γ is a pointclass closed under continuous
substitution. Then ZFC+AD(Γ) implies that there is no nonprincipal ultra-
filter on N that belongs to Γ.

The previous corollary has earlier predecessors:

Fact 5.3.9. Assume that Γ is an adequate pointclass and that AD(Γ) holds.
Then:

(1) (Banach, Mazur, Oxtoby) Every subset of R in Γ is Baire measur-
able.

(2) (Mycielski, Swierczkowski) Every subset of R in Γ is Lebesgue mea-
surable.

In fact, these results remain true even for sets in the pointclass ∃RΓ, which is
the class of sets A ⊆ X, X a Polish space, for which there exists Y ⊆ X×R
such that Y belongs to Γ and A is the projection of Y onto X. (See [96] for
details.)

It is of course natural to wonder for which pointclasses Γ is AD(Γ) a
sensible axiom. It turns out, for the most basic class of definable sets,
namely the Borel sets, definable determinacy is not an axiom at all, but
rather a theorem of ZFC:

Fact 5.3.10 (Martin). AD(Δ1
1) is a theorem of ZFC. (See [96, Theorem

20.5] for a proof.)

Combining the previous theorem with Fact 5.3.9 implies that Σ1
1 subsets

of R are Baire and Lebesgue measurable, a fact we referred to in the previous
section.

Martin’s theorem cannot be extended to the next level of the projec-
tive hierarchy. Indeed, again using Fact 5.3.9, if AD(Π1

1) were an axiom of
ZFC, then every Σ2

1 subset of R would be both Baire and Lebesgue measur-
able; however, we mentioned in the previous section that this latter fact is
independent of ZFC. That being said, if one assumes the existence of a mea-
surable cardinal (a certain kind of large cardinal that we discuss in greater
detail in Chapter 17), then one can in fact prove AD(Π1

1). In fact, from
even stronger large cardinal assumptions, one can prove that, in a certain
model called L(R), all sets are determined (whence there are no nonprincipal
ultrafilters at all!).
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5.4. Selective ultrafilters and P-points

In the previous sections, we concerned ourselves with the connection between
the axiom of choice and the existence of nonprincipal ultrafilters on N. In
this section, we will consider the existence of nonprincipal ultrafilters on N
satisfying some extra natural properties. Surprisingly, the existence of such
ultrafilters will be independent of ZFC.

We begin by introducing three kinds of ultrafilters that appear frequently
throughout the literature.

Definition 5.4.1. Let U be a nonprincipal ultrafilter on N. We say that U
is selective if, whenever N =

⊔∞
i=0Ai is a partition with each Ai /∈ U , then

there is B ∈ U such that |B ∩Ai| ≤ 1 for each i ∈ N.

Note that, if each Ai is nonempty in the above definition, then by adding
one element of Ai to B in case B ∩Ai = ∅, we can ensure that |B ∩Ai| = 1
for each i; in this way, B selects one element of each Ai, whence the name.
Here is a useful reformulation of the notion of selective ultrafilter:

Exercise 5.4.2. Suppose that U is a nonprincipal ultrafilter on N. Then U
is selective if and only if, whenever f : N→ N is a function, then f is either
constant on a set in U or injective on a set in U .

Our next kind of ultrafilter asks us to be able to witness the truth of
Ramsey’s theorem (see Section 4.1) using an ultrafilter:

Definition 5.4.3. Let U be a nonprincipal ultrafilter on N. We say that U
is Ramsey if, for each k ∈ N and each 2-coloring of N[k], there is X ∈ U
such that X is homogeneous for the coloring.

We have encountered our final kind of ultrafilter back in Section 1.6:

Definition 5.4.4. Let U be a nonprincipal ultrafilter on N. We say that U
is minimal if there is no nonprincipal ultrafilter V on N such that V <RK U .

It turns out that the three kinds of ultrafilters above are actually the
same. We prove this equivalence in the next theorem, along with two other
equivalent formulations:

Theorem 5.4.5. For U a nonprincipal ultrafilter on N, the following are
equivalent:

(1) U is Ramsey.

(2) If R is a binary relation on N satisfying, for each m ∈ N, the prop-
erty that (Un)R(m,n), then there is A ∈ U such that, enumerating
A = (an)n∈N in increasing order, we have R(an, an+1) for each n.
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(3) U is selective.

(4) U is minimal.

(5) U is quasi-normal: for every family (An)n∈N of members of U ,
there is a set A ∈ U such that, for all m,n ∈ A, if m > n, then
m ∈ An.

Proof. (1) implies (2): Fix R as in (2) and define a coloring c : N[2] → {0, 1}
such that c({m,n}) = 1 if and only if R(m,n) (and m < n). Since U is
Ramsey, there is A ∈ U homogeneous for c; by assumption, A must be
homogeneous of color 1, whence this A is as desired.

(2) implies (3): Take a partition N =
⊔∞

i=0Ai with each Ai /∈ U and
define a binary relation R on N by R(m,n) if and only if there is k < l
with m ∈ Ak and n ∈ Al. Setting Bl :=

⋂
k≤l A

c
k, we see that Bl ∈ U and

every element of Al is R-related to every element of Bl (as the Ai’s form
a partition). Thus, by (2), there is B ∈ U such that, when enumerated in
increasing order as (bn)n∈N, we have R(bn, bn+1) for every i ∈ N. It is clear
that B is as desired in the conclusion of selective ultrafilter.

(3) implies (4): Suppose that U is selective and let f : N → N be a
function that is not constant on a U -large set (so f(U) is not principal). We
must show that f(U) ≡RK U . However, Exercise 5.4.2 implies that there is
B ∈ U such that f � B is injective, whence f(U) ≡RK U by Corollary 1.3.16.

(4) implies (5): Suppose that U is minimal and suppose that (An)n∈N
is a family of elements of U . We are looking for A ∈ U such that, for all
x, y ∈ A, if x < y, then y ∈ Ax. Without loss of generality, we may assume
that

⋂
x∈NAx = ∅. Thus, we may define f : N→ N by f(y) equals the least x

such that y /∈ Ax. Since each Ax ∈ U , it follows that f cannot be constant on
any set in U , whence, by minimality, there isB ∈ U such that f is injective on
B. Let g : N→ N be defined by g(x) = max(max{y ∈ B : f(y) ≤ x}, x+1),
which is a legitimate definition since f is injective on B. By construction,
g is increasing, g(x) > x, and, for y ∈ B, if y > g(x), then f(y) > x,
whence y ∈ Ax. Recursively define a sequence (αn)n∈N by setting α0 = 0
and αn+1 = g(αn). Define h : N → N by h(y) equals the least n such that
y ≤ αn. Note that h is not constant on any set in U (as h constant on a
set implies that the set is bounded), whence, by minimality, h is injective
on some C ∈ U . To create some space, we take A ∈ U such that A ⊆ B ∩C
and h(A) contains no two consecutive integers. We claim that this A is as
desired. Suppose that x, y ∈ A and x < y. Since h injective on C, we have
that h(x) < h(y), whence h(x) + 1 < h(y) (since x, y ∈ A). Then

x ≤ αh(x) ⇒ g(x) ≤ g(αh(x)) = αh(x)+1.
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Since h(x) + 1 < h(y), we have that αh(x)+1 < y, whence g(x) < y; since
y ∈ B, it follows from our earlier observation that y ∈ Ax.

(5) implies (1): We proceed by induction on k, the case k = 1 be-

ing immediate from the definition of ultrafilter. So suppose that N[k+1] is
partitioned into P1 and P2. For each x ∈ N and (y1, . . . , yk) ∈ N[k], say
that P1(x)(y1, . . . , yk) holds precisely when x < y1 and P1(x, y1, . . . , yk);
otherwise, P2(x)(y1, . . . , yk) holds. By induction, for each x ∈ N, there is

Ax ∈ U and i(x) ∈ {1, 2} such that, for all (y1, . . . , yk) ∈ A
[k]
x , we have

that (y1, . . . , yk) ∈ Pi(x)(x). Without loss of generality, we may assume
that y > x for all y ∈ Ax; making this assumption has the nice bene-
fit of yielding that (y1, . . . , yk) ∈ [Ax]

k implies that (x, y1, . . . , yk) ∈ Pi(x).
Let A ∈ U witness quasi-normality of U for the family (Ax)x∈N and let
i ∈ {1, 2} and B ∈ U be such that i(x) is constantly i on B. It follows

that, for (x, y1, . . . , yk) ∈ (A ∩ B)[k+1], we have that (y1, . . . , yk) ∈ A
[k]
x

(by quasi-normality), whence (x, y1, . . . , yk) ∈ Pi(x) = Pi (since x ∈ B), as
desired. �

From now on, we refer to the ultrafilters in the above theorem as selective
(for the sake of definiteness). We now turn to the question of the existence
of selective ultrafilters. We first need a bit of terminology and an exercise.

Given A,B ⊆ N, we write A ⊆∗ B if A \B is finite. (Thus, A is “almost
contained” in B.)

Exercise 5.4.6. Prove that ⊆∗ is a transitive relation on subsets of N: if
C ⊆∗ B ⊆∗ A, then C ⊆∗ A.

Given a family (Bi)i∈I of subsets of N, a pseudo-intersection of the
family is a set A such that A ⊆∗ Bi for all i ∈ I.

Exercise 5.4.7. Suppose that α is a countable ordinal and (Bβ)β<α is a
family of infinite subsets of N such that Bβ ⊆∗ Bγ for all γ < β < α. Prove
that the family (Bβ)β<α has an infinite pseudo-intersection.

Theorem 5.4.8. If CH holds, then there exists a selective ultrafilter.

Proof. By CH, we may enumerate all countable partitions of N (as in the
definition of selective ultrafilter) by (Aα)α<ω1 . We now construct a sequence
(Xα)α<ω1 of infinite subsets of N so that Xβ ⊆∗ Xα for all α < β < ω1 as
follows. Set X0 := N. Suppose that Xα has been constructed. If there is
A ∈ Aα for which Xα ∩ A is infinite, then set Xα+1 := Xα ∩ A for some
such A. Otherwise, take infinite Xα+1 ⊆ Xα such that |Xα+1 ∩ A| ≤ 1 for
all A ∈ Aα. Note that Xα+1 ⊆∗ Xβ for all β ≤ α by Exercise 5.4.6. Assume
now that α is a limit ordinal and that Xβ has been defined for all β < α in
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such a way that Xγ ⊆∗ Xβ for all β < γ < α. We now take Xα to be an
infinite pseudo-intersection of (Xβ)β<α; this is possible by Exercise 5.4.7.

Now that (Xα)α<ω1 has been defined, we note that (Xα)α<ω1 has the FIP
and in fact each finite intersection has infinitely many elements, whence, by
Exercise 1.1.19, there is a nonprincipal ultrafilter U generated by the family
(Xα)α<ω1 .

We claim that U is selective. Indeed, first note that, since each Xα is
infinite, we have that U is nonprincipal. To see the main defining property
of being selective, consider a partition N =

⊔∞
i=0Ai into countably many

sets Ai with Ai /∈ U for each i. Take α < ω1 such that this partition is Aα.
If Xα∩A were infinite for some A ∈ Aα, then Xα+1 = Xα∩A for such an A;
since Xα+1 ∈ U , it would follow that A ∈ U , yielding a contradiction. Thus,
Xα∩A is finite for each A ∈ Aα+1, whence, by construction, |Xα+1∩A| ≤ 1
for all A ∈ Aα+1. Since Xα+1 ∈ U , we have that U is selective. �

As a result, the statement “there is a selective ultrafilter on N” is con-
sistent with ZFC. We will soon see that it is also consistent that selective
ultrafilters do not exist. In fact, we will see that it is consistent that there are
no ultrafilters satisfying the following weakening of the notion of selectivity:

Definition 5.4.9. A nonprincipal ultrafilter U on N is weakly selective if,
whenever N =

⊔∞
i=0Ai is a partition with each Ai /∈ U , then there is B ∈ U

such that B ∩Ai is finite for each i ∈ N.

Clearly, a selective ultrafilter is weakly selective, whence CH implies that
weakly selective ultrafilters exist.

Remark 5.4.10. In general, being weakly selective is a genuine weakening
of being selective. For example, in [132], Mathias proved that, under CH,
there is a weakly selective ultrafilter that is not selective. In [135], Miller
proved that, in certain models of set theory, there are weakly selective ultra-
filters but no selective ultrafilters. On the other hand, it can happen that, in
certain models of set theory, the two notions coincide. In fact, in [161, Sec-
tion XVIII.4], Shelah constructed a model where there exists exactly one
weakly selective ultrafilter (up to isomorphism), which is, in fact, actually
selective.

The following definition is standard in topology:

Definition 5.4.11. If X is a topological space, then x ∈ X is a P-point
if, for every countable family (Un)n∈N of neighborhoods of x, we have that⋂

n∈N Un is also a neighborhood of x.

Theorem 5.4.12. For a nonprincipal ultrafilter U on N, the following are
equivalent:
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(1) U is weakly selective.

(2) U is a P-point of βN \ N.

Proof. In this proof, we slightly abuse notation and write UA for those
elements of βN \ N that contain A. (In other words, we are identifying UA

with UA ∩ (βN \ N).)
First assume that U is weakly selective. We show that U is a P-point.

Notice that it suffices to assume that, whenever each Un is a basic open
neighborhood of U , we have that

⋂
n∈N Un is also a neighborhood of U .

Take An ⊆ N such that Un = UAn . Since U ∈ Un for each n, we have that
Ac

n /∈ U . Since U is weakly selective, there is B ∈ U such that B∩Ac
n is finite

for all n. Set U := UB . Then U ∈ U . We claim that U ⊆ Un for each n.
Indeed, if V ∈ U , then B ∈ V; since B ∩ Ac

n is finite and V is nonprincipal,
we have that Ac

n /∈ V, so V ∈ Un, as desired.

Now suppose that U is a P-point and that An /∈ U for each n. Let Un :=
UAc

n
be an open neighborhood of U . Take B ∈ U such that UB ⊆

⋂
n Un.

If B ∩ An were infinite, then there would be a nonprincipal ultrafilter V
containing B ∩An, whence V ∈ UB \ Un, a contradiction. �

From now on, we refer to nonprincipal ultrafilters on N that are P-points
of βN \ N as simply P-points.

Exercise 5.4.13. If U is a P-point and V is a nonprincipal ultrafilter on N
such that V ≤RK U , then V is also a P-point.

The original interest in P-point ultrafilters was that they were used to
settle a question about the topological space βN\N. Before explaining this,
we need an exercise:

Exercise 5.4.14. Suppose that X is a Hausdorff topological space such
that every point is a P-point. Prove that:

(1) Every countable union of closed sets is closed.

(2) Every countable set is discrete.

Conclude that if X is also compact, then it is finite.

The following is immediate from the previous exercise applied to βN\N:
Corollary 5.4.15. Not every nonprincipal ultrafilter on N is a P-point.

One can actually describe a nonprincipal ultrafilter on N that is not a
P-point:

Exercise 5.4.16. Let (Xn)n∈N be a partition of N into infinitely many
infinite sets. Set F to be those Z ⊆ N such that, for all but finitely many
n ∈ N, we have that Xn ⊆∗ Z. Prove that:
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(1) F is a filter on N containing the Frèchet filter.

(2) No ultrafilter extending F is a P-point.

Corollary 5.4.17 (Kunen [112]). Assuming CH, βN \ N is not point-
homogeneous, that is, there are U ,V ∈ βN \ N for which there does not
exist a self-homeomorphism σ of βN \ N with σ(U) = V.

Proof. Let U ∈ βN\N be a P-point. Observe that, for any homeomorphism
σ of βN\N, σ(U) is also a P-point. Consequently, by Corollary 5.4.15, there
is some V ∈ βN \ N that is not of the form σ(U) for some homeomorphism
σ of βN \ N. �

In [61], Frolik obtained the same conclusion as in the previous corollary
without assuming CH.

As shown above, it is consistent with ZFC that weakly selective ultra-
filters exist. On the other hand, we have the following difficult theorem of
Shelah [159, VI, §4]:

Theorem 5.4.18 (Shelah). The existence of a weakly selective ultrafilter
cannot be proven in ZFC.

We conclude this section by describing an interesting connection between
weakly selective ultrafilters and the idempotent ultrafilters introduced in
Section 4.2. Recall that every element of an idempotent ultrafilter on N is
an FS-set, meaning that it contains FS(c) for some sequence c = (cn)n∈N of
distinct elements of N. (Technically speaking, we worked with ultrafilters
on Z, but the exact same analysis works for ultrafilters on N.) Let us call an
ultrafilter on N for which every member is an FS-set a weakly summable
ultrafilter. (By Corollary 4.2.13, these are precisely the ultrafilters that are
in the closure of the set of idempotent ultrafilters.) It is natural to consider
the following variation:

Definition 5.4.19. An ultrafilter U on N is called strongly summable if
for every A ∈ U , there is a sequence c = (cn)n∈N of distinct elements of N
such that FS(c) ⊆ A and FS(c) ∈ U .

Surprisingly, this seemingly harmless improvement leads us to a kind of
ultrafilter that cannot be proven to exist in ZFC:

Theorem 5.4.20. The existence of a strongly summable ultrafilter implies
the existence of a weakly selective ultrafilter. Consequently, the existence of
strongly summable ultrafilters cannot be proven in ZFC.

Remark 5.4.21. It is, on the other hand, consistent with ZFC that strongly
summable ultrafilters exist; see [83, Theorem 12.29].
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We sketch a proof of Theorem 5.4.20 now. The proof goes via a different
kind of ultrafilter. First, if F = (Fn)n∈N is a sequence of subsets of N, we
write

FU(F) :=

{⋃
n∈G

Fn : G ⊆ N finite

}
.

Definition 5.4.22. U is a union ultrafilter if it is a nonprincipal ultrafilter
on Pf (N) and, for each A ∈ U , there is a sequence F = (Fn)n∈N of pairwise
disjoint elements of Pf (N) such that FU(F) ⊆ A and FU(F) ∈ U .

We will need the following fact [83, Theorems 12.31 and 12.35]:

Theorem 5.4.23. A strongly summable ultrafilter exists if and only if a
union ultrafilter exists.

The proof of the previous theorem is not difficult and involves some
arithmetic trickery. Thus, we are left to show:

Theorem 5.4.24. If a union ultrafilter exists, then a weakly selective ultra-
filter exists.

Proof. Let U be a union ultrafilter. Let max : Pf (N) → N be the usual
maximum function and consider its unique continuous extension βmax :
βPf (N)→ βN. We show that V := (βmax)(U) is a P-point.

We first observe that V is nonprincipal: if V = Un for some n ∈ N, then
max−1({n}) ∈ U . Since max−1({n}) is a finite set (there are only finitely
many finite sets whose maximum is n), this would imply that U is principal,
leading to a contradiction.

In the remainder of the proof, we abuse notation by writing, for any
A ⊆ N, UA instead of UA ∩ (βN \ N).

We now check the defining property of being a P-point. Fix a sequence
(An)n∈N from V; we seek B ∈ V such that UB ⊆

⋂∞
n=0 UAn . Without loss of

generality, we may suppose that A0 = N, An+1 ⊆ An, and n /∈ An+1 for all
n. These conditions ensure that

⋂
n∈NAn = ∅, which allows us to consider

f : N→ N given by

f(x) := max{n ∈ N : x ∈ An}.
Set B := {F ∈ Pf (N) : f(maxF ) ≤ minF}.

Claim. B /∈ U .

Proof of Claim. Suppose, toward a contradiction, that B ∈ U . Since U is
a union ultrafilter, there is F = (Fn)n∈N, a collection of pairwise disjoint
elements of Pf (N), such that FU(F) ⊆ B and FU(F) ∈ U . Without loss
of generality, we may suppose that minFn < minFn+1 for all n. Note that
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{maxFn : n ∈ N} = {maxG : G ∈ FU(F)} ∈ V as FU(F) ∈ U . Now pick
k ∈ N such that, for all n ≥ k, we have maxFn > maxF0. It then follows
that {maxFn : n ≥ k} ∈ V. Set l := minF0. Then Al+1 ∈ V, whence there
is n ≥ k such that maxFn ∈ Al+1. But then

l + 1 ≤ f(maxFn) = f(max(Fn ∪ F0)) ≤ min(Fn ∪ F0) = minF0 = l,

a contradiction.

By the Claim, we have that Bc ∈ U . Once again, take F = (Fn)n∈N, a
collection of pairwise disjoint elements of Pf (N) with minFn < minFn+1 for
all n, such that FU(F) ⊆ Bc and FU(F) ∈ U . Set B := {maxFn : n ∈ N} ∈
V; we claim that this B is as desired. Indeed, suppose that n and k are such
that maxFn ∈ B \ Ak. We then have that n ≤ minFn < f(maxFn) (this
latter fact following from the fact that Fn ∈ Bc). However, f(maxFn) < k
since maxFn /∈ Ak. We thus see that if maxFn ∈ B \ Ak, then n < k.
Consequently, |B \Ak| < k whence B ⊆∗ Ak for each k and thus UB ⊆ UAk

,
as desired. �

5.5. Notes and references

A great reference for the various weakenings of the axiom of choice, the
connections with ultrafilters, and an introduction to forcing with a perspec-
tive on such statements is Jech’s book [90]. The fact that there can be no
measurable ultrafilter on N is essentially due to Sierpiǹski [163]. A more
thorough treatment of descriptive set theory can be found in Kechris’s book
[96]. We stumbled upon the ultrafilter game in a mathstackexchange of
Noah Schweber

https://mathoverflow.net/questions/109739/determinacy-and-

definable-ultrafilters.

A nice article about large cardinals and determinacy (and their philosophical
implications) can be found at

https://plato.stanford.edu/entries/large-cardinals-

determinacy/.

Our treatment of Ramsey ultrafilters and P-points is a mixture of Blass’s
thesis [16] and Booth’s article [18], the latter of which contains other inter-
esting reformulations of these notions. Our proof of Theorem 5.4.8 is taken
from [89, Theorem 7.8].

https://mathoverflow.net/questions/109739/determinacy-and-definable-ultrafilters
https://mathoverflow.net/questions/109739/determinacy-and-definable-ultrafilters
https://plato.stanford.edu/entries/large-cardinals-determinacy/
https://plato.stanford.edu/entries/large-cardinals-determinacy/
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Chapter 6

Classical ultraproducts

In this chapter, we introduce the fundamental construction of taking the
ultraproduct of a family of structures in a given first-order language. In
Section 6.1, we motivate the idea behind the construction by considering the
Stone duality theorem from Section 3.4 applied to the Lindenbaum algebra
of a first-order language. In Section 6.2, we undertake the construction of
an ultraproduct of a family of sets and then extend the construction to
a family of structures in a given language in Section 6.3. In Section 6.4
we prove the Fundamental Theorem of Ultraproducts, otherwise known as
�Loś’s theorem, which states that truth in an ultraproduct is given by almost-
everywhere truth in the individual structures. In Section 6.5, we revisit the
discussion from Section 5.1 connecting the ultrafilter theorem and the axiom
of choice, now using �Loś’s theorem and the compactness theorem as two new
players in the story. In Section 6.6, we consider the question of when an
ultrapower of a set is the same as the set itself, leading to the notion of
(in)complete ultrafilters. Section 6.7 re-examines the Rudin-Keisler order
introduced in Section 1.6 through the lens of embeddings of ultrapowers of
structures. Section 6.8 presents some results concerning the cardinalities
of ultraproducts, while Section 6.9 considers the possibility of iterating the
ultrapower construction. In Section 6.10, we consider a category-theoretic
take on the ultraproduct construction, allowing us to generalize beyond the
case of first-order structures as well as to consider a dual version of the
construction known as the ultracoproduct construction. Finally, in Section
6.11, we present the proof of the Feferman-Vaught theorem, which is a result
in the spirit of �Loś’s theorem connecting truth in a reduced product with
truth in the constituent structures.

81
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6.1. Motivating the definition of ultraproducts

Fix a first-order language L. The collection of all L-sentences very closely
resembles a Boolean algebra, with the Boolean operations being interpreted
by conjunction, disjunction, and negation. However, it is not entirely clear
which sentences should play the roles of 0 and 1. For example, since
∀x(x = x) is true in all L-structures, perhaps it should play the role of 1. But
then again, the sentence ∃x(x = x) possesses the same feature. This leads
us to consider not the set of L-sentences as a Boolean algebra, but rather
equivalence classes [σ] of L-sentences modulo the notion of logical equiva-
lence, where L-sentences σ and τ are logically equivalent ifM |= (σ ↔ τ) for
all L-structures M. The operations of conjunction, disjunction, and nega-
tion yield well-defined operations on the equivalence classes and it is readily
verified that the resulting structure is indeed a Boolean algebra, called the
Lindenbaum algebra for L, denoted BL.

Exercise 6.1.1. Check all of the assertions made in the previous paragraph.

The Stone space S(BL) of BL is essentially the same as the set of com-
plete L-theories. More precisely, given an ultrafilter U on BL, the set
TU := {σ : [σ] ∈ U} is readily verified to be a complete L-theory. Con-
versely, given any complete L-theory T , the set {[σ] : σ ∈ T} is an ultrafilter
on BL. In what follows, we will blur the distinction between these two sets
and simply consider elements of S(BL) as complete L-theories. In this way,
one obtains a compact topology on the set of complete L-theories whose
basic open sets are those of the form Uσ := {T ∈ S(BL) : σ ∈ T}.

Since S(BL) is a compact Hausdorff space, given any family (Ti)i∈I from
S(BL) and ultrafilter U on I, we can consider the complete L-theory limU Ti,
which is characterized by the property that, given any L-sentence σ, we have
σ ∈ limU Ti if and only if σ ∈ Ti for U -almost all i. Said differently, given
models Mi |= Ti and an L-structure M, we have that M |= limU Ti if and
only if, for any L-sentence σ, if Mi |= σ for U -almost all i, then M |= σ.
Any such M can be considered a U -ultralimit of the L-structures Mi.

We now ask the question: given a family (Mi)i∈I of L-structures
and an ultrafilter U on I, how can we construct some model limU Mi of
limU Th(Mi), where Th(Mi) denotes the complete theory ofMi as defined
in Definition A.2.9? (The notation limU Mi is not any sort of official nota-
tion, but is merely a notation that we are using for the current discussion.)
The idea in constructing limU Mi that eventually will work comes about by
asking us to strengthen the connection between the model limU Mi of the
limiting theory and the original family (Mi)i∈I of models by considering
formulae with parameters rather than just sentences. For example, given an
L-formula ϕ(x) and elements a(i) ∈Mi, if Mi |= ϕ(a(i)) for U -almost all i,
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then the desired structure limU Mi should behave as if this is true as well.
But what does that even mean?!? Such an assertion somehow implies that
the structure limU Mi has access to the element a ∈

∏
i∈I Mi.

Based on the last sentence of the previous paragraph, one might wonder
if some direct product construction might yield the desired model. However,
this approach can be quickly dismissed:

Example 6.1.2. Suppose that L = {·}, where · is a binary function symbol.
Suppose that, for each n ∈ N, Gn is a group and that Gn is abelian for n > 0
while G0 is not abelian. Then

∏
n∈NGn |= ∃x∃y(xy �= yx). However, if U is

any nonprincipal ultrafilter on N, then Gn |= ¬∃x∃y(xy �= yx) for U -almost
all n.

The issue with the direct product construction is that it pays too much
attention to what happens in particular structures. It turns out, however,
that a modification of the direct product construction that only keeps track
of what happens on a U -large set of coordinates will indeed yield the desired
result.

Returning to our earlier idea, consider the formula ϕ(x, y) that is simply
x = y and two elements a, b ∈

∏
i∈I Mi. If Mi |= a(i) = b(i) for U -almost

all i, then we want our structure limU Mi to also believe this is the case.
In other words, the (possibly) distinct elements a, b ∈

∏
i∈I Mi should be

identified in the model we wish to construct. This quotient of the cartesian
product is known as the ultraproduct of the family (Mi)i∈I with respect
to the ultrafilter U and is the subject of the next section. In Section 6.3,
we show that this ultraproduct of sets is naturally the universe of an L-
structure, called the ultraproduct of the family (Mi)i∈I with respect to U ,
which will indeed be the structure limUMi we have been searching for.

6.2. Ultraproducts of sets

In this section, we carry out the first part of the plan laid out at the end of
the previous section. Fix a family (Mi)i∈I of sets and a filter F on I. We
define a relation ∼F on the cartesian product

∏
i∈I Mi by declaring

a ∼F b⇔ {i ∈ I : a(i) = b(i)} ∈ F .

In other words, a ∼F b holds when a and b agree on an F -large set of
coordinates.

Example 6.2.1. Suppose that F = {I}. Then a ∼F b if and only if a = b.

Example 6.2.2. Suppose that F = Uj , the principal ultrafilter generated
by j. Then a ∼F b if and only if a(j) = b(j).
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The next exercise is integral in what is to follow; it simply uses the
axioms for being a filter.

Exercise 6.2.3. Prove that ∼F is an equivalence relation on
∏

i∈I Mi.

We denote the ∼F -equivalence class of f by [a]F (or sometimes simply
[a] if F is clear from context).

Definition 6.2.4. The reduced product of the family (Mi)i∈I with re-
spect to the filter F is the set of equivalence classes [a]F and is denoted
by
∏

F Mi. When F is an ultrafilter, we refer to the reduced produced as
an ultraproduct. When each Mi = M for some fixed set M , we refer to
the reduced product (resp., ultraproduct) as the reduced power (resp.,
ultrapower) of the set M with respect to M , denoted MF (resp., MU ).

Example 6.2.5. By Example 6.2.1, when F = {I}, we have that [a]F = {a}
for each a ∈

∏
i∈I Mi, whence

∏
F Mi =

∏
i∈I Mi (after identifying [a]F with

a itself).

Example 6.2.6. When F = Uj , then the map [a]Uj �→ a(j) is a bijection
between

∏
Uj

Mi and Mj .

Remark 6.2.7. Recall from Exercise 1.1.9 that ultrafilters on I are the same
thing as {0, 1}-valued finitely additive probability measures on I. Thus, the
ultrapower MU is the result of considering the set of functions I → M and
identifying two such functions if they agree on a set of measure 1 (in the
sense of μU). This procedure is very common in measure theory, e.g., in the
study of Lp-spaces.

For reasons that will become clear in Section 6.4, ultraproducts are a
much more useful tool than arbitrary reduced products. In the rest of this
section (and essentially the rest of this book with the exception of Section
6.11), we restrict our attention to ultraproducts and ultrapowers.

Given a set M , an element x ∈ M , and an index set I, we let ax :
I → M be the function that is constantly equal to x. If we are also given
an ultrafilter U on I, we then have a function d : M → MU given by
d(x) := [ax]U .

Exercise 6.2.8. Prove that d : M →MU is injective.

Definition 6.2.9. The function d above is referred to as the diagonal
embedding of M into its ultrapower MU .

In the remainder of this book, we often identify M with its image in MU

and view M as literally contained in its ultrapowers. For applications, we
usually want ultrapowers to be bigger (and usually much bigger) than the
original sets themselves. In other words, we do not want d to be onto. We
will characterize when this happens in Section 6.6.
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6.3. Ultraproducts of structures

Suppose now that we have a family (Mi)i∈I of L-structures and a filter F
on I. We set N :=

∏
F Mi, the reduced product of the underlying universes

with respect to F . We would like to make N the underlying universe of an
L-structure N in a natural way.

When F := {I}, N is simply the direct product of the family (Mi)i∈I ,
and in many algebraic settings, the natural structure to put on the direct
product is simply that of pointwise operations. We would like to take our
cue from this particular instance of the reduced product and define the inter-
pretation of the symbols from L in N to be those induced by the pointwise
operations. For this to work, we need to know that this is independent of
representatives:

Exercise 6.3.1. Suppose that R is an n-ary relation symbol from L and that
F is an n-ary function symbol from L. Suppose that a1, . . . , an, b1, . . . , bn ∈∏

i∈I Mi are such that ai ∼F bi for all i = 1, . . . , n. Prove that:

(1) {i ∈ I : (a1(i), . . . , an(i)) ∈ RMi} ∈ F if and only if {i ∈ I :
(b1(i), . . . , bn(i)) ∈ RMi} ∈ F .

(2) {i ∈ I : FMi(a1(i), . . . , an(i)) = FMi(b1(i), . . . , bn(i))} ∈ F .

By the previous exercise, we are entitled to consider the structure N
whose underlying universe is N and which interprets symbols as follows:
Suppose that [a1]F , . . . , [an]F ∈ N .

• If R is an n-ary relation symbol in L, then ([a1]F , . . . , [an]F ) ∈ RN

if and only if

{i ∈ I : RMi(a1(i), . . . , an(i))} ∈ F .

• If F is an n-ary function symbol in L, then FN ([a1]F , . . . , [an]F ) :=
[b]F , where b ∈ N satisfies b(i) := FMi(a1(i), . . . , an(i)).

Definition 6.3.2. The structure N defined above is referred to as the re-
duced product of the family (Mi)i∈I of structures and is denoted

∏
F Mi.

One defines ultraproducts, reduced powers, and ultrapowers of struc-
tures analogously as in Definition 6.2.4.

Example 6.3.3. If F = {I}, then the reduced product of the family (Mi)i∈I
is referred to as the direct product of the structures.

Example 6.3.4. If F = Uj , then the bijection [a]Uj �→ a(j) yields an
isomorphism between the ultraproduct

∏
Uj
Mi and the structure Mj .

Exercise 6.3.5. Show that the diagonal embedding d : M →MU yields an
embedding of L-structures d :M→MU .
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In some algebraic cases, the reduced product can be rephrased in alge-
braic terms:

Exercise 6.3.6. Suppose that (Gi)i∈I is a family of groups and F is a filter
on I. Let

NF := {a ∈
∏
i∈I

Gi : {i ∈ I : a(i) = eGi} ∈ F}.

Show that NF is a normal subgroup of
∏

i∈I Gi and
∏

i∈I Gi/NF ∼=
∏

F Gi

(as structures in the language of groups). Conclude that
∏

F Gi is a group.

For the next exercise, we recall the notion of induced ultrafilter from
Exercise 1.1.12.

Exercise 6.3.7. Suppose that U is an ultrafilter on I and J ∈ U . Show
that the map

[a]U �→ [a � J ]U∩J :
∏
U
Mi →

∏
U∩J

Mi

is an isomorphism.

By the previous exercise and Exercise 1.1.22, in connection with ul-
traproducts, one may essentially always assume that one is working with
uniform ultrafilters.

The following simple exercise can be quite useful in various situations
(see, for example, Example 8.6.5); it simply says that taking ultraproducts
commutes with taking reducts.

Exercise 6.3.8. Suppose that (Mi)i∈I is a family of L-structures, L0 ⊆ L
a sublanguage, and U an ultrafilter on I. Prove that the identity map∏

U Mi →
∏

U Mi yields an isomorphism (
∏

U Mi) � L0
∼=
∏

U (Mi � L0).

6.4. �Loś’s theorem

In this section, we prove the principal result explaining the connection be-
tween truth in ultraproducts and truth in the individual models. This the-
orem is called �Loś’s theorem or sometimes the Fundamental Theorem
of Ultraproducts and is the connection alluded to in the discussion in
Section 1.

To motivate this theorem and why it is specific to ultraproducts (rather
than arbitrary reduced products), let us consider an example.

Suppoose that (Ki)i∈I is a family of fields. In a first course in algebra,
one encounters the sad fact that the direct product

∏
i∈I Ki is no longer a

field (although it is still a commutative ring with unity). Indeed, if i0 ∈ I is
a fixed index and one considers the element a ∈

∏
i∈I Ki for which a(i) = 1

for all i �= i0 and a(i0) = 0, then a has no multiplicative inverse in
∏

i∈I Ki.
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In this example, a “bad” phenomenon in one coordinate ruined the pos-
sibility that the corresponding element of the direct product could be invert-
ible. However, from the point of view of an ultraproduct, such an isolated
occurrence would have no effect on the corresonding element of the ultra-
product. In fact, the ultraproduct

∏
U Ki is a field! Let us check only the

fact that every nonzero entry has a multiplicative inverse. Suppose that
[a]U ∈

∏
U Ki is nonzero. This means that a(i) ∈ Ki \ {0} for U -almost

all i ∈ I. For these i, set b(i) := a(i)−1; for the U -small set of i for which
a(i) = 0, define b(i) ∈ Ki arbitrarily. It follows that a(i)b(i) = 1 for U -
almost all i, whence [a]U · [b]U = [1]U and [b]U is the multiplicative inverse
of [a]U .

�Loś’s theorem provides an explanation for the previous example and
many other applications of ultraproducts throughout mathematics: if the
structures involved all satisfy some particular first-order property, then so
will the ultraproduct.

Theorem 6.4.1 (�Loś’s theorem). Suppose that (Mi)i∈I is a family of L-
structures and U is an ultrafilter on I. Further suppose that ϕ(x1, . . . , xm)
is an L-formula and [a1]U , . . . , [am]U ∈

∏
U Mi. Then∏

U
Mi |= ϕ([a1]U , . . . , [am]U)⇔ {i ∈ I : Mi |= ϕ(a1(i), . . . , am(i))} ∈ U .

Proof. We proceed by induction on the complexity of ϕ. Observe that the
statement of �Loś’s theorem when ϕ is atomic follows immediately from the
definition of interpretations in ultraproducts. (Exercise.)

We now assume that ϕ = ¬ψ and that the theorem holds for ψ. We
then have that the following statements are equivalent:

(1)
∏

U Mi |= ϕ([a1]U , . . . , [am]U)

(2)
∏

U Mi �|= ψ([a1]U , . . . , [am]U)

(3) {i ∈ I : Mi |= ψ(a1(i), . . . , am(i))} /∈ U
(4) {i ∈ I : Mi |= ϕ(a1(i), . . . , am(i))} ∈ U

The equivalence between (2) and (3) follows from the induction hypothesis
applied to ψ while the equivalence between (3) and (4) follows from the fact
that U is an ultrafilter (rather than just a filter).

We now assume that ϕ = ψ ∧ θ and that the theorem holds for ψ
and θ. First assume that

∏
UMi |= ϕ([a1]U , . . . , [am]U), so

∏
U Mi |=

ψ([a1]U , . . . , [am]U) and
∏

U Mi |= θ([a1]U , . . . , [am]U). By induction, each
of the sets Xψ := {i ∈ I : Mi |= ψ(a1(i), . . . , am(i))} and Xθ := {i ∈
I : Mi |= θ(a1(i), . . . , am(i))} belong to U . Since {i ∈ I : Mi |=
ϕ(a1(i), . . . , am(i))} is precisely the intersectionXψ∩Xθ, we are finished with
this direction. Conversely, assume that {i ∈ I : Mi |= ϕ(a1(i), . . . , am(i))}
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belongs to U . Since this set is contained in Xψ and Xϕ, we can con-
clude that each of those sets belong to U . It follows by induction that∏

U Mi |= ψ([a1]U , . . . , [am]U) and
∏

U Mi |= θ([a1]U , . . . , [am]U), whence∏
U Mi |= ϕ([a1]U , . . . , [am]U).

We now finish by dealing with the case that ϕ is ∃yψ(	x, y) and that the
theorem holds for ψ. First assume that

∏
U Mi |= ϕ([a1]U , . . . , [am]U). It

follows that there is [b]U ∈
∏

U Mi such that∏
U
Mi |= ψ([a1]U , . . . , [am]U , [b]U),

whence by induction, {i ∈ I : Mi |= ψ(a1(i), . . . , am(i), b(i))} belongs to
U . Since the latter set is included in {i ∈ I : Mi |= ϕ(a1(i), . . . , am(i))},
we are finished with this direction. Conversely, suppose that {i ∈ I :
Mi |= ϕ(a1(i), . . . , am(i))} ∈ U . For each i in that set, choose bi ∈Mi such
that Mi |= ψ(a1(i), . . . , am(i), b(i)). For the other (U -small set of) i, let
b(i) ∈Mi be arbitrary. Then {i ∈ I : Mi |= ψ(a1(i), . . . , am(i), b(i))} ∈ U ,
so by induction

∏
U Mi |= ψ([a1]U , . . . , [am]U , [b]U), which of course implies∏

U Mi |= ϕ([a1]U , . . . , [am]U). �

Remark 6.4.2. We note that in the proof of the existential case above, we
used the axiom of choice to pick witnesses to the existential statements in
each of the models for which that existential statement was true. In Section
6.5, we will go further into the connection between the axiom of choice and
�Loś’s theorem and show that this use of choice is unavoidable.

Exercise 6.4.3. Show that the diagonal embedding d : M → MU is an
elementary embedding.

It is worth singling out the special case of �Loś’s theorem for sentences:

Corollary 6.4.4. Suppose that (Mi)i∈I is a family of L-structures and U
is an ultrafilter on I. Further suppose that σ is an L-sentence. Then∏

U
Mi |= σ ⇔ {i ∈ I : Mi |= σ} ∈ U .

The previous corollary in particular implies that

Th

(∏
U
Mi

)
= lim

U
Th(Mi)

in the Stone space S(BL) as discussed in Section 1.

Exercise 6.4.5. Suppose that, for each i ∈ I, fi : Mi → Ni is an ele-
mentary embedding. Further suppose that U is an ultrafilter on I. Prove
that the ultraproduct embedding

∏
U fi :

∏
U Mi →

∏
U Ni defined by

(
∏

U fi)([a]U) = [b]U , where b(i) := fi(a(i)), is an elementary embedding.
In particular, if Mi  Ni for all i ∈ I, then

∏
U Mi  

∏
U Ni.
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Using �Loś’s theorem, we can fulfill a promise made in Section 4.1:

Theorem 6.4.6 (Ramsey’s theorem, finite version). Given n, k, l ∈ N, there
is m ∈ N such that whenever X is a set with |X| ≥ m and

X [k] =
⊔l

i=1Xi is a partition of X [k] into l pieces, there is Y ⊆ X with

|Y | ≥ n and i ∈ {1, . . . , l} such that Y [k] ⊆ Xi.

Proof. For notational simplicity, we assume that k = l = 2. (The proof of
the general case is no more complicated, just notationally messier.) Suppose,
toward a contradiction, that no such m exists. Then for eachm ∈ N, we may
find a finite set X(m) with |X(m)| ≥ m and a partition X(m)[2] = X1(m)�
X2(m) such that there is no Y ⊆ X(m) with |Y | ≥ n homogeneous for the
partition. Let U be any nonprincipal ultrafilter on N and let Z :=

∏
U X(m).

Note that Z is infinite. We define a partition Z [2] = Z1 � Z2 as follows. If
{[a]U , [b]U} ∈ Z [2], then we have that {a(m), b(m)} ∈ X(m)[2] for U -almost
all m. There is then a unique i ∈ {1, 2} such that {a(m), b(m)} ∈ Xi(m) for
U -almost all m, and then we declare {[a]U , [b]U} ∈ Zi for this i.

By the infinite version of Ramsey’s theorem (Theorem 4.1.1), there is
an infinite set Y ⊆ Z homogeneous for this coloring, say, without loss of
generality, that Y [2] ⊆ Z1. Fix distinct elements [a1]U , . . . , [an]U from Y .
It follows that there is a U -large set of m such that a1(m), . . . , an(m) are
distinct elements of X(m) such that {ai(m), aj(m)} ∈ X1(m) for all 1 ≤ i <
j ≤ n, yielding the desired contradiction. �

Exercise 6.4.7. Explain exactly how �Loś’s theorem was used in the previous
proof.

Another nice application of �Loś’s theorem is an ultraproduct proof of
the compactness theorem:

Theorem 6.4.8 (Compactness theorem). If T is a finitely satisfiable set of
L-sentences, then T is satisfiable.

Exercise 6.4.9. Prove the compactness theorem directly from �Loś’s the-
orem by finding a suitable ultrafilter U on I := Pf (T ) such that, letting
MΔ |= Δ for each Δ ∈ I, we have

∏
U MΔ |= T .

This proof of the compactness theorem used AC via �Loś’s theorem. In
the next section, we offer a different proof of the compactness theorem that
reduces the use of AC to UT.

6.5. The ultrafilter theorem and the axiom of choice: Part II

We return to our study of the connection between AC and UT from Section
5.1 and show how the two new characters, �Loś’s theorem (�Loś) and the
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compactness theorem (CT), are connected. Our first main result is the
following:

Theorem 6.5.1. In ZF, the following are equivalent:

(1) For every Boolean algebra B, S(B) is compact.

(2) CT.

(3) UT.

Before proving this result, we need a quick detour.

Definition 6.5.2. Suppose that T is an L-theory. We say that T is:

(1) Maximal finitely satisfiable if T is finitely satisfiable and, for
every L-sentence σ, either σ ∈ T or ¬σ ∈ T ;

(2) Henkin if, for every L-formula ϕ(x), there is a constant symbol c
such that the L-sentence ∃xϕ(x)→ ϕ(c) belongs to T .

Fact 6.5.3 (ZF). Suppose that T is a maximal finitely satisfiable Henkin
theory. Then T is satisfiable.

Fact 6.5.4 (ZF). For any finitely satisfiable L-theory T , there is a language
L′ containing L and a finitely satisfiable Henkin L′-theory T ′ containing T .

Proof of Theorem 6.5.1. First suppose that (1) holds and T is a finitely
satisfiable set of L-sentences. We wish to show that T is satisfiable. By
Fact 6.5.4, we may as well assume that T is also a Henkin theory. We may
also assume that T is closed under logical implication, that is, if σ ∈ T
and σ → τ is logically valid, then τ ∈ T . By finite satisfiability of T ,
the collection (Uσ)σ∈T of basic closed sets in S(BL) has the FIP, whence,
by compactness of S(BL), there is T ′ ∈

⋂
σ∈T Uσ. Note then that T ′ is

a maximal finitely satisfiable set of L-sentences containing T which is still
Henkin. Thus, by Fact 6.5.3, T ′ is satisfiable, whence so is T .

Now suppose that (2) holds and let F be a filter on a set I. Let L be
the language with constant symbols cA for all A ⊆ I and a single unary
predicate symbol P . Let T be the following set of L-sentences:

• P (cA) for all A ∈ F ;

• P (cA) ∧ P (cB)→ P (cA∩B);

• P (cA)→ P (cB) whenever A ⊆ B;

• P (cA) ∨ P (cI\A) for all A ⊆ I.

We leave it as an exercise to check that T is finitely satisfiable, whence it is
satisfiable by CT. Fix M |= T and define U by setting A ∈ U if and only if
M |= P (cA). It is immediate from the definition of T that U is an ultrafilter
on I extending F .
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Finally, suppose that (3) holds and fix a Boolean algebra B. We men-
tioned in Section 5.1 that Tychonoff’s theorem for compact Hausdorff spaces
is equivalent to UT, whence 2B is compact. Since the proof that S(B) is
closed in 2B does not make any use of AC, it follows that S(B) is also com-
pact. �

Exercise 6.5.5. Prove that T in the (2)-implies-(3) direction of the above
proof is finitely satisfiable.

We now turn to the question about the connection between AC and
�Loś. One might wonder if there is not a more clever proof of �Loś that uses
a weaker version of AC, perhaps UT? It turns out that this is not the case:

Theorem 6.5.6 (ZF). UT+ �Los implies AC, whence AC is equivalent to
UT+ �Los.

Proof. Work in ZF+UT+ �Los. Suppose, toward a contradiction, that X is
a set of nonempty sets without a choice function. Without loss of generality,
we may assume that the sets in X are pairwise disjoint and no element of
X is itself an element of an element of X. Let L = {R}, where R is a single
binary relation symbol. We consider the L-structureM which has universe
X ∪

⋃
X, where

⋃
X denotes the set of elements of elements of X, and such

that (t, y) ∈ RM if and only if either (i) y ∈ X and t ∈ y or (2) t = y ∈
⋃

X.

Set

F := {z ⊆ X : X \ z has a choice function}.
Clearly, X ∈ F (as the emptyset has a choice function) and by assumption
∅ /∈ F . If z ∈ F and z ⊆ w, then X \w ⊆ X \ z, whence X \w has a choice
function (the restriction of the choice function on X \ z), whence w ∈ F .
Finally, if w, z ∈ F , then (X \w) ∪ (X \ z) has a choice function (exercise),
whence w ∩ z ∈ F .

It follows that F is a filter on X, whence we may extend it to an ul-
trafilter U on X by UT. Since M |= ∀y∃tR(t, y), we conclude from �Loś
that MU |= ∀y∃tR(t, y). We apply this in the case that y = [idX ]U , which
makes sense as an element of MU since the index set for the filter is X
and X is a subset of the universe of M. We thus have f : X → M such
that MU |= R([f ]U , [idX ]U). By the definition of RM, this means that
{y ∈ X : f(y) ∈ y} ∈ U . But {y ∈ X : f(y) ∈ y} has a choice function
(tautologically!), whence its complement belongs to F and thus U , yielding
a contradiction. �

Corollary 6.5.7. There is a model of ZF where �Loś is true but AC is false.

Proof. In a model of ZF where WUT fails, �Loś holds vacuously (as all
ultraproducts are principal) but AC fails (else WUT would hold). �
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Corollary 6.5.8. There is a model of ZF+UT in which �Loś fails.

Proof. If ZF+UT proved �Loś, then ZF+UT proves AC by Theorem 6.5.6,
which we know it does not. �

6.6. Countably incomplete ultrafilters

In this section, we return to the question discussed at the end of Section 6.2:
When is the diagonal embedding d : M →MU onto?

In the case of a finite set, we have the following result:

Exercise 6.6.1. Suppose that M is finite. Then for any index set I and
any ultrafilter U on I, prove that d : M →MU is a bijection.

In the case of a countable index set, it is easy to verify when d is onto:

Exercise 6.6.2. Suppose that M is an infinite set, I is a countable set, and
U is an ultrafilter on I. Prove that d : M →MU is a bijection if and only if
U is a principal ultrafilter.

To answer the above question for an arbitrary index set, we need some
new definitions:

Definition 6.6.3. Suppose that U is an ultrafilter and κ is a cardinal.
We say that U is κ-complete if whenever Y ⊆ U is such that |Y | < κ,
then

⋂
Y ∈ U . (In other words, U is κ-complete if and only if U is closed

under intersections of families of size < κ.) ℵ1-complete ultrafilters are often
referred to as countably complete and an ultrafilter that is not countably
complete is called countably incomplete.

Some exercises to get us acquainted:

Exercise 6.6.4. Prove that every ultrafilter is ℵ0-complete.

Exercise 6.6.5. Prove that an ultrafilter U is κ-complete for all κ if and
only if U is principal.

Exercise 6.6.6. Suppose that U is κ-complete and λ < κ. Prove that U is
also λ-complete.

Exercise 6.6.7. Prove that an ultrafilter U on the index set I is countably
incomplete if and only if there is a sequence (En)n∈N from U such that
I = E0 ⊇ E1 ⊇ E2 ⊇ · · · and

⋂
n∈NEn = ∅.

Exercise 6.6.8. Suppose that U is κ-complete and V ≤RK U . Prove that
V is κ-complete.

The next lemma shows us that a nonprincipal ultrafilter on a set of size
κ is never κ+-complete.
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Lemma 6.6.9. Suppose that U is an ultrafilter on an a set I with |I| = κ.
If U is κ+-complete, then U is principal. In particular, an ultrafilter on a
countable set is countably incomplete if and only if it is nonprincipal.

Proof. Suppose that U is nonprincipal. Then for each i ∈ I, we have that
I \ {i} ∈ U . Since

⋂
i∈I(I \ {i}) = ∅ and |I| = κ, we see that U is not

κ+-complete. �

Remark 6.6.10. By the previous lemma, the most complete that a non-
principal ultrafilter on a set of cardinality κ can be is κ-complete. A cardinal
κ that posesses a nonprincipal κ-complete ultrafilter is called measurable.
The existence of an uncountable measurable cardinal cannot be proven in
ZFC. In fact, if there exists an uncountable cardinal that possesses a count-
ably complete ultrafilter, then there exists a measurable cardinal. (All of
these facts will be discussed and proven in Chapter 17.) For this reason,
when one restricts one’s attention to countably incomplete ultrafilters, this
is really no loss of generality if one wants to stay within the confines of ZFC.

Exercise 6.6.11. Prove that an ultrafilter U is countably incomplete if and
only if there is a nonprincipal ultrafilter V on N such that V ≤RK U . (Hint.
For the forward direction, let (En)n∈N be as in Exercise 6.6.7 and define
f : I → N by f(x) equals the maximal n such that x ∈ En. Show that f(U)
is nonprincipal.)

It will be useful to reformulate the notion of κ-completeness in terms of
partitions of the index set:

Lemma 6.6.12. Suppose that U is an ultrafilter on the index set I. Then U
is κ-complete if and only if, for every partition of I into fewer than κ many
pieces, exactly one of the pieces belongs to U .

Proof. First suppose that U is κ-complete and I =
⋃

α<λXα, where λ < κ.
Note then that

⋂
α<λ(I \ Xα) = ∅. Since U is κ-complete, it follows that

I \Xα /∈ U for some α < λ, whence Xα ∈ U . The uniqueness of Xα follows
from the fact that the Xα’s are pairwise disjoint.

Suppose now that for every partition of I into fewer than κ many pieces,
exactly one of the pieces belongs to U . We show that U is κ-complete.
Suppose that Y ⊆ U is such that |Y | < κ. Enumerate Y = {Yα : α < λ},
where λ < κ. We define a partition (Xα)α∈λ∪{λ} of I as follows. First, set
Xλ :=

⋂
Y . Next, if i /∈

⋂
Y , we put i ∈ Xα if α < λ is least with i /∈ Yα.

By our assumption, Xα ∈ U for a unique α ≤ λ. However, for α < λ, since
Xα∩Yα = ∅ and Yα ∈ U , we see that Xα /∈ U . Consequently, Xλ =

⋂
Y ∈ U ,

as desired. �
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We are now ready to see the connection between complete ultrafilters
and the surjectivity of the diagonal embedding.

Proposition 6.6.13. Suppose that U is an ultrafilter on I.

(1) If U is countably complete, then for any countable set M , d : M →
MU is onto.

(2) If there is an infinite M such that d : M →MU is onto, then U is
countably complete.

Proof. (1) Suppose that U is countably complete and M is countable. Fix
a : I → M ; we show that [a]U is in the image of d. Enumerate M =
{xj : j ∈ N} and set Xj := {i ∈ I : a(i) = xj}. Then Xj forms a
countable partition of I, whence, by Lemma 6.6.12, there is a unique j for
which Xj ∈ U , and hence [a]U = d(xj).

(2) Suppose thatM is an infinite set such that d is onto and that (Xj)j∈N
is a countable partition of I. Let (xj)j∈N be a collection of pairwise distinct
elements of M and define a : I → M by setting a(i) = xj if and only if
i ∈ Xj. Take j such that [a]U = d(xj); it follows that Xj ∈ U , whence U is
countably complete by Lemma 6.6.12. �

Exercise 6.6.14. Adapt the proof of the previous proposition to show the
following: If M is a set with |M | = κ and U is an ultrafilter on a set I, then
the diagonal embedding d : M →MU is onto if and only if U is κ+-complete.

6.7. Revisiting the Rudin-Keisler order

In this section, we show that there is a connection between the Rudin-Keisler
order introduced in Section 1.6 and the embeddability relation between ul-
trapowers. More precisely, we have:

Theorem 6.7.1. Suppose that U and V are ultrafilters on I and J , respec-
tively. We then have:

(1) U ≤RK V if and only if, for every structure M (in any language),
MU elementarily embeds into MV .

(2) U ≡RK V if and only if, for every structure M (again, in any
language), MU ∼=MV .

Proof. First suppose that U ≤RK V and take f : J → I such that U = f(V).
Fix a structure M. We check that the map [a]U �→ [a ◦ f ]V : MU → MV

is an elementary embedding, proving the forward direction of (1). Indeed,
suppose that MU |= ϕ([a1]U , . . . , [an]U). By �Loś’s theorem, we have that
{i ∈ I |M |= ϕ(a1(i), . . . , an(i))} ∈ U . By the choice of f , we have that the
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preimage of this latter set under f belongs to V, that is,
{j ∈ J : M |= ϕ(a1(f(j)), . . . , an(f(j)))} ∈ V,

whence MV |= ϕ([a1 ◦ f ]V , . . . , [an ◦ f ]V), as desired.
Suppose, in addition, that V ≤RK U . We claim that the above embed-

ding ofMU intoMV is actually surjective, whence an isomorphism between
MU andMV , proving the forward direction of (2). By Corollary 1.3.16, we
may assume that f can be chosen so that there is X ∈ V such that f � X
is injective. Fix [b]V ∈ MV ; we seek [a]U ∈ MU such that [a ◦ f ]V = [b]V .
For i ∈ f(X), define a(i) := b(f−1(i)), which is well defined as f is injective
on X. For i ∈ I \ f(X), define a(i) arbitrarily. For j ∈ X, we then have
a(f(j)) = b(j), whence [a ◦ f ]V = [b]V , as desired.

We now suppose thatMU elementarily embeds intoMV for every struc-
ture M, and we show that U ≤RK V. Let LI be the language with a unary
predicate PA for each A ⊆ I. Let I be the structure with universe I and
for which P I

A = A. Let e : IU → IV be an elementary embedding, which
exists by our assumption. Let id denote the identity function on I and let
f : J → I be such that e([id]U) = [f ]V . We then note that, for A ⊆ I, the
folllowing are equivalent:

• A ∈ U ;
• {i ∈ I : I |= PA(i)} ∈ U ;
• IU |= PA([id]U);

• IV |= PA([f ]V);

• {j ∈ J : I |= PA(f(j))} ∈ V;
• f−1(A) ∈ V.

It follows that U = f(V), so U ≤RK V, proving the backward direction
of (1).

Finally, if MU ∼= MV for every M, then by the previous paragraph,
U ≤RK V and V ≤RK U , whence U ≡RK V, proving the backward direction
of (2). �

We can use the above interpretation to give a nice characterization of
minimal ultrafilters in terms of substructures of the corresponding ultrapow-
ers. First, some preparation.

We fix an infinite structureM, a nonprincipal ultrafilter U on I, and we
set N :=MU . For each f : I →M , we set N [f ] := {[g◦f ]U : g : M →M}.
This is a substitute for the substructure of N generated [f ]U . In fact:

Exercise 6.7.2. If each function M →M is the interpretation of a function
symbol in the language, prove that N [f ] is the substructure of N generated
by [f ]U .
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The following exercise highlights some properties of the above construc-
tion:

Exercise 6.7.3.

(1) Suppose that f, h : I →M and h(U) ≤RK f(U). Then [h]U ∈ N [f ].

(2) If f is a constant function, then N [f ] =M (viewed as a substruc-
ture of N via the diagonal embedding).

(3) N [f ] is an elementary substructure of N and N [f ] ∼= Mf(U) via
the isomorphism [g ◦ f ]U �→ [g � f(I)]f(U).

The following theorem highlights the connection between the Rudin-
Keisler ordering and the substructure N [f ]:

Theorem 6.7.4. If f(U) ≡RK U , then N [f ] = N . If |I| ≤ |M |, then the
converse holds.

Proof. First suppose that f(U) ≡RK U . By Corollary 1.3.16, we may
suppose that f is chosen so that there is X ∈ U such that f � X is injective.
As argued in the proof of Theorem 6.7.1, given any h : I → M , there is
g : M →M such that [g ◦ f ]U = [h]U . It follows that N [f ] = N .

For the converse, assume that |I| ≤ |M | and that N [f ] = N . Fix an
injective function h : I →M and take g : M →M such that [h]U = [g ◦f ]U .
By Exercise 1.3.4, we have that h(U) = (g ◦ f)(U) = g(f(U)), whence
h(U) ≤RK f(U). On the other hand, since h is injective, we have that
U ≡RK h(U). Clearly, f(U) ≤RK U . Altogether, we have f(U) ≡RK U , as
desired. �

Here is the promised characterization of minimal ultrafilters in terms of
the corresponding ultrapowers:

Corollary 6.7.5. Suppose thatM is an infinite structure, U a nonprincipal
ultrafilter over N, and set N :=MU . Then U is minimal if and only if, for
every f : N→ M , either N [f ] =M or N [f ] = N . In particular, if M has
function symbols for every function M →M , then U is minimal if and only
if the only substructures of N are M and N .

Exercise 6.7.6. Prove Corollary 6.7.5.

6.8. Cardinalities of ultraproducts

In this section, we discuss some results concerning the cardinalities of ultra-
products. First, some easy facts:

Exercise 6.8.1. Let U be an ultrafilter on the index set I.

(1) If |Mi| = |Ni| for all i ∈ I, then |
∏

U Mi| = |
∏

U Ni|.
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(2) If |Mi| ≤ |Ni| for all i ∈ I, then |
∏

U Mi| ≤ |
∏

U Ni|.
(3) |

∏
U Mi| ≤ |

∏
i∈I Mi|.

(4) |M | ≤ |MU | ≤ |M ||I|.

Exercise 6.8.2. Prove that
∏

U Mi is finite if and only if there is n ∈ N
such that |Mi| ≤ n for U -almost all i ∈ I.

The next theorem shows that ultraproducts are usually always large in
size:

Theorem 6.8.3. Suppose that U is a countably incomplete ultrafilter over
an index set I and (Mi)i∈I is a family of sets. Then

∏
U Mi is either finite

or has size at least c.

Proof. Suppose that
∏

U Mi is infinite. We separate into two cases:

Case 1. Mi is finite for U -almost all i. Without loss of generality, we
may assume that Mi is finite for all i ∈ I. For each i ∈ I, set ni :=
|Mi|. By Exercise 6.8.2, we know that limU ni = ∞. By Exercise 6.8.1,
we may assume that Mi = [ni] := {0, 1, . . . , ni − 1}. Define a function

f :
∏

U Mi → [0, 1] by defining f([a]U) := limU
a(i)
ni

. It suffices to show that

[0, 1) is contained in the range of f . Toward this end, given x ∈ [0, 1), define
ax ∈

∏
i∈I Mi by ax(i) = k, where k ∈ [ni] is such that k

ni
≤ x < k+1

ni
. Note

that |ax(i)ni
− x| < 1

ni
for all i ∈ I. We claim that f([ax]U) = x. To see this,

fix N ∈ N and note that ni > N for U -almost all i ∈ I. For these i ∈ I, we

have that |ax(i)ni
− x| < 1

ni
< 1

N , whence |f([ax]U) − x| ≤ 1
N . Since N ∈ N

was arbitrary, we see that f([ax]U) = x, as desired.

Case 2. Mi is infinite for U -almost all i. In this case, by Exercise 6.8.1, it is
enough to show that |NU | ≥ c. By Exercise 6.6.11 and Theorem 6.7.1, it is
enough to assume that U is a nonprincipal ultrafilter on N. (It is here that
we have used that U is countably incomplete.) However, by Case 1,

∏
U [n]

has cardinality ≥ c, whence, by Exercise 6.8.1 again, so does NU . �

The following corollary of the previous theorem is worth singling out:

Corollary 6.8.4. Suppose that U is a nonprincipal ultrafilter on N and
(Mn)n∈N is a family of sets with |Mn| ≤ c for all n ∈ N. Then

∏
U Mn is

either finite or has size exactly c.

Proof. The result follows immediately from Theorem 6.8.3 and the fact that∏
U Mn has size at most c under the current assumptions as its cardinality

is bounded by the cardinality of the direct product
∏

n∈NMn, which has size

at most cℵ0 = c. �
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The following theorem can often be used to show that a particular struc-
ture is not an ultrapower.

Theorem 6.8.5. Suppose that U is a countably incomplete ultrafilter on I
and M is an infinite set such that MU has cardinality κ. Then κω = κ. In
particular, cof(κ) > ω.

Proof. SetN := M<ω. Since |N | = |M |, it suffices to prove that κω ≤ |NU |.
Since U is countably incomplete, by Exercise 6.6.7, we may fix I = X0 ⊇
X1 ⊇ X2 ⊇ · · · with each Xn ∈ U and

⋂
n∈NXn = ∅. This allows us to

define, for each i ∈ I, the number n(i) := the maximal n such that i ∈ Xn.

We now define σ : (M I)ω → N I by setting

σ(g)(i) := (g(1)(i), . . . , g(n(i))(i)).

We would like to define a sort of “inverse” to σ, but at the level of ultra-
powers. More specifically, set N0 ⊆ NU to consist of those elements of the
form [σ(g)]U for some g ∈ (M I)ω. We would like to define τ : N0 → (MU )ω

by setting τ([σ(g)]U) := ([g(0)]U , [g(1)]U , . . .). If this is possible, then since
τ is clearly surjective, we achieve the desired result. In order for τ to be
well defined, we need to know that σ(g) ≡U σ(h) implies that g(n) ≡U h(n)
for all n. So suppose that σ(g) ≡U σ(h) and set X := {i ∈ I : σ(g)(i) =
σ(h)(i)} ∈ U . Fix n; we aim to show that g(n) ≡U h(n). For i ∈ X ∩Xn,
we have that n ≤ n(i), whence g(n)(i) = h(n)(i). Since X ∩ Xn ∈ U , the
desired result follows. �

We will present one more result on cardinalities of ultraproducts in Sec-
tion 8.3.

6.9. Iterated ultrapowers

It is natural to wonder what happens if you take an ultrapower of an ul-
trapower. It turns out that the resulting structure is itself an ultrapower,
as the next theorem indicates. (We ask the reader to recall the notion of
product ultrafilter from Exercise 1.6.9.)

Theorem 6.9.1. Suppose thatM is a structure and U and V are ultrafilters
on sets I and J , respectively. Then (MU)V ∼=MU×V .

Exercise 6.9.2. Prove Theorem 6.9.1. (Hint. For a : I × J → M , set
aj : I →M to be the function aj(i) := a(i, j). Show that the map [a]U×V �→
[a∗]V , where a∗(j) := [aj]U , is an isomorphism.)

Remark 6.9.3. In Section 8.4, we will see examples of ultrafilters U and
V such that U × V is not Rudin-Keisler equivalent to V × U . Consequently,
by Theorem 6.7.1, there will be a structure M such that MU×V �∼=MV×U ,
whence (MU )V �∼= (MV)U .
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Exercise 6.9.4. Prove that the product operation on ultrafilters is asso-
ciative. More precisely, if U , V, and W are ultrafilters on sets I, J , and
K, prove that (U × V) × W and U × (V × W) are the same ultrafilter on
I × J ×K.

By Theorem 6.9.1 and Exercise 6.9.4, given any ultrafilters U1, . . . ,Un
and any structure M, the structure one gets by iterating the ultrapower
construction relative to the various Ui’s is isomorphic to the ultrapower
MU1×···×Un . In other words, finite iterated ultrapowers do not yield us gen-
uinely new structures in the sense that they are just isomorphic to ordinary
ultrapowers. However, it turns out that there is a construction of iterated
ultrapowers for an arbitrary linearly ordered set of ultrafilters which can
produce structures that are not obtainable as ordinary ultrapowers. We
now explain this procedure.

Fix a linearly ordered set (X,<) and, for each x ∈ X, suppose that Ux
is an ultrafilter on some set Ix. For each nonempty finite Y ⊆ X, we let
UY := Uy1 × · · · × Uyn , where y1 < · · · < yn is an increasing enumeration of
Y . When Y = ∅, we define MUY :=M.

Viewing Pf (X) as a directed set under inclusion, given any structure

M, we notice that there are natural embeddings MUY → MUZ whenever
Y ⊆ Z belong to Pf (X). Indeed, for simplicity, suppose that y1 < · · · < yn
is an increasing enumeration of Y and that Z = Y ∪{z}. (The general case is
no more difficult, just notationally messier.). Suppose that i ∈ {1, . . . , n} is
such that yi < z < yi+1. (If i = 0, this just means that z < y0 while if i = n,
this just means that yn < z.). Set Y1 := {y1, . . . , yi}, Y2 := {yi+1, . . . , yn},
and Z1 = Y1 ∪ {z}. Then MUZ1 ∼= (MUY1 )Uz . Let i : MUY1 → MUZ1 be
the elementary embedding obtained by composing the diagonal embedding
of MUY1 into (MUY1 )Uz with the isomorphism (MUY1 )Uz →MUZ1 given in
the proof of Theorem 6.9.1. By Exercise 6.4.5, we have that the ultrapower
embedding iUY2 : (MUY1 )UY2 → (MUZ1 )UY2 is an elementary embedding. By
using the isomorphisms from Theorem 6.9.1 again, this yields an elementary
embedding MUY →MUZ , as desired.

We define the direct limit of the directed system from the previous para-
graph to be the iterated ultrapower of the structure M relative to the
family (Ux)x∈X and denoted it by MUX . We warn the reader that this is
simply notation and that there is not actually an ultrafilter UX being de-
fined. We also note that the natural embeddings of eachMUY intoMUX are
elementary. In particular, the natural embeddingM→MUX is elementary.

There is a special case of the above construction that is especially ap-
pealing. First, a couple of definitions:
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Definition 6.9.5.

(1) Suppose that M is a substructure of a structure N . We say that
N is an ultrapower extension of M if the diagonal embedding
d :M→MU can be extended to an isomorphism d′ : N →MU .

(2) An ultrapower chain overM is a chain of structuresM⊆M1 ⊆
M2 ⊆ · · · such that eachMn+1 is an ultrapower extension ofMn.
We will refer to the limit of this chain as M∞.

It is clear that an ultrapower extension is an elementary extension and
thus an ultrapower chain is an elementary chain, whence the limitM∞ is an
elementary extension of M. Consequently, if M and N are structures for
which there are ultrapower chains overM and N , respectively, whose limits
M∞ and N∞ are isomorphic, then M and N are elementarily equivalent.
It turns out that the converse is also true, which we will prove in Section
8.3:

Fact 6.9.6. Structures M and N are elementarily equivalent if and only if
there are ultrapower chains over M and N , respectively, whose limitsM∞
and N∞ are isomorphic.

Returning to iterated ultrapowers, we now suppose that (X,<) = (N, <).
Fix a structure M. For each n ∈ N, fix ultrafilters Un on index sets In and
set Mn := MU0×···×Un . Note then that M ⊆ M0 ⊆ M1 ⊆ · · · is an
ultrapower chain over M.

Exercise 6.9.7. In the notation from the paragraph preceding Fact 6.9.6,
prove that the iterated ultraproduct MUX is isomorphic to the limit M∞
of the ultrapower chain from above.

Combining Fact 6.9.6 and Exercise 6.9.7, we arrive at:

Corollary 6.9.8. Structures M and N are elementarily equivalent if and
only if they have isomorphic iterated ultrapowers.

The appeal of the previous corollary is that it provides a reformulation
of elementary equivalence that does not mention first-order logic and only
mentions the “algebraic” notion of iterated ultrapower. In Chapter 16, we
will improve upon this latter fact by proving the Keisler-Shelah theorem,
which states that structuresM andN are elementarily equivalent if and only
if they have isomorphic ultrapowers. While the statement of the Keisler-
Shelah theorem is obviously more aesthetically pleasing than Corollary 6.9.8,
it is much more difficult to prove.

Finally, we use Exercise 6.9.7 to show that not every iterated ultrapower
is obtainable as an ordinary ultrapower, although we will need to borrow a
notion and a result from Section 8.3:
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Proposition 6.9.9. For any countable structure M, there is an iterated
ultrapower of M that is not isomorphic to any ultrapower of M.

Proof. First, we define a sequence of cardinals (κn)n∈N by setting κ0 := ℵ0
and κn+1 := κ

cof(κn)
n . By Proposition B.3.21, (κn)n∈N is a strictly increasing

sequence of cardinals. For each n ∈ ω, let Un be a regular ultrafilter on
cof(κn). (We will define the notion of regular ultrafilter in Section 8.3).
Recursively define a sequence (Mn)n∈N of structures by setting M0 := M
and Mn+1 := MUn

n . By Theorem 8.3.9, |Mn+1| = |Mn|cof(κn), whence, by
induction, we see that |Mn| = κn for all n ∈ ω. Note that (Mn)n∈N is an
ultrapower chain over M whose limit M∞ is thus an iterated ultrapower
of M whose cardinality has cofinality ω by construction. Theorem 6.8.5
shows that M∞ cannot be isomorphic to an ultrapower of M with respect
to a countably incomplete ultrafilter. An ultrapower of M with respect to
a countably complete ultrafilter is isomorphic to M, and thus countable
whence it is not isomorphic toM∞. ThusM∞ is an iterated ultrapower of
M not isomorphic to any ultrapower of M. �

6.10. A category-theoretic perspective on ultraproducts

In this section, we consider a category-theoretic perspective on ultraproducts
that allows us to take ultraproducts of families of objects besides first-order
structures. Moreover, this perspective will allow us to consider a dual notion
of the ultraproduct, naturally called the ultracoproduct, which leads to other
interesting examples. We will freely use the language of category theory as
discussed in Appendix C.

Let us begin by considering a simple example, namely the ultraproduct
construction for groups. Consider a family of groups (Gi)i∈I and an ultra-
filter U on I. For each J ∈ U , consider the group GJ :=

∏
i∈J Gi, the direct

product of groups. We consider the set U as a directed set under reverse
inclusion, that is, for J,K ∈ U , we set J ≤ K if and only if J ⊇ K. Notice
that U is indeed a directed set, for given J,K ∈ U , we have that J ≤ J ∩K
and K ≤ J ∩K. Given J ≤ K (that is, J ⊇ K), we have a homomorphism
fJK : GJ → GK given by restriction, that is, fJK(a) := a � K. It is clear
that (GJ , fJK) form a directed system, that is, each fJJ is the identity on
GJ and fKL ◦ fJK = fJL whenever J ≤ K ≤ L.

We can thus consider the direct limit G := lim−→GJ of the directed system.
It will not be necessary to recall the exact construction of the direct limit
(although it is given in Appendix C) but rather that it satisfies the following
universal properties:

(1) For each J ∈ U , there are homomorphisms gJ : GJ → G such that
gJ = gK ◦ fJK whenever J ≤ K.
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(2) Whenever H is a group equipped with homomorphisms hJ : GJ →
H satisfying hJ = hK ◦ fJK , then there is a unique homomorphism
φ : G→ H such that φ ◦ gJ = hJ for all J ∈ U .

The direct limit of groups is unique up to unique isomorphism and this
isomorphism commutes with the morphisms above.

Theorem 6.10.1. In the notation of the discussion above, we have that
lim−→GJ =

∏
U Gi.

Proof. We need to verify that
∏

U Gi satisfies the universal property of the
direct limit given above. To verify property (1), given J ∈ U , we define
gJ : GJ →

∏
U Gi by setting gJ(a) := [b]U , where b ∈ GI is such that

fIJ(b) = a. (In other words, b is an arbitrary extension of a that is defined
on all of I rather than only on the subset J .) We leave it as an exercise to
check that, if J ≤ K, then gJ = gK ◦ fJK .

To verify property (2), suppose that H is a group equipped with mor-
phisms hJ : GJ → H satisfying hJ = hK ◦ fJK . Let φ :

∏
U Gi → H be

given by φ([a]U) := hI(a). To see that this map is well defined, notice that
if [a]U = [a′]U , then there is J ∈ U such that fIJ(a) = fIJ (a

′), whence
hI(a) = hJ(fIJ(a)) = hJ(fIJ(a

′)) = hI(a
′), as desired. It is clear that φ is

a group homomorphism. Moreover, for a ∈ GJ , we have

(φ ◦ gJ)(a) = φ([a]U) = hI(a) = hJ(fIJ(a)) = hJ(a),

as desired. If φ′ is another such function, then, in particular, φ′ ◦ gI = hI ,
that is, φ′([a]U) = hI(a) = φ([a]U), completing the proof. �

The preceding discussion motivates us to generalize the notion of ul-
traproduct to certain categories. Suppose that C is a category that has
arbitrary products and direct limits. Fix a family (Ai)i∈I of objects from C
and an ultrafilter U on I. For J ∈ U , we set AJ to be the product (in the
category-theoretic sense) of the family (Ai)i∈J . By the universal property
of product, if J ≤ K, there is a canonical morphism fJK : AJ → AK . As
above, the family (AJ , fJK) forms a directed system.

Definition 6.10.2. Suppose that C is a category that has products and
direct limits. Given a family (Ai)i∈I of objects from C and an ultrafilter
U on I, we define the ultraproduct of the family with respect to
U , denoted

∏
U Ai, to be the direct limit of the directed system (AJ , fJK)

above.

Let us say a few words as to why this categorical ultraproduct really
is a generalization of our earlier model-theoretic ultraproduct. Fix a first-
order language L. Given two L-structures M and N , a homomorphism
f from M to N is defined exactly like an embedding from M to N except
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that one only requires (a1, . . . , an) ∈ RM implies (f(a1), . . . , f(an)) ∈ RN .
In particular, homomorphisms need not be injective. We let CL denote the
category of L-structures, where morphisms are homomorphisms in the above
sense.

Exercise 6.10.3. Suppose that (Mi)i∈I is a directed family of L-structures.
Let M be the direct limit of the sets (Mi)i∈I . Explain how to view M as the
universe of an L-structure M such that M is the direct limit of the family
(Mi)i∈I in the category CL.

Exercise 6.10.4. Suppose that (Mi)i∈I is a family of L-structures and U
is an ultrafilter on I. Show that the model-theoretic ultraproduct

∏
U Mi

coincides with the category-theoretic ultraproduct of the family (Mi)i∈I
with respect to U .

Now that we have abstracted things to the category-theoretic level, there
is nothing stopping us from considering the dual situation. Suppose that C
is a category that has coproducts and inverse limits. Fix a family (Ai)i∈I of
objects from C and an ultrafilter U on I. For J ∈ U , we set AJ :=

∐
i∈J Ai

to be the coproduct of the family (Ai)i∈J . By the universal property of
coproducts, if J ≤ K, there is a morphism fJK : AK → AJ . Now the family
(AJ , fJK) forms an inverse system.

Definition 6.10.5. Suppose that C is a category that has coproducts and
inverse limits. Given a family (Ai)i∈I of objects from C and an ultrafilter
U on I, we define the ultracoproduct of the family with respect to
U , denoted

∐
U Ai, to be the inverse limit of the inverse system (AJ , fJK)

above.

Exercise 6.10.6. Suppose that F : C → D yields an equivalence of cat-
egories. Then whenever an ultraproduct

∏
U Ai (resp., an ultracoproduct∐

U Ai) of objects of C exists, we have that F (
∏

U Ai) =
∏

U F (Ai) (resp.,
F (
∐

U Ai) =
∐

U F (Ai)). Similarly, if F : C → D yields a dual equivalence of
categories, then whenever an ultraproduct

∏
U Ai (resp., an ultracoproduct∐

U Ai) of objects of C exists, we have that F (
∏

U Ai) =
∐

U F (Ai) (resp.,
F (
∐

U Ai) =
∏

U F (Ai)).

Example 6.10.7. Recall from Section 3.4 that the functors S and Cl yield a
dual equivalence of categories between the category of Boolean algebras and
the category of Stone spaces. By Exercises 6.10.4 and 6.10.6, it follows that
ultracoproducts exist in the category of Stone spaces: if (Xi)i∈I is a family
of Stone spaces and U is an ultrafilter on I, then

∐
U Xi is once again a Stone

space. Moreover, S(
∏

U Cl(Xi)) ∼=
∐

U Xi and Cl(
∐

U Xi) ∼=
∏

U Cl(Xi).
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The category of Stone spaces is a full subcategory of the category of
compact Hausdorff spaces. It is natural to wonder if this larger category has
an ultracoproduct construction. This is indeed the case:

Example 6.10.8. The category of compact Hausdorff spaces is closed under
coproducts and inverse limits. To see the former, recall that if (Xi)i∈I is a
family of topological spaces, then one can consider the direct sum

⊕
i∈I Xi,

which as a set is the disjoint union
⊔

i∈I Xi, and whose topology is given by
declaring U ⊆

⊔
i∈I Xi to be open if and only if U ∩ Xi is an open subset

of Xi for each i ∈ I. Unfortunately, if each Xi is compact,
⊕

i∈I Xi need
not be compact. Nevertheless,

⊕
i∈I Xi is a Tychonoff space, whence one

can consider its Stone-Čech compactification β(
⊕

i∈I Xi). We leave it to the
reader to check that

∐
i∈I Xi = β(

⊕
i∈I Xi).

It is a standard fact that the category of compact spaces admits inverse
limits. We merely outline here what the inverse limit construction is. Sup-
pose that (Xi)i∈I is an inverse limit of compact Hausdorff spaces. Let X
denote the inverse limit of the sets (Xi)i∈I . One can then endow X with
the smallest topology so that all projection maps X → Xi are continuous.
It can then be verified that X is once again a compact Hausdorff space.

It follows that the category of compact Hausdorff spaces has ultraco-
products.

Exercise 6.10.9. Fill in the details in the previous example.

It is natural to wonder if Stone duality, the dual equivalence of categories
between Stone spaces and Boolean algebras, “extends” to a dual equivalence
of categories between all compact Hausdorff spaces and some other category
of “algebraic” objects. This is indeed the case, and this dual equivalence
of categories is given by Gelfand duality, the algebraic objects being so-
called C∗-algebras. The category of C∗-algebras has a natural ultraproduct
construction and the Gelfand functor takes ultraproducts of C∗-algebras to
the ultracoproducts of the corresponding compact Hausdorff spaces. We will
explore this in more detail in Section 14.3.

6.11. The Feferman-Vaught theorem

Although the remainder of this book is about ultraproducts, we would be re-
miss if we did not mention one of the more important results about arbitrary
reduced products, namely the Feferman-Vaught theorem, which is the ana-
logue of the �Loś theorem for arbitrary reduced products in that it connects
truth in the reduced product with truth in the individual structures.

There are two main complications in generalizing the �Loś theorem to
arbitrary reduced products. First, the truth of a formula ϕ in an ultraprod-
uct depends on the truth of ϕ itself in the individual structures. In the case
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of reduced products, we will have to relate the truth of ϕ in the reduced
product to the truth of some related formulas ψ1, . . . , ψm in the individual
structures. It is worth noting that the ψi’s depend only on ϕ and not on
the actual reduced product or parameters involved. (In some sense, one can
“effectively” calculate ψ1, . . . , ψm from ϕ.)

Secondly, while ϕ is true in an ultraproduct if and only if it is true in
almost every structure, the analogous statement is not true in the reduced
product structure, even when replacing ϕ by the aforementioned formu-
lae ψ1, . . . , ψm. This is essentially because the quotient Boolean algebra
P(I)/U (to be defined below) has only two elements, which are determined
by whether or not a set belongs to U . In the case of an arbitrary filter F on
I, the quotient Boolean algebra P(I)/F is much more complicated and thus,
in general, it will be some complicated Boolean algebra statement about the
truths of the various ψi’s that will determine whether or not ϕ is true in the
reduced product.

We now make the above discussion precise and prove the Feferman-
Vaught theorem. First, suppose that we have a set I and a filter F on
I. We define a relation ∼F on P(I) by declaring X ∼F Y if and only if
χX ∼F χY , where χX : I → {0, 1} is the characteristic function of X and
similarly for Y .

Exercise 6.11.1. Prove that X ∼F Y if and only if I \ (X�Y ) ∈ F .

In other words, X and Y are “almost equal” since their symmetric dif-
ference is “small”, where “small” here means has “large complement” where
“large” means belongs to F .

Exercise 6.11.2. Prove that ∼F is an equivalence relation on P(I).
Exercise 6.11.3. Suppose that Xi, Yi ∈ P(I) for i = 1, 2 are such that
Xi ∼F Yi. Show that X1 ∪ X2 ∼F Y1 ∪ Y2, X1 ∩ X2 ∼F Y1 ∩ Y2, and
I \X1 ∼F I \ Y1.

We let P(I)/F denote the set of equivalence classes and set [X]F for
the equivalence class of X. By the previous exercise, we may define [X]F ∧
[Y ]F := [X ∩ Y ]F , and similarly for ∨ and ¬.
Exercise 6.11.4. Prove that (P(I)/F ,∧,∨,¬, [I]F , [∅]F) is a Boolean alge-
bra that is naturally isomorphic to 2F , the reduced power of the Boolean
algebra 2. In particular, if F is an ultrafilter, prove that P(I)/F is isomor-
phic to 2.

We also let LBA := {0, 1,∧,∨,¬} denote the natural first-order language
for studying Boolean algebras. The axioms introduced in Section 3.4 are ob-
viously first order; we let TBA denote the LBA-theory axiomatizing Boolean
algebras.
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Definition 6.11.5. An LBA-formula γ(y1, . . . , ym) is monotonic if

TBA |=∀y1, . . . , ∀ym∀z1 · · · ∀zm((γ(y1, . . . , ym)∧
m∧
i=1

yi ≤ zi)→γ(z1, . . . , zm)).

In other words, thinking of concrete Boolean algebras, if γ(A1, . . . , Am)
is true, where A1, . . . , Am are subsets of some set, and one enlarges each Ai

to some superset Bi, then γ(B1, . . . , Bm) still holds true.

We now fix an arbitrary language L. The next definition makes precise
the intuition from the introduction of this section.

Definition 6.11.6. Given L-formulae ϕ(x1, . . . , xn), ψ1(x1, . . . , xn), . . . ,
ψm(x1, . . . , xn) and a monotonic LBA-formula γ(y1, . . . , ym), we say that
ϕ is determined by (γ;ψ1, . . . , ψm) if, given any filter F on any set I,
any family (Mi)i∈I of L-structures and any a1, . . . , an ∈

∏
i∈I Mi, setting

Xj := {i ∈ I : Mi |= ψj(a1(i), . . . , an(i))}, we have∏
F
Mi |= ϕ([a1]F , . . . , [an]F )⇔ P(I)/F |= γ([X1]F , . . . , [Xm]F ).

We say that ϕ is determined if there are ψ1, . . . , ψm and γ such that ϕ is
determined by (γ;ψ1, . . . , ψn).

We are now ready for the main result of this section:

Theorem 6.11.7 (Feferman-Vaught). Every L-formula is determined.

Proof. We proceed by induction on the complexity of the formula ϕ. We
leave it to the reader to check that, when ϕ is atomic, ϕ is determined by
(y = 1;ϕ).

Now suppose that ϕ is determined by (γ;ψ1, . . . , ψm). Set

δ(y1, . . . , ym) := ¬γ(¬y1, . . . ,¬ym).

We show that ¬ϕ is determined by (δ;¬ψ1, . . . ,¬ψm). Set

Xj := {i ∈ I : Mi |= ¬ψj(a1(i), . . . , an(i))}.

It remains to notice that the following statements are equivalent:

•
∏

F Mi |= ¬ϕ([a1]F , . . . , [an]F ),
•
∏

F Mi �|= ϕ([a1]F , . . . , [an]F ),

• P(I)/F �|= γ([¬X1]F , . . . , [¬Xm]F),

• P(I)/F |= ¬γ([¬X1]F , . . . , [¬Xm]F ),

• P(I)/F |= δ([X1]F , . . . , [Xm]F).
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Note that the equivalence between the second and third line is exactly
the inductive assumption that ϕ is determined by (γ;ψ1, . . . , ψm).

We leave the proof of the conjunction case to the reader. We come
to the final, and hardest, part of the proof, the existential case. Sup-
pose that ϕ(w, x1, . . . , xn) is determined by (γ;ψ1, . . . , ψm). We show that
∃wϕ(w, x1, . . . , xm) is determined.

Let s1, . . . , s2m enumerate P({1, . . . ,m}) with si = {i} for each i =
1, . . . ,m. For each k ∈ {1, . . . , 2m}, define the formula

θk(x1, . . . , xn) := ∃w
∧
j∈sk

ψj(w, x1, . . . , xn).

We now set δ to be the formula

∃z1 · · · ∃z2m

⎛
⎝ ∧

1≤k≤2m

(zk ≤ yk) ∧
∧

si∪sj=sk

(zi ∧ zj = zk) ∧ γ(z1, . . . , zm)

⎞
⎠ .

Note that δ is clearly a monotonic formula. The following claim finishes the
proof of the theorem.

Claim. ∃wϕ is determined by (δ; θ1, . . . , θ2m).

Proof of Claim. Fix L-structures (Mi)i∈I and a filter F on I. For k =
1, . . . , 2m, set Yk := {i ∈ I : Mi |= θk(a1(i), . . . , an(i))}.

First suppose that
∏

F Mi |= ∃wϕ(w, [a1]F , . . . , [an]F ). Take [b]F ∈∏
F Mi such that

∏
F Mi |= ϕ([b]F , [a1]F , . . . , [an]F). Set Zk := {i ∈

I : Mi |=
∧

j∈sk ψj(b(i), a1(i), . . . , an(i))}. Note, in particular, that for

k = 1, . . . ,m, that Zk = {i ∈ I : Mi |= ψk(b(i), a1(i), . . . , an(i)). It is clear
that Zk ⊆ Yk for all k = 1, . . . , 2m and Zi ∩ Zj = Zk whenever si ∪ sj =
sk. Also, since (γ;ψ1, . . . , ψm) determines ϕ, we have that P(I)/F |=
γ([Z1]F , . . . , [Zm]F ). It follows that P(I)/F |= δ([Y1]F , . . . , [Ym]F ).

We now suppose that P(I)/F |= δ([Y1]F , . . . , [Ym]F) as witnessed by
[Zk]F for k = 1, . . . , 2m. Note that, for example, [Z1]F ≤ [Y1]F does not
imply that Z1 ⊆ Y1 but merely that there is a set X ∈ F such that Z1∩X ⊆
Y . However, since there are only finitely many such conditions, we can find
X ∈ F such that:

(1) Zk ∩X ⊆ Yk for k = 1, . . . , 2m, and

(2) Zi ∩ Zj ∩X = Zk ∩X whenever si ∪ sj = sk.

Fix i ∈ X. Let ti consist of those j = 1, . . . ,m for which i ∈ Zj . Let l be
such that ti = sl. Since ti =

⋃
j∈ti sj , (2) above tells us that i ∈ Zl, whence

by (1), i ∈ Yl, that is, Mi |= ∃w
∧

j∈ti ψj(w, a1(i), . . . , an(i)). Fix b(i) ∈Mi

such that Mi |=
∧

j∈ti ψj(b(i), a1(i), . . . , an(i)). For i /∈ X, define b(i) ∈Mi
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arbitrarily. Now, for k = 1, . . . ,m, set

Wk := {i ∈ I : Mi |= ψk(b(i), a1(i), . . . , am(i))}.
Note that Zk∩X ⊆Wk for each k = 1, . . . ,m, whence [Zk]F ≤ [Wk]F . Since
P(I)/F |= γ([Z1]F , . . . , [Zm]F ) and γ is monotonic, we have P(I)/F |=
γ([W1]F , . . . , [Wm]F ). Since (γ;ψ1, . . . , ψm) determined ϕ, we have that∏

F Mi |= ϕ([b]F , [a1]F , . . . , [an]F ), and hence∏
F
Mi |= ∃wϕ(w, [a1]F , . . . , [an]F),

as desired. �

Exercise 6.11.8. Verify the atomic and conjunction cases in the previous
proof.

Here is a sample application of the Feferman-Vaught theorem:

Exercise 6.11.9. Suppose that Mi ≡ Ni for all i ∈ I. Then for any filter
F on I, prove that

∏
FMi ≡

∏
F Ni.

6.12. Notes and references

The idea behind the ultraproduct construction goes back to Skolem’s work
[164] from 1934 on nonstandard models of arithmetic. In 1948, Hewitt [80]
studies ultraproducts of fields. The ultraproduct construction for general
first-order structures is due to �Loś [113], where he also proved what is
now known as �Loś’s theorem. The proof of the compactness theorem using
ultraproducts is from [59]. Theorem 6.5.1 is based on a similar discussion in
[90, Theorem 2.2]. Theorem 6.5.6 is from the article [85]. Much of Section
6.6 comes from the book [28]. Theorem 6.7.1 comes from Blass’s thesis
[16]. The discussion around the model N [f ] comes from Keisler’s article
[102]. Most of Section 6.8 comes from the book [28], although the proof
of Theorem 6.8.3 we believe to be our own. Our presentation of iterated
ultrapowers borrows substantially from [28], although we simplify things in
many respects. The category-theoretic perspective on ultraproducts seems
to be well known but we struggled to find a precise reference. The notion of
ultracoproducts of compact spaces seems to be discussed for the first time
in [76]. Feferman and Vaught proved their theorem in [56], although our
treatment follows that of [28] very closely.



Chapter 7

Applications to
geometry, commutative
algebra, and number
theory

In this chapter, we present three applications of the ultraproduct construc-
tion of an algebraic nature. In Section 7.1, we present Ax’s theorem on
polynomial functions, which is an ingenious use of ultraproducts that trans-
fers a problem about the field of complex numbers to a problem about
finite fields. Section 7.2 presents several results about bounds in the the-
ory of polynomial rings, whose proofs are obtained by contradiction using
a commutative-algebraic analysis of an ultraproduct of counterexamples.
In Section 7.3, we list some number-theoretic applications of ultraproducts
by discussing simple instances of a powerful result in model-theoretic alge-
bra known as the Ax-Kochen theorem. The material in this last section
is considerably more advanced and so we merely content ourselves with a
presentation of the results and refer the interested reader elsewhere for full
proofs.

7.1. Ax’s theorem on polynomial functions

We start this chapter with a seemingly silly exercise:

Exercise 7.1.1. Suppose that X is a finite set and f : X → X is a function.
Prove that f is injective if and only if f is surjective.

109
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Why would we start the chapter this way? The answer is that, surpris-
ingly, it is one of the key steps in the proof of the following, significantly
deeper, result:

Theorem 7.1.2 (Ax’s theorem). Suppose that f : Cn → Cn is a polynomial
function. If f is injective, then f is surjective.

Here, when we say that f is a polynomial function, we mean that there

are polynomials P1( 	X), . . . , Pn( 	X) ∈ C[X1, . . . , Xn] such that, for all 	x ∈
Cn, we have f(	x) = (P1(	x), . . . , Pn(	x)).

How do we connect these seemingly disparate situations? Well, ultra-
products, of course! First, some intermediate steps.

Fact 7.1.3. If K1 and K2 are two algebraically closed fields of the same
characteristic and the same uncountable cardinality, then K1

∼= K2.

Exercise 7.1.4. If (Ki)i∈I is a family of algebraically closed fields and U is
an ultrafilter on I, prove that

∏
U Ki is also an algebraically closed field.

For each prime p, let Fp denote the algebraic closure of the finite field
Fp. Putting this all together, we have:

Theorem 7.1.5. For any nonprincipal ultrafilter U on the set of prime
numbers, we have

∏
U Fp

∼= C.

Proof. By Exercise 7.1.4, we have that
∏

U Fp is an algebraically closed
field. Furthermore, it must have characteristic 0, for, given any prime p, the
sentence p ·1 �= 0 is true in all but one of the fields involved, whence by �Loś’s
theorem it is true in the ultraproduct. Finally, by Corollary 6.8.4,

∏
U Fp

has cardinality c. Thus, by Fact 7.1.3,
∏

U Fp
∼= C. �

We are thus left proving Ax’s theorem for the field
∏

U Fp.

Exercise 7.1.6. For all m,n ∈ N, prove that there is a sentence σm,n in the
language of rings so that, for any field K, we have K |= σm,n if and only if,
for any polynomial function f : Kn → Kn with degrees bounded by m, if f
is injective, then f is surjective.

Recall now that Fp =
⋃

t Fpt .

Lemma 7.1.7. For any prime number p and any polynomial function
f : Fp

n → Fp
n
, if f is injective, then f is surjective.

Proof. Fix a prime p and consider an injective polynomial function
f : Fp

n → Fp
n
. Let t be such that all of the coefficients of f belong to Fpt . It

follows that for any s ≥ t, we can consider the function fs : F
n
ps → Fn

ps which
is simply the restriction of f . Since f is injective, so is each fs, whence each
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fs is also surjective by Exercise 7.1.1. However, if each fs is surjective, it
follows immediately that f is also surjective. �

The previous lemma can be restated by saying that Fp |= σm,n for all

primes p and all m,n. By �Loś’s theorem, it follows that
∏

U Fp |= σm,n for
each m,n, whence C |= σm,n for all m,n, and thus Ax’s theorem is proved.

With minimal effort, we can extend Ax’s theorem to a broader class of
functions. First, we say that X ⊆ Cn is definable if there is a formula

ϕ(	x, 	y) and elements 	b ∈ C such that X = {	a ∈ Cn : C |= ϕ(	a,	b)}. Also,
given X ⊆ Cn, we say that a function f : X → Cn is definable if the graph
of f , which is the set {(x, f(x)) : x ∈ X}, is a definable subset of C2n.

Exercise 7.1.8. If f : X → Cn is a definable function, then X is a definable
set.

Theorem 7.1.9 (Strong form of Ax’s theorem). Suppose that X ⊆ Cn is a
definable set and f : X → X is an injective definable function. Then f is
surjective.

Exercise 7.1.10. Prove the strong form of Ax’s theorem.

The definable sets in Cn have clear geometric meaning. Indeed, define

X ⊆ Cn to be Zariski closed if there are polynomials P1, . . . , Pm ∈ C[ 	X]
such that

X = {	x ∈ Cn : P1(	x) = · · · = Pm(	x) = 0}.
We then say that X is constructible if X can be obtained from Zariski
closed sets by taking (finite) unions, intersections, and complements.Clearly,
constructible sets are definable. It is a fact (known as the Chevalley-Tarski
theorem) that, conversely, every definable set is constructible. (This holds,
more generally, for any algebraically closed field.) Thus, defining a function
to be constructible if its graph is constructible, we can restate the strong
form of Ax’s theorem in the following geometric form: if f : X → X is an
injective constructible function, then f is surjective.

7.2. Bounds in the theory of polynomial rings

In this section, we will be considering the following situation: R is a com-
mutative ring with unity, A is a k × l matrix with entries from R, and we
are looking at the linear homogeneous system

(�) A	y = 	0.

Associated to the system (�) is the solution submodule

SA := SA(R) := {	r ∈ Rl : A · 	r = 	0}.
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We say that 	r1, . . . , 	rp ∈ SA generate SA if, for every 	r ∈ SA, there are
s1, . . . , sp ∈ R such that 	r = s1	r1 + · · · + sp	rp. If there are finitely many
	r1, . . . , 	rp ∈ SA that generate SA, we say that SA is finitely generated.

Fact 7.2.1. If R is Noetherian, then SA is finitely generated.

In this chapter, we will be interested in the case R = K[X1, . . . , Xn],
where K is a field. By the Hilbert basis theorem, R is Noetherian, whence
SA is finitely generated. Thus, there is clearly a bound α on the degrees
of the polynomials in the generating set for SA. In theory, this bound α
depends on many of the characters involved: a bound d on the degrees of
the polynomials appearing in A, the dimensions k and l of the matrix A,
the number n of indeterminates in K[X1, . . . , Xn], the field K itself, and the
coefficients of the polynomials in the matrix A. The main theorem in this
section is that, in fact, the bound α depends only on n, d, and k:

Theorem 7.2.2. Given n, d, k ∈ N, there is α = α(n, d, k) ∈ N such that
the following holds: Suppose that K is a field and A is a k × l-matrix over
K[X1, . . . , Xn] such that each polynomial in A has degree at most d. Then
the solution submodule SA is generated by polynomials of degree at most α.

Remark 7.2.3. It is quite clear that any system (�) as above where all
polynomials involved have degree at most d is equivalent to one where l
equals the number of monomials Xe1

1 · · ·Xen
n with e1 + · · · + en ≤ d. We

refer to this quantity as λ(n, d).

The key to the proof of Theorem 7.2.2 is the following algebraic concept.

Definition 7.2.4. Suppose that R ⊆ S are rings. We say that S is flat
over R if, for any system (�) (where the entries in A come from R) and any
solution 	s ∈ SA(S), there are 	r1, . . . , 	rn ∈ SA(R) and b1, . . . , bn ∈ S such
that 	s = b1	r1 + · · ·+ bn	rn.

In other words, S is flat over R if any solution in S to a linear system
with coefficients in R is equal to an S-linear combination of solutions in R.
We will need the following two standard facts about flatness. While these
results are not difficult, their proofs would take us too far afield. We refer
the reader to [133].

Facts 7.2.5. Suppose that R ⊆ S are rings.

(1) S is flat over R if and only if the criteria in the definition holds
for systems with k = 1 (that is, for a single linear homogeneous
equation).

(2) If S is flat over R, then S[X] is flat over R[X].
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For us, here are the rings R and S that are going to be relevant to the
proof of Theorem 7.2.2. Fix a family (Kt)t∈N of fields and U ∈ βN \ N. Set
K :=

∏
U Kt and R := K[X1, . . . , Xn]. Thus, R is an ordinary polynomial

ring over a field K, where the field K happens to be an ultraproduct of
a family of fields. What is the ring S? Well, we can instead consider the
ordinary polynomial rings Kt[X1, . . . , Xn] over the fields Kt and then take
the ultraproduct of these rings, yielding the ring S :=

∏
U(Kt[X1, . . . , Xn]).

There is an obvious way of viewing R as a subring of S, namely by the
identification∑

i1,...,in

[ci1,...,in(t)]UX
i1
1 · · ·X in

n ↔ [
∑

i1,...,in

ci1,...,in(t)X
i1
1 · · ·X in

n ]U .

Note that R is indeed a proper subring of S. For example, the polynomial
[Xt

1]U is an element of S that is not an element of R. We can view this
element as a “nonstandard polynomial” (see Chapter 9) whose “degree” is
the element [id]U ∈ NU . Since [id]U > n for all n ∈ N, this polynomial can
be thought of as having “infinite degree”.

Exercise 7.2.6. Prove that the elements of R are precisely the elements of
S of finite degree.

Here is the main algebraic fact underlying the proof of Theorem 7.2.2:

Theorem 7.2.7. Let (Kt)t∈N be a family of fields and let U ∈ βN\N. Then∏
U (Kt[X1, . . . , Xn]) is flat over (

∏
U Kt)[X1, . . . , Xn].

First, we will need a change of variable trick. In the lemma that follows,
K is an arbitrary field. We view an element of K[X1, . . . , Xn] as an element
of K[X1, . . . , Xn−1][Xn], that is, as a polynomial in the variable Xn whose
coefficients come from the ring K[X1, . . . , Xn−1]. It thus makes sense to
speak of the leading coefficient of such a polynomial. We also use the multi-
index notation for polynomials in K[X1, . . . , Xn], namely a term of such
a polynomial may be written as ajX

j instead of the more cumbersome

notation aj1,...,jnX
j1
1 · · ·X

jn
n .

Lemma 7.2.8. Given f ∈ K[X1, . . . , Xn] = K[X1, . . . , Xn−1][Xn], there
are numbers d1, . . . , dn−1 > 0 such that, setting Zi := Xi − Xdi

n for i =
1, . . . , n− 1, Zn = Xn, and

f#(Z1, . . . , Zn) := f(Z1 + Zd1
n , . . . , Zn−1 + Zdn−1

n , Zn),

we have that f#(Z1, . . . , Zn) has an element of K as its leading coefficient
(as opposed to an element of K[Z1, . . . , Zn−1]).
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Proof. Write f =
∑

j ajX
j with each aj �= 0. Using the change of variable

appearing in the statement of the lemma, we have

f#(Z1, . . . , Zn) =
∑
j

aj(Z1 + Zd1
n )j1 · · · (Zn−1 + Zdn−1

n )jn−1 · Zjn
n .

Rewriting this, we have

f#(Z1, . . . , Zn) = (
∑
j

ajZ
d1j1+···+dn−1jn−1j+jn
n ) + g(Z1, . . . , Zn),

where g has no occurrence of a monomial of the form cZk
n (c ∈ K). If we

choose d > 0 large enough and set di := dn−i, we leave it to the reader to
verify that none of the exponents d1j1+ · · ·+dn−1jn−1+jn are equal. Thus,
the leading coefficient of f# is aj for some j, proving the lemma. �

Proof of Theorem 7.2.7. We proceed by induction on n. When n = 0,
there is nothing to prove. Now assume that n > 0 and the theorem is true
for n − 1; we show that it is true for n. For simplicity, set K :=

∏
U Kt,

R := K[X1, . . . , Xn], and S :=
∏

U (Kt[X1, . . . , Xn]). By Facts 7.2.5(1),
it is enough to prove the following: given f1, . . . , fl ∈ R and a solution
	g = (g1, . . . , gl) ∈ Sl of

(†) f1Y1 + · · ·+ flYl = 0,

then 	g is an S-linear combination of solutions to (†) in Rl. Without loss of
generality, Xn appears in f1. By Lemma 7.2.8, we may make a change of co-
ordinates and thus assume, without loss of generality, that f1 is monic inXn,
that is, when f1 is viewed as a polynomial in (

∏
U Kt)[X1, . . . , Xn−1][Xn],

its leading coefficient is 1. (We leave it to the reader to verify that this
change of coordinates is harmless for the task at hand.)

Set d := degXn
f1. For i = 2, 3, . . . , l, let f̂i ∈ Rl be the vector with −fi

in the first component, f1 in the ith component, and zeroes elsewhere, e.g.,
f̂2 = (−f2, f1, 0, 0, . . . , 0). Note that each f̂i is a solution to the equation (†)
in Rl. By choosing h2, . . . , hl ∈ S appropriately, we see that 	g′ := 	g−h2f̂2−
· · ·−hlf̂l is a solution to the equation (†) with degXn

(g′2), . . . , degXn
(g′n) < d.

Since f1g
′
1 + · · · + flg

′
l = 0, it follows that degXn

(g′1) is also finite. In
other words, each component of 	g ′ is an ordinary polynomial in the variable
Xn with coefficients in the ring

∏
U (Kt[X1, . . . , Xn−1]). By the inductive

hypothesis,
∏

U(Kt[X1, . . . , Xn−1]) is flat over K[X1, . . . , Xn−1], whence, by
Facts 7.2.5(2),

(
∏
U
(Kt[X1, . . . , Xn−1]))[Xn]

is flat over

K[X1, . . . , Xn−1][Xn] = K[X1, . . . , Xn].
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It follows that 	g ′ is a
∏

U (Kt[X1, . . . , Xn−1])[Xn]-linear combination of so-
lutions to equation (†) in R; in particular, 	g ′ is an S-linear combination of

solutions to equation (†) in Rl. Since 	g = 	g ′ + h2f̂2 + · · · + hlf̂l, we have
that 	g is also an S-linear combination of solutions to equation (†) in Rl, as
desired. �

Proof of Theorem 7.2.2. By Remark 7.2.3, we may assume that, in equa-
tion (�), we have that l = λ(n, d). Suppose that Theorem 7.2.2 is false for
a given n, d, k. For each t, let Kt be a field, and let A(t) be a k × l-matrix
with entries from Kt[X1, . . . , Xn] with degrees bounded by d such that (�)
has a solution 	s(t) from Kt[X1, . . . , Xn] that is not a linear combination of
solutions of degree bounded by t. Let K, R, and S be as defined in the
proof of Theorem 7.2.7. Let A be the matrix over S whose entries are the
ultraproducts of the entries from A(t), that is, Aij = [A(t)ij]U . Since all
entries of each A(t) have degree bounded by d, it follows that A is actu-

ally a matrix over R. Now [	s(t)]U is a solution of A · 	y = 	0 in S, whence,

by Theorem 7.2.7, there are solutions 	r1, . . . , 	rm ∈ R of A · 	y = 	0 and
[s1]U , . . . , [sm]U ∈ S such that [	s]U = [s1]U	r1 + · · ·+ [sm]U	rm. Let q ∈ N be
an upper bound for the degrees of 	r1, . . . , 	rm. For each t and i = 1, . . . ,m,
let 	ri(t) ∈ Kt[X1, . . . , Xn] be such that 	ri = [	ri(t)]U . Since U is nonprinci-

pal, there is t > q such that 	r1(t), . . . , 	rm(t) are solutions of A(t) · 	y = 	0 and
	s(t) = s1(t)	r1(t) + · · ·+ sm(t)	rm(t), contradicting the choice of 	s(t). �

There is also something to be said about nonhomogeneous equations.
This time, we consider the equation

(††) A · 	y = 	f,

where each entry from A and each entry from 	f come from the ring R. The
relevant algebraic notion is the following:

Definition 7.2.9. If R ⊆ S are rings, we say that S is faithfully flat over
R if S is flat over R and every system (††) with a solution in Sl also has a
solution in Rl.

The proof of the next theorem is more difficult than the proof of Theorem
7.2.7, and we refer the reader to [180] for a proof:

Theorem 7.2.10. Let (Kt)t∈N be a family of fields and let U ∈ βN \ N.
Then

∏
U(Kt[X1, . . . , Xn]) is faithfully flat over (

∏
U Kt)[X1, . . . , Xn].

Corollary 7.2.11. Given n, d, k ∈ N, there is β = β(n, d, k) ∈ N such that
the following holds: whenever K is a field and (††) is such that all entries

from A and 	f come from K[X1, . . . , Xn] and have degree at most d, then if
(††) has a solution, it has a solution with all entries of degree at most β.



116 7. Applications to geometry, commutative algebra, number theory

Exercise 7.2.12. Prove Corollary 7.2.11 from Theorem 7.2.10.

When k = 1, we can reformulate the conclusion of the previous corollary
in terms of ideals.

Corollary 7.2.13. Given n, d ∈ N, there is γ = γ(n, d) such that the
following holds: whenever K is a field and f, f1, . . . , fl ∈ K[X1, . . . , Xn]
all have degree at most d, then f ∈ (f1, . . . , fl) if and only if there are
h1, . . . , hl ∈ K[X1, . . . , Xn] of degree at most γ with f = h1f1 + · · ·+ hlfl.

Exercise 7.2.14. Suppose that K is a field. Then, for any f0, f1, . . . , fm ∈
Z[C,X], we have {c ∈ Kn : f0(c,X) ∈ (f1(c,X), . . . , fm(c,X))} is defin-
able. In particular, if K is algebraically closed, then this set is constructible.

There are many other results of the kind described in this section. How-
ever, the algebraic arguments needed are beyond the scope of this book and
for that we reason we have chosen to only describe the aforementioned re-
sults in detail. Still, one of the results from [180] is compelling enough to
state here, without proof.

Theorem 7.2.15. Let (Kt)t∈N be a family of fields and let U ∈ βN \N. Fix
also f1, . . . , fm ∈ (

∏
U Kt)[X1, . . . , Xn]. Then f1, . . . , fm generate a prime

ideal of (
∏

U Kt)[X1, . . . , Xn] if and only if they generate a prime ideal of∏
U (Kt[X1, . . . , Xn]).

Exercise 7.2.16. Use the previous theorem to prove the following “bounds”
result: given n, d ∈ N, there is δ = δ(n, d) ∈ N such that the following holds:
if K is a field and f1, . . . , fm ∈ K[X1, . . . , Xn] all have degree at most d and
gh ∈ (f1, . . . , fm) implies g ∈ (f1, . . . , fm) or h ∈ (f1, . . . , fm) for all g, h of
degree at most δ, then (f1, . . . , fm) is a prime ideal or all of K[X1, . . . , Xn].

7.3. The Ax-Kochen theorem and Artin’s conjecture

Let us begin this section by comparing the rings Z/(p2Z) and Fp[T ]/(T
2).

In the former ring, we may think of elements as being of the form a0 + a1p,
where a0, a1 ∈ {0, 1, . . . , p− 1} (as the map which sends such an element to
its coset modulo p2Z is a bijection). Likewise, elements of the latter ring may
be viewed as polynomials b0 + b1T ∈ Fp[T ] (so b0, b1 ∈ Fp). Consequently,
both rings have p2 elements. There are other ways in which these rings are
similar (they are both henselian local rings with maximal ideal generated
by an element whose square is 0; these terms will be defined shortly). On
the other hand, these rings are different in other ways, as, for example, the
latter ring contains a subfield (namely Fp) while the former ring does not!

Nevertheless, one can capture the intuition that the rings Z/(p2Z) and
Fp[T ]/(T

2) are similar, and that this similarity actually “improves” as p gets
larger. Moreover, this result holds for any n instead of just for n = 2:
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Theorem 7.3.1. For any n ≥ 1 and any nonprincipal ultrafilter U on the
set of primes, we have∏

U
Z/(pnZ) ∼=

∏
U

Fp[T ]/(T
n).

Corollary 7.3.2. For any sentence σ in the language of rings, we have, for
all but finitely many primes p, that

Z/(pnZ) |= σ ⇔ Fp[T ]/(T
n) |= σ.

Proof. Suppose that the corollary was false. Then there would be an infinite
set A of primes such that, without loss of generality, for all p ∈ A, we have
Z/(pnZ) |= σ while Fp[T ]/(T

n) |= ¬σ. Let U be a nonprincipal ultrafilter
on the set of primes such that A ∈ U . We then have

∏
U Z/(pnZ) |= σ while∏

U Fp[T ]/(T
n) |= ¬σ, contradicting Theorem 7.3.1. �

We will discuss some further ramifications of Theorem 7.3.1 in a moment,
but let us pause briefly to discuss some of the ingredients behind its proof.
The key idea is that of a local ring. For simplicity, in this section, when we
use the word “ring” we always mean “commutative ring with unity.”

Definition 7.3.3. A ring R is a local ring if it has a unique maximal ideal.

If R is a local ring, we usually denote its unique maximal ideal by m and
we let k := R/m; k is referred to as the residue field of the local ring R.

Exercise 7.3.4.

(1) Prove that Z/(pnZ) is a local ring whose unique maximal ideal is
the ideal generated by the coset of p and whose residue field is
isomorphic to Fp.

(2) Prove that Fp[T ]/(T
n) is a local ring whose unique maximal ideal

is the ideal generated by the coset of T and whose residue field is
isomorphic to Fp.

Contrast the previous exercise with the fact that neither Z nor F [T ] (F
any field) are local rings.

Exercise 7.3.5. Suppose that R is a ring.

(1) Prove that R is a local ring if and only if the set of noninvertible
elements forms an ideal of R.

(2) Prove that there is a sentence σlocal in the language of rings such
that R |= σlocal if and only if R is a local ring.

(3) Prove that there is a formula ϕmax(x) in the language of rings such
that, for all R |= σlocal, ϕmax(R) is the maximal ideal of R.
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(4) Suppose that (Ri)i∈I is a family of local rings with maximal ideals
mi and residue fields ki. Fix an ultrafilter U on I and set R :=∏

U Ri. Show that R is a local ring. Moreover, denoting the maxi-
mal ideal and residue field for R by m and k, show that m ∼=

∏
U mi

and k ∼=
∏

U ki.

The following result is the key to proving Theorem 7.3.1 above. Its proof
would take us too far afield so we refer the reader to the excellent treatment
in [179].

Theorem 7.3.6. Suppose that R is a local ring and that t ∈ R and n ∈ N
are such that:

(1) char(k) = 0;

(2) m = tR;

(3) tn �= 0 but tn+1 = 0.

Then R ∼= k[T ]/(Tn+1) by an isomorphism that sends t to the coset of T .

Proof of Theorem 7.3.1. Let

R :=
∏
U

Z/(pnZ) and S :=
∏
U

Fp[T ]/(T
n).

By Exercise 7.3.5, R and S are local rings. For each p, let tR(p) denote
the generator of the maximal ideal of Z/(pnZ). Likewise, let tS(p) denote
the generator of the maximal ideal of Fp[T ]/(T

n). Then by Exercise 7.3.5,
letting mR and mS denote the maximal ideals of R and S, respectively, we
have mR = [tR]UR and mS = [tS ]US. Note also that �Loś’s theorem implies
that [tR]

n
U , [tS ]

n
U �= 0 but [tR]

n+1
U = [tS ]

n+1
U = 0. Finally, Exercise 7.3.5

implies that kR
∼= kS

∼=
∏

U Fp, a field k of characteristic 0. Thus, by
Theorem 7.3.6, R ∼= k[T ]/(Tn+1) ∼= S, as desired. �
Remark 7.3.7. Note that the proof of the previous theorem shows that
the isomorphism between

∏
U Z/(pnZ) and

∏
U Fp[T ]/(T

n) maps [tR]U to
[tS]U . Consequently, in Corollary 7.3.2, we could even allow sentences in
an extension of the language of rings by adding a constant, and where this
constant is interpreted in both Z/(pnZ) and Fp[T ]/(T

n) as the generator of
the maximal ideal.

We now consider what happens if we let n→∞ in the above discussion.
What exactly does that mean? Well, in the case of Fp[T ]/(T

n), letting
n→∞ means we should consider the power series ring Fp[[T ]] defined as the
collection of all formal power series

∑∞
i=0 aiT

i with each ai ∈ Fp. One adds
and multiplies such formal power series in the same way as with ordinary
polynomials. Of course this construction makes sense over any field, not just
Fp.
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Exercise 7.3.8. For any field k, show that R := k[[T ]] is a local ring with
unique maximal ideal m = Tk[[T ]] and residue field k.

What does it mean to let n → ∞ in the case of Z/(pnZ)? Näıvely
speaking, we should consider formal power series

∑∞
i=0 aip

i, with each ai ∈
{0, 1, . . . , p− 1}. To make this rigorous, one should think of such an infinite
sum as the limit as n → ∞ of the partial sums

∑n
i=0 aip

i. But in what
topology is this limit taken? Well, we should think of tails

∑m
i=n+1 aip

i as
being neglible for large m > n. Thus, large powers of p should be small,
leading us to consider the norm | · |p on Z given by |a|p := p−vp(a), where
vp(a) := the largest n such that pn | a. We then define a metric dp on Z
given by dp(a, b) := |a − b|p. One then lets Zp denote the completion of Z
as a metric space. It follows that the sequence (

∑n
i=0 aip

i)n∈N converges to
an element of Zp, which we write as

∑∞
i=0 aip

i. One can check that the ring
operations on Z extend to ring operations on Zp. Zp is referred to as the
ring of p-adic integers.

Fact 7.3.9. Zp is a local ring with unique maximal ideal pZp and residue
field Fp.

We need to introduce one further notion:

Definition 7.3.10. Suppose that R is a local ring. We say that R is
henselian if, whenever f(X) ∈ R[X] and a ∈ R is such that f(a) ∈ m

but f ′(a) /∈ m, then there is x ∈ R with f(x) = 0 and x− a ∈ m.

Although we will not get too much into the details, here is how one
should think of the henselian property. One thinks of elements of m as
“small” or “infinitesimal” in some sense. In this case, f(a) ∈ m means that
f(a) is close to 0. The definition says that as long as the slope of the tangent
line is not infinitesimal, then a is really close to an actual root of f .

One can also think of the henselian property in terms of the residue
field. Letting ā denote the image of a in k and f̄(X) ∈ k[X] as the result
of applying the quotient map to all coefficients of f , the hypothesis is that
f̄(ā) = 0 and f̄ ′(ā) �= 0. In other words, one has a nonsingular zero of f̄
in k[X] and the henselian property says that the resulting root of f̄ can be
lifted to an actual root of f .

Exercise 7.3.11. Show that there is a theory Thens in the language of rings
such that, for any local ring R, we have R |= Thens if and only if R is
henselian.

Example 7.3.12.

(1) The rings Z/(pnZ) and Fp/(T
n) are henselian.
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(2) Any local ring satisfying the assumptions of Theorem 7.3.6 above
is henselian.

(3) Zp is henselian.

(4) For any field k, k[[T1, . . . , Tn]] is a henselian local ring.

A crucial fact used in the proof of Theorem 7.3.6 above is the following:

Theorem 7.3.13. Suppose that R is a henselian local ring with chark = 0.
Then there is a subfield E of R (that is, a subring of R that happens to be
a field) such that the residue map maps E isomorphically onto k.

Consequently, we have:

Corollary 7.3.14. Suppose that R is a henselian local ring with chark = 0
and f1, . . . , fk ∈ Z[X], where X = (X1, . . . , Xn). Then any solution of
f1(X) = · · · = fk(X) = 0 in k can be lifted to a solution in R.

A subfield E as in the previous theorem is called a lift of k. Putting
together all of the previous information, we can now prove the following
theorem, which answered a question of Lang from the 1950s:

Theorem 7.3.15 (Greenleaf-Ax-Kochen). Fix f1, . . . , fk ∈ Z[X], where
X = (X1, . . . , Xn). Then for all but finitely many primes p, we have that
every solution of f1(X) = · · · = fk(X) = 0 in Fp can be lifted to a solution
in Zp.

Proof. Suppose, toward a contradiction, that the theorem is false. Then
there is an infinite set A of primes such that, for each p ∈ A, there is a
solution a(p) ∈ Fp of the system that cannot be lifted to a solution in Zp.
Let U be a nonprincipal ultrafilter on the set of primes such that A ∈ U .
Consider R :=

∏
U Zp, which is a henselian local ring whose residue field k

is isomorphic to
∏

U Fp, which has characteristic 0. Then [a]U is a solution
in k to the system, whence, by Corollary 7.3.14, there is [b]U ∈ R that is a
solution to the system as well. By �Loś’s theorem, we have that, for U -many
primes p, the residue of b(p) is a(p) and b(p) is a solution to the system.
In particular, there is some p ∈ A for which this is true, contradicting the
definition of A. �

One can use the Greenleaf-Ax-Kochen theorem to prove one further nice
result. But first, we need:

Fact 7.3.16 (Chevalley-Warning). Suppose that q is a power of a prime
p and f1, . . . , fk ∈ Fq[X] \ {0}, where X = (X1, . . . , Xn), are such that∑

deg fi < n. Then p divides |{x ∈ Fn
q : f1(x) = · · · = fk(x) = 0}|.

In particular, if each fi has constant term 0, then there is at least one



7.3. The Ax-Kochen theorem and Artin’s conjecture 121

such solution (namely the zero solution), whence there are at least p many
solutions, and hence one nonzero solution.

Corollary 7.3.17. Suppose that f1, . . . , fk ∈ Z[X] \ {0} all have constant
term 0. Then for all but finitely many primes p, there is a nonzero solution
in Zn

p to the system.

It turns out that Theorem 7.3.1 above also holds true “in the limit”:

Theorem 7.3.18. For any nonprincipal ultrafilter U on the set of primes,
we have ∏

U
Zp
∼=
∏
U

Fp[[T ]].

Unlike Theorem 7.3.1, the proof of the previous theorem is much more
difficult. The previous theorem is actually a special case of a more general
theorem known as the Ax-Kochen-Ershov theorem, a fundamental result
in model-theoretic algebra.

As above, we have the following:

Corollary 7.3.19. For any sentence σ in the language of rings, for all but
finitely many primes p, we have

Zp |= σ ⇔ Fp[[T ]] |= σ.

The previous corollary has a spectacular application. First, we set Qp

to be the fraction field of Zp.

Theorem 7.3.20. If f(X1, . . . , X5) ∈ Qp[X1, . . . , X5] is homogeneous of
degree 2, then f has a zero in Qp.

Motivated by the previous result, Artin conjectured the following gen-
eralization:

Conjecture 7.3.21 (Artin). If f(X1, . . . , Xn) ∈ Zp[X1, . . . , Xn] is homoge-
neous of degree d with n = d2 + 1, then f has a zero in Zp.

The previous conjecture was later proven to be true for d = 3 [37] and
[114], but false in general for d = 4 [175]. However, the conjecture does
hold if we replace Zp by Fp[T ]:

Theorem 7.3.22 (Lang). If f(X1, . . . , Xn) ∈ (Fp[T ])[X1, . . . , Xn] is homo-
geneous of degree d with n = d2 + 1, then f has a zero in Fp[T ].

By Corollary 7.3.19, we have a positive solution to an asymptotic version
of Artin’s conjecture:

Corollary 7.3.23. Fix d ∈ N and set n := d2 + 1. Then for all but
finitely many primes p, we have the following: for any f(X1, . . . , Xn) ∈
Zp[X1, . . . , Xn] that is homogeneous of degree d, f has a zero in Zp.
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7.4. Notes and references

Ax’s theorem was originally proven in [3]. Grothendieck [75] independently
proved this theorem using techniques from algebraic geometry, whence the
theorem is sometimes known as the Ax-Grothendieck theorem. The material
presented in Section 7.2 is taken directly from [180] except that we use the
language of ultraproducts rather than the language of nonstandard analysis
(see Chapter 9). Our treatment of the Ax-Kochen theorem and Artin’s
conjecture is essentially an excerpt from the incredible lecture notes [179],
which include full proofs and further historical context.

A book devoted entirely to the use of ultraproducts in commutative
algebra is Schouten’s book [153].



Chapter 8

Ultraproducts
and saturation

One of the main benefits of the ultraproduct construction is that it often
yields structures that are very “rich” in a sense that is made precise using
the model-theoretic notion of saturation. In Section 8.1, we introduce this
notion and the related notion of universality. In Section 8.2, we show that
ultraproducts with respect to countably incomplete ultrafilters are always
countably saturated, which is the weakest nontrivial level of saturation. Sec-
tion 8.3 describes the class of regular ultrafilters; ultraproducts with respect
to regular ultrafilters are always universal. In order to obtain ultraproducts
that are fairly saturated, one must consider the class of good ultrafilters,
which is the subject of Sections 8.4 and 8.5. Finally, Section 8.6 briefly
discusses Keisler’s order, which is a measure of relative complexity of first-
order theories based on the relative level of saturation of ultrapowers of their
models.

8.1. Saturation

In order to motivate the notion of saturation, we first mention the following
consequence of the compactness theorem.

Proposition 8.1.1. Suppose that M is an L-structure and A ⊆ M is a
set of parameters. Suppose that Σ(x) is a set of LA-formulas in the free
variables x (x being some finite tuple of variables) that is finitely satisfiable
in MA, that is, for every finite subset Δ(x) of Σ(x), there is b ∈ M such
that MA |= Δ(b). Then there is an elementary extension N of M such that
Σ(x) is satisfied in NA, meaning that there is b ∈ N such that NA |= Σ(b).

123
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Proof. Let L′ := LM ∪ {c}, where c is a tuple of new constant symbols
of the same length as x. Let Σ(c) be the set of L′-sentences obtained by
replacing each occurrence of the tuple x by the new tuple c. We consider
the set Σ′ of L′-sentences given by

Σ′ := Σ(c) ∪ {ϕ : ϕ is an LM -sentence such that MM |= ϕ}.
Since Σ is finitely satisfiable in MA, we see that any finite subset of Σ′ is
modeled by an appropriate expansion of MM to an L′-structure. By the
compactness theorem, Σ′ has a model N ′. Setting N to be the L-reduct of
N ′ yields the desired elementary extension of M. �

In Proposition 8.1.1, we think of Σ(x) being finitely satisfiable inMA as
saying that Σ is describing some properties of an element that could exist
in M. The compactness argument allows us to conclude that the element
does indeed exist, albeit in an elementary extension. Often, passing to an
elementary extension is necessary:

Example 8.1.2. Suppose thatM = (N, <) and let Σ := {n < x : n ∈ N}.
Then Σ is finitely satisfiable in M but obviously not satisfiable in M.

The point of saturated structures is that, as long as the number of pa-
rameters used in the description is small, then any element that could exist
in M does in fact exist in M:

Definition 8.1.3. Suppose that M is an L-structure and κ is an infinite
cardinal. We say that M is κ-saturated if, whenever A ⊆ M is a set of
parameters with |A| < κ and Σ(x) is a set of LA-formulae that is finitely
satisfiable in MA, then Σ(x) is satisfiable in MA.

It is clear that any κ-saturated structure is also λ-saturated for λ < κ.

Exercise 8.1.4. Suppose that M is κ-saturated. Prove that MA is also
κ-saturated for any A ⊆M with |A| < κ.

Exercise 8.1.5. Prove thatM is κ-saturated if and only if it is κ-saturated
for sets consisting of formulae with just one free variable.

Exercise 8.1.6. Suppose that M is κ-saturated. Prove that |M | ≥ κ.

Consequently, the most saturated that a structure M can be is |M |-
saturated. In this case, we simply say that M is saturated.

Example 8.1.7. Any uncountable algebraically closed field is saturated.
To see this, suppose that K is an uncountable algebraically closed field and
that Σ is a set of LA-formulae in the free variable x, where A ⊆ K is such
that |A| < |K| (and L is the language of rings). By the Chevalley-Tarski
theorem referred to in Section 7.1, we may as well assume that Σ consists of
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either equations f(x) = 0 or inequations f(x) �= 0, where f(x) ∈ k[x] and k
is the subfield of K generated by A. If there is any equation in Σ, then since
K is algebraically closed, all of the roots of that equation belong to K and,
by finite satisfiability, one of those roots satisfies Σ. If all of the elements
of Σ are inequations, then each inequation asks that x not be one of the
finitely many roots of the polynomial in question. Since there are at most
|k| = max(|A|,ℵ0) < |K| many such polynomials, we can find an element of
K satisfying all of the inequations, whence satisfying Σ.

Note, however, that not every countable algebraically closed fields is
saturated. For example, if K is the algebraic closure of the prime field,
then K is not saturated as it does not satisfy the finitely satisfiable set of
sentences asking that x be transcendental. (The set is finitely satisfiable as
algebraically closed fields are infinite.) In fact, of all of the countable alge-
braically closed fields of a given characteristic, only the one of transcendence
degree ℵ0 over the prime field is saturated.

Exercise 8.1.8. Prove the last statement in Example 8.1.7.

The following important theorem will be used several times throughout
this book.

Theorem 8.1.9. Suppose thatM and N are saturated structures,M≡ N ,
and |M | = |N |. Then M∼= N .

Proof. Set κ := |M | = |N |. Enumerate M = (aα)α<κ and N := (bα)α<κ.
For α < κ, we build sets Aα ⊆M and Bα ⊆ N and bijections fα : Aα → Bα

satisfying:

(1) fα ⊆ fα+1;

(2) |Aα| < κ and |Bα| < κ;

(3) aα ∈ Aα+1 and bα ∈ Bα+1;

(4) fα is partial elementary : for any formula ϕ(x) and any tuple a ∈
Aα, we have M |= ϕ(a) if and only if N |= ϕ(fα(a)).

If we then let f :=
⋃

α<κ fα, we get that f :M→N is an isomorphism. To
begin, when α = 0, we let f0 to be the empty function. Note that, in this
case, (4) follows from the fact that M and N are elementarily equivalent.
When α is a limit ordinal, we just take fα :=

⋃
β<α fβ , which clearly satisfies

(2) and (4).

Supposing now that fα has been constructed, we now show how to con-
struct fα+1. We actually build fα+1 in two steps, first by ensuring that aα
is in the domain of fα+1 and then ensuring that bα is in the range of fα+1.
To accomplish the first step, we are searching for c ∈ N so that, roughly
speaking, the relationship between aα and Aα is the same as the relationship



126 8. Ultraproducts and saturation

between c and Bα. More formally, we are looking to find c ∈ N that belongs
to
⋂

ϕ∈Xα
Bϕ, where,

Xα := {ϕ(x, e) : ϕ(x, e) is a LAα-formula such that M |= ϕ(aα, e)}

and

Bϕ := {c ∈ N : N |= ϕ(x, fα(e))}.
Note that if c ∈

⋂
ϕBϕ, then extending fα to g : Aα ∪ {aα} → N by

defining g(aα) := c is a partial elementary map extending fα and which aα
in its domain. Since |Aα| < κ and N is κ-saturated, it suffices to show that,
for any finite X ⊆ Xϕ,

⋂
ϕ∈X Bϕ is satisfiable in N . To see this, note that

M |= ∃x
∧

ϕ∈X ϕ(x, e), whence N |= ∃x
∧

ϕ∈X ϕ(x, fα(e)), which follows
from the fact that fα is partial elementary.

One proceeds in a similar fashion to extend g to a partial elementary
map fα+1 which has bα in its range. We leave the details to the reader. �

We will also need to consider the following related notion:

Definition 8.1.10. Suppose that κ is an infinite cardinal. An L-structure
M is κ-universal if, for every L-structure N with |N | < κ and M ≡ N ,
we have that N embeds elementarily into M.

Once again, κ-universal clearly implies λ-universal for λ < κ. It is also
clear that if M is κ-universal, then κ ≤ |M |+. Consequently, we refer to a
|M |+-universal structure simply as universal.

Universality is a weakening of saturation:

Proposition 8.1.11. If M is κ-saturated, then M is κ+-universal.

Exercise 8.1.12. Prove Proposition 8.1.11. (Hint. Proceed as in the proof
of Theorem 8.1.9 but without needing the “two-step” procedure.)

There is a partial converse to Proposition 8.1.11:

Proposition 8.1.13. Suppose that |L| ≤ κ. Then the L-structure M is
κ-saturated if and only if, for every subset A ⊆ M with |A| < κ, MA is
κ+-universal.

Exercise 8.1.14. Prove Proposition 8.1.13.

The following reformulation of universality will prove useful in the next
section. Given a language L and a cardinal κ, let L(κ) denote the extension
of L obtained by adding κ new constant symbols cα, α < κ. For a ∈ Mκ,
we let (M; a) denote the expansion of M to an L(κ)-structure obtained by
interpreting cα as a(α).
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Proposition 8.1.15. Suppose that |L| ≤ κ. For an L-structure M, the
following are equivalent:

(1) M is κ+-universal

(2) For any set Σ of L(κ)-sentences, if Th(M) ∪ Σ is satisfiable, then
Σ is satisfiable in (M; a) for some a ∈Mκ.

Proof. (1) implies (2): First suppose that M is κ+-universal and Σ is as
in (2). Let (N ; b) |= Th(M) ∪ Σ. By the Downward Löwenheim-Skolem
theorem, we may assume that |N | ≤ κ. Since N ≡ M and M is κ+-
universal, there is an elementary embedding j : N → M. It follows that
(M; j(b)) |= Σ.

Now suppose that (2) holds and take N ≡ M with |N | ≤ κ. Let
Σ := Th(N ; b), where b ∈ Nκ is an enumeration of N . Then Σ is as in (2),
whence there is a such that (M; a) |= Σ. The map which sends b to a yields
the desired elementary embedding of N into M. �

8.2. First saturation properties of ultraproducts

In this short section, we show how ultraproducts (usually) yield somewhat
saturated structures. More specifically:

Theorem 8.2.1. Suppose that U is a countably incomplete ultrafilter on a
set I, L is a countable language, and (Mi)i∈I is a family of L-structures.
Then

∏
U Mi is ℵ1-saturated.

Proof. Set N :=
∏

U Mi and suppose that A ⊆ N is countable. Suppose
also that Σ(x) is a set of LA-formulae in the variable x that is finitely
satisfiable in NA. We must show that Σ is satisfiable in NA.

Without loss of generality, we may assume that Σ = {ϕn(x, [an]U) :
n ∈ N} and that N |= ∀x(ϕn+1(x, [an+1]U) → ϕn(x, [an]U)). Since U is
countably incomplete, we may fix sets In ∈ U such that In ⊇ In+1 and⋂

n∈N In = ∅. Set Jn := {i ∈ In : Mi |= ∃xϕn(x, an(i))}; since Σ is finitely
satisfiable in NA, we have that each Jn ∈ U . By assumption, Jn ⊇ Jn+1 and
clearly

⋂
n∈N Jn = ∅.

For each i ∈ I, let n(i) be the maximal n such that i ∈ Jn, and let
b(i) ∈Mi be such thatMi |= ϕn(b(i), an(i)). We claim that [b]U satisfies Σ.
To see this, fix n ∈ N; we show that N |= ϕn([b]U , [an]U). To see this, take
i ∈ Jn and note that n ≤ n(i). Consequently, Mi |= ϕn(i)(b(i), an(i)(i)) and
thusMi |= ϕn(b(i), an(i)). Since Jn ∈ U , we have that N |= ϕn([b]U , [an]U),
as desired. �

Remark 8.2.2. One cannot drop the countably incomplete assumption in
the previous theorem, for if U is a countably complete ultrafilter, then for
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any countable structureM,MU is isomorphic toM, whence it need not be
ℵ1-saturated.

What if one desires ultraproducts that are more than just ℵ1-saturated?
In general, given κ > ℵ1, one cannot hope to prove, in ZFC, that all ultra-
products with respect to countably incomplete ultrafilters are κ-saturated.
Indeed, if U is a nonprincipal ultrafilter on N andM is a countable structure,
then |MU | = c by Corollary 6.8.4. In a model of ZFC plus CH, |MU | = ℵ1.
By Exercise 8.1.6, one cannot have that MU is κ-saturated for any κ > ℵ1.

In Section 8.4, we will introduce so-called “good” ultrafilters that guar-
antee that ultraproducts with respect to them have higher levels of sat-
uration; at the same time, we will also consider the case of uncountable
languages.

Before moving on, we mention one nice application of the ℵ1-saturation
of ultraproducts. First, we need a definition:

Definition 8.2.3. Suppose that M and N are L-structures with M⊆ N .
We say that M is existentially closed (e.c.) in N if, for any quantifier-
free LM -formula ϕ(x), we have

MM |= ∃xϕ(x)⇔ NM |= ∃xϕ(x).

One thinks of existential closedness as a model-theoretic generalization
of (relative) algebraic closedness. Ultrapowers provide a nice semantic re-
formulation of this notion:

Exercise 8.2.4. Suppose that M and N are countable structures in the
countable language L with M⊆ N . Prove that M is e.c. in N if and only
if, for some (equivalently any) nonprincipal ultrafilter U on N, the diagonal
embedding d :M→MU extends to an embedding j : N →MU .

We can drop the countability assumptions in the previous exercise once
we encounter the aforementioned good ultrafilters that yield more satura-
tion.

8.3. Regular ultrafilters

Before moving on to the class of good ultrafilters that yield ultraproducts
with higher levels of saturation, it behooves us to first consider the class
of regular ultrafilters. While the definition of good ultrafilters is somewhat
complicated and their existence is quite cumbersome to prove, the class of
regular ultrafilters are quite easy to define and their existence is a simple
exercise. We will see that ultrapowers (not arbitrary ultraproducts) with
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respect to regular ultrafilters are highly universal (in the sense of the previ-
ous section). Ultrapowers with respect to regular ultrafilters possess other
desirable properties that will also be mentioned.

We begin this section with an exercise that motivates what is to come:

Exercise 8.3.1. Suppose that U is an ultrafilter on an index set I. Prove
that U is countably incomplete if and only if there is E ⊆ U , |E| = ℵ0, such
that each element of I belongs to only finitely many elements of E.

We strengthen the notion of countably incomplete ultrafilter by demand-
ing that there exists a set E as in Exercise 8.3.1 that has cardinality larger
than ℵ0:
Definition 8.3.2. If κ is a cardinal, then an ultrafilter U on I is κ-regular
if there is E ⊆ U , |E| = κ, such that each element of I belongs to only
finitely many elements of E. We call such a set E a κ-regularizing set for
U .

Thus, the previous exercise can be rephrased as:

Lemma 8.3.3. An ultrafilter is countably incomplete if and only if it is
ℵ0-regular.
Exercise 8.3.4. Suppose that U is a κ-regular ultrafilter on an index set I.
Prove the following:

(1) U is nonprincipal.

(2) If λ < κ, then U is also λ-regular.

(3) κ ≤ |I|.
Definition 8.3.5. An ultrafilter U on an index set I is called regular if it
is |I|-regular.

By the previous exercise, regular ultrafilters are “maximally” regular.
The following reformulation of κ-regularity is often useful:

Exercise 8.3.6. Suppose that U is an ultrafilter on I and κ is an infinite
cardinal. Prove that U is κ-regular if and only if there is f : I → Pf (κ) such
that, for each α < κ, we have {i ∈ I : α ∈ f(i)} ∈ U .
Exercise 8.3.7. If U and V are ultrafilters with U ≤RK V and U is κ-regular,
prove that V is also κ-regular. In particular, if U and V are ultrafilters and
either U or V are κ-regular (maybe both), then so is U × V.

We now show that regular ultrafilters exist:

Proposition 8.3.8. For each cardinal κ, there is a regular ultrafilter U on
κ.
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Proof. It suffices to find a regular ultrafilter on some set of size κ; we will
use I := Pf (κ). For α < κ, let α̂ := {u ∈ I : α ∈ u}. Let E := {α̂ : α <
κ}. Clearly, |E| = κ. Notice that E has the finite intersection property:
{α1, . . . , αn} ∈

⋂n
i=1 α̂i. Let U be an ultrafilter on I containing E. Then E

is a κ-regularizing set for U : u ∈ α̂ if and only if α ∈ u. �

Ultrapowers with respect to regular ultrafilters have predictable cardi-
nalities:

Theorem 8.3.9. Suppose that U is a regular ultrafilter on κ and M is
infinite. Then |MU | = |M |κ.

Proof. It suffices to prove that |M |κ ≤ |MU | (the other inequality always
being true). Let E ⊆ U be a κ-regularizing set for U . Let N := M<ω. It
suffices to find an injection ρ : ME → NU . For each g ∈ ME , define g′ :
I → N by defining g′(i) := (g(A1), . . . , g(An)), where A1, . . . , An enumerate
all of the elements of E containing i (with respect to some fixed ordering
of E). We now define ρ(g) := [g′]U . It remains to show that ρ is injective.
Suppose that g �= h and take A such that g(A) �= h(A). Suppose that i ∈ A.
Then it is clear that g′(i) �= h′(i). Since A ∈ U , we have that g′ �≡U h′, that
is, ρ(g) �= ρ(h). �

We now state the connection between regularity and universality:

Theorem 8.3.10. Suppose that U is an ultrafilter on an index set I. Then
U is κ-regular if and only if, whenever |L| ≤ κ and M is an L-structure, we
have that MU is κ+-universal.

Proof. First suppose that U is κ-regular, |L| ≤ κ, andM is an L-structure.
Set N :=MU . We use the criteria established in Proposition 8.1.15 to show
that N is κ+-universal. Let Σ be a set of L(κ)-sentences of size at most κ
such that Th(N ) ∪ Σ is satisfiable. Let E ⊆ U be a κ-regularizing set for
U . Let h : Σ → E be any injection. Let Σ(i) := {σ ∈ Σ : i ∈ h(σ)}. By
assumption, Σ(i) is finite for each i ∈ I. Since Σ(i) is finite and consistent
with Th(M), there is a(i) ∈ Mκ such that Σ(i) is realized in (M; a(i)).
(Note that only finitely many constants are mentioned, so most of the choice
of a(i) is irrelevant.) We set a ∈ Nκ to be given by a(α) := [i �→ a(i)(α)]U .
We claim that Σ is realized in (N ; a). Fix σ ∈ Σ. Then h(σ) ∈ U and for
i ∈ h(σ), we have that σ ∈ Σ(i), so (M; a(i)) |= σ, as desired.

We now prove the converse. Consider the language L with one binary
relation R and constant symbols di for i < κ. Let M be the L-structure
whose universe is Pf (κ), that interprets R as ⊆, and interprets di as {i}. By
assumption,MU is κ+-universal. Let Σ := {R(di, c0) : i < κ}, a set of L(κ)-
sentences (that happens to only mention one of the new constants, namely
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c0). It is clear that Th(M)∪Σ is finitely satisfiable in a suitable expansion of
M, whence the compactness theorem implies that Th(M)∪Σ is satisfiable.
Since MU is κ+-universal, there is b ∈ MU such that Σ is satisfied in
(MU ; [b]U). (Here, we slightly change notation and let [b]U denote a single
element of MU , meant to be the interpretation of c0; the interpretations of
the other constants are irrelevant.) For each i < κ, consider the set Ai :=
{j ∈ I : M |= R({i}, b(j))}, an element of U , and let E := {Ai : i < κ}.
Note that |E| = κ. It is clear that a given j ∈ I can only be contained in
finitely many Ai, so E is a κ-regularizing set for U . �

The following corollary is immediate:

Corollary 8.3.11 (Frayne). L-structuresM and N are elementarily equiv-
alent if and only if M is elementarily embeddable in an ultrapower of N .

We can use the preceding corollary to establish a fact mentioned in
Section 6.9; we refer the reader to the discussion there for the definitions of
the relevant terminology:

Corollary 8.3.12. L-structures M and N are elementarily equivalent if
and only if there are ultrapower chains (Mn)n∈N and (Nn)n∈N over M and
N , respectively, whose limits M∞ and N∞ are isomorphic.

Proof sketch. The backward direction is immediate from the fact thatM
and N are elementary substructures of M∞ and N∞, respectively. We
now sketch a proof of the forward direction. Suppose that M and N are
elementarily equivalent. By Corollary 8.3.11, there is an ultrapower N1 of
N such that M is elementarily embeddable in N1. Let f1 : M → N1 be
such an elementary embedding. Let L′ denote the extension of L by adding
constants for all elements of M and let M′ and N ′

1 denote the expansions

of M and N1 to L′-structures where, for a ∈ M , cM
′

a = a and c
N ′

1
a = f1(a).

Since f1 is elementary, we have that M′ ≡ N ′
1. Using Corollary 8.3.11

again, there is an ultrapower M′
1 of M′ such that N ′

1 elementarily embeds
into M′

1; let g1 : N ′
1 →M′

1 denote such an elementary embedding. We let
M1 denote the reduct ofM′

1 to L, which is clearly an ultrapower extension
of M. By design, g1 ◦ f1 : M → M1 is the inclusion of M into M1. By the
same argument, we can construct an ultrapower extension N2 of N1 and an
elementary embedding f2 :M1 → N2 such that f2 ◦g1 : N1 → N2 is just the
inclusion of N1 into N2. This also implies that f2 extends f1. Continuing
back and forth in this manner, we get the desired ultrapower chains and
maps fn : Mn → Nn+1 and gn : Nn → Mn that continue to extend each
other. Thus, setting f :=

⋃
n∈N fn and g :=

⋃
n∈N gn, we have that f and g

are inverse isomorphisms between M∞ and N∞. �
Exercise 8.3.13. Verify all of the details in the previous proof.
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Here are two more applications of Theorem 8.3.10. First, given an L-
structure M, define the universal theory of M, denoted Th∀(M), to be
the set of universal L-sentences σ such that M |= σ.

Exercise 8.3.14. Given L-structures M and N , prove that the following
are equivalent:

(1) M |= Th∀(N ).

(2) For every κ-regular ultrafilter U , where κ = max(|M |, |L|), one has
that M embeds into N U .

(3) M embeds into some ultrapower N U of N .

Exercise 8.3.15. Remove the cardinality restrictions in Exercise 8.2.4.
More precisely, suppose that L is any language and M and N are L-
structures with M ⊆ N . Prove that M is e.c. in N if and only if, for
some ultrafilter U , the diagonal embedding d : M → MU extends to an
embedding j : N →MU .

The following is one of the fundamental facts about regular ultrafilters.
We will make use of it once in the next section, but it will be the driving
force behind the discussion of Keisler’s order in Section 8.6.

Theorem 8.3.16 (Keisler). Suppose that U is a κ-regular ultrafilter on the
set I. Suppose that |L| ≤ κ and M and N are L-structures with M ≡ N .
Then MU is κ+-saturated if and only if N U is κ+-saturated.

Proof. Suppose thatMU is κ+-saturated and let E ⊆ U be a κ-regularizing
subset for U . Suppose that Σ(x) is a set of L(κ)-formulae that is finitely
satisfiable in (N U ; b). We show that Σ(x) is satisfiable in (N U ; b). As
in the proof of Theorem 8.3.10, let h : Σ → E be an injection and set
Σ(i) := {σ ∈ Σ : i ∈ h(σ)}. Once again, Σ(i) is finite for each i ∈ I.
Let Γ(i) be the finite set of sentences of the form ∃x

∧
σ∈u σ, where u is a

nonempty subset of Σ(i). Since M≡ N , there is a(i) ∈Mκ such that

(‡) Th(M, a(i)) ∩ Γ(i) = Th(N , b(i)) ∩ Γ(i).

We now define a ∈ (MU)κ by a(α) := [i �→ a(i)(α)]U . We claim that Σ(x) is
finitely satisfiable in (MU ; a). Fix σ1, . . . , σn ∈ Σ and let τ := ∃x

∧n
j=1 σj .

If i ∈
⋂n

j=1 h(σj), then τ ∈ Γ(i). Since Σ is finitely satisfiable in (N U ; b), for
U -almost all i, we have that (N ; b(i)) |= τ . It follows that for U -almost all
i, (M; a(i)) |= τ , whence (MU ; a) |= τ , as desired.

Since MU is κ+-saturated, Σ is satisfied in (MU ; a), say by an element
[c]U . For each i ∈ I, let Ψ(i) := {σ ∈ Σ(i) : (M; a(i)) |= σ(c(i))}. It
follows by (‡) that there is d(i) ∈ N such that (N ; b(i)) |= σ(d(i)) for each
σ ∈ Ψ(i).
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We conclude by proving that that [d]U realizes Σ in (N U ; b). Fix σ ∈ Σ.
For i ∈ h(σ), we have that σ ∈ Σ(i). Since (MU ; a) |= σ(c), we have
that (M; a(i)) |= σ(c(i)) for U -almost all i. It follows that, for U -almost
all i, we have σ ∈ Ψ(i). For these i, (N ; b(i)) |= σ(d(i)). It follows that
(N U ; b) |= σ([d]U), as desired. �

Let us return to the statement of Theorem 8.3.10 for another moment.
Suppose that U is a regular ultrafilter on κ, |L| ≤ κ, andM is an L-structure
with |M | ≤ κ. By Theorem 8.3.9, |MU | = |M |κ ≥ κ+. Consequently, in
theory, MU could even be κ++-universal, not just merely κ+-universal as
guaranteed by Theorem 8.3.10. (Note that κ++-universality is the most
that one could hope to prove in ZFC in this situation, for if the GCH at
κ holds, we have that |MU | = κ+.) The κ+-good ultrafilters that we will
encounter in the next section yield κ+-saturated, and hence κ++-universal,
ultrapowers. However, we will soon see that there are κ-regular ultrafilters
that are not κ+-good.

Let Univ(κ,U) denote the following statement: U is a regular ultrafilter
on κ and for every language L with |L| ≤ κ and every L-structure M, MU

is κ++-universal.

The question of whether or not Univ(κ,U) holds for all κ and U was
posed in [28], and only recently have some results been proven along these
lines. We summarize some of them here:

• Assuming GCH, Univ(κ,U) holds for every regular cardinal κ and
every regular ultrafilter U on κ.

• In ZFC, it is shown that, for every regular cardinal κ, there are
regular ultrafilters U on κ for which Univ(κ,U) holds and yet U is
not good.

• Assuming large cardinals, there is a singular strong limit cardinal
κ and a regular ultrafilter U on κ such that Univ(κ,U) fails. (It is
known that a large cardinal assumption is necessary in this case.)
Consequently, one cannot prove in ZFC that Univ(κ,U) holds for
all κ and U .

All of the above results are from the article [103]. In the same article,
it is conjectured that it is consistent that there is a regular cardinal κ and
a regular ultrafilter U on κ for which Univ(κ,U) fails.

We end this section with one more set-theoretical remark. In [45], Don-
der proved that it is consistent with ZFC that every uniform ultrafilter on
an infinite set is regular. On the other hand, if U is a countably complete,
uniform ultrafilter on some set I and V is a nonprincipal ultrafilter on N,
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then U ×V is a uniform ultrafilter that is not regular. Thus, whether or not
all uniform ultrafilters on infinite sets are regular is independent of ZFC.

8.4. Good ultrafilters: Part 1

We are now ready to consider the ultrafilters for which all ultraproducts are
κ+-saturated (given that the language is of size at most κ). Rather than just
jump right in to the definition, we prefer to let the notion arise organically.

Until further notice, we fix the following data:

• an index set I;

• an ultrafilter U on I;

• a language L with |L| ≤ κ;

• a family of L-structures (Mi)i∈I whose ultraproduct we denote by
N :=

∏
U Mi;

• a set Σ of LA-formulae, where A ⊆ N is such that |A| ≤ κ, for
which Σ is finitely satisfiable in NA.

We want to see what it would take to have that Σ is satisfiable in N .

In what follows, we simplify notation by hiding any mention of para-
meters in the formulae from Σ. Thus, when referring to a formula ϕ(x)
from Σ, really ϕ(x) is ϕ(x, a) for some parameters a from N . Likewise,
when we write Mi |= ∃xϕ(x), we really mean Mi |= ∃xϕ(x, a(i)).

We begin näıvely by considering a concern function C : Σ→ P(I), where
we view the fact that i ∈ C(ϕ) as telling us thatMi should be “concerned”
about satisfying ∃xϕ(x). The goal is to find b ∈ N that realizes Σ by asking
that b(i) realizes ϕ(x) whenever i ∈ C(ϕ). Of course, for this strategy to
work, we must have:

• for each ϕ ∈ Σ, C(ϕ) ∈ U .
IfMi cannot satisfy ϕ(x), thenMi should not be concerned about ϕ, so we
also require:

• C(ϕ) ⊆ {i ∈ I :Mi |= ∃xϕ(x)}.
Now suppose that i ∈ C(ϕ) ∩ C(ψ). There is no reason a priori why

Mi |= ∃x(ϕ(x) ∧ ψ(x)). But it would be great if it did! So let us try to
add this as a requirement. However, ϕ ∧ ψ may not be an element of Σ.
There is an easy fix for this: we simply extend the concern function now to
C : Pf (Σ)→ P(I) and view i ∈ C(u) as saying thatMi should be concerned
with satisfying

∧
ϕ∈u ϕ(x). Our earlier requirements now become:

• for each u ∈ Pf (Σ), C(u) ∈ U ;
• for each u ∈ Pf (Σ), C(u) ⊆ {i ∈ I : Mi |= ∃x

∧
ϕ∈u ϕ(x)}.
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There is a nice reformulation of the second requirement if we make two
important definitions. First, given f, g : Pf (Σ) → U , write f ≤ g if f(u) ⊆
g(u) for all u ∈ Pf (Σ); in this case, we say that f refines g.

Second, define the �Loś map to be the map �Loś: Pf (Σ)→ U given by

�Loś(u) := {i ∈ I : Mi |= ∃x
∧
ϕ∈u

ϕ(x)}.

We see now that the second condition merely asks that our concern function
C refines the �Loś map.

Next note that u ⊆ v implies C(v) ⊆ C(u); we refer to this property as
antimonotonicity. Note that this implies that C(u ∪ v) ⊆ C(u) ∩ C(v).
Our earlier desire about conjunctions (now extended to the setting of finite
sets of formulae) translates to wanting the previous inclusion to become an
equality:

• C(u ∪ v) = C(u) ∩ C(v).

We refer to this last property as multiplicativity.

Suppose now that we want to find [b]U ∈ N that realizes Σ. How should
we define b(i) ∈ Mi? Well, we should simply collect all the ϕ ∈ Σ that Mi

is concerned about and then take b(i) ∈Mi such thatMi |= ϕ(b(i)) for each
such ϕ. But how do we know that there are only finitely many such ϕ? It
seems that we should add that to our list of requirements:

• For each i ∈ I, there are only finitely many u ∈ Pf (Σ) such that
i ∈ C(u).

We call this property local finiteness.

Exercise 8.4.1. For a multplicative concern function C : Pf (Σ) → U ,
prove that local finiteness is equivalent to, for each i ∈ I, there is a finite
set Ci ∈ Pf (Σ) such that, for all u ∈ Pf (Σ), we have i ∈ C(u) if and only if
u ⊆ Ci.

Given the previous exercise, we can thus define b(i) ∈Mi so thatMi |=∧
ϕ∈Ci

ϕ(b(i)), and we see that the corresponding [b]U ∈ N is as desired:

given ϕ ∈ Σ and i ∈ C({ϕ}), we have {ϕ} ⊆ Ci, so Mi |= ϕ(b(i)).

We have just argued:

Proposition 8.4.2. Suppose that there is a multiplicative, locally finite con-
cern function C : Pf (Σ) → U that refines the �Loś map. Then Σ is realized
in N .

So, the question becomes: how hard is it to come by such a concern
function? It turns out that, for regular ultrafilters, it is fairly easy to come
by a concern function that is almost as desired:
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Proposition 8.4.3. If U is κ-regular, then there is an antimonotonic, lo-
cally finite concern function C : Pf (Σ)→ U that refines the �Loś map.

Proof. Let (ϕi)i<κ enumerate Σ and let E = {Ei : i < κ} be a κ-
regularizing set for U . We then define C : Pf (Σ)→ U by setting

C({ϕi1 , . . . , ϕik}) := �Loś({ϕi1 , . . . , ϕik}) ∩ Ei1 ∩ · · · ∩ Eik .

It is readily verified that C is as desired. �

The following terminology is more standard:

Definition 8.4.4. A distribution for Σ is a function C : Pf (Σ)→ U that
is antimonotonic, refines the �Loś map, and is locally finite.

Proposition 8.4.3 above shows that if U is κ-regular, then there is a
distribution for Σ. Note that a refinement of a distribution is once again a
distribution. Consequently, we have:

Corollary 8.4.5. If some distribution for Σ has a multiplicative refinement,
then Σ is realized in N .

We now want a criteria on U that implies all distributions have multi-
plicative refinements, yet that is intrinsic in that it only mentions U itself.
Here is the key definition in this section:

Definition 8.4.6. We say that U is κ+-good if every antimonotonic func-
tion Pf (κ)→ U has a multiplicative refinement.

We first note:

Proposition 8.4.7. If U is countably incomplete and κ+-good, then U is
κ-regular.

Proof. Suppose that (In)n∈N is a sequence from U such that In ⊇ In+1

and
⋂

n∈N In = ∅. Define f : Pf (κ) → U by f(w) = I|w|. Clearly, f is
antimonotonic. Let g : Pf (κ) → U be a multiplicative refinement of f . We
claim that, setting Eα := g({α}), we have that E := {Eα : α ∈ κ} is a
κ-regularizing set for U . To see this, suppose, toward a contradiction, that
w ⊆ κ is infinite and x ∈

⋂
α∈w Eα. For each n, let w(n) ⊆ w be finite of

size n. Then x ∈
⋂

α∈w(n)Eα = g(w(n)) ⊆ In for each n, a contradiction.

We leave it to the reader to verify that |E| = κ. �
Corollary 8.4.8. If |I| = κ and U is a countably incomplete ultrafilter on
I, then U is not κ++-good.

By the above corollary, the most good (horrible English!) an ultrafilter
on I can be is |I|+-good; for this reason, we simply call such ultrafilters
good.
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Proposition 8.4.3, Corollary 8.4.5, and Proposition 8.4.7 imply:

Proposition 8.4.9. If U is a countably incomplete κ+-good ultrafilter on
I, then for any language L with |L| ≤ κ and any family (Mi)i∈I of L-
structures,

∏
U Mi is κ+-saturated.

In order for the previous proposition to be interesting, we need to know
that κ+-good ultrafilters exist. We will take care of this in the next section.

Remark 8.4.10. Suppose that M is an L-structure with |L|, |M | ≤ κ.
Suppose that U is a κ+-good ultrafilter on κ. Then MU is κ+-saturated.
Since κ+-good implies κ-regular, we see, assuming GCH, that |MU | = κ+.
Thus, in general, one cannot hope to prove in ZFC that κ+-good ultrafilters
yield ultrapowers which are κ++-saturated

We now work toward proving that the converse of Proposition 8.4.9
holds. Such an argument presumably would proceed by assuming that U
is not κ+-good and finding a structure M in a language of size at most κ
for which N := MU is not κ+-saturated, that is, by finding some finitely
satisfiable set Σ of LA sentences (A ⊆ N , |A| ≤ κ) that is not realized in
N . One might guess that if Σ is realized in N , then every distribution for Σ
has a multiplicative refinement, whence if we found some distribution for Σ
that did not have a multiplicative refinement, then we could conclude that Σ
could not be realized in N . It turns out that it is not quite true that if Σ is
realized in N , then every distribution for Σ has a multiplicative refinement.
Let us try to prove this, see where we get stuck, and make a key definition.

Suppose that Σ is realized by [b]U ∈ N and that C is a distribution for
Σ. Let us define a new function C ′ : Pf (Σ)→ U by

C ′(u) =

{
i ∈ κ : Mi |=

∧
ϕ∈u

ϕ(b(i))

}
∩ C(u).

Note that C ′ really does take values in U as [b]U realizes Σ. Clearly, C ′

refines C, whence C ′ is also a distribution. We would like to have that
C ′ is multiplicative. Toward that end, suppose that i ∈ C ′(u) ∩ C ′(v); we
need i ∈ C ′(u ∪ v). It is clear that i belongs to the first set involved in the
definition of C ′(u ∪ v); the question becomes whether or not i ∈ C(u ∪ v).
While this seems to be begging the question (namely in trying to prove that
C has a multiplicative refinement, we would need to assume that C itself is
multiplicative), we actually have some more information, namely that Mi

does actually satisfy all elements of u ∪ v. This leads to the following:

Definition 8.4.11. We call a distribution C : Pf (Σ)→ U accurate if, for
every u ∈ Pf (Σ), if i ∈ C({ϕ}) for all ϕ ∈ u, then [i ∈ C(u) if and only if
Mi |= ∃x

∧
ϕ∈u ϕ(x)].
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We have thus proven:

Proposition 8.4.12. If Σ is realized in N , then every accurate distribution
has a multiplicative refinement.

Accurate distributions exist in any regular ultraproduct:

Lemma 8.4.13. Suppose that U is κ-regular. Then Σ has an accurate
distribution.

Exercise 8.4.14. Prove the previous lemma. (Hint. The distribution con-
structed in Proposition 8.4.3 is accurate.)

Summarizing thus far:

Theorem 8.4.15. Suppose that U is a κ-regular ultrafilter. Then the fol-
lowing are equivalent:

(1) Some distribution of Σ has a multiplicative refinement.

(2) Σ is realized in N .

(3) Every accurate distribution of Σ has a multiplicative refinement.

Proof. (1) implies (2) is Corollary 8.4.5. (2) implies (3) is Proposition
8.4.12. (3) implies (1) follows from Lemma 8.4.13. �

We are now ready to carry out the key argument for establishing the
converse of Proposition 8.4.9.

Theorem 8.4.16. Suppose that U is a κ-regular ultrafilter that is not κ+-
good. Let M be the structure whose universe is Pf (ω) and which possesses

a single binary relation ⊆ to be interpreted as subset. Then MU is not
κ+-saturated.

Proof. By Theorem 8.3.16, we may replace M with a κ+-saturated ele-
mentarily equivalent structure M′. Since U is not κ+-good, there is an
antimonotonic f : Pf (κ) → U that has no multiplicative refinement. We

will use this f to produce a set Σ of formulae with parameters from (M′)U

of size at most κ and an accurate distribution C for Σ that has no multi-
plicative refinement; by Theorem 8.4.15, this establishes that Σ cannot be
realized in (M′)U , and hence (M′)U is not κ+-saturated.

Fix i ∈ I and temporarily call j ∈ κ i-relevant if i ∈ f({j}). Consider
the set Γi(yj) of formulae in the free variables yj for those j which are
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i-relevant, defined by

Γi(yj) :=

⎧⎨
⎩∃x

∧
l≤k

x ⊆ yjl : i ∈ f({j1, . . . , jk})

⎫⎬
⎭

∪

⎧⎨
⎩¬∃x

∧
l≤k

x ⊆ yjl : i /∈ f({j1, . . . , jk})

⎫⎬
⎭ .

We leave it to the reader to check that Γi(yj) is finitely satisfiable in M′,
hence satisfiable in M′ by the assumption that M′ is κ+-saturated. For
j < κ that is i-relevant, we let aj(i) ∈ M′ realize Γi; otherwise, take aj(i) ∈
M′ for j not i-relevant in an arbitrary fashion. (That set is outside of U ,
whence it is negligible.)

We have now defined elements [aj]U ∈ (M′)U for j < κ. Set ϕj(x) to
be the formula x ⊆ [aj]U and Σ := {ϕj(x) : j ∈ κ}. Let {Ej : j < κ}
be a regularizing subset of U and define C : Pf (Σ) → U by first setting
C({ϕj}) := f({j}) ∩ Ej and then extending it to all of Pf (Σ) by setting

C({ϕj1 , . . . , ϕjk}) :=
⋂
l≤k

C({ϕjl}) ∩ �Loś({ϕj1 , . . . , ϕjk}) ∩ f({j1, . . . , jk}).

We leave it to the reader to check that C is an accurate distribution for Σ.
Since C refines f , C has no multiplicative refinement taking values in U by
assumption. Consequently, Σ is not realized in (M′)U and thus, (M′)U is
not κ+-saturated, as desired. �

We have now seen that the κ+-good ultrafilters are exactly the ultrafil-
ters that yield κ+-saturated ultraproducts (when the language has size at
most κ). We can also see that other variations hold:

Theorem 8.4.17. Let U be a countably incomplete ultrafilter on I. The
following are equivalent:

(1) U is κ+-good.

(2) For any language L with |L| ≤ κ, all U-ultraproducts of L-structures
are κ+-saturated.

(3) For any language L with |L| ≤ κ, all U-ultraproducts of L-structures
are κ+-universal.

(4) For any language L with |L| ≤ κ, all U-ultrapowers of L-structures
are κ+-saturated.

Proof. (1) implies (2) is Proposition 8.4.9 above and (2) implies (3) follows
from Proposition 8.1.11.
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(3) implies (4): Suppose that |L| ≤ κ andM is an L-structure; we wish
to show thatMU is κ+-saturated. By Proposition 8.1.13, it suffices to show
that (MU ; a) is κ+-universal for every a ∈ (MU)κ. However, this latter
statement follows from (3), the observation that (MU ; a) =

∏
U (M; a(i)),

and the fact that |L(κ)| ≤ κ.

(4) implies (1): Suppose that (4) holds and U is not κ+-good. Since
κ+-saturation implies κ+-universal, we see from Theorem 8.3.10 that U is
κ-regular. We thus obtain a contradiction using Theorem 8.4.16. �

Corollary 8.4.18. Every nonprincipal ultrafilter on ω is good.

Proof. This follows immediately from Theorems 8.2.1 and 8.4.17. �

Exercise 8.4.19. Prove Corollary 8.4.18 directly from the definition of ℵ1-
good.

Exercise 8.4.20. Suppose that V is κ-regular. Prove that U×V is κ+-good
if and only if V is κ+-good. (Hint. Use Theorems 6.9.1 and 8.4.17.)

The previous exercise yields the following:

Corollary 8.4.21. For each uncountable κ, there is a countably incomplete
ultrafilter on κ that is regular but not good.

Proof. Let U be a regular ultrafilter on κ and let V be a nonprincipal
ultrafilter on ω. Then U × V is a κ-regular ultrafilter on κ × ω that is not
ℵ2-good, so not good. �

Exercise 8.4.22. For each uncountable κ, give an example of ultrafilters U
and V on κ such that U × V �≡RK V × U .

We end this section with an interesting application of Theorem 8.4.17.

Corollary 8.4.23. Suppose that |L| ≤ κ and thatM and N are L-structures
with |M |, |N | ≤ κ+. Suppose that 2κ = κ+. Suppose that U is a good ultra-
filter on κ. Then M≡ N if and only if MU ∼= N U .

Proof. The only direction that needs proving is the forward direction. If
M≡ N , thenMU and N U are elementarily equivalent κ+-saturated models
of size 2κ by Theorems 8.3.9 and 8.4.17. Since we are assuming that 2κ = κ+,
we conclude that MU ∼= NU by Theorem 8.1.9. �

Corollary 8.4.24. Assume GCH. Then for any language L and any L-
structures M and N , we have that M ≡ N if and only if M and N have
isomorphic ultrapowers.
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The previous corollary is interesting in that it gives an “algebraic” or
“logic-free” characterization of elementary equivalence. The issue is that it
has a heavy set-theoretic hypothesis, namely the GCH. Thankfully, one can
remove the GCH assumption (at the expense of a much more complicated
proof); the resulting theorem is called the Keisler-Shelah theorem and
will be discussed in Chapter 16.

8.5. Good ultrafilters: Part 2

In this section, we prove the existence of good ultrafilters. The rough idea
is to construct an increasing sequence of filters that eventually become an
ultrafilter (we take care of this at “even” steps of the construction) and
which satisfies the goodness property (which we take care of at “odd” steps
of the construction). As we go along, in order to ensure that we can continue
the construction, we need to insist that there are “many” possible extensions
of our filter; the notion of many possible extensions will be made precise in
the notion of consistent pair to be defined below. Lemmas 8.5.7 and 8.5.8
will take care of the aforementioned even and odd steps, while Lemma 8.5.6
gets us started with many possible extensions in the first place.

We recommend that the reader read the following definition and the
statements of the lemmas and then proceed to the proof of the existence of
good ultrafilters. They can then return to read the proofs of the lemmas (if
they desire).

The key ingredient in establishing the existence of good ultrafilters is a
strengthening of the notion of independent set of functions as introduced
in Definition 1.4.2. Recall that X ⊆ 2κ is called independent if, for any
f1, . . . , fn ∈ X and any y1, . . . , yn ∈ 2 = {0, 1}, there is α < κ such that
fi(α) = yi for all i = 1, . . . , n. We will generalize this notion in two ways.

First, we will consider subsets of κκ rather than 2κ. Consequently, we
will demand that, for any f1, . . . , fn ∈ X and any α1, . . . , αn ∈ κ, there is
α < κ such that fi(α) = αi for all i = 1, . . . , n.

Before describing the second generalization, we first ask the reader to
verify the following:

Exercise 8.5.1. Suppose that X ⊆ 2κ is independent. Prove that, for any
f1, . . . , fn ∈ X and any y1, . . . , yn ∈ 2, there are infinitely many α < κ such
that fi(α) = yi for all i = 1, . . . , n.

Said in filter terms, the previous exercise guarantees that, for any f1, . . .,
fn ∈ X and any y1, . . . , yn ∈ 2, the filter generated by the Fréchet filter on
κ and the set

⋂n
i=1 f

−1
i ({yi}) is proper. Our second generalization involves

replacing the Fréchet filter by an arbitrary filter on κ.
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Here is the precise definition:

Definition 8.5.2. Suppose that κ is a cardinal, F ⊆ κκ is a set of functions,
and F is a filter on κ. We say that F is of large oscillation modulo F
if, given any set X ∈ F , any distinct functions f1, . . . , fn ∈ F , and any
α1, . . . , αn < κ, we have that

X ∩ {α < κ : fi(α) = αi for i = 1, . . . , n} �= ∅.

In this section, we will take a different (but equivalent), perspective on
this notion:

Definition 8.5.3. Fix a cardinal κ. Let Π be a nonempty set of partitions
of κ such that each partition in Π has κ many (nonempty) pieces. Let F
be a filter on κ. We say that (Π,F) is consistent if, given any X ∈ F ,
any distinct P1, . . . , Pn ∈ Π, and any X1 ∈ P1, . . . , Xn ∈ Pn, we have that
X ∩

⋂n
i=1Xi �= ∅.

The previous two definitions really are equivalent:

Exercise 8.5.4. Suppose that κ is a cardinal and F is a filter on κ. Given
a function f ∈ κκ, let πf be the partition of κ defined by πf = {f−1(γ) :
γ < κ}. (Note that some elements of this partition might be empty.) Given
F ⊆ κκ, set ΠF := {πf : f ∈ F}. Prove that F ⊆ κκ is of large oscillation
modulo F if and only if (ΠF ,F) is a consistent pair. Moreover, prove that,
for any λ ≤ 2κ, this assignment provides a bijection between the set of
subsets of κκ of size λ that are of large oscillation modulo F and the set of
sets Π of partitions of κ of size λ such that (Π,F) is a consistent pair.

We now work toward proving the existence of good ultrafilters. Our first
lemma will actually need its own set-theoretic lemma.

Lemma 8.5.5. Suppose that κ is an infinite cardinal and, for each α < κ,
Yα is a set of cardinality κ. Then, for each α < κ, there is Zα ⊆ Yα of
cardinality κ such that Zα ∩ Zβ = ∅ for each α �= β.

Proof. For each α ≤ κ, we let Tα := {(β, γ) : β ≤ γ < α}. In other words,
if one thinks of the “discrete grid” α×α, then Tα is simply the set of points
on or above the diagonal. For each β < α < κ, we let Tα,β := Tα∩({β}×α),
that is, the vertical slice of Tα above β. We define, by induction on α <
κ, an increasing chain of injective functions fα with domain Tα such that
f(Tα,β) ⊆ Yβ for each β < α. Indeed, suppose that fα has been constructed
as such. Note that Tα+1 simply adds one more point to each vertical slice
of Tα; since |Tα| < κ and each |Yβ| = κ, it is clear how to extend fα to an
injective function fα+1 on Tα+1. Also, taking unions at limits preserves the
requirements of the recursion.
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We now set f :=
⋃

α<κ. Note that f is injective and f(Tκ,β) ⊆ Yβ for
each β < κ. Since |Tκ,β| = κ and f is injective, setting Zβ := f(Tκ,β) yields
the desired sets. �

The following generalizes Theorem 1.4.4:

Lemma 8.5.6. Suppose that F is a uniform filter on κ generated by E ⊆ F ,
|E| ≤ κ. Then there is a set Π of partitions of κ with |Π| = 2κ and such
that (Π,F) is consistent.

Proof. Without loss of generality, E is closed under finite intersections. Let
(Jα : α < κ) enumerate E; since F is uniform, each Jα has cardinality κ.
By Lemma 8.5.5, there are Iα ⊆ Jα such that each Iα has cardinality κ and
Iα ∩ Iβ = ∅ for α �= β.

Let (fγ)γ<κ be an enumeration of all functions f : P(u) → κ, where
u ⊆ κ is finite. We let uγ denote the domain of fγ . Without loss of generality,
we assume that, for every α < κ, {fγ : γ ∈ Iα} itself is an enumeration of
the set of such functions. (Recall that each Iα has cardinality κ.)

We are now ready to define our partitions. First, for each X ⊆ κ, define
fX : κ→ κ by fX(γ) := fγ(X ∩ uγ) if γ ∈ Iα for some α < κ; otherwise, set

fX(γ) = ∅. We then let PX := {f−1
X ({δ}) : δ < κ}. It is clear that each

PX is a partition of κ into precisely κ many pieces.

We first show that PX �= PY for distinct subsets X and Y of κ (whence
there are 2κ many such partitions). Indeed, suppose, without loss of gener-
ality, that η ∈ X \ Y . Let f : P({η}) → κ be defined by f({η}) = 0 while
f(∅) = 1. Let α < κ be arbitrary and take γ ∈ Iα such that f = fγ . Then
fX(γ) = fγ(X ∩ uγ) = f({η}) = 0 while fY (γ) = fγ(Y ∩ uγ) = f(∅) = 1. It
follows that PX and PY are distinct partitions of κ.

We finish the proof by showing that (Π,F) is consistent. To see this,
it suffices to show that Jα ∩ f−1

X1
({δ1}) ∩ · · · ∩ f−1

Xn
({δn}) �= ∅ for any α,

δ1, . . ., δn < κ and distinct subsets X1, . . . , Xn of κ. Toward this end, take
u ⊆ κ finite such that Xi ∩ u �= Xj ∩ u for distinct i, j = 1, . . . , n. Define
f : P(u)→ κ so that f(Xi∩u) = δi (and defined arbitrarily for other subsets
of u). Take γ ∈ Iα such that f = fγ . Then, for each i = 1, . . . , n, we have
fXi(γ) = fγ(Xi ∩ uγ) = δi, as desired. �

Lemma 8.5.7. Suppose that (Π,F) is consistent and J ⊆ κ. Then ei-
ther (Π, 〈F, {J}〉) is consistent or else there is a cofinite Π′ ⊆ Π for which
(Π′, 〈F , {κ \ J}〉) is consistent.

Proof. Suppose that (Π, 〈F, {J}〉) is not consistent. By definition, this
means that there is X ∈ F , distinct P1, . . . , Pn ∈ Π, and Xi ∈ Pi, i =
1, . . . , n, for which X ∩ J ∩

⋂n
i=1Xi = ∅. Let Π′ := Π \ {P1, . . . , Pn}, so Π′
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is a cofinite subset of Π. We claim that (Π′, 〈F , {κ \ J}〉) is consistent. To
see this, fix Y ∈ F , distinct Q1, . . . , Qm ∈ Π′, and X ′

j ∈ Qj, j = 1, . . . ,m.

Since (Π,F) is consistent, there is x ∈ X ∩ Y ∩
⋂n

i=1Xi ∩
⋂m

j=1X
′
j. By the

above, we see that x /∈ J , whence (κ \ J)∩ Y ∩
⋂m

j=1X
′
j �= ∅, as desired. �

Lemma 8.5.8. Suppose that (Π,F) is consistent. Let p : Pf (κ) → F be
an antimonotonic map and let P ∈ Π. Then there is a filter F ′ extending
F such that (Π \ {P},F ′) is consistent and a multiplicative refinement q :
Pf (κ)→ F ′ of p.

Proof. Let (Xδ)δ<κ be an injective enumeration of P . Let (tδ)δ<κ be an
enumeration of Pf (κ). For δ < κ, define qδ : Pf (κ) → P(κ) by qδ(u) =
p(tδ) ∩Xδ if u ⊆ tδ; otherwise, qδ(u) = ∅. Some observations:

• qδ(u) ⊆ p(tδ);

• qδ(u) �= ∅ if u ⊆ tδ (by consistency of (Π,F));

• qδ is multiplicative.

To see the last point, take u, v ∈ Pf (κ). If either u �⊆ tδ or v �⊆ tδ, then
qδ(u ∪ v) = qδ(u) ∩ qδ(v) = ∅. Otherwise, u, v ⊆ tδ, whence u ∪ v ⊆ tδ, and
thus qδ(u ∪ v) = qδ(u) = qδ(v) = p(tδ) ∩Xδ.

Define q : Pf (κ) → P(κ) by q(u) :=
⋃

δ<κ qδ(u). First note that q
refines p. To see this, fix u ∈ Pf (κ) and note that, if u ⊆ tδ, then qδ(u) =
p(tδ)∩Xδ ⊆ p(u)∩Xδ by antimonotonicity of p; it follows that q(u) ⊆ p(u),
as desired.

We next note that q is multiplicative. This follows immediately from
the fact that each qδ is multiplicative and the Xδ’s are disjoint.

Let J denote the range of q. Let F ′ := 〈F , J〉. We conclude by showing
that (Π \ {P},F ′) is consistent. To see this, take X ∈ F , u ∈ Pf (κ),
distinct P1, . . . , Pn ∈ Π \ {P}, and Xi ∈ Pi, i = 1, . . . , n; we show that
X ∩ q(u) ∩

⋂n
i=1Xi �= ∅. (Note that, since q is multiplicative, an arbitrary

element of F ′ is of the form X ∩ q(u).) Take δ such that u = tδ. Then
q(u) ⊇ qδ(u) = p(tδ)∩Xδ. Since (Π,F) is consistent and p(tδ) ∈ F , we have
that X ∩ p(tδ) ∩Xδ ∩

⋂n
i=1Xi �= ∅, concluding the proof. �

We now have all of the necessary ingredients to prove:

Theorem 8.5.9. For each κ, there is a countably incomplete κ+-good ul-
trafilter on κ.

Proof. Let (Xα)α<2κ enumerate P(κ) and let (fα)α<2κ enumerate all an-
timonotonic functions from Pf (κ) to P(κ), with each such function enu-
merated 2κ many times. We define, by transfinite recursion, a sequence of
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consistent pairs (Πα,Fα) for α < 2κ satisfying the following conditions:

(1) Each Πα has cardinality 2κ.

(2) If α ≤ β < κ, then Πα ⊇ Πβ and Fα ⊆ Fβ.

(3) If α < 2κ is a limit ordinal, then Πα :=
⋂

β<αΠβ and Fα :=⋃
β<αFβ.

(4) Each Πα \ Πα+1 is finite.

(5) Either Xα ∈ Fα+1 or κ \Xα ∈ Fα+1.

(6) If the range of fα is contained in Fα, then there is a multiplicative
refinement g : Pf (κ)→ Fα+1 of fα.

Once this has been completed, we set U :=
⋃

α<2κ Fα. By item (5), U
is an ultrafilter on κ. By item (6), U is κ+-good. Indeed, suppose that
f : Pf (κ) → U is antimonotonic. Since cof(2κ) > κ, there is some α < 2κ

such that the range of f is contained in Fα. Since each such f is enumerated
2κ times, there is some β > α such that f = fβ. It follows that f has a
multiplicative refinement that takes values in Fβ+1, and hence in U , as
desired.

We now show how to carry out the recursion. Item (3) tells us what to
do at limit ordinals α; note that item (4) ensures that the resulting Πα still
has cardinality 2κ.

We now carry out the induction step. Suppose that (Πβ ,Fβ) have been
constructed for all β ≤ α. By Lemma 8.5.7, there is Π′ ⊆ Πβ with Πβ \ Π′

finite and F ′ ⊇ F such that (Π′,F ′) is consistent and either Xα ∈ F ′ or
κ \Xα ∈ F ′. If the range of fα is not contained in F ′, then set Πα+1 := Π′

and Fα+1 := F ′. Otherwise, by Lemma 8.5.8, there is Πα+1 ⊆ Π′ with
Π′ \ Πα+1 finite (a singleton even!) and Fα+1 ⊇ F ′ such that (Πα+1,Fα+1)
consistent for which fα has a multiplicative refinement with range included
in Fα+1. This concludes the proof. �

Exercise 8.5.10. Suppose that E ⊆ P(κ) is such that |E| ≤ κ, each element
of E has cardinality κ, and E is closed under finite intersections. Prove that
there is a κ+-good ultrafilter on κ containing E.

Exercise 8.5.11. Prove that there are 22
κ
many κ+-good ultrafilters on κ.

8.6. Keisler’s order

Model theorists are fascinated by studying the “complexities” of theories in a
myriad of different ways. In this section, we show how the ideas from earlier
in this chapter lend themselves to one natural comparison of the complexity
of theories due to Keisler.
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We recall the statement of Theorem 8.3.16 above: Suppose that U is a
regular ultrafilter over a set of cardinality κ. Suppose that |L| ≤ κ and M
and N are L-structures such that M ≡ N . Then MU is κ+-saturated if
and only if N U is κ+-saturated.

This theorem allows us to make the following definition:

Definition 8.6.1. For a complete theory T in a countable language and a
regular ultrafilter U on κ, we say that U saturates T ifMU is κ+-saturated
for some (equivalently, any) M |= T .

The preceding definition allows us to compare theories:

Definition 8.6.2. For complete theories T1 and T2 in countable languages,
we write T1 � T2 if every regular ultrafilter that saturates T2 also saturates
T1.

When T1 � T2, we view T1 as no more complicated than T2 (in some
sense) as any ultrafilter that is “smart enough” to encode the intricacies of
models of T2 by saturating ultrapowers of its models can also do the same
thing for models of T1. It is clear that � is a preorder on complete theories,
called Keisler’s order. As with any preorder, one obtains an equivalence
relation by declaring T1 and T2 equivalent if T1 � T2 and T2 � T1. The
preorder � induces a partial order (also denoted �) on the equivalence
classes. We write T1 � T2 if T1 � T2 but T2 �� T1.

Example 8.6.3. Recall that in Example 8.1.7 we showed that every un-
countable algebraically closed field is saturated. In particular, if K is an
algebraically closed field and U is a regular ultrafilter on κ, then |KU | =
|K|κ ≥ κ+, whence KU is κ+-saturated. Since U was arbitrary, this shows
that ACFp (the theory of algebraically closed fields of characteristic p) is a
minimum element in Keisler’s order.

The previous example generalizes: call a complete theory T in a count-
able language uncountably categorical if for some uncountable cardinal
κ, T has a unique model of cardinality κ up to isomorphism. A famous the-
orem of Morley states that a theory is uncountably categorical if and only
if, for every uncountable cardinal κ, T has a unique model of size κ. Part
of the proof of Morley’s theorem shows that all uncountable models of T
are saturated. Thus, any uncountably categorical theory is also a minimum
element in Keisler’s order. In particular, all such theories are equivalent (in
the sense of Keisler’s order).

Proposition 8.6.4. The complete theory T is a minimum in Keisler’s order
if and only if every regular ultrafilter saturates T .
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Proof. The backward direction is exactly as in Example 8.6.3. For the
forward direction, it just suffices to note that, given any regular ultrafilter
U , some theory is saturated by U (e.g., ACFp). �

There are examples of theories that are a minimum in Keisler’s order
that are not uncountably categorical:

Example 8.6.5. Let L = {E}, where E is a single binary relation symbol.
Let T be the L-theory which states that E is an equivalence relation with
exactly two classes, both of which are infinite. Then T is not uncountably
categorical. For example, T has two nonisomorphic models of cardinality
ℵ1.

On the other hand, suppose that M is the unique countable model of
T and U is an ultrafilter on an index set I. Set N := MU . We claim
that both equivalence classes of N have the same cardinality as N itself.
Indeed, let L′ := L ∪ {f}, where f is a new unary function symbol. Let
M′ denote the expansion of M which interprets f as a bijection between
the two equivalence classes, and let N ′ denote the expansion of MU which
interprets f as the ultrapower of fM′

. It follows from �Loś’s theorem and
Exercise 6.3.8 that fN ′

is a bijection between the two equivalence classes of
N , as desired.

As a consequence, all ultrapowers of M with respect to a regular ultra-
filter on a cardinal κ are isomorphic and thus T is a minimum in Keisler’s
order.

In [101], Keisler introduced a syntactic notion, called the finite cover
property, that he believed would characterize the theories in the minimum
class. He was successful in showing that the finite cover property was a
necessary condition for theories in the minimum class, but it was not until
the work of Shelah [158] that the finite cover property was shown to be
sufficient as well, thus confirming Keisler’s suspicion.

Definition 8.6.6. A formula ϕ(x, y) (where x and y are two finite tuples
of variables) has the finite cover property (fcp) in T if there is M |= T
such that, for arbitrarily large n ∈ N, there are tuples a1, . . . , an ∈ M such
that:

• M |= ¬∃x
∧

1≤i≤n ϕ(x, ai), but

• for every m < n, M |= ∃x
∧

1≤i≤n,i �=m ϕ(x, ai).

We refer to the set {ϕ(x, a1), . . . , ϕ(x, an)} as a (ϕ, n)-cover of M. We say
that T has the finite cover property if some formula has the fcp in T . If
ϕ(x, y) does not have the fcp in T , then we abuse grammar and say that ϕ
has the nfcp in T . Similary, if T does not have the fcp, we also say that T
has the nfcp.
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The “cover” terminology comes from the fact that one views the formulae
¬ϕ(x, ai), for i = 1, . . . , n, as covering the universe M (as every element of
M makes one of the formulae true); the second item in the definition then
states that this cover of M has no proper subcover. Consequently, the
formula ϕ having the fcp in T is a kind of finitary nonsaturation property.

Exercise 8.6.7. Suppose that ϕ has the fcp in T as witnessed by M |= T .
Prove that all N |= T witness that T has the fcp.

Exercise 8.6.8. Prove that ϕ(x, y) has the nfcp in T if and only if there is
k ∈ N such that the following holds: for every M |= T and every A ⊆ M ,
setting Σ := {ϕ(x, a) : a ∈ A}, if every subset of Σ of size at most k is
satisfiable in M, then Σ is finitely satisfiable in M.

Here is the prototypical example of a theory with the fcp:

Example 8.6.9. Let T be the theory of an equivalence relation with a
unique equivalence class of size n for every n ≥ 1. Then the formula E(x, y)∧
x �= z has the fcp in T . To see this, let M be the unique model of T with
only finite equivalence classes. Fix n ≥ 1 and let a1, . . . , an enumerate the
unique class of size n. Then M |= ¬∃x

∧
1≤i≤n(E(x, a1) ∧ x �= ai) while, for

any m ≤ n, M |= ∃x
∧

1≤i≤n,i �=m(E(x, a1) ∧ x �= ai).

As noted above, the fcp is some finitary failure of saturation; Keisler’s
observation was that this finitary failure of saturation propagates somewhat
to ultrapowers:

Proposition 8.6.10. Suppose that T has the fcp and U is a countably in-
complete ultrafilter on κ. Then for any M |= T , we have that MU is not
(2κ)+-saturated.

Proof. Suppose that ϕ(x, y) have the fcp in T . Consequently, for arbitrar-
ily large n ∈ N, there is a (ϕ, n)-cover in M as witnessed by the tuples
a1(n), . . . , an(n) ∈ M . Take (In)n∈N from U such that In ⊇ In+1 for all
n ∈ N and such that

⋂
n∈N In = ∅. For each i ∈ I, let m(i) be the least

m ∈ N such that i /∈ Im and take n(i) ≥ m(i) such that there is a (ϕ, n(i))-
cover in M. Take S ⊆

∏
i∈I [n(i)] such that every element of

∏
U [n(i)] is

equivalent modulo U to a unique element of S. Note that |S| ≤ 2κ. For each
s ∈ S, let fs ∈ M I be defined by fs(i) := as(i)(n(i)). We show that MU is

not (2κ)+-saturated by showing that Σ := {ϕ(x, [fs]U) : s ∈ S} is finitely
satisfiable in MU but not satisfiable in MU .

To see that Σ is not satisfiable in U , fix any g ∈ M I ; we show that
[g]U does not satisfy Σ. For each i ∈ I, take k(i) ≤ n(i) such that M |=
¬ϕ(g(i), ak(i)(n(i))). Let s ∈ S be such that s(i) = k(i) for U -almost all

i ∈ I. Then MU |= ¬ϕ([g]U , [fs]U), whence [g]U does not satisfy Σ.
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We conclude by showing that Σ is finitely satisfiable inMU . In fact, we
prove something much stronger, namely, for every s ∈ S, Σ \ {ϕ(x, [fs]U)}
is satisfiable in MU . Fix s ∈ S and take g ∈M I such that

M |=
∧

1≤j≤n(i),j �=s(i)

ϕ(g(i), aj(n(i))).

It follows that [g]U satisfies Σ \ {ϕ(x, [fs]U)}. �

Corollary 8.6.11. Suppose that T is in the minimum class in Keisler’s
order. Then T has the nfcp.

Proof. We prove the contrapositive. Suppose that T has the fcp. Let U1
be any regular ultrafilter on 2κ and let U2 be any countably incomplete
ultrafilter on κ. Set U := U1 × U2. By Exercise 8.3.7, U is also a regular
ultrafilter on 2κ. Fix M |= T . By Proposition 8.6.10, MU ∼= (MU1)U2 is
not (2κ)+-saturated. It follows that U does not saturate T , whence T is not
in the minimum class in Keisler’s order. �

Shelah was able to prove the converse of the previous corollary. This
converse follows from the following more general result:

Theorem 8.6.12. Suppose that T has the nfcp and U is a countably incom-
plete ultrafilter. Set λ := |NU |. Then for all M |= T , M is λ-saturated.

Before discussing the proof of Theorem 8.6.12, we first see how it yields
the promised syntactic characterization of the minimum class in Keisler’s
order:

Corollary 8.6.13. A theory T is in the minimum class in Keisler’s order
if and only if T has the nfcp.

Proof. The forward direction is Corollary 8.6.11. To prove the backward
direction, suppose that T has the nfcp and take any regular ultrafilter U on
κ. By Theorem 8.3.9, |NU | = 2κ ≥ κ+. By Theorem 8.6.12, U saturates
T . Since U was an arbitrary regular ultrafilter, it follows that T is in the
minimum class in Keisler’s order. �

We now discuss the proof of Theorem 8.6.12, which makes heavy use of
ideas from stability theory. The class of stable theories is an important
class of theories in model theory where an in-depth analysis of the class of
models is possible. We defer the definition of a stable theory to Chapter
15, where the notion will play a central role. For our purposes, it suffices to
know the following fact, whose proof we relegate to an exercise in Chapter
15 (see Exercise 15.1.5):

Proposition 8.6.14. If T has the nfcp, then T is stable.
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The key result from stability theory that we will need is Theorem 8.6.16
below. In order to state it, we need the following definitions.

Definition 8.6.15. Suppose that M is an L-structure and A = {ai : i <
α} is a subset of M .

(1) For any finite set Δ of L-formulae and any n ∈ N, we say that A
is a Δ-n-indiscernible set in M if, for all ϕ ∈ Δ and all pairs
(i1, . . . , in) and (j1, . . . , jn) of n-tuples of ordinals below α, we have
M |= ϕ(ai1 , . . . , ain)↔ ϕ(aj1 , . . . , ajn).

(2) We say that A is an indiscernible set in M if it is a Δ-n-
indiscernible set in M for all finite sets Δ of L-formulae and all
n ∈ N.

Theorem 8.6.16. Suppose that T is a stable theory and N |= T . For any
uncountable cardinal κ, we have that N is κ-saturated if and only if:

(1) N is ℵ1-saturated.
(2) Every countably infinite indiscernible set in N can be extended to

an indiscernible set in N of cardinality κ.

Exercise 8.6.17. Prove that the forward direction of Theorem 8.6.16 holds
in any model of any theory.

The main use of the assumption that T has the nfcp in Theorem 8.6.12
(besides the fact that it implies that T is stable) is the following fact:

Theorem 8.6.18. Suppose that T has the nfcp. Then for every finite set Δ
of L-formulae and every n ∈ N, there is m = m(Δ, n) ∈ N with the following
property: for every M |= T , every Δ-n-indiscernible set in M of length at
least m can be extended to an infinite Δ-n-indiscernible set in M.

We are now ready to prove Theorem 8.6.12:

Proof of Theorem 8.6.12. Fix M |= T . By Theorem 8.2.1, MU is ℵ1-
saturated. Thus, by Theorem 8.6.16, it suffices to show that any infinite
indiscernible set {cn : n ∈ N} inMU can be extended to one of size λ. Fix
a family S of subsets of M with the following three properties:

• |S| = |M |;
• Pf (M) ⊆ S;

• for every finite set Δ of L-formulae and every n ∈ N, if w ∈ S is
a Δ-n-indiscernible set with the property that there is an infinite
Δ-n-indiscernible set in MU containing w, then such an extension
of w also exists in S.
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Fix enumerations {aα : α < |M |} and {wα : α < |M |} of M and S,
respectively. Consider the language L′ := L ∪ {E,P}, where E is a new
binary relation symbol and P is a new unary relation symbol. We expand
M to an L′-structure M′ by declaring, for α, β < |M |, that:

• (aα, aβ) ∈ EM′
if and only if aα ∈ wβ , and

• aα ∈ PM′
if and only if wα is infinite.

Next note that, for each finite set Δ of L-formulae and n ∈ N, there is
an L′-formula ϕΔ,n(x) such that, for all α < |M |, we have M |= ϕΔ,n(aα)
if and only if wα is a Δ-n-indiscdernible set. Fix m(Δ, n) as in The-
orem 8.6.18. By the definition of S, for each α < |M |, we have that
M′ |= (|aα| ≥ m(Δ, n) ∧ ϕΔ,n(aα)) → ∃x(P (x) ∧ aα ⊆ x ∧ ϕΔ,n(x)). Here,
we are abusing notation and writing |aα| ≥ m(Δ, n) as shorthand for the
statement ∃x1 · · · ∃xm(Δ,n)

(
∧

1≤i<j<m(Δ,n) xi �= xj ∧
∧

1≤i≤m(Δ,n)E(xi, aα));

similar abuse of notation is being used in writing aα ⊆ x. Let

Σ := {P (x)} ∪ {E(cn, x) : n ∈ N} ∪ {ϕΔ,n(x) : Δ ∈ Pf (T ), n ∈ N}.
By the above discussion (and the fact that S contains all finite subsets ofM),
we have that Σ is finitely satisfiable in (M′)U . Since (M′)U is ℵ1-saturated,
there is [b]U ∈ MU that satisfies Σ. Set X := {[f ]U ∈ MU : (M′)U |=
E([f ]U , [b]U)}. It is clear that X is an indiscernible set in MU containing
{cn : n ∈ N}. Moreover, setting Xi := {a ∈ M : M′ |= E(a, b(i))}, we
have that Xi is infinite for U -almost all i. Since X =

∏
U Xi, it follows that

|X| ≥ λ, as desired. �

What is interesting about the proof of Theorem 8.6.12 is that it also
gives information about ultrapowers of models of stable theories with the
fcp. In order to state this result, we first introduce a key definition:

Definition 8.6.19. Given an ultrafilter U on an index set I, we set

pfc(U) := min

{∣∣∣∣∣
∏
U

Xi

∣∣∣∣∣ : Xi a finite set for all i ∈ I, lim
U
|Xi| =∞

}
.

Note that, by Theorem 6.8.3, pfc(U) ≥ c whenever U is a countably
incomplete ultrafilter.

Theorem 8.6.20. Suppose that T is a stable theory with the fcp and that
U is a countably incomplete ultrafilter. For any M |= T , we have that MU

is pfc(U)-saturated.
Exercise 8.6.21. Prove Theorem 8.6.20.

It might appear that the conclusion of Theorem 8.6.20 is quite weak and
that with a more clever proof, the conclusion can be strengthened. However,
this is not the case:
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Example 8.6.22. Recall the theory of an equivalence class with a unique
class of size n for every n ≥ 1 introduced in Example 8.6.9. As mentioned
there, this theory has the fcp. It is in fact also a stable theory. LetM be the
model with only finite equivalence classes. For each n ≥ 1, let an ∈ M be
an element of the equivalence class of size n. Fix an ultrafilter U on λ and a
sequence (ni)i<λ of natural numbers such that pfc(U) = |

∏
U [ni]|. Setting

a := [ani ]U , we see that E(x, a) defines the set
∏

U E(x, ani) in MU , which
has cardinality pfc(U). It follows from Exercise 8.6.23 below thatMU is not
pfc(U)+-saturated. Consequently, pfc(U)-saturation is the optimal level of
saturation for MU .

Exercise 8.6.23. Suppose thatM is a κ-saturated structure and X ⊆Mn

is an infinite definable set. Prove that |X| ≥ κ.

It turns out that the conclusion of Example 8.6.22 is always the case in
a stable theory with the fcp:

Theorem 8.6.24. Suppose that T is a stable theory with the fcp. For any
M |= T and any ultrafilter U , we have that MU is not pfc(U)+-saturated.

Proof sketch. The proof relies on Shelah’s “fcp theorem”, which yields a
formula ϕ(x, y, z), where x, y, and z are finite tuples of variables, x and y
having equal length, with the following two properties:

• for all c ∈M , ϕ(x, y, c) defines an equivalence relation;

• for all n ∈ N, there is a tuple cn ∈ M such that ϕ(x, y, cn) has at
least n, but only finitely many, equivalence classes.

Taking this fact for granted, the proof of the theorem is fairly straight-
forward. Indeed, suppose that (ni)i<λ is such that pfc(U) = |

∏
U [ni]| and

define c ∈ M I by setting c(i) := cmi , where mi is the maximal l ∈ N such
that ϕ(x, y, cl) has at most ni classes. (If no such l exists, set c(i) = 1; note
that this only happens for a U -small set of i ∈ I.) It follows that ϕ(x, y, [c]U)
defines an equivalence relation in MU with infinitely many, but at most
pfc(U) many classes. It follows that MU is not pfc(U)+-saturated. �

Since there are stable theories with the fcp, Theorem 8.6.20 tells us
that there must be some κ and some regular ultrafilter U on κ such that
pfc(U) ≤ κ. Shelah considered the question: which cardinals can arise as
pfc(U) for U a regular ultrafilter on κ? Clearly, pfc(U) ≤ 2κ and an argument
analogous to the proof of Theorem 6.8.5 shows that pfc(U)ℵ0 = pfc(U).
Surprisingly, these are the only two restrictions:

Theorem 8.6.25. Suppose that κ is an infinite cardinal and λ is an infinite
cardinal such that λ ≤ 2κ and λℵ0 = λ. Then there is a regular ultrafilter U
on κ such that pfc(U) = λ.
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Returning to the study of Keisler’s order, Theorems 8.6.20 and 8.6.24
imply the following:

Corollary 8.6.26. Any two stable theories with the fcp are equivalent in
Keisler’s order.

To see that every stable theory is below every unstable theory in Keisler’s
order, we need to know the following fact for unstable theories, again due
to Shelah:

Theorem 8.6.27. Suppose that T is unstable and U is a countably incom-
plete ultrafilter with pfc(U) < 2λ. For any M |= T , we have that MU is not
λ+-saturated.

Proof sketch: Throughout the proof, we fixM |= T and a sequence (mi)i∈I
of natural numbers such that pfc(U) = |

∏
U [mi]|. The proof of the theorem

relies on a fundamental fact from stability theory: if T is an unstable theory,
then T has either the strict order property or T has the independence
property.

First suppose that T has the strict order property. By definition, this
means that there is a formula ϕ(x, y), where x and y are finite tuples of the
same length, which has the following two properties:

• ϕ(x, y) defines a (strict) partial order on M , and

• for each n∈N, there are a1(n), . . . , an(n)∈M , for all i=1, . . . , n−1,
such that ϕ(ai(n), ai+1(n)).

Set Ai := {a1(m(i)), . . . , am(i)(m(i))} and set A :=
∏

U Ai. By the

definition of pfc(U), we have that |A| < 2λ.

Suppose, toward a contradiction, that MU is λ+-saturated. This
assumption allows us to construct, by induction on the length of η,
(aη)η∈2≤λ , (bη)η∈2≤λ ∈ A, satisfying the following:

• For every η ∈ 2≤λ, we have MU |= ϕ(aη, bη).

• For every n ∈ N, there are c0, . . . , cn ∈ A such that c0 = aη, cn = bη,
and MU |=

∧
i<n ϕ(ci, ci+1).

• If η is an initial segment of ν, then MU |= ϕ(aη, aν) ∧ ϕ(bν , bη) ∧
ϕ(bη�(0), aη�(1)).

It is clear from the properties of the construction that the aη’s are dis-

tinct, whence |A| ≥ 2λ, yielding the desired contradiction.

Now suppose instead that T has the independence property. By def-
inition, there is a formula ϕ(x, y) such that, for every n ∈ N, there are
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a1(n), . . . , an(n) ∈M for which, for all J ⊆ [n], we have

M |= ∃x
(∧

i∈J
ϕ(x, ai(n)) ∧

∧
i/∈J
¬ϕ(x, ai(n))

)
.

For each J ⊆ [n], let bJ(n) ∈ M witness the above existential statement.
For each i ∈ I, set k(i) := !log2(mi)" if mi �= 1; if mi = 1 (which happens
for a U -small set of i ∈ I), set k(i) := 1. Set Ai := {a1(k(i)), . . . , ak(i)(k(i))}
and set A :=

∏
U Ai. Similarly, set Bi := {bJ(k(i)) : J ⊆ [k(i)]} and set

B =
∏

U Bi. Note that ℵ0 ≤ |A| ≤ |B| ≤ μ, whence, by the definition of μ,
we have |A| = |B| = μ. Let η := min(pfc(U), λ) and let A′ ⊆ A be such that
|A′| = η. For each C ⊆ A′, let ΣC := {ϕ(x, a) : a ∈ C} ∪ {¬ϕ(x, a) : a /∈
C}. It is readily verified that each ΣC is finitely satisfiable in MU . Since
each ΣC mentions at most η parameters, in order to show that MU is not
λ+-saturated, it suffices to show that some ΣC is not realized inMU . To see
this, it suffices to note that if ΣC is realized inMU , then it is in fact realized
by some element of B. Indeed, if this is the case, then at most pfc(U) many

of the ΣC ’s can be realized in MU ; since there are 2η = 2min(pfc(U),λ) > μ
many ΣC ’s, it follows that at least one of them is not realized in MU , as
desired. Thus, to finish, suppose that ΣC is realized by [c]U ∈ MU . For
each i ∈ I, set wi := {e ∈ M : M |= ϕ(c(i), e)} ∩ Ai. It then follows that,
for [f ]U ∈ A′, we have [f ]U ∈ C if and only if [f ]U ∈

∏
U wi. Consequently,

if we consider [d]U ∈ B defined by d(i) = bwi(k(i)) for each i ∈ I, we have
that [d]U realizes ΣC . �
Exercise 8.6.28. Verify all of the details in the above proof sketch.

As noted earlier, if U is a regular ultrafilter on λ, then the maximal
value for pfc(U) is 2λ. Theorem 8.6.27 implies that as soon as pfc(U) is less
than maximal, then U does not saturate any unstable theory. We should
also note that the converse to Theorem 8.6.27 is not true, as will become
evident from our discussion in Chapter 15.

Corollary 8.6.29. Suppose that T1 is stable and T2 is unstable. Then T1 �
T2.

Proof. Without loss of generality, assume that T1 has the fcp. Suppose
that U is a regular ultrafilter on κ that does not saturate T1. By Theorem
8.6.20, pfc(U) ≤ κ; since κ < 2κ, Theorem 8.6.27 implies that U does not
saturate T2 either. �

It is in fact true that, in the statement of the previous corollary, we have
that T1 � T2, whence the stable theories comprise the two smallest classes in
Keisler’s order. We will prove this fact in Corollary 15.2.13.

We now consider the opposite end of Keisler’s order:
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Example 8.6.30. Th(Pf (ω),⊆) is a maximum element in Keisler’s order.
Indeed, let T be any complete theory. Suppose that U is a regular ultrafilter
that saturates Th(Pf (ω),⊆). By Theorem 8.4.16, U is κ+-good, whence it
saturates T by Proposition 8.4.9. Consequently, T � Th(Pf (ω),⊆).

Proposition 8.6.31. The complete theory T is a maximum in Keisler’s
order if and only if, for every regular ultrafilter U : U saturates T if and only
if U is good.

Proof. The backward direction is essentially the argument used in the pre-
vious example. For the forward direction, any maximum element is equiv-
alent to Th(Pf (ω),⊆) and the corresponding property of this theory is the
content of Theorem 8.4.16. �

Remark 8.6.32. Unlike the case of the minimum class, an exact syntactic
description of the theories belonging to the maximum class is unknown. At
the time of writing, the best known result is due to Malliaris and Shelah, who
showed in [121] that theories with the so-called SOP2 are in the maximum
class. (They actually conjecture that SOP2 characterizes the theories in the
maximum class in the same way that the nfcp characterizes the theories in
the minimum class.) Incidentally, the techniques used in [121] also settled
the oldest problem in the study of cardinal characteristics of the continuum
(see Section 1.5), namely by showing that p = t.

8.7. Notes and references

A good reference for further facts about saturation and universality is Mar-
ker’s introductory textbook on model theory [126]. Theorem 8.2.1 is due to
Keisler [100]. Part of our treatment on regular ultrafilters is based on the
analogous discussion in [28]. Theorem 8.3.9 is due to Frayne, Morel, and
Scott [59]. Theorem 8.3.10 and Theorem 8.3.16 are due to Keisler [101].
Good ultrafilters were introduced in [97] and [99], where their existence was
proven using GCH. The use of GCH was removed by Kunen in [111]. Our
presentation of the existence of good ultrafilters follows [28] very closely.
The definition of good ultrafilter can appear quite strange at first sight,
but the article [120] does a great job making the definition appear more
intuitive; our presentation is inspired heavily by this latter article, although
we try to clarify matters even further. Corollary 8.4.24 is due to Keisler
[97].

After Keisler’s original paper [101], besides the results of Shelah men-
tioned above, the study of Keisler’s order remained somewhat dormant.
Interest in the subject was renewed starting with Malliaris’s thesis [119].
She then collaborated with Shelah to prove many more interesting results
on the structure of Keisler’s order (e.g., the result about theories with SOP2
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belonging to the maximum class mentioned above). They also proved that
there are infinitely many classes in Keisler’s order, and in fact the partial
order induced on the set of classes has an infinite strictly descending chain
[123].

Malliaris-Shelah [125] and Ulrich [178] (independently) proved, from a
large cardinal assumption, that Keisler’s order is not a linear order; later,
Malliaris and Shelah were able to remove the large cardinal assumption
[122]. Even more recently, Malliaris and Shelah were able to prove that
there are the maximal number of equivalence classes of theories with respect
to Keisler’s order, that is, they found continuum-many theories that are
pairwise inequivalent with respect to Keisler’s order [124], solving a problem
that had remained open since Keisler’s original paper [101].



Chapter 9

Nonstandard analysis

In this chapter, we develop some basic nonstandard analysis and highlight
the connection with the ultraproduct construction. Section 9.1 introduces
the basic idea behind nonstandard analysis and enumerates a näıve axiom-
atization for what properties a nonstandard universe should satisfy. Section
9.2 examines the kind of new numbers that appear in the nonstandard ex-
tension of the real field while Section 9.3 uses these new numbers to develop
some basic nonstandard calculus. Section 9.4 makes explicit the connection
with ultrapowers by giving the ultrapower model for nonstandard extensions.
The main result of Section 9.5 is that the ultrapower model of nonstandard
extensions is almost general in the sense that every nonstandard extension
is locally isomorphic to an ultrapower, or, more precisely, is isomorphic to
a limit ultrapower. Section 9.6 describes an extension of the previous setup
suitable for studying the nonstandard extension of more complex objects
such as topological spaces or measure spaces. Section 9.7 highlights the
way in which nonstandard elements can be used to generate ultrafilters, a
method which has been very successful recently in connection with combi-
natorial applications, some of which are sketched in this section. Finally, in
Section 9.8, we examine the Hausdorff condition on ultrafilters, a condition
which arises naturally in the context of the discussion from Section 9.7, and
we ponder the existence of such ultrafilters.

9.1. Näıve axioms for nonstandard analysis

The initial approach to calculus made free use of “infinitesimal” and “infi-
nite” elements. For example, if f : R → R is a function, then one might
say limx→0 f(x) = 0 if, whenever a is an infinitesimal number, then f(a) is
also infinitesimal. As the ontological status of these infinitesimal elements

157
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was called into question, calculus was not deemed to be on a firm founda-
tion until the advent of the “ε-δ” style approach that we are accustomed to
today.

However, in the 1960s, the model theorist Abraham Robinson realized
that techniques from model theory could be used to rescue the use of these
infinitesimal and infinite elements. Indeed, these elements, while not ele-
ments of the usual field R, do belong in some field R∗ extending R, often
termed a field of hyperreal numbers. Moreover, this field R∗ behaves
“logically” like the usual field R of real numbers. This latter fact, often
referred to as the transfer principle, is crucial in nonstandard arguments.
(As we will soon see, the transfer principle, in some sense, is merely �Loś’s
theorem in disguise.) After its inception, this technique, now known by the
unfortunate name of nonstandard analysis, has been used to prove signifi-
cant theorems in a wide variety of areas of mathematics. There have been a
number of excellent books written about nonstandard analysis, so we make
no attempt in this chapter to provide a complete introduction. We merely
take the opportunity to point out some of the more important topics.

To begin our introduction to nonstandard analysis, we will work in a
nonstandard universe R∗ that satisfies the following properties:

(1) (R; +, ·, 0, 1) is an ordered subfield of (R∗; +, ·, 0, 1).
(2) R∗ has a positive infinitesimal element, that is, there is ε ∈ R∗

such that ε > 0 but ε < r for every r ∈ R>0.

(3) For every n ∈ N and every function f : Rn → R, there is a “nat-
ural extension” f : (R∗)n → R∗. The natural extensions of the
operations +, · : R2 → R coincide with the field operations in R∗.
Similarly, for every A ⊆ Rn, there is a subset A∗ ⊆ (R∗)n such that
A∗ ∩ Rn = A.

(4) R∗, equipped with the above assignment of extensions of functions
and subsets, “behaves logically” like R.

We have chosen not to extend partial functions. This can be taken care
of in two equivalent ways using the above setup:

Exercise 9.1.1. Suppose that A ⊆ Rn and let f : A → R. Consider the
graph of f

Γf := {(a, f(a)) : a ∈ A} ⊆ Rn+1.

Prove that:

(1) Γ∗
f is the graph of a function from A∗ to R∗ extending f .

(2) For any (total) function F : Rn → R, if F � A = f , then function
from part (1) is F � A∗.
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The unique function from the preceding exercise will be the nonstandard
extension of our partial function f .

In particular, if (sn)n∈N is a sequence from R, then viewing it as a
function s : N→ R, we get the nonstandard extension s : N∗ → R∗. For N ∈
N∗, we write s(N) as sN to remind us of the original sequence perspective.

9.2. Nonstandard numbers big and small

Since R∗ is an ordered field, we can start performing the field operations to
our positive infinitesimal ε. For example, ε has an additive inverse −ε, which
is then a negative infinitesimal. Also, we can consider π · ε; it is reasonably
easy to see that π · ε is also a positive infinitesimal. (This will follow from a
more general principle that we will shortly see.)

Since ε �= 0, it has a multiplicative inverse ε−1. For a given r ∈ R>0,
since ε < 1

r , we see that ε−1 > r. Since r was an arbitrary positive real

number, we see that ε−1 is a positive infinite element. And, of course, −ε−1

is a negative infinite element. But now we can continue playing, considering
numbers like

√
2 · ε−1 and so on. . . .

Besides algebraic manipulations, we also have transcendental matters
to consider. Indeed, we have the nonstandard extension of the function
sin : R∗ → R∗; what is sin(ε)? All in due time. . . . First, let us make precise
some of the words we have been thus far freely tossing around.

Definition 9.2.1.

(1) The set of finite hyperreals is

Rfin := {x ∈ R∗ : |x| ≤ n for some n ∈ N}.

(2) The set of infinite hyperreals is Rinf := R∗ \ Rfin.

(3) The set of infinitesimal hyperreals is

μ := {x ∈ R∗ : |x| ≤ 1

n
for all n ∈ N>0}.

Observe that μ ⊆ Rfin, R ⊆ Rfin, and μ ∩ R = {0}. Also note that if
δ ∈ μ \ {0}, then δ−1 ∈ Rinf .

Exercise 9.2.2. Prove that Rfin is a subring of R∗ and μ is an ideal in Rfin.

Definition 9.2.3. For x, y ∈ R∗, we say that x and y are infinitely close,
denoted x ≈ y, if x− y ∈ μ.

Exercise 9.2.4.

(1) Show that ≈ is an equivalence relation on R∗.
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(2) Show that ≈ is a congruence relation on Rfin; that is, it is an
equivalence relation on Rfin such that, for all x, y, u, v ∈ Rfin, if
x ≈ u and y ≈ v, then x± y ≈ u± v and xy ≈ uv.

Exercise 9.2.5. Show that R and μ are both nonempty subsets of R∗ that
are bounded above but yet have no least upper bound. Consequently, the
completeness property is not true for the ordered field R∗.

Theorem 9.2.6 (The existence of standard parts). If r ∈ Rfin, then there
is a unique s ∈ R such that r ≈ s.

Proof. Uniqueness is immediate: if r ≈ s1 and r ≈ s2 with s1, s2 ∈ R, then
s1 ≈ s2, so s1 − s2 ∈ μ ∩ R = {0}, whence s1 = s2.

We now prove existence. Without loss of generality, we may assume that
r > 0. (Why?) We then set A := {x ∈ R : x < r}. Since r ∈ Rfin, A is
bounded above. Also, 0 ∈ A, so A �= ∅. Thus, by the completeness property
of R, sup(A) exists. Set s := sup(A). We claim that this is the desired s.
Toward this end, fix δ ∈ R>0; we show that |r − s| ≤ δ. Since s is an upper
bound for A, s+ δ /∈ A, that is, r ≤ s+ δ. If r ≤ s− δ, then s− δ would also
be an upper bound for A, contradicting the fact that s was the least upper
bound. Thus, r > s− δ, and thus |r − s| ≤ δ, as desired. �

Definition 9.2.7. Given r ∈ Rfin, the unique s ∈ R such that r ≈ s is called
the standard part of r and is denoted st(r).

Exercise 9.2.8. Fix x, y ∈ Rfin.

(1) Prove that x ≈ y if and only if st(x) = st(y).

(2) If x ≤ y, then st(x) ≤ st(y). Give a counterexample to the converse
statement.

(3) If x ∈ R, then st(x) = x.

Exercise 9.2.9. Prove that st : Rfin → R is a surjective ring homomorphism
with kernel μ. Conclude that Rfin/μ ∼= R.

We conclude this section by taking a closer look at N∗.

Proposition 9.2.10.

(1) N∗ \ N �= ∅.
(2) If N ∈ N∗ \ N, then N is a positive infinite element.

Proof. For (1), fix y ∈ R∗ a positive infinite element. Since the statement
“for all x ∈ R, if x > 0, then there is n ∈ N such that x ≤ n” is true in
R, the statement “for all x ∈ R∗, if x > 0, then there is n ∈ N∗ such that
x ≤ n” is true in R∗ by the transfer principle. Thus, there is N ∈ N∗ such
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that y ≤ N . If N ∈ N, then y ∈ Rfin, a contradiction. Thus, N ∈ N∗ \N, as
desired.

For (2), we note that N ≥ 0 by the transfer principle. We next note
that if N ∈ Rfin, then there is n ∈ N such that n ≤ N ≤ n + 1. However,
the statement “for all m ∈ N, if n ≤ m ≤ n+ 1, then m = n or m = n+ 1”
is true in R, whence, by the transfer principle, we conclude that N = n or
N = n+1, a contradiction. Consequently, N /∈ Rfin, that is, N is a positive
infinite element. �

We next examine how many nonstandard natural numbers there are.
Toward this end, for N ∈ N∗ (potentially standard), we set γ(N) := {N ±
m : m ∈ N} and call this the galaxy or archimedean class of N . Clearly,
N ∈ N if and only if γ(N) = Z; this is called the finite galaxy, while all
other galaxies are referred to as infinite galaxies.

Exercise 9.2.11.

(1) If N ∈ N∗ \ N, then γ(N) ⊆ N∗.

(2) For M,N ∈ N∗, γ(M) = γ(N), if and only if |M −N | ∈ N.

(3) If γ(M) = γ(M ′) and γ(N) = γ(N ′) and γ(M) �= γ(N), then
M < N if and only if M ′ < N ′.

The last item allows us to define an ordering on galaxies: if γ(M) �=
γ(N), then declare γ(M) < γ(N) if and only if M < N ; in this case, we
often say that M is infinitely less than N .

Exercise 9.2.12. Prove that there is no largest nor smallest infinite galaxy
and that between any two infinite galaxies lies a third infinite galaxy.

9.3. Some nonstandard calculus

Theorem 9.3.1. Suppose that a, L ∈ R and f : R→ R is a function. Then
limx→a f(x) = L if and only if, for all y ∈ R∗, if y ≈ a but y �= a, then
f(y) ≈ L.

Proof. First suppose that limx→a f(x) = L and take y ∈ R∗ with y ≈ a and
y �= a. Fix ε > 0 and take δ ∈ R>0 such that, for all b ∈ R, if 0 < |x−b| < δ,
then |f(x) − L| < ε. Since y ≈ a but y �= a, we have that 0 < |y − a| < δ,
whence, by transfer, we have that |f(y)−L| < ε. Since ε > 0 was arbitrary,
we have that f(y) ≈ L, as desired.

Now assume that the converse assumption holds and fix ε > 0. In the
nonstandard extension, the statement “there is δ > 0 such that, for all
y ∈ R∗, if 0 < |x− y| < δ, then |f(x)− L| < ε” is true, as one can let δ be
any positive infinitesimal. Thus, the corresponding statement is true in R,
as desired. �
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Exercise 9.3.2. Give nonstandard proofs of all of the usual limit laws from
calculus. For example, if limx→a f(x) = L and limx→a g(x) = M , give a
nonstandard proof of the fact that limx→a(f ± g)(x) = L±M .

Corollary 9.3.3. Given f : R→ R and a ∈ R, then f is continuous at a if
and only if, whenever x ≈ a, then f(x) ≈ f(a).

Theorem 9.3.4 (Intermediate value theorem). Suppose that f is continuous
on [a, b]. Then for every d in between f(a) and f(b), there is c ∈ (a, b) such
that f(c) = d.

Proof. Without loss of generality, suppose f(a) < f(b), so f(a) < d < f(b).
Define a sequence (sn)n∈N as follows. For n > 0, let {p0, . . . , pn} denote the
partition of [a, b] into n equal pieces of width b−a

n . Since f(p0) < d, we
can define the number sn := max{pk : f(pk) < d}, that is, pk is the last
partition point for which f(pk) < d. Note that sn < b.

Now fix N ∈ N∗ \ N. We claim that c := st(sN ) is as desired, that is,
that f(c) = d. (Note that sN ∈ [a, b]∗ by transfer whence st(sN ) is defined.)
Indeed, since sN < b by transfer, we have that sN + b−a

N ≤ b, whence, by

transfer again, d ≤ f(sN + b−a
N ). However, since sN + b−a

N ≈ sN ≈ c, we
have that

f(c) ≈ f(sN ) < d ≤ f

(
sN +

b− a

N

)
≈ f(c),

whence f(c) ≈ d. Since f(c), d ∈ R, we get that f(c) = d. �

Theorem 9.3.5 (Extreme value theorem). Suppose that f : [a, b] → R is
continuous. Then there are c, d ∈ [a, b] such that f(c) ≤ f(x) ≤ f(d) for all
x ∈ [a, b].

Proof. We only prove the existence of the maximum. Let {p0, . . . , pn} be
as above. This time define sn to be some partition point pk such that
f(pj) ≤ f(pk) for all j = 0, . . . , n. Fix N ∈ N∗ \ N and set d := st(sN ). We
claim that f(d) is a maximum. (The intuition here is that we are breaking
[a, b] up into hyperfinitely many pieces of infinitesimal width, considering
the maximum value f takes on these hyperfinitely many elements, and then
noting that that value is infinitely close to the maximum value of the original
function.)

Take x ∈ [a, b]. By transfer, there is k ∈ N∗ with 0 ≤ k < N such

that x ∈ [a + k(b−a)
N , a + (k+1)(b−a)

N ]. By continuity of f , we have that

f(a + k(b−a)
N ) ≈ f(x) while f(a + k(b−a)

N ) ≤ f(sN ). Since f(sN ) ≈ f(d), it
follows that f(x) ≤ f(d). �

The nonstandard perspective is particularly well suited for explaining
the difference between continuity and uniform continuity:
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Theorem 9.3.6. Suppose that I is an interval. Then f : I → R is uniformly
continuous if and only if, for all x, y ∈ I∗, if x ≈ y, then f(x) ≈ f(y).

Exercise 9.3.7. Prove Theorem 9.3.6.

Thus, the nonstandard explanation for the difference between continuity
and uniform continuity is that continuity requires one of the elements in the
pair of infinitely close numbers to be standard.

Example 9.3.8. f : (0, 1) → R given by f(x) = 1
x is continuous but not

uniformly continuous. Indeed, for N ∈ N∗ \ N, 1
N ≈ 1

N+1 , but f(
1
N ) = N �≈

N + 1 = f( 1
N+1).

Theorem 9.3.9. If f : [a, b] → R is continuous, then it is uniformly con-
tinuous.

Proof. Fix x, y ∈ [a, b]∗ with x ≈ y. Let c := st(x) = st(y) ∈ [a, b]. Then f
being continuous at c implies f(x) ≈ f(c) ≈ f(y), as desired. �

Exercise 9.3.10. Suppose that f : [0, 1]→ R is Riemann integrable. Then
for every infinite N , one has∫ 1

0
f(x)dx ≈

N−1∑
i=0

f

(
i

N

)
1

N
.

(Hint. Part of the exercise is making sense of the right-hand side.)

9.4. Ultrapowers as a model of nonstandard analysis

In this section, we show how ultrapowers can be used to put the discussion
in the previous sections on firm footing. Fix U ∈ βN \ N. We show that
R∗ := RU serves as a suitable model for our nonstandard extension.

We first note that, by �Loś’s theorem, RU is an ordered field, and the
diagonal embedding allows us to view R as a subfield of RU .

In order to get a positive infinitesimal element, set ε := [(1, 12 ,
1
3 , . . .)]U .

Since 1
n > 0 for all n, ε > 0. In order to see that ε is infinitesimal, fix

r ∈ R>0; we then have that 1
n < ε for all but finitely many n. Since cofinite

sets belong to U (as U is nonprincipal), we have that 1
n < r for U -almost all

n, whence ε < r.

We define nonstandard extensions of functions and sets as before:
given f : Rn → R, we define f : (Rn)U → RU by f([a1]U , . . . , [an]U) :=
[i �→ f(a1(i), . . . , an(i))]U and A∗ := AU .

Finally, when we say that RU “behaves logically like” R, we are really
referring to the fact that �Loś’s theorem holds. Although to be truthful,
we have not really specified a first-order language, so this is a bit vague.
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We will pin down precisely the first-order formalism for doing this in the
next section, but, in theory, one could avoid all discussions of first-order
logic if one is willing to constantly reprove �Loś’s theorem during each ar-
gument (although we do not recommend it). We illustrate this by giving
the nonstandard characterization of limit from Theorem 9.3.1 above in the
ultrapower language.

First suppose that limx→a f(x) = L and x ≈ a, x �= a. We show
that f(x) ≈ L. Fix ε > 0 and take δ > 0 such that, for all y ∈ R, if
0 < |y− a| < δ, then |f(y)−L| < ε. Since x ≈ a but x �= a, this means that
0 < |x(n)− a| < δ for U -almost all n. Consequently, for U -almost all n, we
have |f(x(n))− L| < ε, and thus |f(x)− L| < ε.

We prove the converse by contrapositive: suppose that limx→a f(x) �= L.
Then there is ε > 0 such that, for all n ∈ N, there is x(n) with 0 < |x(n)−
a| < 1

n and yet |f(x(n)) − L| ≥ ε. Then [x]U ≈ a, [x]U �= a, and yet
|f([x]U)− L| ≥ ε.

9.5. Complete extensions and limit ultrapowers

In order to apply nonstandard analysis to more complicated situations, one
needs to be able to work with nonstandard extensions of objects besides R.
In the next two sections, we explain the model-theoretic approach to this
endeavor.

Definition 9.5.1. Suppose that M is an L-structure. Let L#
M denote the

language obtained from L by adding the following symbols:

• For each a ∈M , a constant symbol ca.

• For each n-ary function f : Mn → M , an n-ary function symbol
Ff .

• For each set A ⊆Mn, an n-ary relation symbol RA.

One then considers the expansion M# of M to an L#
M -structure by in-

terpreting ca as a, Ff as f , and RA as A. This is called the complete

expansion of M. If M is just a set, then we write M# for the complete
expansion of the structure M in the empty language, and we call M# the
complete structure on the set M .

Definition 9.5.2. Suppose thatM and N are L-structures and i :M→N
is an embedding. We say that i is a complete embedding if there is

an expansion N# of N to an L#
M -structure such that i is an embedding

i :M# → N#. When i is the inclusion map (so M is a substrcture of N ),
we say that N is a complete extension of M.

Exercise 9.5.3. Suppose that i :M→N is a complete embedding. Prove
that i :M# → N# is an elementary embedding.
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Exercise 9.5.4. Given a structure M and an ultrafilter U , prove that the
diagonal embedding d :M→MU is a complete embedding.

Exercise 9.5.5. Suppose that R∗ is a proper complete extension of R. Prove
that R∗ satisfies all of the “näıve axioms” introduced in Section 9.1.

Exercise 9.5.5 tells us that one can do nonstandard analysis by work-
ing in a proper complete extension of R, while Exercise 9.5.4 tells us that
this proper complete extension can be achieved using an ultrapower of R.
However, there is nothing special about R here; if one wants to study some
mathematical object, say a group G, then one merely needs to pass to a
proper complete extension of that object, which can be obtained by using
an ultrapower.

It is natural to wonder if, conversely, every complete extension of a
structure M is isomorphic to an ultrapower of M. This is unfortunately
not the case:

Exercise 9.5.6. Suppose thatN is an iterated ultrapower ofM (see Section
6.9). Prove that N is a complete extension of M.

Recall that Proposition 6.9.9 shows that, given any countable structure
M, there is an iterated ultrapower of M not isomorphic to any ordinary
ultrapower of M, whence there are complete extensions of M that are not
obtainable using an ultrapower.

It is natural to wonder if every complete extension of M is isomorphic
to an iterated ultrapower ofM. At the time of the writing of this book, the
answer to this question is unknown. However, a small modification of the
notion of iterated ultrapower will lead us to all complete extensions. First,
a preliminary notion:

Definition 9.5.7. Suppose that M is an L-structure and U and V are
ultrafilters on sets I and J , respectively. Given a function σ : J → I such
that σ(V) = U , we get an induced embedding σ̃ : MU → MV given by
σ̃([f ]U) = [f ◦ σ]V . An embedding MU →MV is called induced if it is of
the form σ̃ for some function σ : J → I with σ(V) = U .

Exercise 9.5.8. Suppose that σ̃ : MU → MV is an induced embedding.

Prove that σ̃ is an L#
M -elementary embedding (where each ultrapower is

equipped with its “canonical” expansion to an L#
M -structure).

Exercise 9.5.9. Show that the composition of two induced embeddings is
induced.

Exercise 9.5.10. Show that the map MU → MU×V from Theorem 6.9.1
is induced.
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Definition 9.5.11. Suppose that M is a structure. An ultrapower sys-
tem over M is a directed family (Mi)i∈I of ultrapower extensions of M
such that all maps in the system are induced. A limit ultrapower of M
is the direct limit of an ultrapower system over M.

Exercise 9.5.12. Show that every iterated ultrapower of M is a limit ul-
trapower of M.

Exercise 9.5.13. Show that limit ultrapowers ofM are complete extensions
of M.

Exercise 9.5.14. Show that M ≡ N if and only if they have isomorphic
limit ultrapowers.

We will soon see that the converse of Exercise 9.5.13 is true. First, we
need a different presentation of limit ultrapowers that will be convenient for
proving the converse.

Given a function g : I →M , we set

eq(g) := {(i, j) ∈ I × I : g(i) = g(j)}.

Definition 9.5.15. Suppose that M is a set, U is an ultrafilter on I, and
F is a filter on I × I. We define the set MU|F to be

MU|F := {[g]U : g ∈M I , eq(g) ∈ F}.

Exercise 9.5.16. For any structure M, any ultrafilter U on a set I, and
any filter F on I × I, prove that MU|F is the universe of a substructure of
MU .

Definition 9.5.17. With the notation of the previous exercise, we letMU|F

denote the substructure of MU with universe MU|F .

Exercise 9.5.18. Prove that MU|F is a complete extension of M.

Here are two “degenerate” examples:

Example 9.5.19. Suppose F = P(I × I). Then MU|F =MU .

Example 9.5.20. Suppose F = {I × I}. Then MU|F equals the diagonal
image of M in MU .

Exercise 9.5.21. Suppose that M is a structure, U is an ultrafilter on I,
and F and G are filters on I × I with F ⊆ G. Prove that MU|F is an
L#
M -elementary substructure of MU|G .

The following example will be crucial for proving Theorem 9.5.25:
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Example 9.5.22. Suppose that F is a principal filter on I × I, that is,
suppose that there is X ⊆ I × I such that, for all Y ⊆ I × I, Y ∈ F if
and only if X ⊆ Y . We claim that, in this case, MU|F is isomorphic to an
ordinary ultrapower of M. To see this, we first note that, for g : I → M ,
we have that eq(g) ∈ F if and only if g(i) = g(j) whenever (i, j) ∈ X. Let
EX be the equivalence relation on I generated by the relation X, that is,
the smallest equivalence relation E on I for which E(a, b) holds whenever
(a, b) ∈ X. It follows that if g : I → M is such that eq(g) ∈ F , then g
is constant on EX -equivalence classes. We let IX := I/EX , the set of EX -
equivalence classes, and let πX : I → IX be the canonical quotient map. We
now define UX := πX(U), an ultrafilter on IX . For g : I → M for which
eq(g) ∈ F , we define a new map gX : IX → M by declaring gX([i]EX

) :=
the constant value g takes on the equivalence class of i. It follows that the
map which sends, for g : I → M with eq(g) ∈ F , [g]U to [gX ]UX

, is an

isomorphism MU|F to MUX .

Exercise 9.5.23. Verify all of the details of Example 9.5.22.

Exercise 9.5.24. Fix X,Y ⊆ I × I with X ⊆ Y . In the setting of the
previous example, prove that there is an induced embeddingMUY →MUX .

We are now ready to prove the main result of this section:

Theorem 9.5.25. Suppose that M and N are L-structures with M ⊆ N .
The following are equivalent:

(1) N is a complete extension of M.

(2) There is an ultrafilter U on a set I and a filter F on I × I such
that N is isomorphic to MU|F over M.

(3) There is a limit ultrapower M′ of M such that N is isomorphic to
M′ over M.

Proof. (1) (⇒) (2): Let N# be an L#
M -expansion of N such that M# ⊆

N#. By Exercise 9.5.3, M# ≡ N#. By Theorem 8.3.10, there is an ul-
trafilter U on an index set I such that there is an elementary embedding
π : N# → (M#)U . Note that, for a ∈ M , we have that π(a) = d(a) as
elements of M are named in L#.

Set C to be the range of π. Let F be the filter over I × I generated
by the set {eq(f) : f : I → M, [f ]U ∈ C}. It suffices to show that
C = MU|F . Since it is clear that C ⊆ MU|F , we prove the other inclusion.
Fix [g]U ∈ MU|F . By assumption, there is f : I → M such that f ≡U g
and eq(f) ∈ F . Take h1, . . . , hn : I → M such that [hi]U ∈ C for each
i = 1, . . . , n and such that

⋂n
i=1 eq(hi) ⊆ eq(f). Fix a function G : Mn →M

such that, for all i ∈ I, G(h1(i), . . . , hn(i)) = f(i) for all i ∈ I. It follows

that G(M#)U ([h1]U , . . . , [hn]U) = [f ]U , whence [g]U = [f ]U ∈ C, as desired.



168 9. Nonstandard analysis

(2) (⇒) (3): It suffices to show thatMU|F is a limit ultrapower. For each
X ∈ F , let FX be the principal filter on I×I generated by X. ThenMU|FX

is isomorphic to the ordinary ultrapower MUX by Example 9.5.22. More-
over, if Y ∈ F , then there are induced embeddings MUX → MUX∩Y and
MUY →MUX∩Y by Exercise 9.5.24. It follows that the family (MUX )X∈F
is an ultrapower system over M. It remains to see that the direct limit
of this system is isomorphic to MU|F . To see this, given [b]U ∈ MU|F ,
set X := {(i, j) ∈ I × I : b(i) = b(j)}; we then have that X ∈ F and

[b]U ∈ MU|FX , as desired.

(3) (⇒) (1) is the statement of Exercise 9.5.13. �

As mentioned earlier in this section, the following question remains open:

Question 9.5.26. Is every limit ultrapower isomorphic to an iterated ul-
trapower?

9.6. Many-sorted structures and internal sets

In many areas of mathematics, we study many different sets at a time as
well as functions between these various sets.

Example 9.6.1. A vector space is a set V together with two functions: vec-
tor addition, which is a function + : V ×V → V , and scalar multiplication,
which is a function · : F× V → V , where F is some field.

Example 9.6.2. . A metric space is a set X together with a metric, which
is a function d : X ×X → R satisfying certain first-order axioms.

Example 9.6.3. A measure space is a triple (X,B, μ), where X is a set, B
is a σ-algebra of subsets of X (so B ⊆ P(X)), and μ : B → R is a measure.

We now develop a nonstandard framework suitable for studying such
situations. Before, we were working with a structure consisting of just a
single “sort”, namely a sort for M . Now, we will work in a structure M
with a (nonempty) collection of sorts S. For each s ∈ S, we have a set
Ms, the universe of the sort s in M. So, for example, in the linear algebra
situation, we might have S = {s, t}, with Ms = V and Mt = F. Often we
will write a many-sorted structure as M = (Ms : s ∈ S). Thus, we might
write the linear algebra example as (V,F), suppressing mention of the names
of the sorts. For any finite sequence 	s = (s1, . . . , sn) of sorts, we have the
product set M�s := Ms1 × · · · ×Msn .

We now consider a language which was just as expressive as before.
Namely, we have:

• For every finite sequence 	s of sorts and every A ⊆ M�s, we have a
predicate symbol PA.
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• For every sort s and every a ∈Ms, we have a constant symbol ca.

• For every finite sequence 	s of sorts, every sort t, and every function
f : M�s →Mt, we have a function symbol Ff .

This is the many-sorted analogue of taking the complete language for the
standard structure as done in the one-sorted case in the previous section.

One now builds terms and formulae just as in ordinary logic, with the
understanding that each sort comes equipped with its own collection of
variables. If we need to be clear, we might decorate a variable with the
name of the sort it is intended to range over, e.g., xs.

Returning to the vector space example, let us see how we might write
the distributive law c · (x + y) = c · x + c · y. Recall that S = {s, t}, with
Ms = V and Mt = F. Let f : Ms ×Ms → Ms denote vector addition and
g : Mt ×Ms → Ms denote scalar multiplication. Then the axiom for the
distributive law would be written as:

∀xs∀ys∀ztg(z, f(x, y)) = f(g(z, x), g(z, y)).

Of course, for the purpose of sanity, in practice we will continue to write
things as they might naturally be written in ordinary mathematics; however,
one must be aware of the formal way that such sentences would be written.

As in the one-sorted case of the previous section, one can take a complete
extension of a many-sorted structure and this complete extension will serve
as our nonstandard universe. As before, taking an ultrapower of the many-
sorted structure can serve as such a complete extension.

As we saw with the measure theory example, it will often be convenient
to have a sort for P(X) whenever X is itself a sort. For simplicity of the
coming discussion, let us consider the many-sorted structure (X,P(X));
what we say now is easily adapted to the more general situation that X and
P(X) are sorts in a many-sorted structure containing other sorts.

We have the nonstandard extension (X,P(X)) ⊆ (X∗,P(X)∗). We must
be careful not to confuse P(X)∗ with P(X∗), the latter retaining its usual
meaning as the set of subsets of X∗. At the moment, P(X)∗ is some abstract
set, perhaps having no affiliation with an actual powerset. We now discuss
how to relate P(X)∗ and P(X∗). Set E = {(x,A) ∈ X ×P(X)|x ∈ A}, the
symbol for the membership relation.

Lemma 9.6.4. We may assume that our nonstandard extension is such that
P(X)∗ ⊆ P(X∗) and E∗ is the membership relation restricted to X∗×P(X)∗.

Proof. For A ∈ P(X)∗, set Φ(A) := {x ∈ X : (x,A) ∈ E∗}. We claim
that Φ : P(X)∗ → P(X∗) is injective. Indeed, suppose that A1, A2 ∈ P(X)∗

are such that A1 �= A2. By the transfer principle, there is, without loss



170 9. Nonstandard analysis

of generality, x ∈ X∗ such that (x,A1) ∈ E∗ but (x,A2) /∈ E∗. Then
x ∈ Φ(A1) \ Φ(A2), whence Φ(A1) �= Φ(A2).

Now one makes (X,Φ(P(X)∗)) into a structure so that the map (x,A) �→
(x,Φ(A)) is an isomorphism. �

Remark 9.6.5. In the preceding sections of this chapter, one often blurred
the distinction between an element of the standard universe and its image
in the nonstandard extension. This is tantamount to identifying a structure
with its image in an ultrapower via the diagonal embedding. However, this
identification is no longer possible for higher-order objects such as A ∈
P(X), for there is a drastic difference between a subset A of X and its
nonstandard extension A∗.

There is some potential confusion that we should clear up now. Suppose
that A ⊆ X. Then we have A∗ ⊆ X∗ from the interpretation of the symbol
PA. However, A ∈ P(X), so it is mapped by the embedding to an element
of P(X)∗, which we temporarily denote by (A)∗. Fortunately, all is well:

Lemma 9.6.6. A∗ = (A)∗.

Proof. By the transfer principle, we have that, for x ∈ X∗, x ∈ A∗ if and
only if (X∗,P(X)∗) |= PA(x). On the other hand, we have that x ∈ (A)∗ if
and only if (x, (A)∗) ∈ E∗. However, (X,P(X)) |= ∀x(PA(x) ↔ PE(x,A)),
so the desired result follows from transfer. �

Definition 9.6.7. A subset A of X∗ is called internal if A ∈ P(X)∗;
otherwise, A is called external.

Thus, the transfer principle applies to the internal subsets of X∗:

Example 9.6.8. Let us consider (N,P(N)) and its nonstandard extension
(N∗,P(N)∗). We claim that N is an external subset of N∗. To see this, note
that the following sentence is true in (N,P(N)):
∀X ∈ P(N)((∃x ∈ N)(PE(x,A)) ∧ ∃y ∈ N∀z ∈ N(PE(z, A)→ z ≤ y))

→ ∃y ∈ N(PE(y,A) ∧ ∀z ∈ N(PE(z, A)→ z ≤ y)).

This sentence says that if A ⊆ N is bounded above, then A has a maximum
element. By transfer, the same holds true for any A ∈ P(N)∗, that is, for
any internal subset of N∗. If N were internal, then since it is bounded above
(by an infinite element), it would have a maximum, which is clearly not true.

Example 9.6.9. We continue to work with the setup of the previous ex-
ample. Since

(N,P(N)) |= (∀n ∈ N)(∃A ∈ P(N))(∀m ∈ N)(PE(m,A)↔ m ≤ n),
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by transfer we have

(N∗,P(N)∗) |= (∀n ∈ N∗)(∃A ∈ P(N)∗)(∀m ∈ N∗)(PE(m,A)↔ m ≤ n).

Fixing N ∈ N∗, we suggestively let {0, 1, . . . , N} denote the internal subset
of N∗ consisting of all the elements of N∗ that are no greater than N . This
is a prototypical example of a hyperfinite set, to be defined below.

Here are some exercises to get us acquainted with internal sets:

Exercise 9.6.10. Suppose that the nonstandard extension is obtained via
an ultrapower model, say using the ultrafilter U on the index set I. Prove
that A ⊆ X∗ is internal if and only if there is a family (Ai)i∈I of subsets of
X such that A =

∏
U Ai.

Exercise 9.6.11. Prove that μ and Rfin are external subsets of R∗.

Exercise 9.6.12. Suppose that X ⊆ N∗ is internal.

(1) (Overflow) Suppose that X ∩ N is unbounded in N. Prove that
there is N ∈ N∗ \ N such that N ∈ X.

(2) (Underflow) Suppose that, for every N ∈ N∗ \ N, there is K ∈ N∗

such that K < N and K ∈ X. Prove that X ∩ N �= ∅.

The following principle is useful in practice; it says that sets defined (in
the first-order logic sense) from internal parameters are internal.

Theorem 9.6.13 (Internal definition principle). Let

ϕ(x, x1, . . . , xm, y1, . . . , yn)

be a formula, where x, x1, . . . , xm range over the sort for X and y1, . . . , ym
range over the sort for P(X). Suppose that a1, . . . , am∈X∗ and A1, . . . , An∈
P(X)∗ are given. Set

B := {b ∈ X∗ : (X∗,P(X)∗) |= ϕ(b, a1, . . . , am, A1, . . . , An)}.

Then B is internal.

Proof. The following sentence is true in (X,P(X)):

∀x1 · · · ∀xm∀y1 · · · ∀yn∃z∀x(PE(x, z)↔ ϕ(x, x1, . . . , xm, y1, . . . , yn)).

By transfer, this remains true in (X∗,P(X)∗). Plugging in ai for xi and Aj

for yj , we see that

(X∗,P(X)∗) |= ∃z∀x(PE(x, z)↔ ϕ(x, a1, . . . , am, A1, . . . , An)).

The set asserted to exist is B, which then belongs to P(X)∗, that is, B is
internal. �
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Example 9.6.14. For any finite collection a1, . . . , am ∈ X∗, the set
{a1, . . . , am} is internal. Indeed, let φ(x, x1, . . . , xm) be the formula x =
x1 ∨ · · · ∨ xm. Then

{a1, . . . , am} = {b ∈ X∗ : (X∗,P(X)∗) |= φ(b, a1, . . . , am)}.

Exercise 9.6.15. Prove that, for any A ⊆ X∗, that A is internal if and
only if A is a definable set (in the sense of the complete extension of the
standard universe).

Exercise 9.6.16. Suppose that the nonstandard universe is κ-saturated.
Prove that, for any α < κ and any family (Aβ)β<α of internal subsets of X∗,
we have that

⋂
β<αAβ �= ∅.

Remark 9.6.17. The conclusion of the previous exercise is often taken to
be the definition of κ-saturation for nonstandard universes. While this def-
inition is convenient when presenting nonstandard universes in an informal
way, it is a little unfair as it is a weaker notion than actual κ-saturation of
the complete extension of the standard universe.

It will also prove useful to have a notion of internal function. To do this,
we need to expand our setup a bit. We now consider the many-sorted struc-
ture (X,P(X),P(X×X)) with an embedding into a nonstandard extension
(X∗,P(X)∗,P(X ×X)∗). We set:

• E1 := {(x,A) ∈ X ×P(X) : x ∈ A} and

• E2 := {(x, y, A) ∈ X ×X × P(X ×X) : (x, y) ∈ A}.
The proof of the following lemma is exactly like the proof of Lemma 9.6.4.

Lemma 9.6.18. We may assume that our nonstandard extension satisfies
the additional three conditions:

• X ⊆ X∗ and x = x∗ for all x ∈ X;

• P(X)∗ ⊆ P(X∗) and E∗
1 is the membership relation restricted to

X∗ × P(X)∗;

• P(X × X)∗ ⊆ P(X∗ × X∗) and E∗
2 is the membership relation

restricted to X∗ ×X∗ × P(X ×X)∗.

Definition 9.6.19. B ⊆ X∗×X∗ is internal if B ∈ P(X×X)∗; otherwise,
it is external. If A,B ⊆ X∗ and f : A→ B is a function, then we say that
f is internal if the graph of f , Γ(f) := {(x, y) ∈ X∗ ×X∗ : f(x) = y} ⊆
X∗ ×X∗ is an internal set.

Exercise 9.6.20. Suppose that f : A→ B is an internal function.

(1) Prove that A and range(f) are internal sets.
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(2) Suppose that B = N∗ and range(f) ⊆ N. Prove that there is n ∈ N
such that f(a) ≤ n for all a ∈ A.

At this point, the reader should verify that they would know how to
escape the friendly confines of considering many-sorted structures of the
form (X,P(X)) or (X,P(X),P(X × X)) and instead be able to consider
much wilder many-sorted structures that might contain many sets and their
powersets.

Definition 9.6.21. We say that B ⊆ X∗ is hyperfinite if B ∈ Pf (X)∗.

Exercise 9.6.22. Assume that (N,P(N),P(N×N)) is part of our structure.

(1) Prove that hyperfinite sets are internal.

(2) Prove that an internal subset of a hyperfinite set is hyperfinite.

(3) Prove that B ⊆ X∗ is hyperfinite if and only if there is an internal
function f : B → N∗ such that f is a bijection between B and
{0, 1, . . . , N} for some N ∈ N∗; we then refer to N + 1 as the
internal cardinality of B.

(4) Prove that finite subsets of X∗ are hyperfinite and that their inter-
nal cardinality agrees with their usual cardinality.

9.7. Nonstandard generators of ultrafilters

We have seen how, from ultrafilters, we can construct nonstandard exten-
sions. In this section, we explore the other direction: from nonstandard
extensions, we can construct ultrafilters. The interplay between these two
perspectives has been extremely useful in combinatorial applications as we
will see with a couple of sample applications.

For the moment, we fix a set S and consider some nonstandard extension
S∗ of S.

Definition 9.7.1. Given α ∈ S∗, set Uα := {A ⊆ S : α ∈ A∗}.

Exercise 9.7.2. Prove that Uα is an ultrafilter on S which agrees with our
earlier use of the notation Uα in case α ∈ S.

So from nonstandard extensions, we get ultrafilters. Under enough sat-
uration, we get all ultrafilters this way:

Exercise 9.7.3. Suppose that the nonstandard extension is (2|S|)+-satura-
ted. Given U ∈ βS, prove that there is some α ∈

⋂
A∈U A∗ and that, for

such an α, we have U = Uα.

In other words, every ultrafilter is “principal” if we allow nonstandard
generators.
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From now on, we assume sufficient saturation so that the conclusion of
the previous exercise holds. We let π : S∗ → βS be the canonical surjection
given by π(α) := Uα. While we just saw that π is surjective, it may not
be injective, that is, there may be many nonprincipal generators for a given
ultrafilter. (For a discussion of when this map is injective, see the next
section.) We define an equivalence relation ∼ on S∗ by setting α ∼ β if
Uα = Uβ. In other words, α ∼ β if and only if, for every A ⊆ U , we have
α ∈ A∗ ⇔ β ∈ A∗. Thus π descends to a bijection π̄ : S∗/ ∼ → βS.

The S-topology (S for “standard”) on S∗ has as a basis of clopen sets
the sets A∗ for A ⊆ S. Note that the S-topology on S∗ is compact but
not necessarily Hausdorff (again, see Section 9.8) and, in fact, the map π̄
witnesses that βS is homeomorphic to the Hausdorff separation of S∗.

We now restrict our attention to S = N. The näıve expectation would
be that π : N∗ → βN is a semigroup homomorphism, that is, Uα·β = Uα · Uβ.
(We recall the definition of ⊕ on βN from Section 4.2.). This is unfortunately
not the case; see [42, Example 3.8] for a concrete counterexample. However,
there is still a viable formula along these lines whose validity allows the
nonstandard method to be applicable to the algebra of ultrafilters.

Fix α, β ∈ N∗ and A ⊆ N. Note then that

A− Uβ = {s ∈ N : A− s ∈ Uβ}
= {s ∈ N : β ∈ (A− s)∗} = {s ∈ N : s+ β ∈ A∗}.

By the definition of the semigroup operation on βN, we have that

A ∈ Uα ⊕ Uβ ⇔ A− Uβ ∈ Uα ⇔ α ∈ (A− Uβ)∗.

Working näıvely (and motivated by some kind of transfer principle), the
latter should in turn be equivalent to α + β∗ ∈ A∗∗. Of course, for this to
make any sense, one needs to give meaning to the objects β∗ and A∗∗.

One can indeed give concrete meaning to objects like β∗ and A∗∗. This
idea was first pursued by Mauro Di Nasso in [40], where he used this tech-
nique to give an ultrafilter generalization of Rado’s classical theorem on
parition regularity of linear equations. One works in a framework for non-
standard analysis where one can iterate the ∗ operation, whence β∗ above is
an element of N∗∗ and A∗∗ is a subset of N∗∗. There is an obvious transfer
principle between one level of the tower of iterated nonstandard extensions
and the next level. For complete details, see [40] or [42], the latter of which
contains many applications of this technique to Ramsey theory. Admittedly
this approach takes some getting used to (e.g., unlike the usual convention
that s∗ = s for s ∈ N, we now have that α∗ �= α for α ∈ N∗ \ N); how-
ever, once one is familiarized with this framework, it proves to be extremely
convenient.
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Now given α ∈ N∗∗, we can define an ultrafilter Uα on N just as before,
namely A ∈ Uα if and only if α ∈ A∗∗. For α, β ∈ N∗ ∪ N∗∗, we once again
set α ∼ β if and only if Uα = Uβ.

Returning to the earlier context, for α, β ∈ N∗ and A ⊆ N, we now have

A ∈ Uα ⊕ Uβ ⇔ α+ β∗ ∈ A∗∗ ⇔ A ∈ Uα+β∗ .

In other words, Uα ⊕ Uβ = Uα+β∗ .

We now use this framework to reprove Hindman’s theorem first proven
in Section 4.2 using ultrafilter arithmetic.

Definition 9.7.4. We say that α ∈ N∗ is idempotent if α+ α∗ ∼ α.

Exercise 9.7.5. For α ∈ N∗, prove that α is idempotent if and only if Uα
is idempotent.

The nonstandard version of a subsemigroup of βS is the following:

Definition 9.7.6. T ⊆ N∗ is a S-subsemigroup if, for every α, β ∈ T ,
there is γ ∈ T such that γ ∼ α+ β∗.

Exercise 9.7.7. Prove that T ⊆ N∗ is a S-subsemigroup if and only if π(T )
is a subsemigroup of βN.

Recalling Theorem 4.2.9, Exercise 9.7.7 yields:

Corollary 9.7.8. Every nonempty closed S-subsemigroup of N∗ contains an
idempotent element.

We now wish to show that if α is idempotent and α ∈ A∗, then A is an
FS-set. The following definitions will become useful:

Definition 9.7.9. For A ⊆ N and α ∈ N∗, we set

• Aα := {s ∈ N : s+ α ∈ A∗} and

• αA := A ∩Aα.

Exercise 9.7.10. Given α ∈ N∗, prove that α is idempotent if and only if,
for every A ⊆ N, if α ∈ A∗, then α ∈ αA

∗. Moreover, in this case, prove
that if s ∈ Aα (resp., s ∈ αA), then s+ α ∈ A∗

α (resp., s+ α ∈ αA
∗).

We can now prove:

Proposition 9.7.11. Suppose that α ∈ N∗ is idempotent and α ∈ A∗. Then
A is an FS-set.

Proof. We recursively construct a sequence (xn)
∞
n=1 such that, for all m ∈

N, we have FS((xn)
m
n=1) ⊆ αA. Since α ∈ αA

∗, there is x1 ∈ αA. Suppose
now that (xn)

m
n=1 has been defined with FS((xn)

m
n=1) ⊆ αA. By the previous

lemma, we have FS((xn)
m
n=1) + α ⊆ αA

∗. By transfer, there is xm+1 ∈ αA
with FS((xn)

m
n=1) + xm+1 ⊆ αA, whence xm+1 is as desired. �
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Hindman’s theorem follows immediately from Proposition 9.7.11: if N =
C1 ∪ · · · ∪Cr and α ∈ N∗ is an idempotent, then there is i ∈ {1, . . . , n} such
that α ∈ C∗

i , whence, by the previous proposition, Ci is an FS-set.

We end this section by using the iterated nonstandard extension frame-
work to give a different proof of Ramsey’s theorem:

Theorem 9.7.12. Suppose that N[2] = C1 ∪ · · · ∪ Cr. Then there is an
infinite set X ⊆ N and i ∈ {1, . . . , r} such that X [2] ⊆ Ci.

Proof. Fix α ∈ N∗ \N and take i ∈ {1, . . . , r} such that {α, α∗} ∈ C∗∗
i . For

simplicity, set C := Ci. We now recursively construct a sequence (xn)n∈N
such that, for all i < j ≤ n, we have

• xi < xj ,

• (xi, xj) ∈ C (whence the sequence is the desired infinite monochro-
matic set), and

• (xi, α
∗) ∈ C∗

i .

Suppose that the sequence has been constructed through xn−1; we show how
to construct xn. Since α witnesses the truth of

(∃y ∈ N∗)(xn−1 < y ∧
∧
i<n

(xi, y) ∈ C∗ ∧ (y, α∗) ∈ C∗∗),

by transfer we have that

(∃y ∈ N)(xn−1 < y ∧
∧
i<n

(xi, y) ∈ C ∧ (y, α) ∈ C∗).

Letting xn witness the truth of this statement, we see that xn is as desired.
�

Remark 9.7.13. One can adapt the above proof to consider partitions of
N[m] for m > 2 using m iterated nonstandard extensions instead.

From ultrafilters we can get ultrapowers (and thus nonstandard exten-
sions), whilst from nonstandard extensions we can construct ultrafilters.
The last couple of results in this section are motivated by the question of
what happens when we compose these two constructions.

For example, suppose that U ∈ βI and [α]U ∈ IU (which we think of
as a nonstandard extension of I). We can use this nonstandard element to
generate an ultrafilter on I which we call Uα. (This looks like bad notation as
perhaps the choice of representative of [α]U might change the ultrafilter; we
will soon see that it does not.). It is natural to wonder how this ultrafilter Uα
compares to the original ultrafilter U . There is in fact a direct connection:

Proposition 9.7.14. Suppose that U ∈ βI and α ∈ IU . Then Uα = α(U).
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Proof. Given A ⊆ I, we note that A ∈ Uα if and only if [α]U ∈ AU if and
only if α(i) ∈ A for U -almost all i ∈ I if and only if A ∈ α(U). �

We now consider the other direction:

Proposition 9.7.15. Suppose that α ∈ S∗. Then SUα embeds in S∗.

Proof. The desired embedding is given by [f ]Uα �→ f(α). This is well
defined and an injection since [f ]Uα = [g]Uα if and only if α ∈ {s ∈ S :
f(s) = g(s)}∗ if and only if f(α) = g(α). �

9.8. Hausdorff ultrafilters

In Section 1.3, we proved that if U is an ultrafilter and f, g : I → I are func-
tions for which f ≡U g, then f(U) = g(U). We give a name for ultrafilters
satisfying the converse implication:

Definition 9.8.1. Let U be a nonprincipal ultrafilter on the set I. We say
that U is Hausdorff if, given any two functions f, g : I → I, if f(U) = g(U),
then f ≡U g.

Exercise 9.8.2. Suppose that U is a Hausdorff ultrafilter and V ≤RK U .
Show that V is also a Hausdorff ultrafilter.

We now explain the terminology:

Theorem 9.8.3. Suppose that U is a nonprincipal ultrafilter on I. Then U
is Hausdorff if and only if the S-topology on IU is Hausdorff.

Proof. We first note that, given f : I → I and A ⊆ I, we have that
A ∈ f(U) if and only if f−1(A) ∈ U if and only if [f ]U ∈ AU .

Now suppose that U is Hausdorff and that [f ]U �= [g]U . By the definition
of being Hausdorff, f(U) �= g(U), whence there is some A ∈ f(U) with
A /∈ g(U). By the above calculation, this means that [f ]U ∈ AU while
[g]U /∈ AU . Thus, the basic open neighborhoods AU and (I \ A)U separate
[f ]U and [g]U , whence IU is Hausdorff.

Conversely, suppose that IU is Hausdorff. Suppose that f, g : I → I are
such that f(U) = g(U). By the above calculation, this shows, for any A ⊆ I,
we have that [f ]U ∈ AU if and only if [g]U ∈ AU ; since IU is Hausdorff, this
implies that [f ]U = [g]U , as desired. �

In other words: if I∗ is the nonstandard extension we get from U , then
U is Hausdorff if and only if the map α �→ Uα : I∗ → βI is injective.

We now turn to the existence of Hausdorff ultrafilters. Surprisingly, the
following question is still open:
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Question 9.8.4. Can one prove in ZFC that Hausdorff ultrafilters exist?

However, under stronger set-theoretic axioms, we can prove that Haus-
dorff ultrafilters exist:

Theorem 9.8.5. Selective ultrafilters are Hausdorff. In particular, it is
consistent with ZFC that Hausdorff ultrafilters exist.

Proof. Suppose that U is selective and that f, g : I → I are such that
f(U) = g(U). If f(U) = Un, then f is constantly n, which forces g to be
constantly n and thus f and g are the same function. If f(U) is nonprincipal,
then by minimality of U , f(U) = U , whence there is A ∈ U such that
f(n) = n for all n ∈ A. Likewise, there is B ∈ U such that g(n) = n for
all n ∈ B. It follows that f(n) = g(n) = n for all n ∈ A ∩ B, whence
[f ]U = [g]U and U is Hausdorff. �

The final result in this section shows that if we are to search for regular
Hausdorff ultrafilters, then they cannot exist on sets of “large” size. We
recall that u denotes the ultrafilter number, as defined in Section 1.5.

Theorem 9.8.6. Suppose that κ is a cardinal with κ ≥ u. If U is a regular
ultrafilter on κ, then U is not Hausdorff.

Proof. Since U is regular and κ ≥ u, there are sets (Aα)α<u in U such that,
for every i < κ, Fi := {α < u : i ∈ Aα} is finite. Without loss of generality,
we may assume that each Fi �= ∅. Let (Bα)α<u be a base for a nonprincipal
ultrafilter V on ω. Choose functions f, g : κ → ω such that, for each i ∈ I,
we have f(i), g(i) ∈

⋂
α∈Fi

Bα while f(i) �= g(i); this is clearly possible since⋂
α∈Fi

Bα is infinite. Note that Aα ⊆ f−1(Bα) ∩ g−1(Bα), whence every
Bα belongs to both f(U) and g(U), whence f(U) = g(U) = V. However,
f �≡U g. It follows that U is not Hausdorff. �

In particular, in a model of ZFC for which u = ℵ1, a regular Hausdorff
ultrafilter, should it exist, must be an ultrafilter on a countably infinite set.

9.9. Notes and references

There are many introductory texts on nonstandard analysis. My favorite,
and the one for which most of the first four sections is based on, is Gold-
blatt’s book [68]. Of course, Robinson’s original treatise [148] is still a great
read. The discussion on complete extensions and limit ultrapowers is taken
from [28], although we have reorganized things dramatically in what we
hope makes for a cleaner perspective. The introduction of limit ultrapowers
and their equivalence with complete extensions is due to Keisler [98]. Our
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treatment of many-sorted structures is heavily influenced by Henson’s arti-
cle [78]. Although essentially just the notion of realization of a type, the
perspective of hyperfinite generator of an ultrafilter has proven very useful
recently in applications of nonstandard methods to combinatorics. A nice
introduction to this topic, containing more details than those presented in
Section 9.7, is DiNasso’s article [39], which also has further information on
Hausdorff ultrafilters. Theorem 9.8.6 was taken from [41].





Chapter 10

Limit groups

Section 10.1 introduces the class of limit groups, which is the class of finitely
generated subgroups of ultrapowers of free groups. Section 10.2 gives some
examples of limit groups and discusses some algebraic properties true of all
limit groups. Section 10.3 offers a purely algebraic description of limit groups
as those finitely generated groups that are fully residually free, and connects
this characterization with the algebraic properties discussed in Section 10.2.
Finally, in Section 10.4, we explain the nomenclature by introducing the
topological space of marked groups and prove that limit groups are exactly
those marked groups that are in the closure of the set of marked free groups.

10.1. Introducing the class of limit groups

In this chapter, we explore the class of limit groups, which is the class of
finitely generated subgroups of nonstandard free groups. It is the purpose
of this introductory section to elucidate the precise meaning of the last
sentence.

We first mention a special case of Exercise 8.3.14:

Proposition 10.1.1. Suppose that G and H are groups. The following are
equivalent:

(1) G |= Th∀(H).

(2) For every finitely generated subgroup G0 of G and every nonprin-
cipal ultrafilter U on N, G0 embeds into HU .

(3) For every κ-regular ultrafilter U with κ := max(|G|,ℵ0), G embeds
into HU .

(4) For some ultrafilter U , G embeds into HU .

181
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In the literature, one often finds the previous fact stated as “G embeds
into some nonstandard extension H∗ of H”, with the type of nonstandard
extension and level of saturation left intentionally vague. We will follow this
practice, but remind the reader of the precise reading given in the previous
proposition.

We assume that the reader is familiar with the basic definitions and
facts concerning free groups. For every cardinal κ, Fκ will denote the free
group on κ generators. (In Chapter 7, we used Fp, for p an integer, to
denote the finite field with p elements. In the rest of this book, we stick
with the current convention.) This includes the case F0 = {e} and F1 = Z.
For κ ≥ 2, Fκ is nonabelian. For κ ≤ λ, note that Fκ is a subgroup of
Fλ. We also recall that, for every κ ≤ ℵ0, Fκ can be embedded into F2.
By Proposition 10.1.1, it follows that Fκ can be embedded into F∗

2 for any
cardinal κ. (As a reminder, the saturation of the nonstandard extension
will have to increase as κ increases.) Consequently, all the nonabelian free
groups have the same universal theory. For this reason, we will often speak
about groups embedding into F∗

2 for the sake of simplicity.

Remark 10.1.2. A remarkable generalization of the conclusion of the previ-
ous fact holds, namely all nonabelian free groups are elementarily equivalent.
This is a very difficult result due to Sela, answering a question of Tarski.

Definition 10.1.3. A group G is called a universally free group if it can
be embedded into F∗

2. A finitely generated universally free group is called a
limit group.

In Section 10.4, we will see the reason behind the nomenclature “limit
group”.

Exercise 10.1.4. Prove that universally free groups are torsion-free.

For abelian groups, being torsion-free characterizes being universally
free:

Theorem 10.1.5. Suppose that G is an abelian group. The following are
equivalent:

(1) G is torsion-free.

(2) G embeds into Z∗.

(3) G is universally free.

Proof. The only direction that needs proof is (1) ⇒ (2). By Proposition
10.1.1 above, it suffices to assume that G is finitely generated. Thus, by the
fundamental theorem of finitely generated abelian groups, G is isomorphic to
Zk for some k. For ease of exposition, we assume that k = 2. Thus, we are
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trying to show that Z×Z embeds into Z∗. By the compactness theorem, it
suffices to show that the following is a consistent set of formulae:

Th(Z) ∪ {mx �= ny : m,n ∈ Z \ {0}},

for if a, b ∈ Z∗ realize the set of formulae, then the subgroup of Z∗ generated
by a and b is isomorphic to Z × Z, as desired. However, this set is clearly
finitely satisfied in Z by taking x = k and y = l for k and l sufficiently far
apart. �

An algebraic characterization of the class of all universally free groups
is possible and will be discussed later in the chapter.

10.2. First examples and properties of limit groups

Clearly, free groups are universally free. Here is a nonfree example:

Example 10.2.1. Let a and b be the two generators of F2 and let A be
the cyclic subgroup of F2 generated by a. We claim that the amalgamated
free product G := F2 ∗A (A × Z) is a limit group that is not a free group.
(For the reader unfamiliar with the amalgamated free product construction,
just think of G as being the “freest” combination of the two groups F2

and A × Z subject to the requirement that their two copies of A must be
identified.) It is clear that G is not free. To see that G is universally
free, fix N ∈ N∗ \ N and define a group homomorphism φ : G → F∗

2 by
declaring that φ is the identity on F2 and such that φ(e, 1) = aN . (By
the universal property of amalgamated free products, this description does
in fact yield a well-defined homomorphism.) It remains to see that φ is
injective. To see this, it is useful to recall that elements of G can be put
in a normal form g1 · · · gn, where the gi’s alternate between being elements
of F2 and A × Z, no gi belongs to A if i > 1 and g1 �= e. For sake of
concreteness, consider the element g1(a

k1 , l1)g2(a
k2 , l2) · · · gn(akn , ln) of G,

where each gi ∈ F2 \ {e}, and li �= 0 for all i = 1, . . . , n. This element gets
mapped by φ to g1a

k1+Nl1g2a
k2+Nl2 · · · gnakn+Nln . We leave it to the reader

to verify that this is a nontrivial element of F∗
2.

One can generalize the method of proof in the previous example to prove
the following:

Theorem 10.2.2. Suppose that A is a maximal cyclic subgroup of F2 and
B is a finitely generated free abelian group. Then the group F2 ∗A (A × B)
is a limit group.

The previous theorem can then be used to show that many so-called
surface groups from geometric group theory are limit groups.



184 10. Limit groups

The above technique can be pushed even further to produce a way of
creating new limit groups from old ones:

Theorem 10.2.3. Suppose that L is a limit group, A is a maximal abelian
subgroup of L, and B is a finitely generated free abelian group. Then the
group L ∗A (A×B) is a limit group.

We now move on to discussing algebraic properties of universally free
groups. As discussed in the previous section, universally free groups are
torsion-free. Here is another algebraic property they possess:

Definition 10.2.4. A group G is commutative transitive if commuta-
tivity is a transitive relation on G \ {e}, that is, for all a, b, c ∈ G \ {e}, if
ab = ba and bc = cb, then ac = ca.

It is clear that any abelian group is commutative transitive. The follow-
ing exercise gives some more interesting examples:

Exercise 10.2.5.

(1) Show that free groups are commutative transitive.

(2) Show that universally free groups are commutative transitive.

Exercise 10.2.6.

(1) Suppose that G is a nonabelian commutative transitive group.
Prove that the center of G is trivial.

(2) Suppose that G is a nonabelian group and H is a nontrivial abelian
group. Prove that G×H is not commutative transitive. Conclude
that none of the following classes of groups is closed under direct
products: commutative transitive groups, universally free groups,
limit groups.

Here are some other characterizations of being commutative transitive:

Exercise 10.2.7. For a given group G, prove that the following are equiv-
alent:

(1) G is commutative transitive.

(2) The centralizer of any nontrivial element is abelian.

(3) If two abelian subgroups intersect nontrivially, then their union
generates an abelian subgroup.

In order to motivate our next algebraic property of universally free
groups, we consider the following:

Exercise 10.2.8. Suppose that G is a commutative transitive group and
H is a maximal abelian subgroup of G. Prove that for any g ∈ G, one has
that H ∩ gHg−1 is either H or {e}.
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The previous exercise motivates:

Definition 10.2.9. A group G is CSA if, whenever H is a maximal abelian
subgroup of G, then for all g ∈ G \H, H ∩ gHg−1 = {e}.

A subgroup H of a group G is called malnormal if gHg−1 = {e} for all
g ∈ G \H. Thus, being malnormal is the diametrically opposite property of
being normal. Another name for being malnormal is conjugately separated.
CSA is an abbreviation for conjugately separated abelian: a group is
CSA if and only if all of its maximal abelian subgroups are conjugately
separated.

Exercise 10.2.10. Prove that CSA groups are commutative transitive.

On the other hand, it is possible to find examples (both finite and infi-
nite) of commutative transitive groups that are not CSA groups [57].

Exercise 10.2.11. Prove that free groups are CSA.

We would eventually like to use the previous exercise to show that uni-
versally free groups are CSA. Unfortunately, the definition of CSA is not
first order, for it quantifies over all subgroups of G. Thankfully, there is a
first-order reformulation:

Exercise 10.2.12. Prove that a group G is CSA if and only if it is com-
mutative transitive and satisfies:

• for all g, h ∈ G \ {e}, if h and ghg−1 commutate, then g and h
commute.

Since the above characterization of CSA is in terms of two first-order
universal statements, we have:

Corollary 10.2.13. Universally free groups are CSA.

We have just seen that universally free groups are torsion-free CSA
groups. It is not the case that the nonabelian torsion-free CSA groups
are exactly the nonabelian universally free groups, as the following example
shows. Since the proof involves material outside the scope of this book, we
content ourselves with a sketch.

Example 10.2.14. Let G be the group generated by two elements a and b
subject to the single relation abab2 · · · abn = e. Since the relation is not a
proper power, a theorem of Karrass, Magnus, and Solitar [95] shows that G
is torsion free. If n is sufficiently large, then one can show that G has the
so-called metric small cancellation property, which, in turn, implies that it
is a so-called word-hyperbolic group, and then a theorem of Gromov implies
that the group is CSA. Note that G is also nonabelian. However, in the
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next section, we show that F2 is the only nonabelian limit group generated
by two elements. It follows that G is not a limit group.

The previous example notwithstanding, there is quite a close connection
between torsion-free CSA groups and universally free groups as we will see
in the next section.

10.3. Connection with fully residual freeness

In this section, we give several purely algebraic reformulations of being uni-
versally free and connect it with the algebraic notions described at the end
of the previous section. Here is the crucial definition:

Definition 10.3.1. Let C denote a class of groups (such as the class of finite
groups, the class of abelian groups, the class of free groups, etc. . . . ). We
say that a group G is residually C if, for any g ∈ G \ {e}, there is a group
H ∈ C and a group homomorphism φ : G→ H such that φ(g) �= e.

Clearly, free groups are residually free. Here is a nonfree counterexample:

Exercise 10.3.2. Show that the direct product of two free groups is resid-
ually free. In particular, show that F2 × Z is residually free.

Exercise 10.3.3. Prove that residually free groups are torsion free.

By Exercises 10.2.5 and 10.2.6(2), F2×Z is not a limit group; combined
with Exercise 10.3.2, we see that residual freeness does not imply being a
limit group (for a finitely generated group). However, a seemingly small
tweak in the definition does in fact imply being a limit group, and, in fact,
characterizes being a limit group:

Definition 10.3.4. Let C be a class of groups. We say that a group G is
fully residually C if, for any finite F ⊆ G \ {e}, there is a group H ∈ C
and a group homomorphism φ : G→ H such that φ(g) �= e for all g ∈ F .

For some classes of groups, there is no difference in the two notions:

Exercise 10.3.5. Suppose that the class C is closed under finite direct
products. Show that G is residually C if and only if it is fully residually C.

Thus, for example, there is no difference between being residually finite
and fully residually finite. However, the class of free groups is not closed
under direct products, whence there could in fact be a difference in the
two notions. Keeping in mind the case of F2 × Z, we see that being fully
residually free is in fact stronger than being residually free:

Proposition 10.3.6. If G is a fully residually C group, then G embeds in
an ultraproduct of members of C.
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Proof. For each finite F ⊆ G \ {e}, take HF ∈ C and a homomorphism
φF : G → HF such that φF (g) �= e for all g ∈ F . Set I := Pf (G). For
each g ∈ G, let Ag := {F ∈ I : g ∈ F}. Then the family (Ag)g∈G has
the FIP, whence there is an ultrafilter U on I such that Ag ∈ U for all
g ∈ G. We claim that G embeds in

∏
U HF . To see this, for each g ∈ G,

let ag ∈
∏

F∈I HF be such that ag(F ) = φF (g) when g ∈ F and ag(F ) = e
when g /∈ F . Define φ : G→

∏
U HF to be given by φ(g) := [ag]U . We leave

it to the reader to verify that φ is an injective homomorphism. �

Corollary 10.3.7. If G is a fully residually free group, then G is a univer-
sally free group.

We now show that being fully residually free characterizes being a limit
group (amongst finitely generated groups). First, we need:

Lemma 10.3.8. Suppose that R is a finitely generated subring of Z∗. Then
for any a1, . . . , an ∈ R \ {0}, there is a ring homomorphism φ : R→ Z such
that φ(ai) �= 0 for i = 1, . . . , n.

Proof. Take variables X1, . . . , Xk and a surjective ring homorphism θ :
Z[X1, . . . , Xk] → R. (This is possible since R is finitely generated.) Let J
be the kernel of θ, which is finitely generated since the polynomial ring is
Noetherian. Let f1, . . . , fm generate J . Take gi ∈ Z[X1, . . . , Xk] such that
θ(gi) = ai. Note then that

Z∗ |= ∃z1 · · · ∃zk

(
m∧
i=1

fi(	z) = 0 ∧
n∧

i=1

gi(	z) �= 0

)
,

as witnessed by zi := θ(Xi). By elementarity, Z believes the same statement,
say as witnessed by u1, . . . , uk. Then the map φ : R → Z given by setting
φ(θ(Xi)) = ui is as desired. �

In the proof of Theorem 10.3.10 below, we will also need the following:

Fact 10.3.9. Fix an odd prime p and consider the group homomorphism
SL2(Z)→ SL2(Z/pZ). Then the kernel K is a nonabelian free group.

Proof. This is a standard consequence of the ping-pong lemma from geo-
metric group theory. For example, see [31, Chapter 5] for a very friendly
account. �

Theorem 10.3.10. A finitely generated group is a limit group if and only
if it is fully residually free.

Proof. Suppose that G is a limit group. By Fact 10.3.9, we may assume
that G is a subgroup of K∗. Let g1, . . . , gn generate G. Without loss of
generality, we may assume that this generating set is closed under inverse.
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Write gj =

(
1 + paj pbj
pcj 1 + pdj

)
with each aj , bj , cj , dj ∈ Z∗. Let R be the

subring of Z∗ generated by these elements. Then G ⊆ SL2(R).

To show that G is fully residually free, fix h1, . . . , hk ∈ G \ {1}. Take
a ring homomorphism φ : R → Z such that, for any entry a of some hj, if
a �= 0, then φ(a) �= 0 and if a �= 1, then φ(a) �= 1. This induces a group
homomorphism ψ : SL2(R) → SL2(Z). Note that ψ(G) is contained in the
free group K and ψ(hj) �= 1 for j = 1, . . . , k, as desired. �

One cannot drop the finitely generated assumption. For example, F∗
2

contains a copy of Q and any homomorphism from Q onto a free group is
trivial. Nevertheless, we can say the following:

Corollary 10.3.11. A group is universally free if and only if every finitely
generated subgroup is fully residually free.

Using the above algebraic reformulation of being a limit group, we can
fulfill a promise made in the last section.

Proposition 10.3.12. Suppose that G is a residually free group and a, b ∈
G. Then the group generated by a and b is isomorphic to Z, Z× Z, or F2.

Proof. Since G is torsion free, if a and b commute, then they generate Z
or Z × Z. Suppose that a and b do not commute, that is, aba−1b−1 �= e.
Since G is residually free, there is a homomorphism φ : G → F2 such that
φ(aba−1b−1) �= e, that is, φ(a) and φ(b) do not commute. It follows that
the subgroup of F2 generated by φ(a) and φ(b) is freely generated by them,
whence a and b generate a free group. �
Corollary 10.3.13. F2 is the only nonabelian limit group generated by two
elements.

There is a connection between the current discussion and the algebraic
properties discussed in Section 10.2. The proof, however, is beyond the
scope of this book and is a combination of the results in [147], [63], and [6].

Theorem 10.3.14. For any group G, the following are equivalent:

(1) G is a universally free group.

(2) G is residually free and commutative transitive.

(3) G is residually free and CSA.

(4) G is residually free and does not contain a subgroup isomorphic to
F2 × Z.

Remark 10.3.15. In the case of abelian groups, the previous theorem sim-
ply says that being residually free and fully residually free coincide with
being torsion free.
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Exercise 10.3.16. Prove that the class of universally free groups is closed
under free products.

10.4. Explaining the terminology: the space of marked
groups

In this section, we explain the terminology “limit groups” by showing that a
finitely generated group is a limit group if and only if it is a limit of finitely
generated free groups in the space of marked groups.

Definition 10.4.1. A marked group is a pair (G,S), where G is a group
and S = (s1, . . . , sn) is a finite ordered tuple from G such that the set
{s1, . . . , sn} generates G.

Example 10.4.2. The same group can have many markings. For example,
(Z, (1)), (Z, (1, 2)), (Z, (2, 1)), and (Z, (1, 1, 3)) are all different markings of
the group Z.

We let Gn denote the set of marked groups (G,S) such that S is an
n-tuple from G. We now explain the appropriate topology on Gn.

Definition 10.4.3. Given (G,S), (G′, S′) ∈ Gn, let ν((G,S), (G′, S′)) de-
note the maximal k ∈ N such that, for any word w(x1, . . . , xn) of length at
most k, w(s1, . . . , sn) = e in G if and only if w(s′1, . . . , s

′
n) = e in G′. We

then define d((G,S), (G′, S′)) = 2−ν((G,S),(G′,S′)).

Note that it is possible that ν((G,S), (G′, S′)) = ∞, from which
d((G,S), (G′, S′)) = 0. This happens if and only if the marked groups are
isomorphic in the sense of the following definition:

Definition 10.4.4. If (G,S) and (G′, S′) belong to Gn, then (G,S) and
(G′, S) are isomorphic if the map si �→ s′i for i = 1, . . . , n yields an isomor-
phism between G and G′.

It thus behooves us to redefine Gn to consist of isomorphism classes of
marked groups with an n-tuple of generators (rather than the marked groups
themselves).

Exercise 10.4.5. Prove that the function d on Gn is a metric on Gn.

The metric space of n-generated marked groups is the set Gn
equipped with the above metric. We can now work toward the aforemen-
tioned description of limit groups as limits (in the sense of the above metric)
of free groups. We first describe an appropriate ultraproduct construction
for marked groups.
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Definition 10.4.6. Suppose that (Gi, Si)i∈I is a family from Gn and U is
an ultrafilter on I. Write Si = (s1(i), . . . , sn(i)). Then the marked group
ultraproduct of the family (Gi, Si)i∈I with respect to U , denoted,∏m

U (Gi, Si), is the subgroup of the usual ultraproduct
∏

U Gi generated by
[s1]U , . . . , [sn]U equipped with the marking ([s1]U , . . . , [sn]U).

Theorem 10.4.7. Given any family (Gi, Si)i∈I and ultrafilter U on I, we
have that

m∏
U
(Gi, Si) = lim

U
(Gi, Si),

where the ultralimit is calculated in the topology on Gn given above.

Proof. Fix k ∈ N. Take J ∈ U such that, for all j ∈ J and all words
w(x1, . . . , xn) of length at most k, we have w([s1]U , . . . , [sn]U) = e in

∏
U Gi

if and only if w(s1(j), . . . , sn(j)) = e in Gj . It follows that

d((
m∏
U
(Gi, Si), (Gj, Sj)) ≤ 2−k

for all j ∈ J . The result now follows. �
Corollary 10.4.8. For each n, Gn is compact.

Corollary 10.4.9. Suppose that (G,S) ∈ Gn is in the closure of the set of
marked free groups in Gn. Then G is a limit group.

We now prove the converse of the previous corollary. First:

Proposition 10.4.10. Suppose that G is a finitely generated subgroup
of an ultraproduct

∏
U Gi and fix a marking (G,S) of G. Write S =

([s1]U , . . . , [sn]U). For each i ∈ I, let Hi be the subgroup of Gi generated by
Si := (s1(i), . . . , sn(i)). Then limU(Hi, Si) = (G,S).

Exercise 10.4.11. Prove Proposition 10.4.10.

Corollary 10.4.12. If G is a limit group, then for any marking (G,S) ∈ Gn
of G, (G,S) is a limit of marked free groups.

Summarizing the above discussion, we have:

Theorem 10.4.13. Given a finitely generated group G, the following are
equivalent:

(1) G is a limit group.

(2) For any marking (G,S) in Gn of G, (G,S) is a limit of marked free
groups.

(3) There is a marking (G,S) of G in Gn such that (G,S) is a limit of
marked free groups.
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Exercise 10.4.14. Use Theorem 10.4.13 to give a different proof of Corol-
lary 10.3.13.

Some intuition can be gained from this topological perspective; see [26].

10.5. Notes and references

The class of limit groups was introduced by Sela in [155] in his first paper
presenting the solution of the Tarski problem, namely that all nonabelian
free groups are elementarily equivalent. An excellent introduction to the
class of limit groups is the survey article by Champetier and Guirardel [26].
Theorem 10.2.2 is due to Baumslag [6] while its generalization can be found
in [7]. Much of the discussion on CT and CSA groups is from [57]. The
equivalence with fully residually groups is due to Remeslennikov [147] but
our treatment follows Chiswell’s book [30]. The space of marked groups was
introduced by Grigorchuk in [70]. The main result of Section 10.4 is from
[26].
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Chapter 11

Metric ultraproducts

In this chapter, we study the metric ultraproduct, the construction that
will occupy our attention in this part of the book. Section 11.1 introduces
the definition of the ultraproduct, while Section 11.2 explains the connection
between the metric ultraproduct and the nonstandard hull construction from
nonstandard analysis. A nice feature of the metric ultraproduct is that it is
often automatically a complete metric space, as detailed in Section 11.3. In
particular, the metric ultraproduct construction yields a nice construction
of the completion of a metric space. In Section 11.4, we give an outline of
relatively recent continuous logic suitable for studying structures based on
metric spaces and for which an analogue of �Loś’s theorem holds. Unlike
the classical ultraproduct, our treatment of the metric ultraproduct dives
straight into the ultraproduct construction without first defining the reduced
product with respect to an arbitrary filter. Such reduced products do play
a role in some areas of analysis and thus we remedy this gap in Section 11.5
by introducing the reduced product of metric structures.

11.1. Definition of the metric ultraproduct

Suppose that (Mi, di)i∈I is a family of metric spaces and that U is an ul-
trafilter on I. We would like to form the metric ultraproduct

∏
U Mi which

should be, once again, a metric space. We take our cue from the discrete
setting described in metric language: if each Mi were instead just a set, we
could consider them as metric spaces as equipped with the discrete metric,
that is, distinct points are considered at distance 1 from each other. Then in
forming the ultraproduct, we consider the usual cartesian product

∏
i∈I Mi

and decide whether or not to identify two elements a, b ∈
∏

i∈I Mi by cal-
culating d(a, b) := limU di(a(i), b(i)), where di denotes the discrete metric

195
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on Mi. Indeed, d(a, b) = 0 if and only if di(a(i), b(i)) = 0 for U -almost all
i ∈ I, that is, if and only if ai = bi for U -almost all i ∈ I, in which case we
identify a and b in the ultraproduct.

Proceeding näıvely along these lines, given a family (Mi, di)i∈I of metric
spaces and an ultrafilter U on I, we define d on

∏
i∈I Mi by setting

d(a, b) := lim
U

di(a(i), b(i)).

In analogy with the discrete case, it seems that we should quotient out by
the elements of distance 0 to each other. While we will eventually perform
such a quotient, we must deal with the following issue:

• If the sequence of real numbers (di(a(i), b(i)))i∈I is bounded, say by
K, then the above ultralimit exists by the compactness of the in-
terval [0,K]. However, that sequence may not be bounded, whence
the above procedure would assign the two sequences a distance of
∞.

There are two ways to take care of this issue. One way is to simply only
consider an ultraproduct of metric spaces where there is a uniform bound
on the diameters of all the spaces involved, that is, there is K > 0 such that
di(x, y) ≤ K for all i ∈ I and all x, y ∈ Mi. We choose to take a different
route (which subsumes the previous suggestion):

Definition 11.1.1. A pointed metric space is a triple (M,d, o), where
(M,d) is a metric space and o ∈M is a distinguished point.

If each metric space (Mi, di) above comes equipped with a distinguished
point o(i) ∈ Mi, then we can consider the set of tuples a ∈

∏
i∈I Mi such

that supi∈I di(a(i), o(i)) < ∞. The issue above now disappears if we only
define d on such sequences, for, by the triangle inequality, it follows that

sup
i∈I

di(a(i), b(i)) ≤ sup
i∈I

di(a(i), o(i)) + sup
i∈I

di(b(i), o(i)) <∞.

Assuming that we only consider such sequences, the function d above is now
easily verified to be a pseudo-metric, that is, a function that satisfies all
of the definitions of a metric except that distinct points may be assigned
distance 0 from one another. For example, if I = N, all of the Mi above are
[0, 1], and a(i) = 1

i and b(i) = 0 for all i ∈ N, then d(a, b) = 0 even though
a �= b.

One now proceeds by doing what one does when one encounters a pseudo-
metric space and wants a metric space: just mod out by the relation d = 0.
That is, look at equivalence classes of sequences a under the equivalence
relation d(a, b) = 0; the pseudo-metric now induces a metric on the set
equivalence classes. This is tantamount to, in the discrete case, moding
out by U -almost everywhere agreement. In fact, as discussed above, in the
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case that each Mi is equipped with the discrete metric, these two operations
coincide.

We summarize the above discussion:

Definition 11.1.2. Let (Mi, di, o(i))i∈I be a family of pointed metric spaces
and U an ultrafilter on I. We set

�∞(Mi) := �∞(Mi, di, o(i)) :=

{
a ∈

∏
i∈I

Mi : sup
i∈I

d(a(i), o(i)) <∞
}
.

We define the pseudo-metric d on �∞(Mi) by setting

d(a, b) := lim
U

di(a(i), b(i)).

The ultraproduct of the family (Mi, di, o(i))i∈I with respect to U is the
set of equivalence classes of �∞(Mi) modulo the equivalence relation d = 0
with the induced metric. We denote the ultraproduct by

∏
U (Mi, di, o(i)) or

sometimes
∏

U (Mi, o(i)) or even
∏

U Mi if there is no source of confusion.
Given a ∈ �∞(Mi), we let [a]U denote its equivalence class in

∏
U Mi.

When writing the ultraproduct in the last way, one has to make sure to
point out that one is thinking of a metric ultraproduct and not the classical
ultraproduct discussed earlier in the book.

Remark 11.1.3. If the family (Mi, di)i∈I has uniformly bounded diameter,
then �∞(Mi) =

∏
i∈I Mi regardless of the choice of basepoint. In this case,

we drop any mention of the basepoint and simply write
∏

U (Mi, di) or just∏
U Mi.

Exercise 11.1.4. Consider a metric space (M,d) and two basepoints o, o′ ∈
M . Show that, for any index set I and any ultrafilter U on I, the ultraprod-
ucts

∏
U(M,d, o) and

∏
U(M,d, o′) are the same.

The preceding exercise allows us to make the following definition:

Definition 11.1.5. Given a metric space (M,d) and an ultrafilter U over
some index set, the ultrapower of (M,d) with respect to U , denoted
(M,d)U or simply MU , is the ultraproduct

∏
U(M,d, o), where o ∈ M is

any basepoint.

Given any a ∈ M , we can once again consider the element of M I that
is constantly equal to a. This element belongs to �∞(M), whence we may
consider its image [a]U in MU . We define the diagonal embedding to be
the map d : M →MU given by d(a) := [a]U . (It is a bit unfortunate that we
are using the letter d for both the induced metric on the ultrapower and the
diagonal embedding, but hopefully each use of d will be clear from context.)

Exercise 11.1.6. Prove that d : M →MU is an isometric embedding.
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In the discrete case, the diagonal embedding is onto for every U precisely
when the structure involved is finite. What is the corresponding property of
M in the metric case? Well, note that [a]U = d(b) if and only if limU a(i) = b.
So, for the diagonal embedding to always be onto is the same as saying that
every sequence in �∞(M) has an ultralimit with respect to every ultrafilter.
This almost sounds like our characterization of compactness from Section
3.1 except that it only asks for bounded sequences to have an ultralimit with
respect to every ultrafilter. In other words, it asks for every bounded set to
be compact. This notion has a name:

Definition 11.1.7. A metric space is proper (or Heine-Borel) if every
bounded set is compact.

We can thus conclude:

Theorem 11.1.8. If (M,d) is a metric space, then d : M →MU is surjec-
tive for every ultrafilter U if and only if (M,d) is proper.

11.2. Metric ultraproducts and nonstandard hulls of metric
spaces

In this short section, we relate the metric ultraproduct construction with a
known construction in nonstandard analysis, namely the nonstandard hull
construction. This perspective will be especially useful in the next chapter
on Gromov’s theorem.

To begin, we work in some nonstandard extension of our universe and
suppose that (M,d) is an internal metric space, that is, M is an internal
set (see Definition 9.6.7) and d : M ×M → R∗ is an internal function that
satisfies the usual axioms of a metric (except now that it takes values in R∗

instead of R). Fix also a basepoint o ∈M . Now consider

Mfin := Mfin,o := {x ∈M : d(a, o) ∈ Rfin}.

For a, b ∈ Mfin, one can define d̂(a, b) := st(d(a, b)). It follows that d̂ is a
pseudo-metric on Mfin and the resulting quotient is a metric space, called
the nonstandard hull of the internal metric space (M,d).

Suppose now that the nonstandard universe is constructed by taking the
ultrapower of the standard universe with respect to some ultrafilter U . In
this case, for (M,d) to be an internal metric space is precisely the same
as saying that M =

∏
U Mi (as a discrete ultraproduct) for some family

(Mi, di)i∈I of metric spaces and that d(a, b) := [di(a(i), b(i))] ∈ RU = R∗

(again, discrete ultraproduct). Moreover, fixing a basepoint o ∈M , we have
that Mfin,o consists of those elements [a]U ∈

∏
U Mi (discrete ultraproduct)

such that a ∈ �∞(Mi, di, o(i)). Since taking standard part in this context is



11.3. Completeness properties of the metric ultraproduct 199

the same as taking an ultralimit, we see that the nonstandard hull of (M,d)
is nothing more then the metric ultraproduct

∏
U(Mi, di, o(i)).

11.3. Completeness properties of the metric ultraproduct

In Chapter 8, we saw that discrete ultraproducts are suitably rich (in the
precise sense of saturation). Once an appropriate logical formalism for the
metric ultraproduct is given (see the next section on continuous logic), the
analogous fact for metric structures also holds. In this section, we will see
a special case of this fact, namely that ultraproducts of metric spaces are
often complete. Here is a first version of this phenomenon:

Theorem 11.3.1. Suppose that (Mi, o(i))i∈I is a family of complete pointed
metric spaces and that U is an ultrafilter on I. Then

∏
U(Mi, o(i)) is com-

plete.

Proof. Suppose that ([xn]U)n∈N is a Cauchy sequence from
∏

U(Mi, o(i));
we wish to show that ([xn]U)n∈N converges. Without loss of generality, we
may assume that d([xn]U , [xn+1]U) < 2−n for each n. (This is a basic result
from real analysis, namely that every Cauchy sequence has such a “fast”
subsequence.) For each m ∈ N, let

Am := {i ∈ I : d(xn(i), xn+1(i)) < 2−n for n = 0, . . . ,m}.
By assumption, each Am ∈ U . We now define an element y ∈ �∞(Mi)
such that limn→∞[xn]U = [y]U . For i ∈ Am \ Am+1, set y(i) := xm+1(i).
Note that in this case that d(xm(i), y(i)) < 2−m. If i ∈

⋂
m∈NAm, then

(xn(i))n∈N is a Cauchy sequence in Mi, whence converges to some y(i) ∈Mi

by completeness of Mi. Note in this case that d(xm(i), y(i)) < 2−m+1.
(Think geometric series.) Finally, if i /∈ A0, set y(i) := o(i).

We leave it to the reader to check that y really is an element of �∞(Mi).
To see that limn→∞[xn]U = [y]U , note that, given m ∈ N, if i ∈ Am, then
d(xm(i), y(i)) is either d(xm(i), xm+1(i)) < 2−m or d(xm(i), y(i)) < 2−m+1.
In either event, for a U -large set of i, we have that d(xm(i), y(i)) < 2−m+1,
whence d([xm]U , [y]U) < 2−m+1. The desired result now follows. �

Notice that the previous proof only used completeness of the factor
spaces to deal with the case that some i belonged to

⋂
m∈NAm. Thus,

essentially the same proof yields:

Theorem 11.3.2. Suppose that (Mi, o(i))i∈I is any family of pointed metric
spaces and that U is a countably incomplete ultrafilter on I (see Definition
6.6.3). Then

∏
U(Mi, o(i)) is complete.

Proof. Let (Bm)m∈N be a family from U such that
⋂

m∈NBm = ∅. For
m ∈ N, define Am := {i ∈ Bm : d(xn(i), xn+1(i)) < 2−n for n = 0, . . . ,m}.
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Now one proceeds exactly as in the previous proof, never running into the
case that i ∈

⋂
m∈NAm and thus never needing to quote the completeness

of the space Mi. �

Note that if U is countably complete, then the preceding theorem may
fail as then MU ∼= M for such U regardless of the space M . However,
as we remarked earlier, the existence of nonprincipal countably complete
ultrafilters enters the territory of set theory, so the above assumption in the
previous theorem can be viewed as a mild one.

Exercise 11.3.3. Suppose that (Mi, di)i∈I is a family of metric spaces and
Xi ⊆ Mi is dense for all i ∈ I. If U is a countably incomplete ultrafilter on
I, prove that the natural inclusion

∏
U Xi ⊆

∏
U Mi is actually an equality.

Corollary 11.3.4 (Existence of completion). Let M be a metric space and
U ∈ βN \ N. Then the closure M of the diagonal image of M in MU is
the completion of M , that is, a complete metric space in which M embeds
densely. This can be described concretely as

M := {[x]U ∈MU : for all ε > 0, there is y ∈M

such that d(x(n), y) < ε for U-almost all n}.

In general, MU is much bigger than M . For example, by Exercise 11.3.3
above, QU = RU , but Q = R.

We end this section with the metric analogue of Theorem 6.8.3 on “sizes”
of metric ultraproducts. To keep things simple, we consider the case of a
family of metric spaces of uniformly bounded diameter. Recall that the
density character of a metric space (M,d) is the smallest cardinality of a
dense subset of M ; this is the appropriate measure of the size of a metric
space. Also, given ε > 0, recall that a subset F of M is an ε-net if, given
any x ∈M , there is y ∈ F such that d(x, y) < ε.

Theorem 11.3.5. Suppose that (Mi, di)i∈I is a family of metric spaces of
uniformly bounded diameter and U is a countably incomplete ultrafilter on
I. Then either

∏
U Mi is compact or else has density character at least c.

Proof. For ε > 0, let nε(i) be the minimum size of a finite ε-net in Mi, if
such a finite net exists; otherwise, set nε(i) :=∞.

First suppose that limU nε(i) <∞ for all ε. We claim that in this case,
M :=

∏
U Mi is compact. Indeed, for each i, let Aε,i ⊆ Mi be a an ε-net of

size nε(i). Let Aε :=
∏

U Aε,i. Then Aε is finite (of size limU nε(i)) and is
a 2ε-net in M . Thus, M is totally bounded. Since M is also complete, it
follows that M is compact.

Now suppose that there is ε > 0 such that limU nε(i) =∞. This means
that there are sets Ai ⊆Mi with all elements of Ai at least ε-apart and such
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that limU |Ai| = ∞. Note then that in this case, the discrete and metric
ultraproducts of the sequence (Ai)i∈I agree and that this ultraproduct has
size at least c by Theorem 6.8.3. Since all elements of this ultraproduct are
at least ε-apart, we see that M has density character at least c. �

11.4. Continuous logic

As we will see in the coming chapters, we will need to consider metric spaces
with extra structure just as we encountered plain sets with extra structure
in Part 2 of this book. We now briefly discuss a logic suitable for handling
such metric structures. While many predecessors to this logic have been
around for quite some time, the current incarnation of continuous logic
has only been around for 15 years and has achieved much of its success due
to its striking similarities with classical logic. (In fact, we will soon see that
continuous logic is a direct generalization of classical logic in a precise sense.)

We motivate the introduction of continuous logic by desiring that the
metric ultraproduct described above be the correct ultraproduct construc-
tion for our logic, meaning that we would like the ultraproduct of a family
of structures to once again be a structure. For simplicity, let us suppose
that we have a family (Mi, di, fi)i∈I of metric spaces of diameter at most 1,
each equipped with a distinguished function fi : Mi →Mi. (Of course, this
is analysis, so in all likelihood these functions will at least be continuous,
but let us see how the ultraproduct construction guides us to the correct
assumption on the fi’s.)

The näıve idea would be to define a function f : M → M , where M :=∏
U Mi (metric ultraproduct), by setting f([a]U) := [f ◦a]U , in analogy with

the discrete setting. In order for this to be well-defined this time, we would
need to know that if a, b ∈

∏
iMi are such that limU di(a(i), b(i)) = 0, then

limU di(f(a(i)), f(b(i))) = 0. If this were not the case, then there would be
ε > 0 such that, no matter how small a δ > 0 we consider, we would have,
for U -almost all i, that d(a(i), b(i)) < δ and yet d(fi(a(i)), fi(b(i))) ≥ ε.

Turning this argument on its head, we see that if we want to ensure
that the function f defined on the ultraproduct is well-defined, then we
should assume that each fi is uniformly continuous and, moreover, that
the “witness” to uniform continuity is the same for each fi in a sense to
be made precise by the following definition. We warn the reader that a
seemingly strange asymmetry in our use of weak and strong inequalities will
appear in this definition, but we promise a satisfactory explanation for this
shortly.
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Definition 11.4.1.

(1) A modulus of uniform continuity is simply a function Δ :
(0, 1]→ (0, 1].

(2) If f : M → N is a function between metric spaces and Δ is a
modulus of uniform continuity, then we say that Δ is a modulus
of uniform continuity for f if, for every a, b ∈ M and every
ε ∈ (0, 1], if d(a, b) < Δ(ε), then d(f(a), f(b)) ≤ ε.

Notice that if f has a modulus of uniform continuity, then f is uniformly
continuous. Now notice that, in the above argument, if there was a modulus
of uniform continuity Δ such that Δ was a modulus of uniform continuity
for each fi, then f is a well-defined function as we had hoped for. However,
something even better is true, namely that Δ is once again a modulus of
uniform continuity for f : if d([a]U , [b]U) < Δ(ε), then d(a(i), b(i)) < Δ(ε)
for U -almost all i, whence d(f(a(i)), f(b(i))) ≤ ε for U -almost all i, which
implies that d(f([a]U), f([b]U)) ≤ ε. Notice that if we had modified the
definition of modulus of uniform continuity for a function by replacing “<
Δ(ε)” with “≤ Δ(ε)” and/or “≤ ε” with “< ε”, then the preceding proof
would break down and Δ need not be a modulus of uniform continuity for
f anymore.

Of course we will want to consider functions Mn →M rather than just
M →M and the same ideas persist. In order for the above discussion to be
applicable, we will need to endow Mn with a particular metric. While there
are many ways of doing this, we always assume that Mn is equipped with

its so-called max metric, that is, d(	a,	b) = max1≤i≤n d(ai, bi).

We now move on to considering distinguished predicates. Here, there
is a substantial shift in perspective. In classical logic, = is a distinguished
(logical) predicate. For metric spaces, considering = as a distinguished
predicate is not a good idea, especially if one is hoping for some form of
the �Loś theorem to hold. Indeed, it is often the case that, in a metric
ultraproduct, we have that [a]U = [b]U and yet a(i) �= b(i) for all i. Of course,
by its very definition, the metric in the ultraproduct and the metric in the
various factors are related and so we should consider the metric symbol d as a
distinguished (logical) predicate. But the metric does not take values in the
set {0, 1}, but rather the interval [0, 1]. (Recall our simplifying assumption
that our metric spaces have diameter bounded by 1.) Thus a paradigm shift:
predicates should now be functions into [0, 1]. If we now consider a family
(Mi, di, Pi)i∈I , where each Pi : M → [0, 1], and attempt to define P on
M byP ([a]U) := [P (a(i))]U , then we do not quite get another structure of
the same form as P now takes values in [0, 1]U rather than [0, 1]. However,
[0, 1] is compact, whence limU provides an isomorphism between [0, 1]U and
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[0, 1]. Thus, we redefine P ([a]U) := limU Pi(a(i)) and now we get a function
P : M → [0, 1], a function of the same kind. An argument as before shows
that to have a well-defined function P , then we should insist that there be
a function Δ that is a modulus of uniform continuity for each Pi and, after
insisting upon this, we then have that Δ is a modulus of uniform continuity
for P as well. Once again, all of this holds for predicates Mn → [0, 1] as
well.

Now that we know what we want our structures to be, it is clear what
information a language for continuous logic should prescribe:

Definition 11.4.2. A continuous language L consists of function and
relation symbols along with the following information:

• For every function symbol F , L should provide an arity nF and a
modulus of uniform continuity ΔF .

• For every predicate symbol P , L should provide an arity nP and a
modulus of uniform continuity ΔP .

As usual, constant symbols can be treated as function symbols of arity
0 (and thus there is no modulus of uniform continuity requirement; they
simply name elements of the structure).

Definition 11.4.3. Suppose that L is a continuous language. An L-struc-
ture M is a complete metric space (M,d), together with:

• For each function symbol F , we have a distinguished function FM :
MnF →M which has ΔF as a modulus of uniform continuity.

• For each predicate symbol P , we have a distinguished function
PM : MnP → [0, 1] which has ΔP as a modulus of uniform conti-
nuity.

Remark 11.4.4. It might seem a bit artificial to ask that the the metric
spaces underlying our structures be complete. However, there is no real loss
of generality to assume this. Indeed, one can show that the completion of a
metric structure in the above sense whose underlying universe need not be
complete is naturally a metric structure in the obvious way and that these
two structures are “indistinguishable” in a precise model-theoretic sense. In
fact, one could even start with a structure whose underlying space is only
a pseudo-metric space, mod out by the relation of having distance 0, and
then complete, and still one would arrive at a structure which is logically
the same as the original structure. See [9] for more details.

Exercise 11.4.5. Suppose that L is a continuous language, (Mi)i∈I a family
of L-structures, and U an ultrafilter on I. Guided by our earlier discussion,
explain how to make the metric ultraproduct

∏
U Mi into the universe of
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an L-structure
∏

U Mi, called the ultraproduct of the family (Mi)i∈I
with respect to U .

Now that we know what languages and structures are, we should describe
formulae and their interpretations. Fix a continuous language L. We define
L-terms just as usual: they are function symbols applied to constant symbols
and variables. We define the interpretation tM of an L-term t in an L-
structure M just as in the classical case.

Exercise 11.4.6. For each L-term t(x1, . . . , xn), prove that there is a modu-
lus of uniform continuity Δt such that, for every L-structureM, the function
tM : Mn → M has Δt as a modulus of uniform continuity. (Hint. Proceed
by induction on the complexity of t.)

We now describe L-formulae. In analogy with classical logic, and with
our earlier decision to replace = with d, L-atomic formulae are expressions of
the form P (t1, . . . , tn) and d(t1, t2), where t1, . . . , tn are L-terms and P is an
n-ary predicate symbol. It is clear how we should interpret these formulae:
if each ti has its free variables amongst x1, . . . , xm and ϕ(x1, . . . , xm) =
P (t1(x1, . . . , xm), . . . , tn(x1, . . . , xm)), then ϕM : Mm → [0, 1] is given by
PM(a1, . . . , am) = PM(tM1 (a1, . . . , am), . . . , tMn (a1, . . . , am)). (Thinking of
the metric symbol as a distinguished binary predicate symbol, this definition
covers all atomic formulae.). Once again, we note that, our “truth values”
for formulae no longer land in the set {0, 1}, but rather the interval [0, 1].
(For this reason, it sometimes helps to abandon the idea that formulae are
true or false; they simply, upon interpretation, return a number in [0, 1].)

We now come to the discussion of connectives. Given pre-existing for-
mulae ϕ1, . . . , ϕn, we are going to want to combine them in some way to
create a new formula. Since the formulae, once interpreted, take values in
[0, 1], we should plug them into some function u : [0, 1]n → [0, 1] to create
the new formula u(ϕ1, . . . , ϕn). And since we are doing continuous logic, the
function u should probably be continuous. But which continuous functions
should we allow as connectives?

In the classical case, depending on presentation, one usually restricts
formulae to those built with the connectives ¬ : {0, 1} → {0, 1} and ∨ :
{0, 1}2 → {0, 1}. (Some authors choose to also include some or all of ∧, →,
and ↔ as well. Also, one can simply use the single connective |, the Sheffer
stroke.) However, a basic result of propositional logic says that, with the
above connectives, one can actually generate every function {0, 1}n → {0, 1}
for all n. Thus, if one chose to do classical logic allowing all functions
{0, 1}n → {0, 1} as connectives, then nothing would change.

With the preceding paragraph in mind, we choose to allow all continuous
functions as connectives: if ϕ1, . . . , ϕn are L-formulae and u : [0, 1]n → [0, 1]
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is any continuous function, then ϕ := u(ϕ1, . . . , ϕn) is also an L-formula.
Presuming we already know how to interpret ϕM

1 , . . . , ϕM
n , then we interpret

ϕM as u(ϕM
1 , . . . , ϕM

n ).

We should make two comments about the above choice. First, even if
the language L is countable, the number of L-formulae is uncountable. Of
course, in analysis, cardinality is not necessarily the right notion but rather
density character, as was discussed in the previous section. In this regards,
for each n, there is a countable set of continuous functions [0, 1]n → [0, 1]
that is dense in the set of all such continuous functions and the set of L-
formulae constructed from those is dense (in a certain precise sense) in the
set of all L-formulae. In many respects, working with these formulae is often
enough. In the case that the language is countable, one then has a countable
dense set of formulae.

On the other hand, our choice of connectives is actually not large enough
for some of the more advanced model-theoretic considerations. Indeed, one
often needs to consider infinitary formulae in the sense that if ϕ1, ϕ2, . . . are
countably many formulae and u : [0, 1]N → [0, 1] is a continuous function,
then u(ϕ1, ϕ2, . . .) is also a formula. For example,

∑∞
n=1 2

−nϕn would also
be a formula. Such generalized formulae are called definable predicates,
but we will not say anything further about them.

We now come to the choice of quantifiers. We aim to motivate this by
analogy with the discrete world, but in doing so we ask the reader to abandon
a traditional identification (one we made above, in fact): usually the truth
value T is identified with the number 1 and the truth value F identified with
the number 0. In continuous logic, we often make the reverse identification.
One rationale for doing so is that, in a metric space, the statement a = b
is true if and only if the quantity d(a, b) equals 0. Given this reversal in
viewpoint, we now see that the statement “for all x, ϕ(x) = 0” is equivalent
to the statement supx ϕ(x) = 0. (Recall our convention that formulae take
values in [0, 1].) So, in this regards, the “quantifier” supx acts like the
universal quantifier ∀x. One can make a similar case for the use of the
quantifier infx except, unfortunately, it only behaves like an approximate
existential quantifier: infx ϕ(x) = 0 if and only if, for every ε, there is x
such that ϕ(x) < ε. (If ε is small, we think of this as saying that such an x
almost makes ϕ true.) In ω-saturated structures (which are defined in a way
analogous to the discrete setting), the quantifier infx does behave exactly
like an existential quantifier, that is, infx φ(x) = 0 if and only if there is x
such that φ(x) = 0.

The preceding paragraph in mind, we now declare that if ϕ is an L-
formula and x is a single variable, then the expressions supx ϕ and infx ϕ
are once again L-formulae. The interpretations are given by (supx ϕ)

M(b) :=
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sup{ϕM(a, b) : a ∈M} and likewise for inf. These are well-defined as the
values of ϕ lie in [0, 1].

This completes the recursive definition of L-formulae.

Exercise 11.4.7. For every L-formula ϕ(x1, . . . , xn), prove that there is a
modulus of uniform continuity Δϕ such that, for all L-structuresM, we have
that Δϕ is a modulus of uniform continuity for the function ϕM : Mn →
[0, 1].

One can now state the continuous logic version of �Loś’s theorem:

Theorem 11.4.8 (�Loś’s theorem for continuous logic). Suppose that L is
a continuous langauge, (Mi)i∈I is a family of L-structures, and U is an
ultrafilter on I. Set M :=

∏
U Mi. Further suppose that ϕ(x1, . . . , xm) is

an L-formula and [a1]U , . . . , [am]U ∈
∏

U Mi. Then

ϕM([a1]U , . . . , [am]U) = lim
U

ϕMi(a1(i), . . . , am(i)).

Exercise 11.4.9. Prove the previous theorem.

We now give some of the basic model-theoretic definitions in this setting:

Definition 11.4.10. Suppose that L is a continuous language and M and
N are L-structures.

(1) A embedding i :M→N is a function i : M → N such that:
• for every n-ary function symbol F and every a1, . . . , an ∈ M ,
we have

i(FM(a1, . . . , an)) = FN (i(a1), . . . , i(an));

• for every n-ary predicate symbol P and every a1, . . . , an ∈M ,
we have

PM(a1, . . . , an) = PN (i(a1), . . . , i(an)).

(2) An elementary embedding is an embedding i : M → N for
which, given any L-formula ϕ(x1, . . . , xn) and any a1 . . . , an ∈ M ,
we have

ϕM(a1, . . . , an) = ϕN (i(a1), . . . , i(an)).

(3) M is a substructure of N if M ⊆ N and the inclusion map
i : M → N is an embedding i : M → N . If i is moreover an
elementary embedding, then we say that M is an elementary
substructure of N , denoted M N .

(4) M is elementarily equivalent to N , denoted M ≡ N , if, for
every L-sentence σ, σM = σN .
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Note that an embedding is automatically an isometric embedding (by
considering P = d). Note also that, by �Loś’s theorem for continuous logic,
we have that the diagonal embedding is an elementary embedding.

An interesting feature of continuous logic is that it is a positive logic
in that one is unable to talk about negations. Still, there are often substi-
tutes for related things, such as implications, as we will see in the follow-
ing example. First, define the function −. : [0, 1]2 → [0, 1] to be given by
x−. y := max(x− y, 0).

Example 11.4.11. Suppose that ϕ(x) and ψ(x) are L-formulae, M is an
L-structure, and r, s ∈ [0, 1]. Suppose that we want to say: for all a ∈
M , if ϕ(a) < r, then ψ(a) ≤ s. This can be accomplished by asserting
(supxmin(r −. ϕ(x), ψ(x) −. s))M = 0. Indeed, suppose that a ∈ M and
ϕ(a) < r. Then r −. ϕ(a) > 0. Thus, for the minimum to be 0, one must
have ψ(a) −. s = 0, which is the same as saying that ψ(a) ≤ s. Note that
the function z �→ r −. z : [0, 1] → [0, 1] is a continuous function, whence
r −. ϕ(x) is a formula once again. Similarly, ψ(x) −. s is also a formula.
Since min : [0, 1]2 → [0, 1] is also a continuous function, the expression
written above is indeed a formula in continuous logic. Note however that,
in general, we could not express ϕ(a) ≤ r implying ψ(a) ≤ s; the strong
inequality was important in the argument above.

Earlier, we said that continuous logic is a generalization of ordinary
first-order logic. When we say this, we mean that, if we view every classical
structure as a metric structure by equipping the universe of the structure
with the discrete metric, then many of the notions and results in continuous
logic are simply generalizations of their discrete counterpart. For example:

Fact 11.4.12. Suppose that L is a classical language and M and N are
classical L-structures. Then M and N are elementarily equivalent as dis-
crete structures if and only if they are elementarily equivalent as metric
structures when equipped with the discrete metric.

The proof of the previous fact is complicated by the fact that continuous
logic allows more connectives, whence there are more sentences that one has
to check when testing elementary equivalence. We refer the reader to [9] for
more details.

Many of the notions and results from classical model theory have their
continuous counterparts, and in many cases the continuous translation of a
notion or result from classical model theory is routine to identify. That being
said, there are certainly subtleties that arise in continuous logic that do not
arise in the classical case, such as the notion of definable set in continuous
logic as well as the Omitting Types Theorem in continuous logic. Since our
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treatment here is meant to cover only the very basics, we refer the reader
to [9] once again for more details.

While we have restricted our attention to languages where all predicates
take values in [0, 1], there is nothing fundamentally different about languages
where the predicates are allowed to take values in arbitrary compact intervals
[a, b] instead (which may even vary as the predicates vary), although the
details are a bit more messy. More care must be taken to treat structures
where the predicates are allowed to take any real values, but we will say
nothing about this case here.

Continuous logic has considerably expanded the class of mathematical
objects that are now amenable to model-theoretic tools. In later chapters,
we will meet objects like metric groups, Banach spaces, Hilbert spaces, and
operator algebras which can now be studied through the model-theoretic
lens. This is currently a very active and fruitful area of research.

11.5. Reduced products of metric structures

The reader may have noticed that, unlike in the case of discrete structures,
we did not introduce the notion of reduced product of metric structures and
instead skipped straight to the definition of ultraproduct. There is indeed a
natural notion of reduced product of metric structures which we introduce in
this section. For simplicity, we consider the case of [0, 1]-valued structures.

To motivate the definition to come, consider the idea of how the discrete
metric in a reduced product of discrete metric spaces is related to the discrete
metric in the factors. More precisely, given a family (Mi)i∈I of sets equipped
with the discrete metric, a filter F on I, and [a]F , [b]F ∈

∏
F Mi, we have

d([a]F , [b]F ) = 0⇔ [a]F = [b]F

⇔ (∃J ∈ F)(∀i ∈ J)(a(i) = b(i))⇔ inf
J∈F

sup
i∈J

d(a(i), b(i)) = 0.

Definition 11.5.1. Given f : I → [0, 1] and a filter F on I, we set

lim sup
F

f := inf
J∈F

sup
i∈J

f(i).

Exercise 11.5.2. Suppose that (Mi, di)i∈I is a family of metric spaces
with diameter bounded by 1. Define d on

∏
i∈I Mi by setting d(a, b) :=

lim supF di(a(i), b(i)). Prove that d is a pseudo-metric.

Definition 11.5.3. Given a family (Mi, di)i∈I of metric spaces with di-
ameter bounded by 1 and a filter F on I, we define the reduced prod-
uct, denoted

∏
F Mi, to be the metric space obtained from considering the

pseudo-metric d from the previous exercise quotiented by the relation d = 0.
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In order to see that this agrees with the notion of ultraproduct in the
case that F is an ultrafilter, the following alternative formula for lim supF
is useful:

Lemma 11.5.4. For any function f : I → [0, 1] and any filter F on I, we
have

lim sup
F

f = sup

{
lim
U

f : F ⊆ U ∈ βI

}
.

In particular, if F is an ultrafilter, then lim supF f = limF f .

Proof. Set r := sup{limU f : F ⊆ U ∈ βI}. We first show that r ≤
lim supF f . Toward this end, fix U ∈ βI with F ⊆ U and J ∈ F ; it suffices
to show that limU f ≤ supi∈J f(i). But this is clear: if f(i) ≤ s for all i ∈ J ,
then limU f ≤ s.

For the other direction, fix ε > 0 and for each J ∈ F , take iJ ∈ J such
that f(iJ) ≥ lim supF f − ε. Let X := {i ∈ I : f(i) ≥ lim supF −ε}. Then
F ∪ {X} generates a proper filter on I (as iJ ∈ J ∩ X for each J ∈ F),
whence there is U ∈ βI for which F ⊆ U and X ∈ U . Since X ∈ U , we have
limU f ≥ lim supF −ε. It follows that r ≥ lim supF f − ε. Since ε > 0 was
arbitrary, we get r ≥ lim supF f , as desired. �

Exercise 11.5.5. Suppose that L is a continuous language, (Mi)i∈I is a
family of L-structures, and F is a filter on I. Set M :=

∏
F Mi. For each

n-ary function symbol F in L and [a1]F , . . . , [an]F ∈M , set

FM([a1]F , . . . , [an]F ) := [i �→ FMi(a1(i), . . . , an(i))]F

and for each n-ary predicate symbol P in L and [a1]F , . . . , [an]F ∈M , set

PM([a1]F , . . . , [an]F ) := lim sup
F

PMi([a1]F , . . . , [an]F ).

Verify that these definitions are independent of representatives and that the
resulting structure M is indeed an L-structure.

The structure introduced in the previous exercise is called the reduced
product of the family (Mi)i∈I with respect to the filter F . By Lemma
11.5.4, in the case of an ultrafilter, the reduced product structure coincides
with the ultraproduct structure.

There is also a continuous version of the Feferman-Vaught theorem,
whose classical version was proven in Section 6.11; see [66] for the con-
tinuous version.

11.6. Notes and references

The history of the metric ultraproduct is a bit murky. It appears that the
first use of a metric ultraproduct (in disguise) is Wright’s work [184] on



210 11. Metric ultraproducts

AW* algebras from 1954. Their use became more common in the 1960s and
1970s in the functional analysis communities. (We will be more explicit with
references in the notes for Chapter 14.) The nonstandard hull construction
is due to Luxemburg [115]. Continuous logic as presented here is due to
Ben Yaacov and Usvyastov [10] and elaborated on considerably by Ben
Yaacov, Berenstein, Henson, and Usvyatsov in the monograph [9]. A much
earlier predecessor of this continuous logic was the one presented by Chang
and Keisler in their book [27]. Henson’s positive bounded logic [88] was also
very popular in the community of those applying model-theoretic techniques
in Banach space theory.



Chapter 12

Asymptotic cones
and Gromov’s theorem

In this chapter, we present one of the more popular applications of the met-
ric ultraproduct construction, namely van den Dries and Wilkie’s metric
ultraproduct take [181] on Gromov’s asymptotic cone construction, which
he used in proving his spectacular theorem on groups of polynomial growth.
In Section 12.1 and Section 12.2, we describe some group-theoretic prelimi-
naries and define the notion of the growth rate of a group, a crucial concept
in explaining Gromov’s result. In Section 12.3 we state Gromov’s theorem
on polynomial growth and give a detailed sketch of the proof based on the
existence of a metric space satisfying certain properties; this metric space
will end up being a particular asymptotic cone of the group. In Section
12.4 we give the definition of an asymptotic cone of a metric space and that
of a group, both as metric ultraproducts and as nonstandard hulls. The
latter construction was really the one used by van den Dries and Wilkie
and is a bit more convenient for what follows. Section 12.5 and Section
12.6 complete the proof of Gromov’s theorem by detailing the properties of
the asymptotic cone needed in the proof; the properties in the former sec-
tion are general while the properties in the latter need assumptions on the
growth rate of the group. Section 12.7 presents a recent result of Hrushovski
and Sapir, answering a question left open by van den Dries and Wilkie in
[181], while Section 12.8 discusses the effect on the homeomorphism type of
the asymptotic cone when changing some of the parameters involved in its
construction.

211
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12.1. Some group-theoretic preliminaries

In this section, we recall some definitions from group theory that we will
need in this chapter. Given a group Γ and X,Y ⊆ Γ, we set [X,Y ] to be the
subgroup of Γ generated by commutators aba−1b−1, with a ∈ X and b ∈ Y .
The derived subgroup of Γ is the group Γ′ := [Γ,Γ]. Γ′ is a normal
subgroup of Γ and the abelianization of Γ, Γab = Γ/[Γ,Γ], is abelian. In
fact, if N is a normal subgroup of Γ, then Γ/N is abelian if and only if Γ′

is a subgroup of N , in which case the surjection Γ → Γ/N factors through
Γab. Note that Γ is abelian if and only if Γ′ = {e} if and only if Γab = Γ.

To generalize being abelian, we consider groups such that the process of
taking derived groups eventually trivializes: setting Γ(1) := Γ′ and Γ(n) :=
(Γ(n−1))′, we say that Γ is solvable if Γ(n) = {e} for some n ∈ N. Clearly
abelian groups are solvable.

Example 12.1.1. Γ = S3 × Z is an infinite, nonabelian solvable group.
Indeed, Γ′ = A3 × {0}, which is abelian, whence Γ(2) = {e}.

One can also consider the subgroups Γn of Γ defined by setting Γ1 := Γ′

and Γn := [Γ(n−1),Γ]. Note that Γ(n) is a subgroup of Γn. We say that Γ
is nilpotent if Γn = {e} for some n ∈ N. Note that abelian groups are
nilpotent and nilpotent groups are solvable. Note also that the group from
Example 12.1.1 is not nilpotent. (Indeed, it can be verified that Γ2 = Γ1 in
that case.)

Example 12.1.2. Let H :=

⎧⎨
⎩
⎛
⎝1 a c
0 1 b
0 0 1

⎞
⎠ : a, b, c ∈ R

⎫⎬
⎭. H is easily seen

to be a group under multiplication, the so-called Heisenberg group. It is
clear thatH is infinite and nonabelian. To see thatH is nilpotent, we ask the

reader to verify that the map

⎛
⎝1 a c
0 1 b
0 0 1

⎞
⎠ �→ (a, b) : H → R2 is a surjective

group homomorphism with kernel Z(H). It follows that H/Z(H) ∼= R2 is
abelian, whence H is nilpotent.

Notation 12.1.3. For a group Γ with subgroup Δ, we write Δ ≤f Γ if Δ
is a finite index subgroup of Γ.

If P is a property of groups, we say that Γ is virtually P if some finite
index subgroup of Γ has property P . Note that virtually finite is the same
as finite.

Definition 12.1.4. A group Γ is called indicable if there is a surjective
homomorphism Γ→ Z. If Γ is indicable, a kernel of Γ is the kernel of some
homomorphism from Γ onto Z.
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The following fact will play a role later on:

Lemma 12.1.5. Suppose that Γ is an infinite, solvable, finitely generated
group. Then Γ is virtually indicable.

Proof. Suppose first that Γ′ has infinite index in Γ. Then since Γ/Γ′ is
an infinite finitely generated abelian group, by the Fundamental Theorem
of Finitely Generated Abelian Groups, Γ/Γ′ has a direct summand that is
isomorphic to Z, whence there is a surjective homomorphism from Γ/Γ′ onto
Z, and thus from Γ itself.

If Γ′ has finite index in Γ but Γ(2) has infinite index in Γ′, then the
same argument shows that Γ′ is indicable. Eventually, some Γ(n) must have
infinite index in Γ(n−1) (whence Γ(n−1) is indicable), for otherwise {e} will
have finite index in Γ, whence Γ is finite, a contradiction. �

12.2. Growth rates of groups

In this section, Γ is a group generated by a finite set X which we assume,
without loss of generality, is closed under inverses. We then can define the
word-length function | · |X : Γ → N by |g|X := the length of the shortest
word in X representing g. When there is no possible source of confusion, we
simply write |g| instead of |g|X . The following properties of the word-length
function are easy to check:

• |g| = 0 if and only if g = e;

• |g| = |g−1|;
• |gh| ≤ |g|+ |h|.

We can use the word-length function to define a metric dX on Γ by
defining dX(g, h) := |g−1h|. Once again, we write d instead of dX if no
confusion arises. Note also that this metric on Γ is left-invariant : for all
a, g, h ∈ Γ, we have d(ag, ah) = d(g, h).

Exercise 12.2.1. Suppose that X and X ′ are finite generating sets for a
group Γ. Show that the identity map is a bi-Lipschitz homeomorphism, that
is, show that there is K ∈ N such that, for all g, h ∈ Γ, we have

1

K
dX′(g, h) ≤ dX(g, h) ≤ KdX′(g, h).

For each n ∈ N and g ∈ Γ, let BΓ,X(g, n) denote the closed ball of radius
n with center g with respect to the metric dX . We will write BΓ(g, n) if X
is clear from context. It is fairly easy to see that all closed balls of radius n
have the same finite size, denoted GX(n), or simply G(n). The associated
function GX : N → N is called the growth function of the group Γ with
respect to the generating set X. In this chapter, we will be concerned with
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the rate of growth of the growth function GX . Some examples might make
things clearer.

Example 12.2.2. Let Γ = Z with generating set {±1}. It is relatively clear
that G(n) = 2n+ 1 in this case.

Exercise 12.2.3. Let Γ = Z2 with generating set {(±1, 0), (0,±1)}. Show
that G(n) = 2n2 + 2n+ 1.

The previous two examples are examples of groups with polynomial
growth:

Definition 12.2.4. Γ has growth degree ≤ d if there is c > 0 and d ∈ N
such that G(n) ≤ cnd for all n ≥ 1. If Γ has growth degree ≤ d for some d,
then we say that Γ has polynomial growth.

The above definition is a little awkward in that the adjectives “growth
degree ≤ d” and “polynomial growth” apply to the group itself even though
the definition involves the growth function with respect to a particular gen-
erating set. This is not an issue:

Exercise 12.2.5. Suppose that X and X ′ are finite generating sets for a
group Γ. Show that there is K ∈ N such that GX(n) ≤ GX′(Kn) for all
n ∈ N. Conclude that the notion growth degree ≤ d (and hence the notion
polynomial growth) is independent of the choice of generating set.

Exercise 12.2.6. Show that any finitely generated abelian group has poly-
nomial growth.

The previous exercise can be significantly generalized:

Theorem 12.2.7 (Wolf). Any finitely generated nilpotent group has poly-
nomial growth.

Proof of a special case. We only treat the case that Γ is not abelian but
Γ2 = [Γ,Γ1] = {e}. Fix a finite generating set {g1, . . . , gm} for Γ. Suppose
that we have an element g ∈ BΓ(e, n). If we have adjacent occurrences of
gi and gj in g where j < i, then we replace that with gjgi[g

−1
i , g−1

j ]. If we

continue to switch like that, we end up rewriting g = ga11 · · · gamm h, where
h ∈ Γ1. A conservative upper bound for the number of “prefixes” is nm. How
many possible h’s are there? A conservative upper bound for the number
of times switched is n2, so h is a product of at most n2 commutators of
generators and their inverses. Let S be a finite generating set for Γ1 and let
p be the maximal length of a commutator of generators of Γ in terms of S.
Then h ∈ BΓ1(e, pn

2). Since Γ1 is abelian (by hypothesis), Γ1 has polynomial
growth, so there are c, d such that |BΓ1(e, pn

2)| ≤ c(pn2)d = cpdn2d. Thus,
there are at most nm · cpdn2d = (cpd)nm+2d possible such g’s. It follows that
Γ has growth degree at most m+ 2d. �
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We now consider an example at the opposite extreme:

Example 12.2.8. Let Γ = F2, the free group on the two generators a and
b. Note then that {a, a−1, b, b−1} is a symmetric generating set. If n ≥ 1,
|g| = n + 1 and g starts with an a, then a−1g is a word with length n that
starts with a, b, or b−1. It follows that G(n + 1) = 4 · (34G(n)) = 3G(n),
whence an inductive argument shows that G(n) = 2 · 3n − 1 for all n.

The previous example motivates:

Definition 12.2.9. Γ has exponential growth if there is c > 1 such that
G(n) ≥ cn for all n.

Exercise 12.2.10. Show that having exponential growth is independent of
the generating set.

Exercise 12.2.11. Suppose that Γ is a finitely generated group and that
Δ is a subgroup of Γ.

(1) If Δ is finitely generated and X is such that X ∩ Δ generates Δ,
prove that GX∩Δ ≤ GX . Conclude that Δ is of polynomial growth
if Γ iso f polynomial growth and Γ is of exponential growth if Δ is
of exponential growth.

(2) Suppose that Δ has finite index in Γ. Let X be a finite generating
set for Γ obtained from taking a finite generating set Y for Δ and
adjoining a (finite) set of coset representatives for Γ/Δ. Prove that
there is m ∈ N such that GX(n) ≤ |X|·GY (mn) for all n. Conclude
that Γ has polynomial (resp., exponential) growth if and only if Δ
does.

By the second part of the previous exercise, the notions “virtually of
polynomial growth” and “polynomial growth” are the same, as are “virtually
of exponential growth” and “exponential growth.”

Remark 12.2.12. Although it will not play a role in this chapter, there are
groups of so-called intermediate growth, that is, their growth functions
grow faster than all polynomials but slower than exponentials. This was a
major achievement due to Grigorchuk [70].

It will prove useful to consider G as a function G : R>0 → N (even
though G(r) = G(n) for n ≤ r < n+ 1). The following fact will be used in
Section 12.6.

Lemma 12.2.13. limr→∞G(r)
1
r exists.

Proof. It is enough to show that, for any increasing sequence (rn)n∈N with

limn→∞ rn =∞, we have limn→∞G(rn)
1
rn exists.
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Fix m,n ∈ N and set k := ! rmrn "+ 1. Then

G(rm) ≤ G(krn) ≤ G(rn)
k ≤ G(rn)

rm
rn

+1.

It follows that lim supm→∞G(rm)
1

rm ≤ G(rn)
1
rn . Since n is arbitrary, we

have that

lim sup
m→∞

G(rm)
1

rm ≤ lim inf
n→∞

G(rn)
1
rn ,

yielding the desired result. �

Corollary 12.2.14. Γ has exponential growth if and only if limr→∞G(r)
1
r >

1.

Proof. If Γ has exponential growth, then there is c > 1 such that G(n) ≥ cn

for all n, whence limn→∞G(n)
1
n ≥ c > 1. Conversely, suppose that c :=

limr→∞G(r)
1
r > 1. By the proof of the previous lemma, for any fixed n, we

have G(n)
1
n ≥ c, so G(n) ≥ cn, as desired. �

12.3. Gromov’s theorem on polynomial growth

In the last section, we saw that finitely generated nilpotent groups have
polynomial growth. It follows from Exercise 12.2.11 that finitely generated
virtually nilpotent groups have polynomial growth. Under the assumption
that the group is solvable, the converse in fact holds, even under the more
general assumption that the group does not have exponential growth:

Fact 12.3.1 (Milnor-Wolf [136]). If Γ is a finitely generated solvable group,
then either Γ has exponential growth or else Γ is virtually nilpotent.

The above fact is really a combination of two results: Milnor proved
that all finitely generated solvable groups are either polycyclic or have
exponential growth while Wolf proved that all polycyclic groups are either
virtually nilpotent or have exponential growth. (Polycylic groups can be
defined to be solvable groups for which every subgroup is finitely generated;
while an efficient definition, it has the unfortunate downside that it does not
explain the terminology.)

To summarize: amongst the finitely generated solvable groups, the groups
with polynomial growth are precisely the virtually nilpotent groups. How-
ever, assuming that the group is solvable is a somewhat severe assumption.
A remarkable theorem of Gromov is that the previous equivalence holds in
general, without any solvability assumption:

Theorem 12.3.2 (Gromov’s theorem on polynomial growth [71]). If Γ is a
finitely generated group of polynomial growth, then Γ is virtually nilpotent.
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What is striking about this theorem is that the “geometric” property of
the group, namely the growth rate of the balls around the identity, capture
precise algebraic information, namely virtual nilpotence.

In the rest of this section, we outline the proof of Gromov’s theorem. Our
proof sketch will be woefully incomplete, but we will make sure to emphasize
the portions of the proof that will ultimately rely heavily on a certain metric
ultraproduct construction, the so-called asymptotic cone construction; the
rest of the chapter will be devoted to the study of asymptotic cones and the
verification of the properties needed of it in the forthcoming proof sketch of
Gromov’s theorem.

From now on, we assume that Γ is a finitely generated group. A hint as
how to proceed with the proof of Gromov’s theorem is given by the following
algebraic lemma, whose proof we omit and can be found in [181].

Lemma 12.3.3. Suppose that Γ is an indicable group with kernel K. Sup-
pose further that Γ does not have exponential growth. Then:

(1) K is finitely generated.

(2) If Γ has growth degree ≤ d+ 1, then K has growth degree ≤ d.

(3) If K is virtually solvable, then so is Γ.

Thus, in order to prove Gromov’s Theorem by induction on the growth
degree of the group, we need a way to produce surjective homomorphisms
onto Z. Another source of inspiration is the following deep theorem. Recall
that GLn(C) is the group of invertible n × n matrices over the complex
numbers.

Fact 12.3.4 (Tits alternative). Suppose that Γ is a finitely generated sub-
group of GLn(C). Then either Γ contains an isomorphic copy of the free
group F2 or else Γ is virtually solvable.

Thus, for finitely generated subgroups of GLn(C), polynomial growth
implies virtual solvability (and hence virtual nilpotency by the Milnor-Wolf
theorem). Thus, it would be great if one could get our group Γ (or some
finite index subgroup of Γ) to be embedded in some GLn(C). Now, GLn(C)
is the group of symmetries of a continuous object (namely Cn), whilst Γ is
the group of symmetries of a discrete object, namely Γ itself, equipped with
its word metric. (Γ acts on itself by left multiplication and this action is
by isometries.) Gromov’s idea was that the metric space Γ, when viewed
from “far away,” actually looks continuous and that the action of Γ on this
“zoomed out” version of Γ is still by isometries. Provided that the zoomed
out version of Γ has some nice properties, its group of isometries will be a
so-called Lie group.
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To be more precise, suppose that Y is a metric space and let Isom(Y )
denote the group of isometries of Y . Isom(Y ) has a natural topology on it,
where a typical subbasic neighborhood of the identity function idY is a set
of the form

Uk,ε := {f ∈ Isom(Y ) : d(f(a), a) < ε for all a ∈ Y with d(a, e) ≤ k}.

In the above, e ∈ Y is simply some distinguished point fixed in advance.
With this topology, Isom(Y ) is in fact a topological group.

The following important fact is a consequence of some deep work on
Hilbert’s fifth problem (see, for example, the book [137]).

Fact 12.3.5. Suppose that Y satisfies the following properties:

(1) Y is homogeneous: given any x, y ∈ Y , there is f ∈ Isom(Y ) such
that f(x) = y.

(2) Y is connected and locally connected.

(3) Y is proper.

(4) Y is “finite-dimensional.”

Then Isom(Y ) is a Lie group.

Even though we use quotation marks in item (4), the term finite-dimen-
sional has a precise meaning. Since this definition would take us too far
afield, we will be intentionally vague here.

What is a Lie group? Roughly speaking, it is a group that you can
do calculus on. More precisely, a Lie group is a group that is also a smooth
manifold such that the group operations are smooth. It is not entirely
crucial that the reader understand the precise definition of a Lie group, for
the following two facts about Lie groups will be all that we will need to
know. We include very brief justifications for these facts mainly so that the
reader can consult the literature for the missing details.

Lie group Fact #1. Suppose that G is a Lie group. Then there is L ≤f G
and n > 0 such that L/Z(L) embeds into GLn(C).

Brief justification. One associates to any Lie group G its Lie algebra
g, which, amongst other things, is a finite-dimensional vector space. One
has the adjoint representation Ad : G → Aut(g), which is an injective
group homomorphism. If G is connected, then the kernel of Ad is Z(G).
In general, the connected component Ge of the identity in G is a finite-
index subgroup that is a connected Lie group, whence Ge/Z(Ge) embeds
into Aut(g) ∼= GLn(C), where n is the dimension of g.
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Lie group Fact #2. Suppose that G is a Lie group. Then for any n > 0,
there is a neighborhood U of the identity in G such that all elements of
U \ {e} have order greater than n.

Brief justification. Lie groups have the no small subgroups property,
meaning that there is a neighborhood V of e containing no subgroup of G
other than {e}. (In fact, for a locally compact group, having the no small
subgroups property is equivalent to being a Lie group; this is part of the deep
work associated to the solution of Hilbert’s fifth problem referred to above.)
Now given n > 0, there is a neighborhood U of e such that the product
of any n elements of U lies in V . (This is a basic property of topological
groups.) It follows that any element of U \ {e} has order greater than n.

Returning to Fact 12.3.5, in the next section, we will show how to con-
struct a metric space Cone(Γ) from Γ such that Cone(Γ) is always homoge-
neous, connected, and locally connected. (Cone(Γ) will be the zoomed out
version of Γ referred to above.) In order to build Cone(Γ), one will have
to fix a positive infinite element R of R∗ (the level of “zoom”) and so we
actually write Cone(Γ;R). In Section 12.6, we will also show the following:

Theorem 12.3.6. If Γ has polynomial growth, then there is a positive infi-
nite R ∈ R∗ such that Cone(Γ;R) is proper and finite-dimensional.

Thus, the following theorem will be applicable.

Theorem 12.3.7. Suppose that Cone(Γ;R) is proper and finite-dimen-
sional. Then Γ is virtually indicable.

Before we outline the proof of Theorem 12.3.7, let us see how to readily
deduce Gromov’s theorem from the results already announced in this section.

Proof of Theorem 12.3.2. We prove, by induction on d, that if Γ has
growth degree ≤ d, then Γ is virtually nilpotent. When d = 0, we have that
Γ is finite, so virtually nilpotent (as {e} is of finite index in Γ and nilpotent).

Inductively assume that the theorem is true for d and that Γ has growth
degree ≤ d + 1. By Theorems 12.3.6 and 12.3.7, there is a finite index
indicable subgroup Δ of Γ. Let K be a kernel of Δ. By Exercise 12.2.11
and Lemma 12.3.3(2), K has growth degree ≤ d, whence, by induction, K
is virtually nilpotent, and hence virtually solvable. By Lemma 12.3.3(3), we
have that Δ is virtually solvable. By Milnor-Wolf, Δ is virtually nilpotent,
whence Γ is also virtually nilpotent. �

We now return to the proof of Theorem 12.3.7. Note that the theorem
is easy to prove if Γ is virtually abelian, so we suppose from now on that
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this is not the case. Suppose that Y := Cone(Γ;R) is proper and finite-
dimensional. By Fact 12.3.5 and Lie group Fact #1, there is n > 0 and
L ≤f Isom(Y ) such that L/Z(L) embeds into GLn(C). As alluded to earlier,
the elements of Γ can be construed as isometries of Y ; more precisely, there
is a group homomorphism l : Γ→ Isom(Y ). The motivation behind bringing
in Isom(Y ) was to somehow get a finite index subgroup of Γ which has as
a homomorphic image an infinite subgroup of some GLn(C). A first step is
the following:

Claim. There is Δ ≤f Γ such that, for any n, there is a homomorphism
Δ→ L with image of size at least n.

Proof of Claim. The claim is easy to prove when l(Γ) is infinite, for then
Δ := l−1(L) has finite index in Γ and l(Δ) is an infinite subset of L. We

thus assume that l(Γ) is finite. Set Γ̃ := ker(l), a finite-index subgroup of
Γ. By Lie Group Fact #2, for each n > 0, there is a neighborhood U of
idY such that U contains no elements of order < n. As a consequence of
Theorem 12.5.2 below, there is a homomorphism Γ̃→ Isom(Y ) whose image
intersects U \{idY } . Consequently, for any n > 0, there is a homomorphism

Γ̃→ Isom(Y ) whose image has size ≥ n. A counting argument gives Δ ≤f Γ′

such that, for any n > 0, there is a homomorphism Δ→ L whose image has
size ≥ n, proving the claim.

Unfortunately, it is L/Z(L), and not L itself, which embeds into GLn(C).
Thus, if we consider what happens when we compose the homomorphisms
Δ→ L given by the claim with the quotient map L→ L/Z(L), three cases
can occur:

(i) there is q ∈ N such that all homomorphisms Δ → L/Z(L) have
image of size at most q;

(ii) all homomorphisms Δ → L/Z(L) have finite image, but of un-
bounded size;

(iii) there is a homomorphism Δ→ L/Z(L) with infinite image Δ.

Case (iii) is the one that is easiest to deal with given the earlier discussion
of the Tits Alternative. Indeed, Δ, being isomorphic to an infinite, finitely
generated subgroup of GLn(C), either contains a copy of F2 as a subgroup,
or else is virtually solvable. The former alternative would imply that Γ has
exponential growth by Exercise 12.2.11. In Section 12.6, we will prove the
following weak converse to Theorem 12.3.6:

Theorem 12.3.8. If Cone(Γ;R) is proper for some R ∈ R∗, then Γ does
not have exponential growth.
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Recalling the hypotheses of Theorem 12.3.7, it must be the case that
Δ is virtually solvable. The proof of the theorem now follows from Lemma
12.1.5.

We now treat Case (i). The assumption of Case (i) implies that [Δ :
ker(h)] ≤ q for any homomorphism h : Δ → L/Z(L). If we set Δ1 :=⋂
{ker(h) : h : Δ → L/Z(L)}, it follows that Δ1 ≤f Δ and for any

n > 0 there is a homomorphism Δ1 → Z(L) of cardinality ≥ n. (The
fact that Δ1 ≤f Δ uses the elementary group theory fact that a finitely
generated group has only finitely many subgroups of a given finite index,
whence Δ1 is actually a finite intersection.). Since Z(L) is abelian and any
such homomorphism must factor through Δab

1 , it follows that Δab
1 is infinite,

and thus indicable, whence Δ1 itself is indicable.

It remains to prove Case (ii). The proof of Case (ii) is nearly identical to
the proof of Case (i) once one knows the following theorem of Jordan: there
is q ∈ N such that every finite subgroup of GLn(C) has an abelian subgroup
of index at most q.

This concludes the proof sketch of Theorem 12.3.7 and consequently the
sketch of the proof of Gromov’s Theorem 12.3.2.

12.4. Definition of asymptotic cones

We start with the general definition of an asymptotic cone of a metric space,
although we specialize quickly to the case of groups.

Definition 12.4.1. Suppose that (X, d) is a metric space, U an ultrafilter
on N, o ∈ XN a sequence from X, and r ∈ (R>0)N is such that limU r(n) =
∞. Then the asymptotic cone with respect to all of this data, denoted
Cone(X;U , o, r), is the metric ultraproduct

Cone(X;U , o, r) :=
∏
U

(
X,

d

r(n)
, o(n)

)
.

In other words, an asymptotic cone of a metric space is simply a metric
ultraproduct of a family of metric spaces obtained by “scaling down” the
metric of the original space.

The notation above is admittedly cumbersome, but we will shortly re-
strict our attention to the case of groups, where we will omit some of the
data from the notation. We start with two results which will explain why
this aforementioned omission will be harmless.

Lemma 12.4.2. Suppose that (X, d) is a homogeneous metric space and fix
o, o′ ∈ XN. Then for any U ∈ βN \ N and any sequence r ∈ (R>0)N with
limU r(n) =∞, the asymptotic cones Cone(X;U , o, r) and Cone(X;U , o′, r)
are isometric.



222 12. Asymptotic cones and Gromov’s theorem

Proof. For each n ∈ N, let σn ∈ Isom(X) be such that σ(on) = o′(n) and
define σ : XN → XN by setting σ(x)(n) := σn(x(n)). Define

σ′ : Cone(X;U , o, r)→ Cone(X;U , o′, r)
by setting σ′([x]U) := [σ(x)]U . We leave it to the reader to verify that this
map is a well-defined isometry. �

Lemma 12.4.3. Suppose that f : (X, d) → (Y, d) is a K-bi-Lipschitz
homeomorphism. Then for any U ∈ βN \ N, any o ∈ XN, and any r ∈
(R>0)N with limU r(n) = ∞, the ultraproduct map fU : Cone(X;U , o, r) →
Cone(Y ;U , f(o), r) is a K-bi-Lipschitz homeomorphism.

Exercise 12.4.4. Prove the previous lemma.

Throughout the rest of this section, we fix a finitely generated group Γ.

Definition 12.4.5. For any ultrafilter U on N and any r ∈ (R>0)N such
that limU r(n) =∞, we set

Cone(Γ;U , r) := Cone(Γ;U , e, r),
where Γ is treated as a metric space equipped with the word metric associ-
ated to any finite generating set.

By Lemma 12.4.3, the choice of word metric on d does not change the
bi-Lipschitz homeomorphism type of the cone, and for our purposes, that
is sufficient (whence we feel comfortable removing mention of the particular
metric involved). It turns out that the choice of U and the choice of r do
affect the homeomorphism type of the asymptotic cone; see Section 12.8 for
more on this. However, for the purposes of proving Gromov’s theorem, the
choice of ultrafilter is not important.

In what follows, it will be useful to consider the nonstandard hull presen-
tation of asymptotic cones as discussed in Section 11.2. We let (M,d, e) be
the classical ultraproduct of the family (Γ, d

r(n) , e), which we view as an in-

ternal metric space in the nonstandard universe, with d([γ]U , [η]U) := [n �→
d(γ(n),η(n))

r(n) ]U ∈ R∗. In this case, setting R := [r]U ∈ R∗, we have that R is a

positive infinite element of R∗ and that Mfin := {γ ∈ Γ∗ : |γ|
R ∈ Rfin}.

Consequently, in what follows, we will often simply consider a nonstan-
dard extension Γ∗ of our group Γ and a positive infinite element R of R∗.
We have the set

ΓR :=

{
γ ∈ Γ∗ :

d(γ, e)

R
∈ Rfin

}

and a pseudo-metric d on ΓR given by d(γ, η) := st(d(γ,η)R ). If we set

μ = μR := {γ ∈ ΓR : d(γ, e) = 0},
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we then have that μR is a subgroup of ΓR and the set of left cosets ΓR/μR

is the metric space obtained from ΓR by identifying elements that are of
distance 0. We refer to this metric space as Cone(Γ;R) and also call it an
asymptotic cone. It agrees with the definition given above in the case that
our nonstandard extension arose as an ultrapower and R = [r]U . Techni-
cally, Cone(Γ;R) also depends on the choice of nonstandard extension (that
is, the choice of the ultrafilter), but let us not further complicate the nota-
tion.

The advantage to the nonstandard hull presentation of asymptotic cones
is that often we can reason about the cone using the algebra of the group
Γ∗ and the methods of nonstandard analysis such as transfer and overspill.
We will see several examples of this in the next few sections.

We now consider some examples of asymptotic cones:

Example 12.4.6. Suppose that Γ = Z and let d be the word metric asso-
ciated with the standard generating set {1} for Γ. Fix any positive infinite
R ∈ R∗. We then have that ΓR := {k ∈ Z∗ : k

R ∈ Rfin} and μR := {k ∈
Z∗ : k

R ≈ 0}. Note then that the map k + μR �→ st( k
R) : Cone(Z;R) → R

is an isometry. In this way, when zoomed out, the discrete space Z turned
into the continuous space R. Note in this case that the asymptotic cone did
not depend on the choice of R.

Exercise 12.4.7. For Γ = Z2 and the word metric d associated with the
standard generating set {(1, 0), (0, 1)}, show that, for any positive infinite
R, Cone(Γ;R) is isometric to R2 equipped with the Paris metric, that is,
equipped with the metric

d((x1, x2), (y1, y2)) := |x1 − y1|+ |x2 − y2|.

The following exercise will be useful in Section 12.6:

Exercise 12.4.8. Fix a positive infinite R ∈ R∗ and set Y := Cone(Γ;R).
For each n ∈ N, prove that the map

(γ1, . . . , γn) �→ γ1 · · · γn : BΓ∗(e,R)× · · · ×BΓ∗(e,R)→ BΓ∗(e, nR)

induces a continuous surjection BY (eμ, 1)× · · · ×BY (eμ, 1)→ BY (eμ, n).

12.5. General properties of asymptotic cones

In this section, we fix a finitely generated group Γ with word metric d asso-
ciated to some finite generating set. We also fix a positive infinite R ∈ R∗

and we set Y := Cone(Γ;R).

Theorem 12.5.1. Y has the following properties:

(1) Y is homogeneous.
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(2) Y is a geodesic metric space: given x, y ∈ Y with r := d(x, y),
there is an isometric embedding g : [0, r] → Y with g(0) = x and
g(r) = y.

(3) Y is complete.

Proof. For the proof of (1), notice that, for all γ, η1, η2 ∈ ΓR, we have

d(γη1μ, γη2μ) = d(η1μ, η2μ),

whence the map ημ �→ γημ is an isometry of Y , denoted by l(γ). It remains
to note that, given η1μ, η2μ ∈ Y , we have l(η2η

−1
1 )(η1μ) = η2μ.

We now prove (2). Using (1), we may assume that x = eμ and y = γμ.

Set m := |γ| so r = d(x, y) = st(mR ). Since [rR]
R ≈ r, by replacing γ with

an element of word length [rR], we may assume that m = [rR]. Write
γ = γ1 · · · γ[rR]. We claim that the desired isometric embedding is given by
g : [0, r] → Y , g(t) := γ1 · · · γ[tR]μ. Indeed, given 0 ≤ s < t ≤ r, we have
that

d(g(s), g(t)) = st

(
[tR]− [sR]

R

)
= st

(
(t− s)R

R

)
= |s− t|,

as desired.

Finally, completeness follows from Theorem 11.3.1. �

Note that geodesic metric spaces are connected and locally connected.
We have thus verified that Cone(Γ;R) has properties (1) and (2) in Fact
12.3.5 for any choice of positive infinite R ∈ R∗.

As introduced in the proof of Theorem 12.5.1(1), there is a function
l : ΓR → Isom(Y ) defined by l(γ)(ημ) := γημ. It is clear that l is a group

homomorphism. As in our proof of Theorem 12.3.7, we set Γ̃ := ker(l � Γ).
In the rest of this subsection, we work toward establishing the following

theorem, which was used in the proof of Theorem 12.3.7 above:

Theorem 12.5.2. Suppose that Γ̃ has finite index in Γ but Z(Γ̃) does not
have finite index in Γ (e.g., when Γ has no finite index abelian subgroup).
Then for any neighborhood U of idY in Isom(Y ), there is a group homomor-

phism Γ̃→ Isom(Y ) whose image intersects U \ {idY }.

We first need an elementary group theory lemma:

Lemma 12.5.3. Suppose that Δ is a group with finite generating set S.
Suppose that Z(Δ) is not of finite index in Δ. Then {γ−1sγ : γ ∈ Δ, s ∈
S} is infinite.

Proof. We argue by contrapositive: suppose, for each s ∈ S, that {γ−1sγ :
γ ∈ Δ} is finite; since the latter set is in bijection with the set of cosets
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Δ/C(s), where C(s) is the centralizer of s in Δ, we see that C(s) ≤f Δ.
Since this is true for each s ∈ S, we have Z(Δ) =

⋂
s∈S C(s) has finite index

in Δ. �

In the proof below, we will need the following notion. Given γ ∈ Γ∗ and
r ∈ (R∗)>0, we define δ(γ, r) := max{d(γa, a) : |a| ≤ r}.

Exercise 12.5.4. For γ, η ∈ Γ∗ and r ∈ (R∗)>0, prove that δ(η−1γη, r) ≤
δ(γ, r) + 2|η|.

Proof of Theorem 12.5.2. Let S be a finite generating set for Γ̃ closed
under inverses. We will actually prove the following statement: for any
neighborhood U of idY in Isom(Y ), there is β ∈ Γ̃∗ and s ∈ S such that

β−1Γ̃β ⊆ ΓR and l(β−1sβ) ∈ U \ {idY }. The desired homomorphism Γ̃ →
Isom(Y ) is simply obtained by mapping γ ∈ Γ̃ to l(β−1γβ).

Without loss of generality, we may assume that U = Uk,ε for some k

and ε. By Lemma 12.5.3 and transfer, there is γ ∈ Γ̃∗ and s ∈ S such that
|γ−1sγ| > εR. Write γ = s1 · · · st with t ∈ N∗. We consider the initial
products γi := s1 · · · si for 0 ≤ i ≤ t, with the convention that γ0 = e. Let
Mi := max{δ(γ−1

i sγi, kR) : s ∈ S}. Finally, set C := max{|s| : s ∈ S} ∈
N.

Claim. The following inequalities hold:

(1) M0 < εR;

(2) Mt > εR;

(3) |Mi+1 −Mi| ≤ 2C for 0 ≤ i ≤ t− 1.

Proof of Claim. To see (1), observe that if s ∈ S and |a| ≤ kR, then since

s ∈ ker(l), we have that d(sa,a)
R ≈ 0, whence d(sa, a) < εR. It follows that

δ(s, kR) < εR, whence (1) follows. (2) follows from the definition of γt = γ.
Finally, (3) follows from Exercise 12.5.4.

Thus, by the Claim, there is i ∈ {0, 1, . . . , t} such that |Mi − εR| ≤ 2C.

Our desired β is γi. To see that β−1Γ̃β ⊆ ΓR, observe that any element of
Γ̃ is of the form s1 · · · sn with each si ∈ S, whence it suffices to observe that
β−1sβ ∈ ΓR for each s ∈ S. However, we have that

|β−1sβ| = d(β−1sβ · e, e) ≤ δ(β−1sβ, kR) ≤Mi ≤ εR+ 2C,

whence it follows that β−1sβ ∈ ΓR.

Take s ∈ S such that δ(β−1sβ, kR) = Mi; we claim that l(β−1sβ) ∈
U \{idY }. Note that this choice of s gives us that |δ(β−1sβ, kR)−εR| ≤ 2C.
In particular, there is a ∈ Γ∗ with |a| ≤ kR such that |d(β−1sβa, a)− εR| ≤
2C, whence it follows that d(β−1sβaμ, aμ) = ε, and thus l(β−1sβ) is not
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the identity on Y . Moreover, for arbitrary bμ ∈ Y with d(bμ, eμ) ≤ k,
we have, by replacing b with an element of word length at most kR, that

d(β−1sβbμ, bμ) = st(d(β
−1sβb,b)
R ) ≤ ε, whence l(β−1sβ) ∈ U . �

12.6. Growth functions and properness of the asymptotic
cones

Once again, we fix a finitely generated group Γ with word metric d associated
to some finite generating set. In this section, we establish the two facts
concerning growth rates and properness of asymptotic cones made in Section
12.3, namely Theorems 12.3.6 and 12.3.8. The first follows from a lemma
that necessitates some notation:

For R ∈ R∗ and i, d ∈ N, let Pi,d(R) be the statement: if t ∈ N∗ and

g1, . . . , gt ∈ BΓ∗(e, R4 ) are such that BΓ∗(g1,
R
i ), . . . , BΓ∗(gt,

R
i ) are pairwise

disjoint, then t ≤ id+1.

Lemma 12.6.1. Suppose that c ∈ R>0 and R0 is a positive infinite element
of R∗ are such that G(R0) ≤ cRd

0. Then there is positive infinite R ≤ R0

such that, for every i ∈ N, Pi,d(R) holds.

Before we prove Lemma 12.6.1, let us see how it accomplishes what we
want.

Theorem 12.6.2. If Γ has polynomial growth, then there is a positive in-
finite R such that, setting Y := Cone(Γ;R), we have: for every (standard)
k ∈ N, BY (eμ, 1) is covered by at most (4k)d+1 many closed balls of radius
2
k .

Proof. Since Γ is of polynomial growth, there are c and d such that G(n) ≤
cnd for all n ∈ N. Then, by overspill, there is a positive infinite R0 such that
G(R0) ≤ cRd

0. Let R′ be as guaranteed to exist in Lemma 12.6.1 and set

R := R′

4 . We claim that this R works. Indeed, fix k ∈ N and let t ∈ N∗ be

maximal such that there are g1, . . . , gt ∈ BΓ∗(e,R) with BΓ∗(gi,
R
k ) pairwise

disjoint. Since P4k,d(R
′) holds, it must be that t ≤ (4k)d+1. It follows that

BΓ∗(gi,
2R
k ), i = 1, . . . , t, cover BΓ∗(e,R): if g ∈ BΓ∗(e,R) does not belong to

BΓ∗(gi,
2R
k ) for any i = 1, . . . , t, then BΓ∗(g, Rk ) is disjoint from BΓ∗(gi,

R
k ),

contradicting the maximality of t. Thus, in Y , the balls BY (giμ,
2
k ) cover

BY (eμ, 1), as desired. �

Remark 12.6.3. The previous proof works under the seemingly weaker
hypothesis that Γ has near polynomial growth in the sense that there
are c and d such that G(n) ≤ cnd for infinitely many n (rather than for all
n). Thus, groups with near polynomial growth are virtually nilpotent. A
substantial improvement of this latter result was obtained by Hrushovski in
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[86], where it was shown that Γ is virtually nilpotent provided that G(n) ≤
cnd for a single sufficiently large n.

Proof of Theorem 12.3.6. Suppose that Γ is of polynomial growth. Let
R be as in Theorem 12.6.2 and set Y := Cone(Γ;R). We show that Y is
proper and finite-dimensional.

To see that Y is proper, first note that, by Theorem 12.6.2, BY (eμ, 1)
is totally bounded. Since BY (eμ, 1) is also complete, it follows that it is
compact. By Exercise 12.4.8, we have that BY (eμ, n) is compact for all
n ∈ N. It follows that all closed balls are compact, whence Y is proper.

To see that Y is finite-dimensional, we show that theHausdorff dimen-
sion of Y , denoted dHaus(Y ), is finite. (We have been intentionally vague
about our notion of dimension, but suffice it to say that having finite Haus-
dorff dimension implies having finite dimension.) By definition, givenX ⊆ Y
and s ∈ R>0, we define dHaus(X) ≤ r if: for every ε > 0, there are balls
Bi of radius rad(Bi) covering X such that

∑
i rad(Bi)

r < ε. It is clear that
this definition is local in the sense that if Y is covered by countably many
sets with Hausorff dimension ≤ r, then Y itself has Hausdorff dimension
≤ r. Thus, it suffices to show that dHaus(B) is finite, where B := BY (eμ, 1).
However, given any k ∈ N, by the choice of R, we have that B is covered

by at most (4k)d+1 many balls of radius 2
k ; since (4k)d+1( 2k )

d+2 = 4d+12d+2

k
goes to 0 as k →∞, we see that dHaus(B) ≤ d+ 2, as desired. �

Proof of Lemma 12.6.1. Since all balls in this proof are balls in Γ∗, we
simplify notation by omitting the subscript Γ∗. Assume, toward a contra-
diction, that the Lemma is false. In particular, for each R ∈ [log(R0), R0],
there is i ∈ N such that Pi,d(R) fails. The function R �→ the least i ∈ N∗ for
which Pi,d(R) fails is an internal function that takes values in N, whence it
must actually take values in [1,K] for some K ∈ N.

Let i1 be the minimal i for which Pi,d(R0) fails, so 4 ≤ i1 ≤ K, and

there exist g(1, j), 1 ≤ j ≤ t1 (where t1 := id+1
1 +1) such that each g(1, j) ∈

B(e, R0
4 ) and the B(g(1, j), R0

i1
) are pairwise disjoint. If logR0 ≤ R0

i1
, then,

setting i2 to be the least i for which Pi,d(
R0
i1
) fails, there exist g(2, j), 1 ≤ j ≤

t2 (where, once again, t2 := id+1
2 + 1) such that each g(2, j) ∈ B(e, R0

4i1
) and

the B(g(2, j), R0
i1i2

) are pairwise disjoint. Keep going in this fashion (using

internal induction) until you reach the point where R0
(i1i2···iu) < logR0 ≤

R0
(i1i2···iu−1)

, having thus constructed, for 1 ≤ l ≤ u and 1 ≤ j ≤ tl (with

tl := id+1
l +1), elements g(l, j) ∈ B(e, R0

4i1···il−1
) such that B(g(l, j), R0

i1···il ) are

pairwise disjoint.
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We now show how to construct more than cRd
0 many elements of

B(e,R0), contradicting the fact that G(R0) ≤ cRd
0. Indeed, let T denote

the set of tuples (s1, . . . , su) with 1 ≤ sl ≤ tl for l = 1, . . . , u. For each
s = (s1, . . . , su) ∈ T , define gs := g(1, s1) · · · g(u, su) ∈ Γ∗. Note that

|T | ≥
u∏

l=1

id+1
l >

(
R0

logR0

)d+1

> cRd
0,

where the second inequality follows from the definition of u and the third
inequality follows from the simple limit statement limx→∞

x
(log x)d+1 = ∞,

whence R0

(logR0)d+1 is infinite, and thus larger than c. Consequently, if we

are able to show that the gs, for s ∈ T , are distinct elements of B(e,R0), it
would follow that G(R0) > cRd

0, yielding the desired contradiction.

We first show that each gs ∈ B(e,R0). Indeed, we have

|gs| ≤
u∑

l=1

|g(l, sl)| ≤
u∑

l=1

R0

4i1 · · · il−1
≤

u∑
l=1

R0

4l
< R0.

To complete the proof, suppose that p, s ∈ T are distinct; we show that gp �=
gs. Toward a contradiction, suppose that gp = gs. There must then exist
v < u such that pv �= sv and yet g(v, pv) · · · g(u, pu) = g(v, sv) · · · g(u, su),
whence we have

g(v, sv)
−1g(v, pv) = g(v + 1, sv+1) · · · g(u, su)g(u, pu)−1 · · · g(v + 1, pv+1)

−1.

Since pv �= sv, we have that g(v, sv) /∈ B(g(v, pv),
R0

4i1···iv ), whence

|g(v, pv)−1g(v, sv)| >
R0

4i1 · · · iv
.

However, by the previous display,

|g(v, pv)−1g(v, sv)|

≤ 2
u∑

l=v+1

R0

4i1 · · · il−1
≤ R0

2i1 · · · iv

(
1 +

u∑
l=v+2

1

4l−v−1

)
<

R0

i1 · · · iv
.

The absurd conclusion R0
4i1···iv < R0

i1···iv leads to the desired contradiction. �

We now turn to the proof of the other fact concerning growth rates and
properness:

Proof of Theorem 12.3.8. Suppose that Γ has exponential growth. Fix
positive infinite R ∈ R∗; we must show that Cone(Γ;R) is not proper. To-

ward that end, set r := lims→∞G(s)
1
s , which exists by Lemma 12.2.13. It
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follows that G(R)
1
R ≈ G(2R)

1
2R ≈ r. Thus,(

G(2R)

G(R)

) 1
R

=

(
(G(2R)2)1/2R

G(R)
1
R

)
≈ r2

r
= r,

whence it follows that G(2R)
G(R) is infinite. In particular, this means that

BΓ∗(e, 2R) cannot be covered by finitely many balls of radius R, whence,
in Cone(Γ;R), finitely many balls of radius 1 cannot cover the closed ball
around eμ of radius 2 and thus Cone(Γ;R) is not proper. �

Remark 12.6.4. In many parts of the literature, one often finds the dis-
cussion of locally compact asymptotic cones rather than proper asymptotic
cones. While proper metric spaces are always locally compact, the converse
is in general not true. However, for geodesic spaces, the converse is true and
is an easy exercise.

We have now established all of the facts needed during the proof sketch of
Gromov’s theorem.

12.7. Properness of asymptotic cones revisited

We showed that having polynomial growth implies having a proper asymp-
totic cone. In [181], van den Dries and Wilkie asked if, conversely, having a
proper asymptotic cone implied polynomial growth. This was only recently
answered in the positive through a combination of results by Hrushovski
and Sapir, which we now explain.

Definition 12.7.1. Suppose that Γ is a group, F is a subset of Γ, and
k ∈ N. We say that F is a k-approximate subgroup of Γ if there is a
finite set X ⊆ Γ such that |X| ≤ k and for which F · F ⊆ X · F .

The following definition is not standard but is convenient:

Definition 12.7.2. Γ has the approximate subgroup property if there
is k ∈ N and arbitrarily large balls B(e, r) such that B(e, r) is a k-approx-
imate subgroup of Γ.

Exercise 12.7.3. Γ has the approximate subgroup property if and only if
there is k ∈ N and positive infinite R ∈ (R∗)>0 such that BΓ∗(e,R) is a
k-approximate subgroup of Γ∗.

The following result is due to Sapir [152].

Proposition 12.7.4. If there is R such that Cone(Γ;R) is proper, then Γ
has the approximate subgroup property.
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Proof. Set Y := Cone(Γ;R). Take g1, . . . , gk ∈ Γ∗, k ∈ N, such that
d(giμ, eμ) ≤ 7

8 for i = 1, . . . , k and such that

BY (eμ, 1) ⊆
k⋃

i=1

BY (giμ,
1

4
). (∗)

Note that d(gi, e) < R for i = 1, . . . , k. Let P ∈ N∗ be smallest such that
2P ≥ R. Note that P /∈ N and 2P < R+ 2.

Claim. BΓ∗(e, 2P ) ⊆
⋃k

i=1BΓ∗(gi, P ).

Proof of Claim. Suppose, toward a contradiction, that there is y ∈ Γ∗

such that d(y, e) ≤ 2P and yet d(y, gi) > P for all i = 1, . . . , k. On the one
hand, for all i = 1, . . . , k, we have

d(yμ, giμ) = st

(
d(y, gi)

R

)
≥ st

(
P

R

)
≥ 1

2
,

whence d(yμ, eμ) > 1 by (∗). On the other hand,

d(yμ, eμ) = st

(
d(y, e)

R

)
≤ st

(
2P

R

)
≤ st

(
1 +

2

R

)
= 1.

We have thus arrived at a contradiction and the claim is proven.

The proof of the proposition is completed (using Exercise 12.7.3) once we
realize that the claim implies that

BΓ∗(e, P ) ·BΓ∗(e, P ) ⊆
k⋃

i=1

giBΓ∗(e, P ). �

Exercise 12.7.5. Verify that the previous proof goes through under the
weaker assumption that there is R such that, in Y = Cone(Γ;R), BY (eμ,M)
is compact for some M > 0.

By Theorem 12.3.6 and Proposition 12.7.4, groups of polynomial growth
have the approximate subgroup property. Thus, the following fact of Hru-
shovski [86, Theorem 7.1] generalizes Gromov’s theorem:

Fact 12.7.6. If Γ has the approximate subgroup property, then Γ is virtually
nilpotent.

Corollary 12.7.7. If there is R such that Cone(Γ;R) is proper, then Γ is
virtually nilpotent.

Since virtually nilpotent groups have polynomial growth, the previous
corollary indeed yields a positive answer to the question of van den Dries
and Wilkie mentioned at the beginning of this section.
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12.8. Nonhomeomorphic asymptotic cones

In this section, we revert to the metric ultraproduct viewpoint of asymptotic
cones. When r(n) = n for all n, we refer to the asymptotic cone as standard
(a non-standard bit of terminology) and omit the scaling sequence from the
notation, thus simply writing Cone(Γ;U).

It is reasonable to ask if the homeomorphism type of the asymptotic
cone depends on the choice of U and r ∈ (R>0)N. The first result shows that
when we are considering the groups under discussion in Gromov’s theorem,
there is a unique asymptotic cone:

Theorem 12.8.1 (Pansu [142]). If Γ is virtually nilpotent, then all of its
asymptotic cones are isometric.

It becomes reasonable to ask if the previous fact holds for all groups. This
is not the case:

Theorem 12.8.2 (Thomas-Velickovic [176]). There is a group Γ and U ,V ∈
βN \ N such that Cone(Γ;U) is simply connected while Cone(Γ;V) is not
simply connected (whence these standard asymptotic cones are not homeo-
morphic).

The group Γ in the previous theorem is not finitely presented. Ol’shanskii
and Sapir [139] were later able to prove the same result using a finitely pre-
sented group.

Since there are 2c many nonisomorphic ultrafilters on N, it becomes nat-
ural to ask whether or not there is a group with 2c many nonhomeomorphic
standard asymptotic cones. Suprisingly (or perhaps not so surprisingly -see
Chapter 15), it turns out that the answer to this depends on set theory:

Theorem 12.8.3 (Kramer, Shelah, Tent, and Thomas [109]).

(1) If CH is true, then for all Γ, there are at most c many pairwise
nonhomeomorphic standard asymptotic cones of Γ.

(2) If CH is false, then there is a group Γ with 2c many nonhomeomor-
phic standard asymptotic cones.

Incidentally, the group in the second item of the previous fact has
a unique asymptotic cone (up to bi-Lipschitz homeomorphism) when CH
holds.

The previous fact still does not give an example of a group where one
can prove, in ZFC, that it has the maximal number of nonhomeomorphic
asymptotic cones. This was soon established:

Theorem 12.8.4 (Drutu-Sapir [47]). There is a group Γ with c many non-
homeomorphic standard asymptotic cones.
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We leave the realm of standard asymptotic cones and mention one result
which also shows that the homeomorphism type of the asymptotic cone can
also be affected by the choice of scaling sequence:

Theorem 12.8.5 (Osin-Ould Houcine [140]). There is a finitely presented
group Γ such that, for all primes p, there is rp ∈ (R>0)N with limn→∞ rp(n) =
∞ such that, for all distinct primes p and q and all U ,V ∈ βN, Cone(Γ;U , rp)
is not homeomorphic to Cone(Γ;V, rq).

12.9. Notes and references

Our treatment of Gromov’s theorem and the asymptotic cone follows [181]
very closely. A recent spectacular application of ultraproduct methods is to
the recent classification of finite approximate groups by Breuillard, Green,
and Tao [20] following Hrushovski’s breakthrough in [86]. The ideas are
very similar in spirit as those used in the proof of Gromov’s theorem and an
excellent explanation of both and their connection to Hilbert’s fifth problem
can be found in Tao’s book [172].



Chapter 13

Sofic groups

In this chapter, we introduce the class of sofic groups, which is the class
of all groups that can be embedded in a metric ultraproduct of symmetric
groups endowed with their Hamming metric. In Section 13.1, we discuss
the general topic of a metric ultraproduct of bi-invariant metric groups,
of which the aforementioned ultraproduct of symmetric groups is a special
case. In Section 13.2 we define the class of sofic groups in terms of almost
homomorphisms and then give the above ultraproduct reformulation. In
Section 13.3, we present numerous examples of sofic groups and list some
closure properties of this class. Finally, in Section 13.4, we prove that the
so-called Kervaire-Laudenbach conjecture on equations in groups holds for
the class of sofic groups.

13.1. Ultraproducts of bi-invariant metric groups

By a metric group, we mean a triple (G, ·, d) such that (G, ·) is a group,
(G, d) is a metric space, and · is a continuous function with respect to the
metric. Since these are examples of metric spaces with extra structure, we
would like to consider taking ultraproducts of metric groups. As we learned
in Section 11.4, we need to consider families of metric groups for which the
group operation is uniformly continuous and such that a single modulus
works for all of the elements in the family. Following Enflo [52], a metric
group (G, ·, d) is called uniform if the multiplication is uniformly continuous
with respect to d. There is a natural source of uniform metric groups:

Definition 13.1.1. A metric d on a group (G, ·) is said to be bi-invariant
if, for every a, b, c ∈ G, we have d(ab, ac) = d(ba, ca) = d(b, c). A metric

233
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group (G, ·, d) where d is a bi-invariant metric for the group (G, ·) will be
referred to as a bi-invariant metric group.

Lemma 13.1.2. If (G, ·, d) is a bi-invariant metric group, then Δ(ε) = ε
2

is a modulus of uniform continuity for multiplication.

Proof. We simply calculate: if d(a, c), d(b, d) < ε
2 , then

d(ab, cd) ≤ d(ab, cb) + d(cb, cd) = d(a, c) + d(b, d) < ε.

�

Exercise 13.1.3. If (G, ·, d) is a bi-invariant metric group, then Δ(ε) = ε
is a modulus of uniform continuity for the function a �→ a−1.

Given any metric group (G, ·, d), we always view it as a pointed metric
space by taking the identity eG as the basepoint. We now see that we can
take the metric ultraproduct

∏
U(Gi, di) of a family of bi-invariant metric

groups and the resulting family has a well-defined binary operation on it
given by pointwise multiplication: [a]U · [b]U := [i �→ a(i) · b(i)]U . It is easy
to verify that this binary operation is indeed a group operation on

∏
U Gi

and the usual metric on
∏

U Gi is bi-invariant.

Exercise 13.1.4. Show that the completion of a bi-invariant metric group
is once again a bi-invariant metric group. (Hint. Consider the ultrapower
description of the completion given in Section 11.3.)

As we mentioned at the beginning of this section, we know that we can
take the metric ultraproduct of a family of uniform metric groups (provided
that they are uniform in a uniform way). We will not do that in the rest
of this chapter and instead deal only with the special class of bi-invariant
metric groups. Let us briefly give a reason why morally this is not too big
a loss of generality.

A topological group G is a SIN group if there is a neighborhood base
of the identity consisting of sets closed under conjugation. Note that every
bi-invariant metric group is a SIN group. By [149, 2.17], being SIN is
equivalent to: for every open neighborhood U of the identity e in G, there
is an open neighborhood V of e such that gV g−1 ⊆ U for all g ∈ G. In
particular, every uniform metric group is SIN. However, for metric groups,
SIN is equivalent to admitting a compatible bi-invariant metric by a result
of Klee [107]. Thus, in summary: a metric group is uniform if and only if
it admits a compatible bi-invariant metric.

We end this section with a list of examples of bi-invariant metric groups.

Example 13.1.5. Every group equipped with the discrete metric is a bi-
invariant metric group.
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Example 13.1.6. Every abelian metric group admits a compatible bi-
invariant metric. Indeed, every metric group admits a compatible left-
invariant metric (Birkhoff-Kakutani), which is necessarily bi-invariant since
the group is abelian.

Example 13.1.7. Every compact metric group admits a compatible bi-
invariant metric. Indeed, by compactness, the group must be uniform.

The next two examples are critical to the rest of the chapter.

Example 13.1.8. The normalized Hamming metric on Sn is the func-
tion

dHamm,n(σ, τ) := dHamm(σ, τ) :=
1

n
|{k : σ(k) �= τ(k)}|.

Exercise 13.1.9. Prove that dHamm,n is a bi-invariant metric on Sn.

For the next example, recall that Un is the collection of unitary n × n
matrices (say over the complex numbers), where a matrix u is unitary if
u∗ = u−1 (u∗ being the conjugate transpose of u). Un is then a subgroup of
GLn(C) under multiplication.

Example 13.1.10. Un is a bi-invariant metric group under the Hilbert-
Schmidt metric:

dHS(u, v) :=

√√√√ 1

n

n∑
i,j=1

|uij − vij |2.

Exercise 13.1.11. Prove that dHS is a bi-invariant metric and that

dHS(u, v)
2 = tr((u− v)(u− v)∗).

Here, tr is the normalized trace on n×nmatrices, that is, tr(a) = 1
n

∑n
i=1 aii.

13.2. Definition of sofic groups

A classical result in finite group theory is Cayley’s theorem: if G is a finite
group, then there is n > 0 for which there is an injective group homomor-
phism G→ Sn. The idea behind sofic groups is to ask, for an infinite group
G, whether or not every finite subset of G admits an “almost injective group
morphism” into some Sn. How do we quantify “almost”? For example, what
would it mean for φ(a)φ(b) to be “almost” the same as φ(ab)? It is here
that we will use the notion of Hamming distance on Sn introduced in the
previous section.

Here is the precise definition of sofic group:

Definition 13.2.1. A group G is sofic if: for every finite F ⊆ G and every
ε > 0, there is n > 0 and a function φ : F → Sn such that:



236 13. Sofic groups

(1) for all g, h ∈ F , if gh ∈ F , then dHamm(φ(g)φ(h), φ(gh)) < ε;

(2) if e ∈ F , then dHamm(φ(e), id) < ε; and

(3) for all distinct g, h ∈ F , dHamm(φ(g), φ(h)) ≥ 1
2 .

Remarks 13.2.2.

(1) The idea behind the third requirement in the previous definition
is that we want our functions φ to be injective in a way that is
uniformly bounded away from 0 (or else we could satisfy the first
two requirements in an artificial way). The precise choice of 1

2 is,
however, irrelevant, for we arrive at the same class of groups if we
choose any number in (0, 1). This will follow from our ultraprod-
uct characterization of soficity appearing in Theorem 13.2.7; see
Corollary 13.2.9.

(2) Sometimes we will define φ as above to be a total function, that
is, defined on all of G, even though its behavior on F is what
is relevant. In these situations, we might refer to φ is a (F, ε)-
morphism.

Example 13.2.3. By the proof of Cayley’s theorem, every finite group
is sofic. Indeed, if G is a finite group, then one gets a homomorphism
φ : G → SG, where SG is the symmetric group on the set G, given by
φ(g)(h) := gh. In what follows, we simply identify SG with Sn, where
n = |G|. Since φ is an actual homomorphism, the first two requirements in
the definition of soficity are satisfied. To see the third requirement, notice
that φ(g)(h) = φ(g′)(h) if and only if gh = g′h, that is, if and only if g = g′.
It follows that dHamm(φ(g), φ(g

′)) = 1 for distinct g, g′ ∈ G.

Exercise 13.2.4.

(1) For any m,n ≥ 1, prove that the embedding η : Sm ↪→ Smn given
by η(σ)(im+j) = σ(j) for any i = 0, . . . , n−1 and j = 1, . . . ,m−1
is a group homomorphism that is also an isometric embedding with
respect to the normalized Hamming metrics.

(2) For any m ≥ 1, prove that the embedding ι : Sn × Sn ↪→ S2n given
by ι(σ, τ)(i) = σ(i) if i = 1, . . . , n while ι(σ, τ)(i) = τ(i − n) if
i = n+ 1, . . . , 2n, is a group homomorphism such that

dHamm(ι(σ1, τ1), ι(σ2, τ2)) =
1

2
[dHamm(σ1, τ1) + dHamm(σ2, τ2)] .

(3) Use parts (1) and (2) to show that if G1 and G2 are both sofic
groups, then so is G1 ×G2.

We will see many more examples of sofic groups later on. The reason we
bring up the topic of soficity in this book is that we can characterize sofic



13.2. Definition of sofic groups 237

groups in terms of metric ultraproducts. First, we need a quick detour con-
cerning the so-called amplification trick. Given σ ∈ Sn and k ≥ 1, let σ⊗k ∈
Snk be the permutation defined by σ⊗k(i1, . . . , ik) := (σ(i1), . . . , σ(ik)); here,
we view Snk as the set of permutations of tuples (i1, . . . , ik), where each
ij ∈ {1, . . . , n}. We need the following lemma:

Lemma 13.2.5. 1− dHamm(σ
⊗k, τ⊗k) = (1− dHamm(σ, τ))

k.

Exercise 13.2.6. Prove the previous lemma.

We can now prove the ultraproduct reformulation of soficity:

Theorem 13.2.7. The group G is sofic if and only if there is a set I, an
ultrafilter U on I, a family (ni)i∈I of natural numbers, and an injective group
homomorphism φ : G→

∏
U Sni, where the latter ultraproduct is the metric

ultraproduct with each Sni equipped with their respective Hamming metric.

Proof. First suppose that G is sofic. Let I be the set of all pairs (F, 1
n),

where F ⊆ G is finite and n > 0. For such a pair, let X(F, 1
n
) := {(F ′, 1

m) ∈
I : F ′ ⊇ F, m ≥ n}. Note that the family (X(F, 1

n
))(F, 1

n
)∈I has the FIP,

whence we may take an ultrafilter U on I containing each X(F, 1
n
). For each

(F, 1
n) ∈ I, let φ(F, 1

n
) : G → S(F, 1

n
) be a (F, 1

n)-morphism. For each g ∈ G,

define ag ∈
∏

(F, 1
n
)∈I S(F, 1

n
) by ag(F,

1
n) := φ(F, 1

n
)(g). We can then define

φ : G→
∏

U S(F, 1
n
) by φ(g) = [ag]U . We leave it to the reader to check that

φ is an injective group morphism.

We now prove the converse. We will proceed with the näıve idea and
see that a modification will be needed. Suppose that φ : G→

∏
U Sni is an

injective group morphism. Fix F ⊆ G finite and ε > 0. We can then find
n > 0 and an injective function θ : F → Sn such that items (1) and (2) of
the definition are met. Indeed, the map θ : F → Sni given by θ(g) = φ(g)(i)
works for U -almost all i. However, since we only know that φ(x) �= φ(y)
for all distinct x, y ∈ F , this merely tells us that dHamm(θ(x), θ(y)) ≥ δ for
some (potentially) small δ > 0, not the 1

2 needed in the definition of soficity.

However, we can consider θ⊗k : F → Snk given by θ⊗k(g) := θ(g)⊗k. Then
1− dHamm(θ

⊗k(x), θ⊗k(y)) ≤ (1− δ)k < 1
2 if k is large enough.

Now unfortunately, after this amplification process, we have ruined the
ε-almost homomorphism property (that is, requirements (1) and (2) in the
definition of soficity). Nevertheless, not all is lost. Indeed, note that, given
F ⊆ G, we can calculate the δ above (independently of ε) and from δ we
calculate k. Thus, if we choose θ to be an ε′-almost homomorphism for
sufficiently small ε′ > 0, then after amplification by k, the new almost-
homomorphism will be an ε-almost homomorphism. �
Exercise 13.2.8. Verify in detail the conclusion of the previous proof.
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Corollary 13.2.9. If, in the definition of soficity, we replace 1
2 with any

number in (0, 1), we get the same class of sofic groups.

Proof. The proof of the previous theorem goes through with any number
in (0, 1) instead of 1

2 . �

Exercise 13.2.10. Prove that a group G is sofic if and only if there is a set
I, an ultrafilter U on I, a family (ni)i∈I of natural numbers, and a distance-
preserving group homomorphism φ : G →

∏
U Sni , where G is equipped

with the discrete metric. (Hint. Mimic the proof of Theorem 13.2.7 using
Corollary 13.2.9.)

Note that the proof of Theorem 13.2.7 shows that a countable sofic group
can be embedded into a metric ultraproduct of sofic groups indexed over a
countable set. One can in fact say more. Since the proof would take us too
far afield, we omit it.

Theorem 13.2.11. Let G be a countable group. The following are equiva-
lent:

(1) G is sofic.

(2) G embeds into
∏

U Sn for all U ∈ βN \ N.
(3) G embeds into

∏
U Sn for some U ∈ βN \ N.

In the next section, we will gather a large collection of examples of sofic
groups. Surprisingly, the following question is open and is arguably one of
the major open problems in modern group theory:

Question 13.2.12. Are all groups sofic?

It is natural to wonder: why metric ultraproducts? That is, is it pos-
sible that every group embeds into a discrete ultraproduct of symmetric
groups?. It turns out the answer to this question is no, but is not as simple
as one might expect. Note that, by Cayley’s theorem, a group embeds into
a discrete ultraproduct of symmetric groups if and only if it embeds into a
discrete ultraproduct of finite groups.

Theorem 13.2.13. There is a group that is not embeddable into any discrete
ultraproduct of finite groups. In fact, one can even find a finitely generated
such group.

We offer two proofs of this theorem.

Proof 1. Let σ be the sentence (∃x)(∃y)(∃z)[x2y = yx2∧xy �= yx∧z−1xz =
x2]. Suppose that G |= σ and take a, b, c ∈ G such that a2b = ba2, ab �= ba,
and c−1ac = a2. We claim that c must have infinite order. To see this,
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for any g ∈ G, let C(g) := {h ∈ G : gh = hg}, the centralizer of g in
G. We note that, for any g, h ∈ G, that C(g) is a subgroup of C(g2) and
h−1C(g)h = C(h−1gh). In our context, C(a) is a proper subgroup of C(a2),
denoted C(a) < C(a2), and c−1C(a)c = C(c−1ac) = C(a2). Consequently,
we have C(a) < c−1C(a)c. Iterating this, we see that C(a) < c−1C(a)c <
c−2C(a)c2 < · · · , whence it follows that c has infinite order.

Consequently, any finite group models ¬σ, and thus any ultraproduct
of finite groups models ¬σ. Since ¬σ is a universal sentence, it follows that
any subgroup of an ultraproduct of finite groups also models ¬σ.

Now let X = N × Z and let G = SX , the group of permutations of X.
We show that G |= σ, whence G is not a subgroup of an ultraproduct of
finite groups. Let f ∈ SX be defined by f(i, j) = (i, j + 1). It is routine
to check that f and f2 are conjugate in G. Now let g ∈ G be such that
g(0, 2j) = (0, 2j + 2) for all j ∈ Z whilst g fixes all other elements of X.
Note that f2g = gf2 but fg �= gf . Thus G |= σ.

To get a finitely generated counterexample, just take the subgroup of G
generated by f , g, and the element that conjugates f to f2. �

Proof 2. Let G be an infinite, simple, finitely presented group. (For exam-
ple, one can take Thompson’s group V [21].) Recall that for G to be finitely
presented means that there are a1, . . . , an ∈ G and words w1(x), . . . , wm(x),
where x = (x1, . . . , xn), such that:

• G is generated by a1, . . . , an,

• wi(a) = e for i = 1, . . . , n (where a = (a1, . . . , an)), and

• given any other group H and b1, . . . , bn ∈ H for which wi(b) = e
for all i = 1, . . . ,m, the map φ : {a1, . . . , an} → H defined by
φ(ai) = bi for all i = 1, . . . , n extends to a group homomorphism
φ : G→ H.

Now suppose, toward a contradiction, that φ : G →
∏

U Hj is an injec-
tive group homomorphism of G into a discrete ultraproduct of finite groups.
Take a1, . . . , an ∈ G and words w1, . . . , wm as above. Set [bi]U := φ(ai) for
i = 1, . . . ,m. Then wi([b1]U , . . . , [bn]U) = e for all i = 1, . . . , n, whence,
by �Loś’s theorem, for U -almost all j, we have wi(b1(j), . . . , bn(j)) = e for
all i = 1, . . . , n. Note also that, for U -almost all j, we have b1(j) �= e.
(This assumes that a1 �= e, which is a harmless assumption.). Thus, for any
j satisfying the previous two properties, we have group homomorphisms
φj : G → Hj defined by φj(ai) = bi(j) for i = 1, . . . , n and for which φj is
not constantly equal to the identity (as b1(j) �= e). Since G is simple, the
kernel of φj is either all of G or {e}; since we just showed that the former
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possibility is not the case, this implies that φj is injective, contradicting the
fact that G is infinite and Hj is finite. �

13.3. Examples of sofic groups

In this section, we focus on examples of sofic groups. We can give a large
source of examples of sofic groups by establishing that every amenable group
is sofic.

Definition 13.3.1. A group G is amenable if, for every finite K ⊆ G and
ε > 0, there is a nonempty finite F ⊆ G such that, for all g ∈ K, we have
|gF�F | < ε|F |. We call such a set F a (K, ε)-Følner set.

Some exercises might help us become acquainted with this notion:

Exercise 13.3.2. Prove that every finite group is amenable.

Exercise 13.3.3. Prove that Z is amenable.

Exercise 13.3.4. Prove that amenability is a local property in the sense
that a group G is amenable if and only if every finitely generated subgroup
of G is amenable.

Exercise 13.3.5. Suppose that G is a countable group. Prove that G is
amenable if and only if G has a Følner sequence, namely a sequence of
nonempty finite sets Fn ⊆ G such that, for every g ∈ G, we have

lim
n→∞

|gFn�Fn|
|Fn|

= 0.

Amenability is an incredibly robust notion in that it has countless, seem-
ingly very different, reformulations. We offer one such reformulation here:

Theorem 13.3.6. G is amenable if and only if there is a left-invariant
finitely-additive probability measure on G.

Proof Sketch. We only prove the forward direction under the simplify-
ing assumption that G is countable. In this case, let (Fn)n∈N be a Følner
sequence for G and, fixing U ∈ βN \ N, set

μ(A) := lim
U

|A ∩ Fn|
|Fn|

for every A ⊆ G. It is straightforward to check that μ is a left-invariant
finitely additive probability measure on G.

The other direction is more difficult and requires some nontrivial func-
tional analysis. �
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Exercise 13.3.7. Suppose that G is amenable.

(1) Prove that every subgroup of G is amenable.

(2) Suppose that f : G → H is a surjective group homomorphism.
Prove that H is also amenable.

The converse of Exercise 13.3.7 is also true in the following sense:

Proposition 13.3.8. Suppose that f : G→ H is a surjective group homo-
morphism such that ker(f) and H are amenable. Then G is also amenable.

Proof sketch. Let K ⊆ G be finite. Take a finite F ⊆ G such that f � F
is injective and such that |f(g)f(F )�f(F )| < ε|f(F )| for all g ∈ K; this is
possible since H is amenable. For g ∈ K and x ∈ F such that f(gx) ∈ f(F ),
take y(g, x) ∈ ker(f) such that f(gx) ∈ f(F )y(g, x). Let T be the set of such
y(g, x)’s, a finite subset of ker(f). Since ker(f) is amenable, there is finite
L ⊆ ker(f) such that |yL�L| < ε|L| for all y ∈ T . Let M := FL, a finite
subset of G. Note that for g ∈ K and “most” x ∈ F and z ∈ L, we have
g(xz) ∈ FL, as gx ∈ Fy(g, x) and so gxz ∈ Fy(g, x)L ⊆ F . More precisely,
we leave it to the reader to verify that M is a (F, 4ε)-Følner set. �

Exercise 13.3.9. Verify the claim made at the end of the proof of the
previous proposition.

The next proposition shows that many groups are amenable.

Proposition 13.3.10. If G is virtually solvable, then G is amenable.

Proof. Since amenability is local (Exercise 13.3.4), it suffices to assume
that G is countable. Since virtually solvable groups contain normal solv-
able groups of finite index, by Exercises 13.3.2 and 13.3.8, it suffices to
assume that G itself is solvable. By Exercise 13.3.8 again, we may induct on
the derived length of G, allowing us to assume that G is actually abelian.
Since G is the union of its finitely generated subgroups, using the locality of
amenability again, we can assume that G is finitely generated abelian. By
the fundamental theorem of finitely generated abelian groups, G is isomor-
phic to the direct sum of finitely many cyclic groups. Exercise 13.3.8 shows
that the direct sum of finitely many amenable groups is amenable, whence
we reduce to the case that G is cyclic. The fact that all cyclic groups are
amenable follows from Exercises 13.3.2 and 13.3.3. �

Nevertheless, some important groups are not amenable:

Example 13.3.11. F2 is not amenable. While one can prove that F2 is not
amenable directly from the definition of amenability given above, we choose
to use the characterization given in Theorem 13.3.6. Suppose, toward a
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contradiction, that μ is a left-invariant, finitely additive probability measure
on G. Note immediately that μ({e}) = 0, for if μ({e}) = r > 0, then
μ({g}) = r for every g ∈ F2 by left-invariance of μ, whence μ(F ) = |F |r for
any finite subset F ⊆ F2 by finite additivity; taking F such that |F |r > 1
contradicts the fact that μ(F2) = 1.

Let a and b denote the two generators of F2. Let Xa denote the set of
all elements of F2 consisting of reduced words beginning with the letter a.
Define the sets Xb, Xa−1 , and Xb−1 similarly. Note that

a−1Xa = Xa ∪Xb ∪Xb−1 ∪ {e},
which, by left-invariance of μ, leads to the equation

μ(Xa) = μ(a−1Xa) = μ(Xa) + μ(Xb) + μ(Xb−1) + μ({e}),
whence we conclude that μ(Xb) = μ(Xb−1) = 0. In a symmetric fashion,
one concludes that μ(Xa) = μ(Xa−1) = 0. Consequently, one arrives at the
ridiculous conclusion that μ(F2) = 0.

Returning to soficity, we have:

Theorem 13.3.12. Amenable groups are sofic.

Proof. Let G be an amenable group. Since both amenability and soficity
are local, we may as well assume that G is countable. Let (Fn)n∈N be
a Følner sequence for G. Thus, each element of G “almost” acts like a
permutation of Fn. More precisely, for each g ∈ G and n ∈ N, let φn(g) be
the partial function from Fn to Fn defined by φn(g)(x) := gx if gx ∈ Fn.
Clearly φn(g) is an injection, so we can extend φn(g) to a permutation of Fn

in an arbitrary way, thus getting a function φn : G→ SFn . For each g ∈ G,
let ag ∈

∏
n∈N SFn be given by ag(n) := φn(g). We leave it to the reader to

verify that the map φ : G →
∏

U SFn given by φ(g) := [ag]U is an injective
group homomorphism. �

Unfortunately, the previous theorem does not show that free groups are
sofic. Nevertheless, free groups are indeed sofic, as we now explain. We first
notice the following fact:

Proposition 13.3.13. If a group is residually sofic, then it is actually sofic.

Proof. Suppose that G is a residually sofic group and take F ⊆ G finite and
ε > 0. Without loss of generality, we may assume that e ∈ F . By Exercises
10.3.5 and 13.2.4, we have that G is fully residually sofic. Let H be a sofic
group and let φ : G→ H be a group homomorphism such that φ(x) �= e for
any x ∈ FF−1 \ {e}. It follows that φ � F is injective. Let ψ : H → Sn be a
(φ(F ), ε)-morphism. It is routine to verify that the map ψ ◦ φ : G → Sn is
a (F, ε)-morphism. �
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Note that, in particular, we have that every residually amenable (and
thus every residually finite) group is sofic.

It remains now to note:

Proposition 13.3.14. Free groups are residually finite.

Proof. Let a1, . . . , am be the generators of the free group Fm. Consider a
nontrivial reduced word g := aenin · · · a

e2
i2
ae1i1 , with each ei = ±1. Set [n+1] :=

{1, . . . , n + 1}. Define partial functions f1, . . . , fm from [n + 1] to [n + 1]
by fik(k) = k + 1 if ek = 1 while fik(k + 1) = k if ek = −1. (Note that
these definitions do not conflict with one another since the word is reduced.).
Now each fik is only a partially defined injection, so we can extend it to an
actual element of Sn+1 in any way we like. Note that f ek

ik
(k) = k + 1 for all

k = 1, . . . , n. Thus, the group homomorphism φ : Fm → Sn+1 obtained by
mapping each ai to fi is such that φ(g)(1) = n+ 1, whence φ(g) is not the
identity. The desired result follows. �
Corollary 13.3.15. Residually free groups are sofic. In particular, univer-
sally free groups are sofic.

The previous corollary lends itself to a curious result:

Corollary 13.3.16. All groups are sofic if and only if the class of sofic
groups is closed under taking quotients.

Proof. The forward direction is obvious. To prove the backward direction,
assume that the class of sofic groups is closed under taking quotients and
suppose that G is an arbitrary group. By locality of soficity, it suffices to
assume that G is finitely generated. If G is generated by n elements, then
there is a surjective group homomorphism π : Fn → G. Since Fn is sofic,
the standing assumption implies that G is sofic, as desired. �

Proposition 13.3.8 above may be recast as follows: if G is a group with
a normal subgroup N such that N and G/N are both amenable, then G
is also amenable. Surprisingly, the sofic version of this result is unknown
and appears to be difficult. Nevertheless, there is a very interesting partial
result in this direction:

Theorem 13.3.17 (Elek-Szabo [48]). Suppose that G is a group with a
normal subgroup N such that N is sofic and G/N is amenable. Then G is
sofic.

Before proving this result, let us set up some notation that will make
the proof run more smoothly. For g ∈ G, let ḡ ∈ G/N denote the coset gN .
For any X ⊆ G, we set X̄ := {ḡ : g ∈ X} ⊆ G/N . We fix any function

r : G/N → G such that r(ḡ) = ḡ. In other words, r is a section of the
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quotient map: it picks out one element from each coset. We set f : G→ G
to be f(g) = r(ḡ) (so f just assigns to a group element the distinguished
element of its coset) and s : G → N to be s(g) := f(g)−1g. Here are some
easy facts about these functions:

Exercise 13.3.18. Suppose that g, h ∈ G. With the notation from the
previous paragraph, prove the following:

(1) f(g) = ḡ.

(2) f(r(ḡ)) = r(ḡ).

(3) s(r(ḡ)) = e.

(4) f(gh) = f(gf(h)).

(5) s(gh) = s(gf(h))s(h).

To avoid subscripts that are hard to parse in the following proof, we
write Sym(X) as a synonym for SX , the group of permutations of a set X.

Proof of Theorem 13.3.17. Fix ε > 0 and finite F ⊆ G. Since G/N is
amenable, we may take an (F̄ , ε)-Følner set Ā for G/H. In other words,
given any g ∈ F , we have, for at least (1− ε)|Ā| many ā ∈ Ā, that ga ∈ Ā.
Without loss of generality, we may assume that A is contained in the range
of r or, in other words, that r(ḡ) = g for all g ∈ A. In this case, for g ∈ G, if
ga ∈ Ā, say ga = a′ for some a′ ∈ A, then f(ga) = a′. Consequently, for each
g ∈ G, the partial map from A to A given by mapping a to f(ga) whenever
ga ∈ Ā is injective, whence we may extend it to a bijection l(g) : A → A.

Since N is sofic, we may also fix a (F̂ , ε)-morphism ψ : N → Sn, where F̂ is
a finite subset of N to be determined soon.

Claim 1. For each g ∈ G, the function φ(g) : [n] × A → [n] × A given
by φ(g)(i, a) := (ψ(s(ga))(i), f(ga)) if ga ∈ Ā while φ(g)(i, a) = (i, l(g)(a))
otherwise, is a permutation of [n]×A.

Proof of Claim 1. Given i′ ∈ [n] and a′ ∈ A, we see that either there is g ∈
G such that f(ga) = a′, in which case we take i ∈ [n] such that ψ(s(ga))(i) =
i′ and then φ(g)(i, a) = (i′, a′); otherwise, since l(g) is surjective, we can find
a ∈ A such that l(g)(a) = a′ and then φ(i′, a) = (i′, a′).

We thus have a map φ : G → Sym([n] × A). This map φ will be a
(F, 3ε)-morphism; since ε is arbitrary, this will verify that G is sofic. We
break this verification up into smaller bits.

Claim 2. If e ∈ F , then dHamm(φ(e), id) < ε.

Proof of Claim 2. Note that φ(e)(i, a) = (ψ(e)(i), a) for all (i, a) ∈ [n]×A;
since ψ(e)(i) = i for at least (1− ε)n many i ∈ [n], we get that φ(e)(i, a) =
(i, a) for at least (1− ε)n|A| many (i, a) ∈ n×A.



13.4. An application of sofic groups 245

Claim 3. If g, h ∈ F are distinct, then dHamm(φ(g), φ(h)) ≥ 1− 2ε.

Proof of Claim 3. We distinguish between two cases. First suppose that
ḡ = h̄. If ga ∈ Ā (which happens for at least (1 − ε)|A| many a ∈ A),
then f(ga) = f(ha), whence s(ga) = f(ga)−1ga and s(ha) = f(ha)−1ha are

distinct elements of A−1FA. Thus, setting F̂ := A−1FA, we see that for at
least (1−ε)nmany elements of [n], ψ(s(ga))(i) �= ψ(s(ha))(i). Summarizing,
in this case, we have that for at least (1 − ε)2n|A| ≥ (1 − 2ε)n|A| many
(i, a) ∈ [n]×A, we have that φ(g)(i, a) �= φ(h)(i, a).

Now suppose that ḡ �= h̄. Set X := {a ∈ A : ga /∈ Ā} and Y := {a ∈
A : ha /∈ Ā}. If a /∈ X ∪ Y , then l(g)(a) = f(ga) and l(h)(a) = f(ha),
which implies l(g)(a) �= l(h)(a). Since |X ∪ Y | ≤ 2ε|A|, we see that for at
least (1 − 2ε)n|A| many (i, a) ∈ [n] × A, we have φ(g)(i, a) �= φ(h)(i, a), as
desired.

Claim 4. If g, h∈F are such that gh∈F , then dHamm(φ(g)φ(h), φ(gh))<ε.

Proof of Claim 4. Suppose that a ∈ A is such that ha, gha ∈ A; note that
this happens for at least (1− 2ε)|A| many a ∈ A. We then have

φ(gh)(i, a) = (ψ(s(gha))(i), f(gha)) = (ψ(s(gf(ha))s(ha))(i), f(gf(ha))).

On the other hand,

φ(g)(φ(h)(i, a)) = φ(g)(ψ(s(ha))(i), f(ha))

= (ψ(s(gf(ha))(ψ(s(ha))(i), f(gf(ha)).

Note that s(gf(ha)), s(ha) ∈ F̂ . Thus, for at least (1−ε)n many i ∈ [n], the
above two displays are equal. Summarizing, for at least (1− 3ε)n|A| many
(i, a), we have that φ(gh)(i, a) = φ(g)(φ(h)(i, a)), which is what we wanted
to prove.

This concludes the proof of the theorem. �

13.4. An application of sofic groups

An important reason for considering the class of sofic groups is that there
are many instances of famous conjectures about groups that can be solved
under the further assumption that the group in question is sofic. In this
section, we treat one such example.

For a given group G, consider the equation

(‡‡) xk1g1x
k2g2 · · ·xksgs = e,

where x is a variable, g1, . . . , gs ∈ G, and k1, . . . , ks ∈ Z. Unlike the case of
polynomial equations over a field, where one can always find a solution in
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an extension field, we need not always be able to solve equation (‡‡) in a
group extending G:

Example 13.4.1. If the equation x−1axb−1 = e has a solution in a group
extending G, then a and b are conjugate in that extension. Thus, if, for
example, a and b have different orders, then the equation has no solution in
an extension group.

Equation (‡‡) is called regular if k1 + · · ·+ ks �= 0. Notice the equation
in the previous example is not regular.

Conjecture 13.4.2 (Kervaire-Laudenbach). For any regular equation (‡‡)
with coefficients from G, (‡‡) has a solution in a group extending G.

Let us say that G is a KL-group if G satisfies the Kervaire-Laudenbach
conjecture. If, in addition, the solution can actually be found in G, we say
that G is a strong KL-group. The main theorem of this section is that
sofic groups are KL-groups. The first piece of the puzzle is the following:

Theorem 13.4.3 (Gerstenhaber-Rothaus [65]). For each n, Un is a strong
KL-group.

The proof of the previous fact uses some notions from algebraic topology,
so we only sketch the main idea. Consider equation (‡‡) over Un. Let
f : Un → Un be given by f(x) := xk1g1x

k2g2 · · ·xksgs. It is enough to show
that f is onto. Let k := k1 + · · · + ks. If each gi = 1, then f is simply the
function fk(x) := xk, which is onto. (Exercise.) Since Un is path connected,
we can continuously move each gi toward the identity, showing that the
functions f and fk are homotopic. This implies that f and fk have the same
degree, namely nk, which roughly means that f “wraps” Un around itself nk

times. In particular, this implies that f is also onto.

Corollary 13.4.4. For any nonprincipal ultrafilter U on N, the metric ul-
traproduct

∏
U Un is a strong KL-group.

Exercise 13.4.5. Prove the previous corollary.

Now to every permutation σ ∈ Sn we have the corresponding permuta-
tion matrix Aσ ∈ Un given by (Aσ)ij = 1 if σ(i) = j, and 0 otherwise.

Exercise 13.4.6. The map σ �→ Aσ : Sn → Un is a group homomorphism.

Now unfortunately this map is not distance preserving, when Sn is
equipped with its Hamming distance and when Un is equipped with its
Hilbert-Schmidt distance. However, we do have the following:

Lemma 13.4.7. For all σ, τ ∈ Sn, we have dHamm(σ, τ) =
1
2(dHS(Aσ, Aτ ))

2.
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Proof. Let X = {i : σ(i) �= τ(i)} = {i : (σ−1τ)(i) �= i} = {i :
(τ−1σ)(i) �= i}. Note then that

tr(I −Aστ−1) = tr(I −Aτσ−1) =
|X|
n

,

so

dHamm(σ, τ) =
|X|
n

= tr((Aσ −Aτ )(Aσ −Aτ )
∗).

The result now follows from Exercise 13.1.11. �

As a result, we have:

Corollary 13.4.8. For any ultrafilter U on N, there is an injective group
homomorphism

∏
U Sn →

∏
U Un, where the ultraproducts are the metric

ultraproducts and the factors are equipped with the Hamming metrics and
Hilbert-Schmidt metrics, respectively.

Proof. Given σ ∈
∏

n∈N Sn, define Aσ ∈
∏

n∈N Un by Aσ(n) := Aσ(n). The
desired homomorphism is defined by sending [σ]U to [Aσ]U . For this to be
well defined and injective, we need to know that limU dHamm(σ(n), id) = 0
if and only if limU dHS(Aσ(n), I) = 0, which follows immediately from the
previous lemma. �

We can now conclude:

Theorem 13.4.9 (Pestov [143]). Sofic groups are KL-groups.

Proof. By Corollary 13.4.4,
∏

U Un is a strong KL-group. By Corollary
13.4.8, any sofic group is isomorphic to a subgroup of

∏
U Un; since a sub-

group of a strong KL-group is clearly a KL-group, the theorem now fol-
lows. �

Definition 13.4.10. A group is G is hyperlinear if there is an injective
group homomorphism from G into a metric ultraproduct

∏
U Uni of unitary

groups.

Corollary 13.4.4 showed that hyperlinear groups are KL-groups. Corol-
lary 13.4.8 immediately implies:

Theorem 13.4.11. Every sofic group is hyperlinear.

The following questions are still open:

Question 13.4.12.

(1) Is every group hyperlinear?

(2) Is every hyperlinear group sofic?
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Question (1) is related to a famous open problem in operator algebras,
namely the Connes embedding problem, which will be discussed in Section
14.5.

13.5. Notes and references

The notion of sofic group was introduced by Gromov in [72], although the
term “sofic” was introduced by Weiss in [183]. Our treatment of sofic groups
follows the manuscript of Lupini and Capraro [22], although this manuscript
contains much more information and further applications of the notion of
soficity. Another nice source is Pestov’s survey [143], which also contains
a connection with the von Neumann algebra ultraproducts that will be dis-
cussed in the next chapter. Our discussion on amenable groups comes from
Tao’s blog post

https://terrytao.wordpress.com/2009/04/14/some-notes-on-

amenability/

while a more comprehensive introduction can be found in [151]. Proof 1 of
Theorem 13.2.13 comes from Macpherson’s article [117, Theorem 6.0.23].

https://terrytao.wordpress.com/2009/04/14/some-notes-on-amenability/
https://terrytao.wordpress.com/2009/04/14/some-notes-on-amenability/


Chapter 14

Functional analysis

In this chapter, we present a selected assortment of applications of the met-
ric ultraproduct to functional analysis. In Section 14.1, we introduce the
Banach space ultraproduct, and we apply this construction in Section 14.2
to study the local geometry of Banach spaces. In Section 14.3 we study
C∗-algebras, proving that the category of commutative unital C∗-algebras
is dually equivalent to the category of compact Hausdorff spaces (thus ex-
tending the Stone duality presented in Section 3.4) and consequently that
the ultraproduct of a family of commutative unital C∗-algebras corresponds
to the ultracoproduct of the corresponding compact Hausdorff spaces (as
introduced in Section 6.10). In Section 14.4, we switch gears and study
von Neumann algebras and an ultraproduct construction for the subclass of
tracial von Neumann algebras. Finally, in Section 14.5, we discuss the fa-
mous Connes embedding problem, which asks if every tracial von Neumann
algebra embeds into a tracial ultraproduct of matrix algebras, and present a
proof of a theorem of Radulescu connecting this problem with the problem
of determining if every group is hyperlinear, a problem raised at the end of
Section 13.4.

14.1. Banach space ultraproducts

In this chapter, all vector spaces will be over the complex numbers. We first
recall some basic definitions concerning Banach spaces.

Definition 14.1.1. If X is a vector space, a norm on X is a function
‖ · ‖ : X → R satisfying, for all x, y ∈ X and all λ ∈ C:

(1) ‖x‖ ≥ 0, with ‖x‖ = 0 if and only if x = 0;

(2) ‖x+ y‖ ≤ ‖x‖+ ‖y‖;
(3) ‖λx‖ = |λ|‖x‖.

249
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A normed space is a pair (X, ‖ · ‖), where X is a vector space and ‖ · ‖ is
a norm on X.

If ‖ · ‖ is a norm on X, then we get an induced metric on X given by
d(x, y) := ‖x − y‖. The normed space (X, ‖ · ‖) is said to be a Banach
space if the induced metric on X is complete.

In what follows, we view normed spaces as pointed metric spaces (see
Definition 11.1.1) with 0 as the distinguished basepoint.

Exercise 14.1.2. Suppose that (Xi)i∈I is a family of normed spaces and U
is an ultrafilter on I. Prove that the (metric) ultraproduct

∏
U Xi carries

a natural normed space structure, where the vector space operations are
those induced by the pointwise operations and where the norm is given by
‖[x]U‖ := limU ‖x(i)‖.

In the next exercise, we give an alternate, algebraic characterization
of an ultraproduct of normed spaces. First, recall that, given a family
(Xi)i∈I of normed spaces, there is a natural norm on �∞(Xi) given by
‖x‖ := supi∈I ‖x(i)‖. Second, given a normed space X and a closed sub-
space Y , we can turn the quotient vector space X/Y into a normed space
by setting ‖x+ Y ‖ := infy∈Y ‖x+ y‖.

Exercise 14.1.3. Suppose that (Xi)i∈I is a family of normed spaces and
U is an ultrafilter on I. Let Y := {x ∈ �∞(Xi) : limU x(i) = 0}. Prove
that Y is a closed subspace of �∞(Xi) and that �∞(Xi)/Y is isomorphic (as
a normed space) to

∏
U Xi.

By Theorems 11.3.1 and 11.3.2, we have:

Theorem 14.1.4. Suppose that (Xi)i∈I is a family of normed spaces and U
is an ultrafilter on I. If U is countably incomplete or each Xi is a Banach
space, then

∏
U Xi is a Banach space.

Ultraproducts of normed spaces often possess similar properties to the
constituent spaces. Here is one example of such a phenomenon. First, we
say that a normed space X is uniformly convex if, for every 0 < ε ≤ 2,
there is δ > 0 such that, for all x, y ∈ X with ‖x‖ = ‖y‖ = 1, if ‖x− y‖ ≥ ε,
then ‖x+y

2 ‖ ≤ 1− δ.

Exercise 14.1.5. Prove that if X is a uniformly convex normed space, then
so is any ultrapower XU of X.

The following lemma will prove useful in the next section:

Lemma 14.1.6. Suppose that (Xi)i∈I is a family of normed spaces and
U is an ultrafilter on I. Suppose further that [x1]U , . . . , [xn]U ∈

∏
U Xi are
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linearly independent. Then for U-almost all i, we have that x1(i), . . . , xn(i) ∈
Xi are also linearly independent.

Proof. Suppose, toward a contradiction, that, for U -almost all i, there are
c1(i), . . . , cn(i) ∈ C, not all equal to 0, such that c1(i)x1(i)+· · ·+cn(i)xn(i) =
0. Take j ∈ {1, . . . , n} such that, for U -almost all i, we have |ck(i)| ≤ |cj(i)|
for all k ∈ {1, . . . , n}. For ease of exposition, let us assume that j = 1. Then,

setting dk(i) :=
ck(i)
c1(i)

, we have, for U -almost all i, that x1(i) + d2(i)x2(i) +

· · ·+dn(i)xn(i) = 0. Since |dk(i)| ≤ 1 for U -almost all i and all k = 2, . . . , n,
we have that dk := limU dk(i) exists. We leave it to the reader to verify that
[x1]U + d2[x2]U + · · ·+ dn[xn]U = 0, yielding a contradiction. �
Exercise 14.1.7.

(1) If X is finite dimensional, prove that, for any ultrafilter U , we have
XU ∼= X.

(2) Suppose that (Xi)i∈I is a family of finite-dimensional normed spaces
and that U is an ultrafilter on I. Prove that

∏
U Xi is finite

dimensional if and only if limU dim(Xi) < ∞ and, in this case,
dim(

∏
U Xi) = limU dim(Xi).

We now prove that ultrapowers commute with quotients. In what fol-
lows, given a closed subspace Y of a normed space X, a set I, and an element
x ∈ �∞(X), we slightly abuse notation by writing x + Y for the element of
�∞(X/Y ) given by (x + Y )(i) := x(i) + Y . Note that x + Y does indeed
belong to �∞(X/Y ) as ‖x(i) + Y ‖ ≤ ‖x(i)‖ for all i ∈ I.

Proposition 14.1.8. Let Y be a closed subspace of the Banach space X.
Then the map φ : XU/Y U → (X/Y )U given by φ([x]U + Y U) := [x+ Y ]U is
an isomorphism of Banach spaces.

Proof. Fix [x]U ∈ XU and set r := ‖[x]U + Y U‖ and s := ‖[x + Y ]U‖ =
limU ‖x(i) + Y ‖. Observe that

r = inf
[y]U∈Y U

‖[x]U + [y]U‖ = inf
[y]U∈Y U

lim
U
‖x(i) + y(i)‖.

Fix ε > 0 and take [y]U ∈ Y U such that limU ‖x(i)+ y(i)‖ ≤ r+ ε. Then we
have that

s = lim
U
‖x(i) + Y ‖ ≤ lim

U
‖x(i) + y(i)‖ ≤ r + ε.

Letting ε → 0, we see that ‖[x + Y ]U‖ ≤ r. Conversely, fix ε > 0 and
take A ∈ U such that ‖x(i) + Y ‖ < s + ε for all i ∈ A. For each i ∈ A,
take y(i) ∈ Y such that ‖x(i) + y(i)‖ ≤ ‖x(i) + Y ‖ + ε. Set y(i) := 0 for
i /∈ A. Note that y ∈ �∞(Y ). Moreover, we have that limU ‖x(i) + y(i)‖ ≤
limU ‖x(i) + Y ‖ + ε ≤ s + 2ε. It follows that r ≤ s + 2ε; letting ε → 0, we
have r ≤ s and thus r = s.
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This calculation shows that φ is a well-defined linear map that is iso-
metric. It remains to show that φ is surjective. To see this, take w ∈
�∞(X/Y ). For each i ∈ I, take x(i) ∈ X and y(i) ∈ Y such that w(i) =
x(i)+Y and ‖w(i)‖ = ‖x(i)+y(i)‖. Note then that x+y ∈ �∞(X), whence
[x+ y]U ∈ XU and that φ([x+ y]U) = [w]U . �

An important class of Banach spaces arises from studying Hilbert spaces.
We first recall the relevant definitions.

Definition 14.1.9. An inner product on a vector space X is a map 〈·, ·〉 :
X ×X → C satisfying, for all x, y, z ∈ X and λ ∈ C:

(1) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉,
(2) 〈λx, y〉 = λ〈x, y〉, and
(3) 〈y, x〉 = 〈x, y〉.

An inner product space is a pair (X, 〈·, ·〉), where X is a vector space
and 〈·, ·〉 is an inner product on X. Any inner product 〈·, ·〉 on X induces a

norm ‖ ·‖on X defined by ‖x‖ :=
√
〈x, x〉. An inner product space (X, 〈·, ·〉)

is called a Hilbert space if the induced normed space is a Banach space
(that is, if the metric induced by the norm induced by the inner product is
complete).

Exercise 14.1.10. Suppose that (Xi)i∈I is a family of inner product spaces
and U is an ultrafilter on I. Prove that there is a natural inner product
on
∏

U Xi given by 〈[x]U , [y]U〉 = limU〈x(i), y(i)〉. Consequently, if U is
countably incomplete or each Xi is a Hilbert space, then

∏
U Xi is also a

Hilbert space.

Finally, we discuss the notion of bounded operators. The following fact
is easy and quite standard:

Fact 14.1.11. Suppose that X and Y are normed spaces and T : X → Y
is a linear transformation. Then the following are equivalent:

(1) T is continuous at some point in X.

(2) T is continuous.

(3) T is uniformly continuous.

(4) T is bounded, meaning that it maps bounded sets to bounded
sets.

Definition 14.1.12. Suppose that T : X → Y is a bounded linear trans-
formation. The operator norm of T is the quantity ‖T‖ := sup{‖T (x)‖ :
x ∈ X, ‖x‖ ≤ 1}.



14.1. Banach space ultraproducts 253

It is easy to check that ‖T‖ = sup{‖T (x)‖ : x ∈ X, ‖x‖ = 1} and
that, whether using the unit ball or the unit sphere to calculate ‖T‖, both
supremums are actually achieved. Another characterization of ‖T‖ is that
it is the smallest nonnegative real number M such that ‖T (x)‖ ≤M‖x‖ for
all x ∈ X.

One lets B(X,Y ) denote the set of bounded linear transformations from
X to Y . When X = Y , we write B(X) instead of B(X,X). It is fairly
easy to verify that B(X,Y ) is a subspace of the vector space of all linear
transformations from X to Y . Moreover, B(X,Y ) is a normed space under
the operator norm. If Y is a Banach space, then it can be shown that
B(X,Y ) is also a Banach space.

Suppose that X, Y , and Z are all normed spaces and T ∈ B(X,Y ) and
S ∈ B(Y, Z). Then it is fairly easy to check that S ◦ T ∈ B(X,Z) and that
‖S ◦T‖ ≤ ‖S‖ ·‖T‖. In particular, B(X) is closed under composition, giving
it the structure of a unital normed algebra in the sense of the following
definition:

Definition 14.1.13. A normed algebra is a normed space A equipped
with a binary operation · for which the following hold for all x, y, z ∈ A and
λ ∈ C:

(1) (x · y) · z = x · (y · z);
(2) (x+ y) · z = (x · z) + (y · z) and x · (y + z) = (x · y) + (x · z);
(3) λ(x · y) = (λx) · y = x · (λy);
(4) ‖x · y‖ ≤ ‖x‖ · ‖y‖.

Furthermore, the normed algebra is called unital if there is 1 ∈ A such that
1 · x = x · 1 = x for all x ∈ A. A (unital) normed algebra for which the
underlying normed space is a Banach space is called a (unital) Banach
algebra.

Thus, to reiterate, we have:

Proposition 14.1.14. For any normed space X, B(X) is a unital normed
algebra. If X is a Banach space, then B(X) is a unital Banach algebra.

Exercise 14.1.15. Suppose that (Ai)i∈I is a family of (unital) Banach
algebras and U is an ultrafilter on I. Prove that

∏
U Ai is also a (unital)

Banach algebra when equipped with the pointwise operations.

Exercise 14.1.16. Suppose that (Xi)i∈I and (Yi)i∈I are families of normed
spaces and U is an ultrafilter on I. Prove that there is a linear isometric
embedding ι :

∏
U B(Xi, Yi)→ B(

∏
U Xi,

∏
U Yi) given by

ι([T ]U)([x]U) := [T (i)x(i)]U .
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14.2. Applications to local geometry of Banach spaces

In this section, we give a few applications of Banach space ultraproducts to
the study of the local geometry of Banach spaces.

Definition 14.2.1. An invertible linear map T : X → Y between normed
spaces is an ε-isomorphism if for all x ∈ X, we have

(1− ε)‖x‖ ≤ ‖T (x)‖ ≤ (1 + ε)‖x‖.
We say that X is ε-isomorphic to Y , written X ∼=ε Y , if there is an ε-
isomorphism X → Y .

Note that ∼=ε is not a symmetric relation. However, if X ∼=ε Y , then
Y ∼=δ X for δ = ε

1−ε .

Exercise 14.2.2. Prove that an invertible linear map T : X → Y between
Banach spaces is an ε-isomorphism if and only if: for all x ∈ X with ‖x‖ = 1,
we have 1− ε ≤ ‖T (x)‖ ≤ 1 + ε.

Proposition 14.2.3. If F is a finite-dimensional subspace of
∏

U Xi, then
for each ε > 0, there are U-many i for which there are finite-dimensional
subspaces Fi of Xi satisfying F ∼=ε Fi.

Proof. Take a basis [x1]U , . . . , [xn]U of F and consider the linear mappings
φi : F → Xi that send [xj ]U to xj(i) for each j = 1, . . . , n. Set Fi := φi(F ).
By Lemma 14.1.6, Fi has dimension n for U -almost all i. We leave it to the
reader to check that φi : F → Fi is an ε-isomorphism for U -almost all i. �

Exercise 14.2.4. Verify the end of the proof of the previous proposition.

The following is a central notion in the local geometry of Banach spaces:

Definition 14.2.5. We say that a Banach space Y is finitely repre-
sentable in a Banach space X if, for every finite-dimensional subspace F
of Y and every ε > 0, there is a (finite-dimensional) subspace F ′ of X such
that F ∼=ε F

′.

Proposition 14.2.3 immediately yields:

Corollary 14.2.6. For any ultrafilter U , XU is finitely representable in X.

It is clear from the definitions that if Y is finitely representable in X and
Z is a closed subspace of Y , then Z is also finitely representable in X. It
follows that every closed subspace of XU is finitely representable in X. We
now prove that the converse holds. In what follows, by an ε-isomorphic
embedding T : X → Y , we mean an injective linear map that is an ε-
isomorphism between X and T (X).
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Theorem 14.2.7. If X and Y are Banach spaces, then Y is finitely repre-
sentable in X if and only if there is a linear isometric embedding of Y into
XU for some ultrafilter U .

Proof. Suppose that Y is finitely representable in X. For each finite-
dimensional subspace F of Y and each ε > 0, let T(F,ε) : F → X be an
ε-isomorphic embedding. Let I denote the set of all such pairs (F, ε) and let
U be an ultrafilter on I containing all sets A(F0,ε0) := {(F, ε) ∈ I : F0 ⊆
F, ε ≤ ε0}. For x ∈ Y , let ψx ∈ XI be defined by ψx(F, ε) = T(F,ε)(x) if
x ∈ F and ψx(F, ε) = 0 otherwise.

We claim that the map T : Y → XU given by T (x) := [ψx]U is the desired
linear isometric embedding. We first show that it is linear. Given x, y ∈ Y ,
set F0 := span(x, y). Then for (F, ε) ∈ A(F0,1), we have ψx(F, ε) = T(F,ε)(x)
and ψy(F, ε) = T(F,ε)(y); since A(F0,1) ∈ U and each T(F,ε) is linear, we see
that T is linear.

We finish by showing that T is isometric. Take x ∈ Y with ‖x‖ = 1 and
ε > 0. Take A ∈ U such that |‖T (x)‖ − ‖ψx(F, δ)‖| < ε for all (F, δ) ∈ A.
Suppose now that (F, δ) ∈ A(span(x),1); then ψx(F, δ) = T(F,δ)(x), whence
(1 − ε) ≤ ‖ψx(F, δ)‖ ≤ (1 + ε). By considering (F, δ) ∈ A ∩ A(span(x),1), it
follows that (1− 2ε) ≤ ‖T (x)‖ ≤ (1 + 2ε). Since ε was arbitrary, we get the
desired result. �

Exercise 14.2.8. Suppose that Y is a separable Banach space that is finitely
representable in the Banach space X. Prove that, for any U ∈ βN \ N, Y
linearly isometrically embeds into XU .

Exercise 14.2.9. Prove that any Banach space finitely representable in a
Hilbert space is also a Hilbert space, that is, is the Banach space naturally
obtained from a Hilbert space. (Try doing this directly from the definition
as well to gain an appreciation for Theorem 14.2.7.)

We apply Theorem 14.2.7 to some issues around reflexivity for Banach
spaces. We first recall the requisite definitions.

Given any Banach space X, set X∗ := B(X,C), which is the set of all
continuous linear functions ϕ : X → C. By our discussion in the previous
section, X∗ is itself a Banach space when equipped with the operator norm,
called the dual space of X.

One can consider the dual X∗∗ of the dual space X∗, which is once
again a Banach space. We will use letters like Φ to denote elements of
X∗∗. Given x ∈ X, we have an element Φx ∈ X∗∗ given by Φx(ϕ) := ϕ(x).
This gives a linear map Δ : X → X∗∗ defined by Δ(x) := Φx. Moreover,
‖Φx‖ = sup‖ϕ‖≤1 ‖ϕ(x)‖ = ‖x‖, where the second equality follows from the
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Hahn-Banach theorem (see [35, III.6]). It follows that Δ is an isometric
embedding.

Definition 14.2.10. Let X be a Banach space and let Δ : X → X∗∗ be as
above.

(1) We say that X is reflexive if Δ is surjective.

(2) We say that X is super-reflexive if every space that is finitely
representable in X is reflexive.

Not every Banach space is reflexive (for example, see [35, III.11]). How-
ever, many familiar spaces are (super-) reflexive:

Exercise 14.2.11.

(1) Prove that any finite-dimensional Banach space is super-reflexive.

(2) Prove that any Hilbert space is super-reflexive.

Fact 14.2.12. Let X be a Banach space and Y a closed subspace. Then X
is reflexive if and only if both Y and X/Y are reflexive.

Proof. See, for example, [35, V.4]. �

Corollary 14.2.13. If X is a Banach space, then X is super-reflexive if
and only if every ultrapower XU of X is reflexive.

Proof. The forward direction follows from the fact that XU is finitely rep-
resentable in X. For the converse, take Y finitely representable in X and
embed Y as a closed subspace of some ultrapower of X. By hypothesis, this
ultrapower is reflexive, whence so is Y by Fact 14.2.12. �

Example 14.2.14. The Milman-Pettis theorem states that uniformly con-
vex Banach spaces are reflexive (see [29, Theorem 1.17]). By Exercise 14.1.5
and Corollary 14.2.13, they are in fact super-reflexive.

We can now prove the “super” version of Fact 14.2.12:

Corollary 14.2.15. Let X be a Banach space and Y a closed subspace.
Then X is super-reflexive if and only if both Y and X/Y are super-reflexive.

Proof. To prove the backward direction, assume that both Y and X/Y
are super-reflexive and fix an ultrafilter U . By Corollary 14.2.13, Y U is
reflexive. By Proposition 14.1.8 and Corollary 14.2.13, (X/Y )U ∼= XU/Y U

is reflexive. By Fact 14.2.12, XU is reflexive. Since U was an arbitrary
ultrafilter, Corollary 14.2.13 implies that X is super-reflexive.

We leave the proof of the forward direction as an exercise. �

Exercise 14.2.16. Prove the forward direction of the previous corollary.
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For not necessarily reflexive spaces, we now show that X∗∗ is finitely
representable in X. In fact, we show something stronger. First, a definition.

Definition 14.2.17. If Y is a closed subspace of a Banach space X, we say
that Y is a complemented subspace of X if there is a closed subspace Z
of X such that X = Y ⊕ Z.

In a general Banach space, a closed subspace need not be complemented.
For a general discussion on this topic, see [35, III.13]. In many familiar
Banach spaces, all closed subspaces are complemented:

Exercise 14.2.18.

(1) Prove that every subspace of a finite-dimensional Banach space is
complemented.

(2) Prove that every closed subspace of a Hilbert space is comple-
mented.

The following is an alternate formulation of a subspace of a Banach space
being complemented:

Exercise 14.2.19. If X is a Banach space and Y is a closed subspace of X,
then Y is a complemented subspace of X if and only if there is a continuous
linear map P : X → X such that P (X) = Y and P ◦ P = P .

Here is the promised connection between biduals and ultrapowers for
general Banach spaces:

Theorem 14.2.20. For any Banach space X, there is an ultrafilter U and
a linear isometric embedding T : X∗∗ → XU such that:

(1) for all x ∈ X, T (Φx) is the diagonal image of x in XU .

(2) T (X∗∗) is a complemented subspace of XU .

The proof of Theorem 14.2.20 uses the so-called Principle of Local Re-
flexivity [131]:

Fact 14.2.21. For every pair of finite-dimensional subspaces E ⊆ X∗∗ and
F ⊆ X∗ and every ε > 0, there is an ε-isomorphic embedding TE,F,ε : E → X
such that:

• TE,F,ε(Φx) = x for all x ∈ X such that Φx ∈ E.

• For all Φ ∈ E and all ϕ ∈ F , we have ϕ(TE,F,ε(Φ)) = Φ(ϕ).

Before discussing the proof, we need a quick digression on the weak*-
topology:



258 14. Functional analysis

Definition 14.2.22. Let X be a normed space. The weak*-topology on
X∗ is the topology induced on X∗ by viewing it as a subset of the space CX ,
which is equipped with the product topology.

Alternatively, the weak*-topology on X∗ is the weakest topology on X∗

making each evaluation maps ϕ �→ ϕ(x) : X∗ → C (for x ∈ X) continuous.

Exercise 14.2.23. Suppose that X is a normed space, (ϕi)i∈I is a family
from X∗, ϕ is another element in X∗, and U is an ultrafilter on I. Prove
that limU ϕi = ϕ in the weak*-topology if and only if limU (ϕi(x)) = ϕ(x)
for all x ∈ X, where the latter ultralimit is calculated in C.

Exercise 14.2.24. Suppose that X is a normed space. Prove that ev-
ery (operator-norm) bounded subset of X∗ that is weak*-closed is actually
weak*-compact.

In what follows, we let I denote the set of triples (E,F, ε) as in the
statement of Fact 14.2.21 and we fix an ultrafilter U on I containing all
elements

A(E0,F0,ε0) := {(E,F, ε) ∈ I : E0 ⊆ E,F0 ⊆ F, ε ≤ ε0}.

For each Φ ∈ X∗∗, we define an element xΦ ∈ XI by xΦ(E,F, ε) = TE,F,ε(Φ)
if Φ ∈ E and xΦ(E,F, ε) = 0 otherwise.

Lemma 14.2.25. For any Φ ∈ X∗∗, we have lim(E,F,ε)→U ΦxΦ(E,F,ε) = Φ,
where the ultralimit is calculated in the weak* topology on X∗∗.

Proof. To prove the lemma, fix ϕ ∈ X∗. By Exercise 14.2.23, it suffices to
show that

(lim
U

ΦxΦ(E,F,ε))(ϕ) = Φ(ϕ).

Set E0 := span(Φ) and F0 := span(ϕ). Suppose that (E,F, ε) ∈ A(E0,F0,1).
Then xΦ(E,F, ε) = TE,F,ε(Φ) and ΦxΦ(E,F,ε)(ϕ) = ϕ(TE,F,ε(Φ)) = Φ(ϕ).
The proof of the lemma is now complete. �

Proof of Theorem 14.2.20. The desired linear isometric embedding is
given by T (Φ) := [xΦ]U . As in the proof of Theorem 14.2.7, this map is
a linear isometric embedding. Moreover, if x ∈ X, setting E0 := span(Φx),
then whenever (E,F, ε) ∈ A(E0,{0},1), we have xΦ(E,F, ε) = TE,F,ε(Φx) = x,

whence T (Φx) coincides with the diagonal image of x in XU .

In order to prove that T (X∗∗) is a complemented subspace of XU , by
Exercise 14.2.19, it suffices to find a linear map P : XU → XU that is
the identity on T (X∗∗) and for which ‖P‖ ≤ 1. We define this map as
P ([x]U) := T (limU Φx), where the ultralimit is calculated in the weak*
topology on X∗∗, which exists by Exercise 14.2.24.
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We first show that P is the identity on T (X∗∗). Toward that end, fix
Φ ∈ X∗∗. We then have

P (T (Φ)) = P ([xΦ]U) = T (lim
U

ΦxΦ(E,F,ε)) = T (Φ),

where the last equality follows from Lemma 14.2.25.

To finish the proof, we show that ‖P‖ ≤ 1. Toward that end, fix [x]U ∈
XU . Using that T is an isometric embedding, we then have

‖P ([x]U)‖ = ‖ limU Φx(i)‖ = sup
‖ϕ‖≤1

‖(lim
U

Φx(i))(ϕ)‖

= sup
‖ϕ‖≤1

‖ lim
U

ϕ(x(i))‖ = sup
‖ϕ‖≤1

lim
U
‖ϕ(x(i))‖

≤ sup
‖ϕ‖≤1

lim
U
‖x(i)‖ = ‖[x]U‖. �

Corollary 14.2.26. If a class of Banach spaces is closed under ultrapowers
and complemented subspaces, then it is closed under biduals.

14.3. Commutative C∗-algebras and ultracoproducts of
compact spaces

In the remainder of this chapter, we briefly sketch some appearances of
Banach space ultraproducts in the area of functional analysis known as
operator algebras. Ultraproduct techniques play a pivotal role in the
modern study of operator algebras, but since the mathematics behind the
scenes is beyond the scope of this text, we merely discuss a few matters
along these lines. In this section, we discuss a class of operator algebras
known as C∗-algebras.

Definition 14.3.1. A Banach *-algebra is a Banach algebra A equipped
with a map, usually denoted ∗ : A → A, satisfying, for all x, y ∈ A and
λ ∈ C:

(1) (x∗)∗ = x

(2) (x+ y)∗ = x∗ + y∗

(3) (λx)∗ = λx∗

(4) (xy)∗ = y∗x∗

(5) ‖x∗‖ = ‖x‖.

It is easy to verify that if A is a unital Banach *-algebra, then 1∗ = 1.

Exercise 14.3.2. Suppose that (Ai)i∈I is a family of (unital) Banach *-
algebras and U is an ultrafilter on I. Prove that

∏
U Ai is also a (unital)

Banach *-algebra when equipped with the pointwise operations.
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Example 14.3.3. If H is a Hilbert space and T ∈ B(H), then there is a
unique T ∗ ∈ B(H) satisfying 〈Tx, y〉 = 〈x, T ∗y〉 for all x, y ∈ H. T ∗ is often
referred to as the adjoint of T . It is then routine to check that B(H) is a
unital Banach *-algebra. (The verification of axiom (5) will appear in the
proof of the next lemma.)

The Banach *-algebra B(H) in the previous example also satisfies a
further property, which turns out to be the crucial axiom that turns a Banach
*-algebra into a C∗-algebra:

Lemma 14.3.4. Suppose that H is a Hilbert space. Then for all T ∈ B(H),
we have ‖T ∗T‖ = ‖T‖2.

Proof. Fix x ∈ H with ‖x‖ ≤ 1. We then have

‖Tx‖2 = 〈Tx, Tx〉 = 〈T ∗Tx, x〉 ≤ ‖T ∗Tx‖ · ‖x‖ ≤ ‖T ∗T‖ ≤ ‖T ∗‖ · ‖T‖.
It follows that ‖T‖2 ≤ ‖T ∗T‖ ≤ ‖T ∗‖·‖T‖. In particular, ‖T‖ ≤ ‖T ∗‖. Since
T ∗∗ = T , applying the previous inequality to T ∗ yields that ‖T ∗‖ ≤ ‖T‖.
Thus, ‖T‖ = ‖T ∗‖, whence ‖T‖2 = ‖T ∗T‖, as desired. �

Definition 14.3.5. A Banach *-algebra A is called a C∗-algebra if it fur-
ther satisfies the C∗-identity ‖x∗x‖ = ‖x‖2 for all x ∈ A.

Thus, B(H) is a unital C∗-algebra for any Hilbert space H. Here is
another important example:

Example 14.3.6. Let X be a compact space and let C(X) denote the set
of continuous functions f : X → C. We can equip C(X) with the structure
of a *-algebra by considering pointwise addition, multiplication, and scalar
multiplication, and by setting, for f ∈ C(X), f∗(x) := f(x). Moreover,
we equip C(X) with the norm ‖f‖ := supx∈X |f(x)|, which exists since
X is compact and f is continuous. It is fairly clear that C(X) is then a
unital Banach *-algebra, the identity being the function that is constantly
1. Moreover, C(X) is actually a C∗-algebra, for

‖f∗f‖ = sup
x∈X

|(f∗f)(x)| = sup
x∈X

|f(x)f(x)|

= sup
x∈X

|f(x)|2 =
(
sup
x∈X

|f(x)|
)2

= ‖f‖2.

We note that C(X) as in the previous example is a commutative C∗-
algebra, meaning that the multiplication operation is commutative. It is
actually the case that all commutative unital C∗-algebras are isomorphic
to a unique algebra of the form C(X) as in the previous example. In fact,
even more is true, namely that the above functor C is actually one half
of a duality between the categories of compact Hausdorff spaces and unital
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commutative C∗-algebras that “extends” Stone duality in a way that we will
now explain. The discussion that follows is far from complete and we freely
omit many details as we are merely trying to outline the general idea.

We first remark that the category of C∗-algebras has as its objects C∗-
algebras and with its morphisms *-homomorphisms, which are linear maps
which also preserve the multiplication and *-operations. It is worth noting
that such maps are automatically contractive, that is, they have operator
norm at most 1. (This is peculiar to C∗-algebras and does not necessarily
hold for *-homomorphisms between arbitrary Banach *-algebras.) The cate-
gory of commutative unital C∗-algebras forms a subcategory of the category
of C∗-algebras where the morphisms are required to be unital, that is, they
must map the identity to the identity. (Thus, the category of commutative
unital C∗-algebras is not a full subcategory of the category of commutative
C∗-algebras.)

Next note that C is indeed a contravariant functor between the category
of compact Hausdorff1 spaces and the category of commutative unital C∗-
algebras, for if f : X → X ′ is continuous, we get a *-algebra homorphism
C(f) : C(X ′)→ C(X) given by C(f)(g) = g ◦ f

We now ponder how we might get a functor going in the other direction.
We take our cue from Stone duality, namely we consider the space of mor-
phisms from our given commutative unital C∗-algebra to the “simplest” such
algebra C; this space of morphisms can be viewed as C(∗), where ∗ is a one-
point space. More precisely, we consider the functor Spec from commutative
unital C∗-algebras to compact Hausdorff spaces given by taking Spec(A) to
be the set of unital *-homomorphisms A → C. (The “ultrafilter” perspec-
tive in this context is to view Spec(A) as the set of maximal ideals of A.) It
is fairly straightforward to see that Spec(A) is a weak*-closed subset of A∗.
Since elements of Spec(A) have operator norm at most 1 (in fact exactly
1), Spec(A) is weak*-compact by Exercise 14.2.24. Thus Spec(A) is indeed
an object in the category of compact Hausdorff spaces. Here is how Spec
acts on morphisms: If h : A → A′ is a unital *-homomorphism, then we
set Spec(h) : Spec(A′) → Spec(A) to be given by Spec(h)(i) := i ◦ h. It is
straightforward to verify that Spec(h) is indeed weak*-continuous.

Theorem 14.3.7 (Gelfand duality). The functors C and Spec witness that
the category of compact Hausdorff spaces and the category of commutative
unital C∗-algebras are dually equivalent.

We will not discuss the proof in too much detail, but we at least want to
explain how to witness that the compositions of the two functors are natu-
rally isomorphic to the respective identity functors. On the one hand, given

1We require Hausdorff here so as to be able to recover X from C(X).
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a compact Hausdorff space X, one can show that Spec(C(X)) is homeomor-
phic to X by showing that, given any homomorphism h : C(X)→ C, there
is a unique xh ∈ X such that h(f) = f(xh) for all f ∈ C(X). Thus, the
mapping h �→ xh : Spec(C(X))→ X is the desired homeomorphism. On the
other hand, one can show that C(Spec(A)) is isomorphic to A by showing
that every continuous function f : Spec(A)→ C is of the form f(h) = h(af )
for a unique af ∈ A. Consequently, the map f �→ af : C(Spec(A)) → A is
the desired isomorphism. Of course, one must show that everything here is
“natural”, but this is all fairly routine.

We now briefly discuss why Gelfand duality is an “extension” of Stone
duality (see Section 3.4). Let X be a Stone space. Then Stone duality
associates to X a Boolean algebra Cl(X), the collection of clopen subsets of
X, while Gelfand duality associates to it a commutative unital C∗-algebra
C(X). How do we see that these algebraic associations “agree”? It turns
out that the key is to identify C(X) with its Boolean algebra of projections,
which we now define.

Definition 14.3.8. A projection in a C∗-algebra A is an element p such
that p2 = p∗ = p. We let P(A) denote the set of projections in A.

The terminology comes from the case that the C∗-algebra is B(H) for
some Hilbert space H. Recall that in this case, given any closed subspace K
of H and any x ∈ H, one can write x = y+z, with y ∈ K and z ∈ K⊥, where
K⊥ denotes the closed subspace of H consisting of elements orthogonal to
all elements of K; moreover, such a decomposition is unique.

Definition 14.3.9. If H is a Hilbert space and K is a closed subspace of H,
then the linear map P = PK : H → H for which P (x) is the unique element
of K such that x − P (x) ∈ K⊥ for all x ∈ H, is called the orthogonal
projection of H onto K.

It is clear that an orthogonal projection map as in the previous definition
is a projection in the C∗-algebra B(H). Conversely, it can be shown that any
projection in B(H) is an orthogonal projection onto some closed subspace.

Note that in any unital C∗-algebra, 0 and 1 are projections.

Exercise 14.3.10. Given any compact space X, prove that the projections
in C(X) are precisely those continuous functions f : X → C such that
f(x) ∈ {0, 1} for all x ∈ X.

Exercise 14.3.11. Given any unital C∗-algebra A, prove that P(A) is a
Boolean algebra under the operations p ∨ q := p + q − pq and p ∧ q := pq.
Moreover, prove that P is actually a functor from the category of unital
C∗-algebras to the category of Boolean algebras.
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Until further notice, C denotes the restriction of the functor above to the
subcategory of Stone spaces. We now have two functors from Stone spaces
to Boolean algebras, namely Cl and P ◦C.

Theorem 14.3.12. Cl and P ◦C are naturally isomorphic functors.

Proof sketch. Given a Stone space X, define ηX : Cl(X) → P(C(X)) by
ηX(U) is the function which is 1 on U and 0 on U c. The collection of ηX ’s
can be verified to witness the conclusion of the theorem. �

We next want to give a C∗-algebraic characterization of the commutative
unital C∗-algebras that arise as C(X) for X a Stone space. Here is the
relevant definition:

Definition 14.3.13. A C∗-algebra A is said to have real rank 0 if the
closed linear span of P(A) in A is equal to all of A.

Fact 14.3.14. If A is a commutative unital C∗-algebra, then A has real
rank 0 if and only if Spec(A) is a Stone space.

Until further notice Spec denotes the restriction of the functor above
to the subcategory of real rank 0 commutative unital C∗-algebras. We now
have two functors from the aforementioned category to the category of Stone
spaces, namely Spec and S ◦P. (Recall that if A is a Boolean algebra, then
S(A) is the Stone space of all ultrafilters on A.)

Theorem 14.3.15. Spec and S ◦ P are naturally isomorphic functors.

Proof. Given a real rank 0 commutative unital C∗-algebra A, define εA :
Spec(A) → S(P(A)) by εA(h) := h � P (A). Note that h � P(A) does
indeed take values in {0, 1} and the restriction is a Boolean algebra homo-
morphism. The collection of εA’s can be verified to witness the conclusion
of the theorem. �

From the above, one can deduce the following:

Theorem 14.3.16. Cl ◦Spec and C ◦ S witness that the category of real
rank 0 commutative unital C∗-algebras and the category of Boolean algebras
are equivalent categories.

It is with all of the above natural identifications that Gelfand duality
restricted to the categories of Stone spaces and real rank 0 commutative
unital C∗-algebras “is” just Stone duality.

We now leave the abstract nonsense and return to ultraproduct related
matters.
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Exercise 14.3.17. If (Ai)i∈I is a family of C∗-algebras and U is an ultrafilter
on I, prove that the Banach space ultraproduct

∏
U Ai is also a C∗-algebra

with the pointwise operations. If U -almost all of the factors are commutative
(resp., unital), prove that

∏
U Ai is also commutative (resp., unital).

We recall from Example 6.10.8 that the category of compact Hausdorff
spaces admits ultracoproducts. Combining this with Exercise 14.3.17 and
Exercise 6.10.6, we arrive at:

Theorem 14.3.18. Suppose that (Ai)i∈I is a family of commutative unital
C∗-algebras and (Xi)i∈I is a family of compact Hausdorff spaces. Further
suppose that U is an ultrafilter on I. Then

Spec

(∏
U

Ai

)
∼=
∐
U

Spec(Ai) and C

(∐
U

Xi

)
∼=
∏
U

C(Xi).

Here is an example of how this perspective can be useful when trying to
identify topological properties of ultracoproducts.

Exercise 14.3.19.

(1) If X is a compact Hausdorff space, prove that X is connected if
and only if P(C(X)) = {0, 1}.

(2) Suppose that (Xi)i∈I is a family of compact Hausdorff spaces and
U is an ultrafilter on I. Suppose further that [f ]U ∈

∏
U C(Xi) is

a projection. Prove that there are projections g(i) ∈ C(Xi) such
that [f ]U = [g]U .

(3) Suppose that (Xi)i∈I is a family of compact Hausdorff spaces and
U is an ultrafilter on I. Suppose further that each Xi is connected.
Prove that

∐
U Xi is also connected.

14.4. The tracial ultraproduct construction

In this section, we discuss a different class of operator algebras, the class
of von Neumann algebras, and an ultraproduct construction appropriate for
studying a large class of them. In order to introduce von Neumann algebras,
it behooves us to consider a different perspective on C∗-algebras.

Definition 14.4.1. A concrete C∗-algebra is a *-subalgebra of B(H) (for
H some Hilbert space) that is closed in the operator norm topology.

It is clear that a concrete C∗-algebra is a C∗-algebra in the sense from
before. On the other hand:

Fact 14.4.2 (Gelfand-Neimark). Every C∗-algebra is isomorphic to a con-
crete C∗-algebra.
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Taking this “concrete” perspective on operator algebras, we arrive at a
new class of operator algebras by considering a different topology on B(H):

Definition 14.4.3. The strong operator topology (SOT) on B(H) is
the topology of pointwise convergence. More precisely, given T ∈ B(H), a
basic SOT-open neighborhood of T is of the form {S ∈ B(H) : ‖Sξ−Tξ‖ <
ε for all ξ ∈ F}, where F ranges over the finite subsets of H and ε ranges
over positive real numbers.

Note that we will start using Greek letters for elements of H, reserving
Roman letters for elements of operator algebras.

Definition 14.4.4. A von Neumann algebra is a unital ∗-subalgebra of
B(H) closed in the strong operator topology.

Remark 14.4.5. Note that if Ti → T in operator norm, then Ti → T in
the strong operator topology: if ξ ∈ H, then ‖Tiξ−Tξ‖ ≤ ‖Ti−T‖‖ξ‖ → 0
since ‖Ti − T‖ → 0. Consequently, every von Neumann algebra is a unital
C∗-algebra.

Remark 14.4.6. In the spirit of “concrete” versus “abstract,” what we have
defined above is a concrete von Neumann algebra. There is also an abstract
characterization: a C∗-algebra M is a von Neumann algebra if there is a
Banach space X such that X∗ ∼= M (as Banach spaces).

Here are some examples of von Neumann algebras. We start with a
rather trivial (but still important) example:

Example 14.4.7. B(H) is a von Neumann algebra. In particular, Mn(C),
the algebra of n × n matrices over C, is a von Neumann algebra, as it is
B(H) for H an n-dimensional Hilbert space.

Example 14.4.8. Suppose that (X,μ) is a probability space. Recall that

L2(X,μ) is a Hilbert space under 〈f, g〉 :=
∫
X f(x)g(x)dμ(x). Given f ∈

L∞(X,μ), define Mf : L2(X,μ)→ L2(X,μ) to be Mf (g) := fg. Then Mf is
a bounded operator on L2(X,μ) with ‖Mf‖ = ‖f‖∞. Let π : L∞(X,μ) →
B(L2(X,μ)) be given by π(f) := Mf . We claim that π(L∞(X,μ)) is a
commutative von Neumann algebra. (One often abuses notation and simply
says that L∞(X,μ) is a von Neumann algebra.) To see this, suppose that T
is in the strong operator closure of π(L∞(X,μ)), say T = limiMfi (strong
operator convergence). Set f := T (1). Then for any g ∈ L∞(X,μ), we have

T (g) = lim
i
Mfig = lim

i
MfiMg(1) = Mg(lim

i
Mfi(1)) = gf.

It follows that f ∈ L∞(X,μ). Moreover, since L∞(X,μ) is dense in L2(X,μ),
it follows that T (g) = fg for all g ∈ L2(X,μ), that is, T = Mf .
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Remark 14.4.9. The converse of the previous example is also true, that is,
every commutative von Neumann algebra is isomorphic to one of the form
L∞(X,μ) for some probability space (X,μ). Thus, von Neumann algebra
theory is often referred to as “noncommutative measure theory” (just as
C∗-algebra theory is referred to as “noncommutative topology”).

The next example is important in representation theory and will also be
important in the next section.

Example 14.4.10. Suppose that G is a group. Let �2(G) be the Hilbert
space formally generated by an orthonormal basis ζh for all h ∈ G. For any
g ∈ G, define ug := f(g) to be the linear operator on �2(G) determined by
ug(ζh) = ζgh for all h ∈ G. Notice that f(g) is unitary for all g ∈ G (since
u∗g = u−1

g = ug−1) and so f is a unitary representation of G; it is called
the left regular representation. The group von Neumann algebra
of G, denoted L(G), is the von Neumann subalgebra of B(�2(G)) generated
by f(G).

In order to understand the difference between operator norm convergence
and strong operator convergence, consider the following:

Exercise 14.4.11. Suppose that (Pn)n∈N is a sequence of projections from
B(H) such that Pn < Pn+1 for all n ∈ N, that is, such that Pn(H) �

Pn+1(H). Set Hn := Pn(H), H∞ :=
⋃

nHn, and P to be the projection
onto H∞. Prove that Pn converges in the strong operator topology to P
but does not converge in the norm topology. Moreover, prove that P is the
least upper bound of the sequence (Pn)n∈N (in the Boolean algebra sense of
the ordering).

We now turn to the issue of taking ultraproducts of von Neumann alge-
bras. Since von Neumann algebras are also C∗-algebras, one might wonder
if we can simply take the usual C∗-algebra ultraproduct of a family of von
Neumann algebras and the result will be a von Neumann algebra again.
Sadly, this is not the case, as the next proposition shows. Here, �∞(n) is the
von Neumann algebra associated to the probability space on n points where
each point has measure 1

n .

Proposition 14.4.12. For any U ∈ βN \ N,
∏

U �∞(n) is not a von Neu-
mann algebra.

Proof. Set A :=
∏

U �∞(n). For each m ∈ N, define fm ∈
∏

n∈N �∞(n)
by setting fm(n)(i) = 1 if i ≤ m and 0 otherwise. Note that each fm(n)
is a projection in �∞(n), whence [fm]U is a projection in A. Moreover,
[fm]U < [fm+1]U for all m ∈ N. (Here, we are using the fact that in von
Neumann algebras L∞(X), the ordering on projections coincides with the
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usual ordering on functions.) We claim that this sequence has no least upper
bound in A, whence A is not a von Neumann algebra by Exercise 14.4.11.
Indeed, suppose, toward a contradiction, that [f ]U is the least upper bound
of the sequence ([fm]U)m∈N. For each m ∈ N, set

Am := {n ≥ m : f(n)(i) ≥ 1 for all i ≤ m}.
By assumption, each Am ∈ U . For each n, set m(n) := max{m : n ∈ Am}.
Note that limU m(n) = ∞. Let g ∈

∏
n∈N �∞(n) be given by g(n)(i) =

f(n)(i) for i < m(n) while g(n)(i) = 0 for i ≥ m(n). Then g(n) < f(n) for
all n, so [g]U < [f ]U . However, given any m ∈ N, if n ∈ Am, then since
m − 1 < m(n), for all i = 1, . . . ,m − 1, we have g(n)(i) ≥ 1 = fm−1(n)(i).
Consequently, if n ∈ Am, then g(n) ≥ fm−1(n), whence [g]U ≥ [fm−1]U .
It follows that [g]U is also a upper bound for the sequence ([fm]U)m∈N, a
contradiction to the choice of [f ]U . �

There is, however, an ultraproduct construction that works for a large
family of von Neumann algebras and which yields ultraproducts that are
von Neumann algebras again. The trick is to consider a metric ultraproduct
with respect to a different metric (that is, not the metric that arises from the
operator norm). Such metrics will arise from traces, which we now define.
In what follows, all C∗-algebras will be assumed to be unital.

Definition 14.4.13. If A is a C∗-algebra, then a tracial state on A is a
linear functional τ : A→ C such that

(1) τ(1) = 1;

(2) τ is positive, that is, for all a ∈ A, tr(a∗a) ≥ 0;

(3) τ(ab) = τ(ba) for all a, b ∈ A.

The tracial state is called faithful if, in addition, we have:

(4) τ(a∗a) = 0 if and only if a = 0.

Before we show how the notion of tracial states helps us in defining our
new ultraproduct construction, we give a few examples:

Example 14.4.14. The normalized trace τn on Mn(C) is given by defining
τn(a) =

1
n

∑
i aii. It is straightforward to check that τn is a faithful tracial

state on Mn(C).

However, if H is infinite-dimensional, then there is no faithful tracial
state on B(H). Indeed, let H1 be a proper closed subspace of H with the
same dimension as H. Let v : H → H1 be a surjective linear isometry,
which is possible since H and H1 have the same dimension (whence are
isomorphic) and view v as an element of B(H). Let p ∈ B(H) denote the
projection onto H1. It is straightforward to verify that v∗(x) = v−1(p(x)),
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whence v∗v = 1 and vv∗ = p. Consequently, if τ were a faithful tracial state
on B(H), then we would have that

1 = τ(1) = τ(v∗v) = τ(vv∗) = τ(p)

and thus τ(1−p) = 0. Since (1−p)∗(1−p) = 1−p, faithfulness of τ implies
that 1 − p = 0, that is, p = 1, which is a contradiction to the fact that
H1 �= H.

Example 14.4.15. Given any probability space (X,μ), there is a faithful
tracial state τ on L∞(X,μ) given by τ(f) :=

∫
X fdμ. For this reason, traces

are often considered the noncommutative version of integrals.

Example 14.4.16. For any group G, there is a faithful tracial state τ on
L(G) defined by setting τ(x) := 〈xζe, ζe〉.

The previous example might seem a bit strange at first. Here is an
exercise to help understand where this comes from:

Exercise 14.4.17. Suppose that G is a finite group of size n, whence L(G)
is a von Neumann subalgebra of B(�2(G)) ∼= Mn(C). Show that the above
trace on L(G) is the restriction of the normalized trace τn on Mn(C) to
L(G).

We now return to how tracial states help us define new metrics. Indeed, if
τ is a faithful tracial state on a C∗-algebraA, then τ induces an inner product
on A given by 〈x, y〉τ := τ(y∗x). This inner product on A in turn induces

a norm ‖ · ‖τ on A defined by ‖x‖τ :=
√
〈x, x〉τ =

√
tr(x∗x). As usual, the

norm ‖ · ‖τ gives rise to a metric dτ on A given by dτ (x, y) := ‖x− y‖τ .

Lemma 14.4.18. Suppose that τ is a faithful tracial state on A. Then for
all x ∈ A, we have |τ(x)| ≤ ‖x‖τ .

Proof. Note that |τ(x)| = 〈x, 1〉τ . By the Cauchy-Schwarz inequality, we
have |τ(x)| ≤ ‖x‖τ · ‖1‖τ = ‖x‖τ , as desired. �

Example 14.4.19. Consider the normalized trace τn on Mn(C). It is
straightforward to verify that, for any a ∈ Mn(C), we have τn(a

∗a) =
1
n

∑n
i,j=1 |aij |2, whence ‖a‖τ =

√
1
n

∑n
i,j=1 |aij |2. Note that the induced

metric dτ on Mn(C), when restricted to Un, is exactly the Hilbert-Schmidt
metric introduced Exercise 13.1.11. We will have more to say about this
connection in the next section.
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Example 14.4.20. If τ is the tracial state on L∞(X,μ) given by τ(f) =∫
fdμ, then the corresponding norm on L∞(X,μ) is the norm more com-

monly denoted ‖ · ‖2, that is,

‖f‖τ = ‖f‖2 =
√∫

X
|f |2dμ.

Remark 14.4.21. Motivated by the previous example, if the trace τ is clear
from context, then the norm ‖ · ‖τ is often written as ‖ · ‖2 and referred to
as the 2-norm on A.

Example 14.4.22. Consider the projections [fm]U ∈
∏

U �∞(n) in the proof
of Proposition 14.4.12. Recall that fm(n)(i) = 1 if i ≤ m and fm(n)(i) = 0
otherwise. In particular, letting μn denote the normalized counting measure
on �∞(n), we have

∫
�∞(n) |fm|2dμn = m+1

n . Consequently, letting τn denote

the corresponding trace on �∞(n), we have limU ‖fm‖τn = 0 for all m ∈ N.

Recall that the projections [fm]U from the previous example were an
issue when trying to conclude that

∏
U �∞(n) is a von Neumann algebra.

However, these problematic projections “disappear in the limit” if we switch
focus to the metric dτ instead of the metric induced from the operator
norm. That being said, there is an issue with this approach as, in general,
multiplication need not be uniformly continuous with respect to dτ , even
on dτ -bounded subsets. There is, however, a compromise that turns out to
work and which relies on the following inequality:

Lemma 14.4.23. Suppose that τ is a tracial state on the C∗-algebra A.
Then for x, y ∈ A, we have ‖xy‖τ ≤ ‖x‖‖y‖τ and ‖xy‖τ ≤ ‖x‖τ‖y‖.

Proof. We only prove the former statement, the proof of the latter being
nearly identical. We begin by computing

‖xy‖2τ = τ((xy)∗(xy)) = τ(y∗x∗xy) = τ(x∗xyy∗).

Next, a little bit of functional analysis tells us that (‖x∗x‖ · 1) − x∗x is a
positive element of A. (It helps to think of the function spaces C(X) here:
for any function f ∈ C(X), ifM = supx∈X |f(x)|, then the constant function
M dominates f . This special case and Gelfand duality is what is behind
the proof of the general case.) Since the product of two positive elements is
positive, we have that ‖xy‖2τ = τ(x∗xyy∗) ≤ τ(‖x‖2yy∗) = ‖x‖2‖y‖2τ . �

Lemma 14.4.23 immediately implies:

Corollary 14.4.24. If τ is a tracial state on the C∗-algebra A, then for all
x ∈ A, we have ‖x‖τ ≤ ‖x‖.
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Lemma 14.4.23 shows that, when restricted to subsets of A that are
bounded in operator norm, multiplication becomes uniformly continuous
(even Lipschitz) with respect to dτ . This leads us to the definition of the
tracial ultraproduct. Suppose that (Ai, τi)i∈I is a family of C∗-algebras
equipped with faithful tracial states and U is an ultrafilter on I. We set

�∞(Ai) := {f ∈
∏
i∈I

Ai : sup
i∈I
‖f(i)‖ <∞}

and

ItrU := {f ∈ �∞(Ai) : lim
U
‖f(i)‖τi = 0}.

Proposition 14.4.25. ItrU is a closed two-sided ideal of the C∗-algebra
�∞(Ai).

Proof. ItrU is a vector subspace of �∞(Ai) since each ‖ · ‖τi is a norm on Ai.
To see that ItrU is a two-sided ideal, fix f ∈ �∞(Ai) and g ∈ ItrU . Let M :=
supi∈I ‖f(i)‖. Then by Lemma 14.4.23, we have ‖(fg)(i)‖τi ≤ M‖g(i)‖τi,
whence limU ‖(fg)(i)‖τi = 0, and fg ∈ ItrU . The proof that gf ∈ ItrU is
identical.

It remains to see that ItrU is closed. Toward that end, fix a Cauchy
sequence (fn)n∈N from ItrU with limit f ∈ �∞(Ai); we must show that f ∈ ItrU .
Fix ε > 0 and take n ∈ N such that ‖f − fn‖ < ε. Given i ∈ I, we have

‖f(i)‖τi ≤ ‖f(i)− fn(i)‖τi + ‖fn(i)‖τi
≤ ‖f(i)− fn(i)‖+ ‖fn(i)‖τi < ε+ ‖fn(i)‖τi ,

where the second inequality sign uses Corollary 14.4.24. Taking ultralimits,
we have limU ‖f(i)‖ ≤ ε; since ε is arbitrary, we have that f ∈ ItrU . �

It is a standard fact that the quotient of a C∗-algebra by a closed two-
sided ideal is a C∗-algebra again (with the obvious quotient operations),
allowing us to make the following:

Definition 14.4.26. Using the notation above, the tracial ultraproduct
of the family (Ai, τi)i∈I is the C∗-algebra �∞(Ai)/ItrU . To distinguish this

ultraproduct from the usual C∗-ultraproduct, we write
∏tr

U (Ai, τi), or simply∏tr
U Ai.

In the rest of this section, given f ∈ �∞(Ai), we will continue to denote its
coset in

∏tr
U Ai by [f ]U . If we were behaving, we would decorate it differently,

such as [f ]trU . However, this notation would become very cumbersome and
we hope this abuse causes no confusion.

Proposition 14.4.27. Using the notation above, there is a well-defined
faithful tracial state τ on

∏tr
U Ai given by τ([f ]U) := limU τi(f(i)).
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Proof. First note that, by Lemma 14.4.18 and Corollary 14.4.24, given
f ∈ �∞(Ai), we have

sup
i∈I
|τi(f(i))| ≤ sup

i∈I
‖f(i)‖τi ≤ sup

i∈I
‖f(i)‖ <∞,

whence limU |τi(f(i))| exists. To see that the function is well-defined, sup-
pose [f ]U = [g]U , that is, limU ‖f(i) − g(i)‖τi = 0. By Lemma 14.4.18, we
have limU |τi(f(i)−g(i))| ≤ limU ‖f(i)−g(i)‖τi = 0, whence limU τi(f(i)) =
limU τig(i)), as desired. It is fairly clear that τ is a tracial state. To see that
τ is faithful, note that

τ([f ]∗[f ]) = lim
U

τi(f(i)
∗f(i)) = lim

U
‖f(i)‖τi.

Consequently, if τ([f ]∗[f ]) = 0, then f ∈ ItrU , that is, [f ]U = 0. �

We started this discussion by pondering an ultraproduct construction
for von Neumann algebras that yielded a von Neumann algebra again. It
turns out that if we take the tracial ultraproduct of a family of tracial
von Neumann algebras satisfying an extra continuity condition, then the
resulting tracial ultraproduct will indeed be a von Neumann algebra (and
the ultraproduct trace will also satisfy that extra continuity condition). In
the remainder of this section, for a C∗-algebra A, we denote its operator
norm unit ball by A≤1.

Definition 14.4.28. If M is a von Neumann algebra, then a tracial state τ
on M is normal if τ � M≤1 is continuous with respect to the strong operator
topology. A trace on M is a faithful normal tracial state. A tracial von
Neumann algebra is a pair (M, τ), where M is a von Neumann algebra
and τ is a trace on M .

Remark 14.4.29. The tracial states defined in Examples 14.4.15 and
14.4.16 are normal.

We devote the rest of this section to proving the following:

Theorem 14.4.30. Suppose that (Mi, τi)i∈I is a family of tracial von Neu-

mann algebras and U is an ultrafilter on I. Then
∏tr

U (Mi, τi) is a tracial
von Neumann algebra when equipped with the ultralimit trace introduced in
Proposition 14.4.27.

Recall that, at the moment, even if we are considering a tracial ultra-
product of a family of von Neumann algebras equipped with tracial states,
the tracial ultraproduct is merely a C∗-algebra equipped with a tracial state.
We thus need a criteria for knowing when such a C∗-algebra is in fact a von
Neumann algebra. The key is the so-called GNS construction (named
after Gelfand, Naimark, and Segal), which we now describe.
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Suppose that A is a C∗-algebra equipped with a faithful tracial state τ .
We define L2(A, τ) to be the completion of A with respect to the metric dτ .
It is a standard fact that the inner product 〈·, ·〉τ extends naturally to an
inner product on L2(A, τ), which we continue to denote by 〈·, ·〉τ , whence
L2(A, τ) is a Hilbert space. For x ∈ A, we write x̂ if we wish to emphasize
its role as a vector in the Hilbert space L2(A, τ). Lemma 14.4.23 states that,
for x, y ∈ A, we have

‖xŷ‖τ ≤ ‖x‖‖ŷ‖τ .
Since the vectors ŷ, for y ∈ A, are dense in L2(A, τ), we see that the map
ŷ �→ xŷ : A → A extends to a bounded operator πτ (x) ∈ B(L2(A, τ)) with
‖πτ (x)‖ = ‖x‖. Consequently, we have a faithful representation πτ : A →
B(L2(A, τ)).

Example 14.4.31. If A = L∞(X,μ) and τ(f) =
∫
X fdμ, then L2(A, τ) =

L2(X,μ) and πτ is an isomorphism between A and πτ (A).

In general, if M is a von Neumann algebra with tracial state τ , then
πτ (M) need not be a von Neumann subalgebra of B(L2(M, τ)), that is,
πτ (M) may not be an SOT-closed subalgebra of B(L2(M, τ)). However:

Fact 14.4.32. If τ is a tracial state on the von Neumann algebra M , then τ
is normal if and only if πτ (M) is a von Neumann subalgebra of B(L2(M, τ)).

Proof. See [1, Prop 2.5.12, Theorem 2.6.1, and Proposition 2.6.4]. �

We return to the general case, that is, τ is a faithful tracial state on
the C∗-algebra A. Set M to be the closure of πτ (A) in the strong operator
topology, so M is a von Neumann subalgebra of B(L2(A, τ)). We note that
τ extends to a trace on M given by τ(x) = 〈x1̂, 1̂〉τ . (Note that, for a ∈ A,
we have τ(πτ (a)) = τ(a), whence τ really is an extension of its restriction
to A.)

The next proposition will be the key to the proof of Theorem 14.4.30:

Proposition 14.4.33. Continuing with the notation from above, we have
that πτ (A≤1) = M≤1 if and only if A≤1 is dτ -complete. In this case, A is a
von Neumann algebra and τ is a trace on A (that is, τ is normal).

Proof sketch. First suppose that πτ (A≤1) = M≤1. To show that A≤1

is dτ -complete, fix a dτ -Cauchy sequence (xn)n∈N from A≤1. By Lemma
14.4.23, given y ∈ A, we have ‖xnŷ − xmŷ‖τ ≤ ‖y‖‖xn − xm‖τ , whence
(xnŷ)n∈N is a Cauchy sequence in L2(A, τ). It is readily verified that the
map y �→ limn→∞ xnŷ : A→ L2(A, τ) extends to an element x ∈ B(L2(A, τ))
with ‖x‖ = limn→∞ ‖xn‖τ . By definition, πτ (xn)→ x in the strong operator
topology. Since x ∈ M≤1, our assumption tells us that x ∈ πτ (A≤1), say
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x = πτ (x
′) with x′ ∈ A≤1. It remains to show that limn→∞ dτ (xn, x

′) = 0,
which follows from the fact that

‖xn − x′‖τ = ‖πτ (xn)1̂− πτ (x
′)1̂‖ = ‖πτ (xn)1̂− x1̂‖ → 0.

Now suppose that A≤1 is dτ -complete and suppose that x ∈ M≤1; we wish
to show that x ∈ πτ (A≤1). By the Kaplansky Density Theorem, there is a
sequence (xn)n∈N from A≤1 such that πτ (xn) → x in the strong operator
topology. (This may seem trivial from the fact x is in the strong operator
closure of πτ (A), but getting the vectors to have operator norm at most
1 is the content of the theorem.) In particular, πτ (xn)(1̂) → x1̂, whence
‖xn‖τ = ‖πτ (xn)1̂‖τ → ‖x1̂‖τ . It follows that the sequence (xn)n∈N is
dτ -Cauchy, whence there is y ∈ A≤1 such that limn→∞ dτ (xn, y) = 0. By
Lemma 14.4.23, it follows that, for z ∈ A, we have

‖(xn − y)ẑ‖τ ≤ ‖z‖‖(xn − y)1̂‖τ = ‖z‖‖xn − y‖τ .
Since A is dense in L2(A, τ), it follows that πτ (xn) → πτ (y) in the strong
operator topology. We conclude that x = πτ (y), as desired.

The moreover part follows immediately from the first part and Fact
14.4.32. �

We are now ready to prove our main result:

Proof of Theorem 14.4.30. Recall that we have a family (Mi, τi)i∈I of
tracial von Neumann algebras and an ultrafilter U on I. We wish to show
that the tracial ultraproduct M :=

∏tr
U Mi, which, a priori, is merely a C∗-

algebra equipped with its ultraproduct trace τ , is actually a von Neumann
algebra. To do this, we use the criteria developed in Proposition 14.4.33,
that is, we show that M≤1 is dτ -complete. The proof is nearly identical to
the proof of Theorem 11.3.1 with a small wrinkle.

Suppose that ([xn]U)n∈N is a dτ -Cauchy sequence from M≤1; we wish
to show that it has a limit in M≤1. By rescaling if necessary, we may
assume that ‖[xn]U‖ < 1 for each n ∈ N. The benefit of making this slight
change is that we may then assume that xn(i) ∈ (Mi)≤1 for all n ∈ N and all
i ∈ I. We are thus considering a Cauchy sequence in the metric ultraproduct∏

U ((Mi)≤1, dτi), where each metric space ((Mi)i≤1, dτi) is complete by Fact
14.4.32 and Proposition 14.4.33. Consequently, Theorem 11.3.1 implies that
the sequence ([xn]U)n∈N has a limit in

∏
U ((Mi)≤1, dτi), which is of course

contained in M . �

14.5. The Connes embedding problem

In this section, all ultraproducts will be tracial ultraproducts, whence we
simplify our notation and simply use the usual ultraproduct notation. In
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addition, when the trace on a von Neumann algebra is the “canonical” one,
we omit mention of the trace.

In his seminal paper [34], Connes made the following comment. (Don’t
worry, we will translate into our terminology right afterward.)

“We now construct an approximate imbedding of N in R. Apparently
such an imbedding ought to exist for all II1 factors because it does for the
regular representation of free groups. However, the construction below relies
on condition 6.”

Connes was considering a particular tracial von Neumann algebra N
satisfying some particular extra conditions. The first sentence, in our termi-
nology, indicates that he is about to construct an injective trace-preserving
*-homomorphism from N to a tracial ultrapower of a particularly impor-
tant tracial von Neumann algebra known as the hyperfinite II1 factor R.
Rather than define R here2, it suffices to replace this statement with the
desire to embed N into

∏
U Mn(C) for some nonprincipal ultrafilter U on

N. His next sentence then asserts that such an embedding ought to exist
for any tracial von Neumann algebra N (he writes “II1 factor” which is a
particular kind of tracial von Neumann algebra, but this does not affect the
statement) since it does for L(F2), the von Neumann algebra associated to
the free group F2. He does not attempt to prove this fact and he simply
mentions that his embedding uses the fact that N satisfies some particular
extra condition.

This seemingly innocuous remark has since turned into one of the most
famous problems in operator algebras. Some people call it the Connes Em-
bedding Conjecture, but “ought to” does not seem to indicate a strong
enough belief that the result is actually true, whence many downgrade “Con-
jecture” to “Problem”:

Conjecture 14.5.1 (Connes embedding problem (CEP)). For any separa-
ble tracial von Neumann algebra M , there is an embedding of tracial von
Neumann algebras M ↪→

∏
U Mn(C).

Here, a tracial von Neumann algebra M is called separable if M≤1 is
dτ -separable.

The Connes Embedding Problem has proven to be one of the most in-
teresting open problems in the theory of operator algebras. It has highly

2By a serious theorem of Connes (see [34, Corollary 7.2]), R ∼= L(G) for any amenable group
G in which all conjugacy classes (except the trivial one) are infinite. An example of such a group
is

⋃
n≥2 Sn. This is a perfect example of how the group von Neumann algebra can “forget” a lot

of the algebraic structure of the original group.
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nontrivial reformulations in terms of C∗-algebras, quantum information the-
ory, logic, etc, . . . In this section, we only mention a connection with the
class of hyperlinear groups introduced in the previous chapter.

Definition 14.5.2. Suppose that A is a unital C∗-algebra. An element
u ∈ A is called a unitary if uu∗ = u∗u = 1.

It is fairly easy to see that the collection of unitaries in A form a group
under multiplication, which we denote by U(A).

Exercise 14.5.3. Suppose that τ is a faithful tracial state on A. Prove that
the metric dτ restricted to U(A) is a bi-invariant metric (see Section 13.1)
on U(A).

In particular, when A = Mn(C), the metric dτ on U(Mn(C)) = Un is
the Hilbert-Schmidt metric introduced in the previous chapter.

The next fact indicates that “almost” unitaries are “near” actual uni-
taries:

Fact 14.5.4. Given ε > 0, there is δ > 0 such that, for any tracial von
Neumann algebra M and any x ∈M≤1, if ‖xx∗ − 1‖τ , ‖xx∗ − 1‖τ < δ, then
there is a unitary u ∈ U(M) such that ‖x− u‖τ < ε.

Exercise 14.5.5. Suppose that (Mi)i∈I is a family of tracial von Neumann
algebras and U is an ultrafilter on I. Prove that U(

∏
U Mi) =

∏
U U(Mi)

as bi-invariant metric groups. (Hint. Use the previous fact.)

By the previous exercise, we see that if G is a countable group such that
L(G) embeds into

∏
U Mn(C), then G is hyperlinear (as defined in Section

13.4), for G embeds as a subgroup of U(L(G)), which in turn embeds in
U(
∏

U Mn(C)) =
∏

U U(Mn(C)) =
∏

U Un. The main result in this section
is the converse of this observation:

Theorem 14.5.6 (Radulescu[145]). For any countable group G, G is hyper-
linear if and only if there is an embedding of tracial von Neumann algebras
L(G) ↪→

∏
U Mn(C). Consequently, a positive solution to CEP implies that

all groups are hyperlinear.

The following result explains how one obtains embeddings from a group
von Neumann algebra L(G) into an arbitrary tracial von Neumann algebra:

Proposition 14.5.7. Suppose that G is a group and M is a tracial von
Neumann algebra. Then a group homomorphism i : G → U(M) extends to
an embedding of tracial von Neumann algebras ĩ : L(G)→M if and only if
τ(i(g)) = 0 for all g ∈ G \ {e}.
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Proof sketch. The forward direction is clear. For the backward direction,
note that such an embedding i extends to an embedding of the span of
{ζg : g ∈ G} in L(G) into M that preserves the *-algebra operations and
the trace. It remains to see that this embedding extends to all of L(G). The
key to this is that the strong operator topologies on L(G)≤1 and M≤1 are
the same as those induced by the metrics arising from the trace (as shown in
the proof of Proposition 14.4.33), which are preserved by assumption. �

At first glance, given a hyperlinear group G, we only know that there is
a group homomorphism i : G→

∏
U Un = U(

∏
U Mn(C)) such that i(g) �= 1

for all g ∈ G\{e}. In order to obtain an embedding as in Proposition 14.5.7,
one needs to perform some cosmetic surgery on this initial embedding i, as
we now explain.

Lemma 14.5.8. Suppose that A is a C∗-algebra and u ∈ U(A) is such that
|τ(u)| = 1. Then u = τ(u) · 1.

Proof. The result follows from the calculation

‖u− τ(u) · 1‖2τ = τ((u∗ − τ(u) · 1)(u− τ(u) · 1)) = τ(u∗u)− |τ(u)|2 = 0.

�

Lemma 14.5.9. Given u ∈ Un, set u′ :=

(
u 0
0 1

)
∈ U2n. (The 1 in the

bottom right corner indicates the n × n identity matrix.). If u �= 1, then
| tr(u′)| < 1.

Proof. By Lemma 14.4.18, | tr(u′)| ≤ ‖u′‖τ = 1. If | tr(u′)| = 1, then by
Lemma 14.5.8, u′ = tr(u′) · 1. In this case, tr(u′) = 1, which implies that
u′ = 1 and hence u = 1. �

We now sketch the “amplification trick” pertinent to hyperlinear groups.
(See Section 13.2 above for the sofic version of this trick.) Given matrices
A and B of size m×n and p× q respectively, we define their tensor product
A⊗B to be the mp× nq matrix given by

A⊗B :=

⎛
⎜⎝

A11B A12B . . .
...

. . .

Am1B AmnB

⎞
⎟⎠

In particular, if A ∈Mn(C), then A⊗A ∈Mn2(C).

Exercise 14.5.10. Suppose that A ∈Mn(C) and τn is the normalized trace
on Mn(C). Prove that τn2(A⊗A) = τn(A)

2.
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Exercise 14.5.11. Suppose that G is a hyperlinear group. For any F ⊆ G
and any ε > 0, prove that there is n ∈ N and a function φ : G → Un

satisfying:

(1) For all g, h ∈ F , if gh ∈ F , then dτ (φ(g)φ(h), φ(gh)) < ε;

(2) If e ∈ F , then dτ (φ(e), 1) < ε;

(3) For all distinct g ∈ F \ {e}, |τ(g)| < ε.

(Hint. Use Lemma 14.5.9 and Exercise 14.5.10.)

Exercise 14.5.12. Suppose that G is a countable hyperlinear group. Prove
that there is a group homomorphism i : G →

∏
U Un such that τ(i(g)) = 0

for all g ∈ G \ {e}. (Hint. Use Exercise 14.5.11.)

Note that Proposition 14.5.7 and Exercise 14.5.12 immediately yield the
other direction of Theorem 14.5.6.

14.6. Notes and references

Banach space ultraproducts seem to appear for the first time in Krivine’s
thesis [110]. One would be remiss if one did not mention two of the more
spectacular uses of ultraproduct techniques in Banach space, namely Kriv-
ine’s theorem on block finite representability of �p and c0 and the Krivine-
Maurey theorem stating that stable Banach spaces contain some �p almost
isometrically. See Iovino’s book [87] for an in-depth discussion of these re-
sults. Our treatment in Section 14.2 follows Coleman [32]. Corollary 14.2.26
was used by Dineen in [44] to show that the bidual of a so-called JB* triple
is once again a JB* triple. The work of Wright in [184] seems to be the
earliest use of the tracial ultraproduct construction. It is no exaggeration
to say that this construction has been of incredible use in the theory of
von Neumann algebras since then. As mentioned in Section 14.5, Connes’
work in [34] makes serious use of this ultraproduct as does McDuff’s work
on central sequences in [134]. Our treatment of the tracial ultraproduct
construction relies on the book [1] in many ways. Proposition 14.4.12 is
inspired by a similar example in [143].

During the writing of this book, a group of computer scientists have
claimed to give a negative solution to the Connes Embedding Problem [91].
Since the paper involved is over 160 pages long, it may take quite a while be-
fore we have a consensus on the correctness of the solution. The connection
with computer science may seem quite strange, but it relies on earlier work
by Kirchberg [106], Fritz [60], Junge et. al [93], and Ozawa [141], showing
that the CEP is equivalent to a problem in quantum information theory
known as Tsirelson’s problem. It is worth noting that even if the proof in
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[91] is correct, it does not seem to (at this moment) give any insight into
the problem of whether or not there is a group that is not hyperlinear.



Part 4

Advanced topics





Chapter 15

Does an ultrapower
depend on the
ultrafilter?

In this chapter, we show that the question of whether or not an ultrapower of
a countable structure in a countable langauge with respect to an ultrafilter
on a countable set depends on the ultrafilter may depend on whether or not
CH is true, and whether or not it depends on CH is characterized by the
model-theoretic notion of stability. In Section 15.1, we give the background
for the discussion, define the notion of stability, and state the previous claim
precisely. In Section 15.2, we give a more-or-less complete proof of the
unstable case while in Section 15.3 we sketch a proof of the stable case,
taking a lot of model-theoretic facts about stability for granted.

15.1. Statement of results

In this chapter, we address the question appearing in the title, that is, given a
structureM and nonprincipal ultrafilters U and V, mustMU be isomorphic
to MV?

Stated in this generality, we see that the answer is obviously: no! For
example, if U and V are regular ultrafilters on sets I and J , respectively,
then |MU | = |M ||I| while |MV | = |M ||J |; as long as |M ||I| �= |M ||J |, MU

and MV cannot be isomorphic simply for cardinality reasons.

To avoid such cardinality-theoretic trivialities, let us refine the question
by assuming that U and V are on index sets of the same size, say they are
both ultrafilters on a cardinal κ. However, even in this case, we have seen

281
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instances when MU andMV need not be isomorphic. For example, as long
as Th(M) is not minimal in Keisler’s order (see Section 8.6), we see that
there is a cardinal κ and a regular nongood ultrafilter U on κ such thatMU

is not κ+-saturated. If V is a good ultrafilter on κ, thenMV is κ+-saturated,
whence MU and MV are not isomorphic.

We refine our question one last time: suppose that M is a countable
structure in a countable language and U and V are nonprincipal ultrafilters
on N. Must MU be isomorphic to MV? The reason for insisting on ul-
trafilters on N is that such ultrafilters are automatically good, whence the
phenomenon from the previous paragraph cannot appear.

The question in the previous paragraph is surprisingly complicated to
answer. Note that if M is countable and U is a nonprincipal ultrafilter on
N, thenMU is an ℵ1-saturated structure of cardinality c. If CH holds, then
MU is in fact saturated. Since MV will also be saturated for any other
nonprincipal ultrafilter V on N, Theorem 8.1.9 immediately implies:

Theorem 15.1.1. Assume that CH holds. Suppose that M is a countable
structure in a countable language. Then for any nonprincipal ultrafilters
U ,V ∈ βN \ N, we have MU ∼=MV .

So what happens if we assume that CH fails? Well, sometimes the
conclusion of the previous theorem still holds. For example, as mentioned
in Section 8.6, if T is an uncountably categorical theory (such as ACFp) and
M |= T is countable, then MU is saturated for any nonprincipal ultrafilter
U on N, whence all such ultrapowers are once again isomorphic.

However, there are seemingly simple structures such as (N, <) which,
assuming that CH fails, can have nonisomorphic ultrapowers corresponding
to ultrafilters on N (we will prove this fact in the next section). It turns out
that the key to the proof of Theorem 15.1.1 is the ordering on N: whether
or not the structureM possesses any definable relation that even resembles
an ordering is the deciding factor as to whether or not it has nonisomorphic
ultrapowers (again, assuming that CH fails). Here is the precise definition
of what it means for a structure to possess a definable relation “resembling
an ordering”:

Definition 15.1.2. Fix a language L and an L-structure M.

(1) If ϕ(x; y) is an L-formula and a, b ∈ M , write a <ϕ b if M |=
ϕ(a; b) ∧ ¬ϕ(b; a).

(2) We say that ϕ(x; y) is unstable in M if, for every n ∈ N, there is
a sequence a1, . . . , an ∈ M with ai <ϕ aj for 1 ≤ i < j ≤ n. We
call such a sequence a ϕ-chain of length n in M.

(3) If ϕ is not unstable in M, we say that ϕ is stable in M.
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(4) We say that M is stable if all formulae in M are stable. If M is
not stable, we say that M is unstable.

Note that ϕ being unstable in M means that there are arbitrarily long
finite sequences from M that are linearly ordered under <ϕ. Consequently,
M is stable if no formula in M linearly orders arbitrarily long finite se-
quences.

Exercise 15.1.3. Suppose that M is stable and N is elementarily equiva-
lent to M. Prove that N is also stable.

By the previous exercise, it makes sense to speak of a complete theory
as being stable or unstable.

Example 15.1.4.

(1) Uncountably categorical theories are stable; this is part of the proof
of Morley’s categoricity theorem (see [126]).

(2) The theory of any module over any ring is stable; this is a result
due to Fisher [58].

(3) The theory of nonabelian free groups is stable; this is a difficult
result of Sela [156].

(4) (N, <) is unstable.

(5) (R,+, ·) is unstable.

The following exercise asks you to fulfill a promise made in Proposition
8.6.14, namely that every theory with the nfcp (see Definition 8.6.6) is stable:

Exercise 15.1.5. Prove that every theory with the nfcp is stable. (Hint.
If ϕ(x, y) is unstable, prove that the formula ψ(x, y1, y2, y3, y4) given by
(ϕ(x, y1)↔ ¬ϕ(x, y2)) ∧ (ϕ(x, y3)↔ ϕ(x, y4)) has the fcp.)

We can now precisely state the connection between stability and isomor-
phic ultrapowers.

Theorem 15.1.6. Assume that CH fails.

(1) IfM is unstable, then there are U ,V ∈ βN\N such thatMU �∼=MV .

(2) If M is stable, then MU ∼=MV for all U ,V ∈ βN \ N.

In the next section, we prove Theorem 15.1.6(1) above in full detail. The
proof of Theorem 15.1.6(2) is a bit beyond the scope of this book, but in
Section 15.3 we briefly outline why it holds.
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15.2. The case when M is unstable

In this section, we prove Theorem 15.1.6(1). Toward that end, we suppose
that M is unstable as witnessed by the unstable formula ϕ(x; y).

Definition 15.2.1. For U ∈ βN \ N and an infinite cardinal λ, a ϕ-λ-gap

inMU consists of two sequences 	a := ([am]U)m<ω and 	b := ([bγ ]U)γ<λ from

MU such that:

(1) [am]U <ϕ [an]U for all m < n < ω and [bγ ]U <ϕ [bδ]U for all
δ < γ < λ;

(2) [am]U <ϕ [bγ ]U for all m < ω and γ < λ;

(3) there does not exist [c]U ∈ MU such that [am]U <ϕ [c]U <ϕ [bγ ]U
for all m < ω and γ < λ.

We may write (	a,	b) as an abbreviation for the above gap and call λ the
length of the gap.

Exercise 15.2.2. Show that any gap inMU must have uncountable length.

We define κ(ϕ,MU) to be the minimal cardinality of a gap inMU . The
idea behind the proof of (1) is to find U ,V ∈ βN \ N for which κ(ϕ,MU) �=
κ(ϕ,MV), for then clearlyMU �∼=MV . Precisely, we will prove the following:

Theorem 15.2.3. For each regular cardinal κ with ℵ1 ≤ κ ≤ c, there is
U ∈ βN such that κ(ϕ,MU) = κ.

Note that Theorem 15.2.3 indeed proves Theorem 15.1.6(1), for when
CH fails, ℵ1 < ℵ2 ≤ c, so there are U and V for which κ(ϕ,MU) = ℵ1 and
κ(ϕ,MV) = ℵ2 and thus MU �∼=MV .

Remark 15.2.4. By a result of Solovay [166], it is consistent with ZFC that
there are continuummany regular cardinals below c. Consequently, Theorem
15.2.3 shows us that it is consistent with ZFC that there are continuum many
nonisomorphic ultrapowers ofM with respect to ultrafilters on N. However,
since there are 2c many nonisomorphic nonprincipal ultrafilters on N, it is
a priori possible that there are 2c many nonisomorphic ultrapowers of M
with respect to nonprincipal ultrafilters on N. Farah and Shelah showed
that this is indeed the case [55].

We split the proof of Theorem 15.2.3 into two parts. We first show that
κ(ϕ,MU) coincides with a cardinality that depends only on U . First, some
terminology and notation.

Fix U ∈ βN \N. We let <U denote the ordering on NN given by f <U g
if and only if f(n) < g(n) for U -almost all n ∈ N. Note that <U induces an
ordering on NU , also denoted <U , which is simply the interpretation of the
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ordering symbol in the structure (N, <)U . By �Loś’s theorem, <U is a linear
ordering on NU . We call f ∈ NN U-infinite if [f ]U is an infinite element
of NU , that is, if for each m ∈ N, we have that f(n) > m for U -almost all
n ∈ N. We also write limU f = ∞ in this situation. We let NN

U ,∞ denote

the set of U -infinite elements of NN. Note that <U restricted to NN
U ,∞ is not

bounded below.

Definition 15.2.5. For U ∈ βN \ N, we define the lower cofinality of U ,
denoted lcf(U), to be the coinitiality of the ordering <U restricted to NN

U ,∞,

that is, the minimal cardinality of a subset X of NN
U ,∞ that is coinitial in

NN
U ,∞, meaning that, for each f ∈ NN

U ,∞, there is g ∈ X such that g <U f .

In other words, viewing NU as a nonstandard model of N, lcf(U) is the
coinitiality of the infinite part of NU . The first step toward proving Theorem
15.2.3 is the following:

Theorem 15.2.6. For each ultrafilter U on N, we have κ(ϕ,MU) = lcf(U).

Fix U ∈ βN \ N. In order to prove Theorem 15.2.6, we consider the
following:

Situation (∗)
• We have sets Ym ∈ U such that Y0=N, Ym⊇Ym+1, and

⋂
m∈N Ym=

∅.
• Φ : N → N is given by Φ(i) = m if i ∈ Ym \ Ym+1. Note that
Φ ∈ NN

U ,∞.

• For each i ∈ N, we have a ϕ-chain ai0, . . . , a
i
Φ(i) in M of length

Φ(i) + 1.

We will really only be interested in the following two instances of Situ-
ation (∗):
Example 15.2.7.

(1) Ym = {i ∈ N : i ≥ m}. In this case, Φ(i) = i and we let ai0, . . . , a
i
i

be any ϕ-chain inM of length i+1, which exists since ϕ is unstable.

(2) Suppose we have fixed a ϕ-chain ([am]U : m ∈ N) inMU 1. In this
case, we let

Ym = {i ∈ N : i ≥ m and a0(i), . . . , am(i) is a ϕ-chain in M}.
It is clear that Y0 = N. By �Loś’s theorem, each Ym ∈ U and it is
clear that Ym ⊇ Ym+1 and

⋂
m∈N Ym = ∅. We then set aij := aj(i)

for j ≤ Φ(i).

1Technically, we only defined finite ϕ-chains, but the definition extends to infinite ϕ-chains
in the obvious way
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Now suppose that we are in Situation (∗) and h ∈ NN. We define an
element ah ∈ MN by declaring ah(i) := aih(i) if h(i) ≤ Φ(i), and otherwise

ah(i) = aiΦ(i). When h is the function that is constantly m, we denote the

corresponding element of MN by am.

Remark 15.2.8. There could potentially be some confusion in the notation
of the previous paragraph in the case that we are in Example 15.2.7(2) above.
As we start with a sequence ([am]U), use this to define the elements aik for

k ≤ Φ(i), and then use this latter sequence to define a sequence inMU also
denoted ([am]U). However, it is clear that both definitions of am(i) agree
when m ≤ Φ(i); since limU Φ = ∞, we see that both definitions of am are
equivalent modulo U , whence no confusion can arise.

In the next two lemmas, suppose that we are in Situation (∗) and the
elements ah are defined as above.

Lemma 15.2.9. Suppose that g, h ∈ NN are such that g, h ≤U Φ and g �=U
h. Then g <U h if and only if [ag]U <ϕ [ah]U .

Proof. First suppose that g <U h. Consider i ∈ N such that g(i) < h(i) ≤
Φ(i). It follows that ag(i) = aig(i) <ϕ aih(i) = ah(i); since there is a large set

of such i’s, we get [ag]U <ϕ [ah]U .

Now suppose that g �<U h. Then since <U is a linear order, we have
that h <U g. By the first paragraph, we have that [ah]U <ϕ [ag]U , whence
we have that [ag]U �<ϕ [ah]U . �

Lemma 15.2.10. Suppose that [b]U ∈ MU is such that [am]U <ϕ [b]U for
all m ∈ N. Then there is h ∈ NN

U ,∞ such that [am]U <ϕ [ah]U <ϕ [b]U for

all m ∈ N. Moreover, if g ∈ NN is such that g ≤U Φ and [b]U <ϕ [ag]U ,
then [ah]U <ϕ [ag]U as well.

Proof. For each m ∈ N, set

Xm := {i ∈ Ym : (∀k ≤ m)(ak(i) <ϕ b(i))},
which belongs to U by assumption. Note also that Xm+1 ⊆ Xm and⋂

mXm = ∅. For i ∈ Xm \Xm+1, set h(i) = m. If i /∈ X0, set h(i) = 0. Note
that, for i ∈ Xm, we have h(i) ≥ m, whence it follows that limU h = ∞.
Note also that h ≤ Φ.

We claim that this h is as desired. Since limU h = ∞, we have that
m <U h and thus [am]U <ϕ [ah]U by Lemma 15.2.9. Moreover, for i ∈ X0,
ah(i) = aih(i) <ϕ b(i), whence [ah]U < [b]U .

Finally, suppose that g ∈ NN is such that g ≤U Φ and [b]U <ϕ [ag]U and
yet, toward a contradiction, we have that [ag] <ϕ [ah]. By Lemma 15.2.9,
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we have that g <U h and so ag(i)(i) <ϕ b(i) for U -almost all i, contradicting
b(i) <ϕ ag(i)(i) for U -almost all i. �

Proof of Theorem 15.2.6. We first show that κ(ϕ,MU) ≤ lcf(U). Let
(hγ)γ<lcf(U) be a decreasing coinitial sequence for <U . SinceM is unstable,
we know that we are in Situation (∗) by Example 15.2.7(1). By Lemma
15.2.9, ([am]U)m<ω and ([ahγ ]U)γ<lcf(U) satisfy the first two properties of
being a ϕ- lcf(U)-gap; such sequences are often referred to as pregaps. To
verify that this pregap is indeed a gap, suppose that [am]U <ϕ [c]U . By
Lemma 15.2.10, there is h ∈ NN

U ,∞ such that [am]U <ϕ [ah]U <ϕ [c]U .
Since our sequence is coinitial, there is γ such that hγ <U h. By Lemma
15.2.9, [am]U <ϕ [ahγ ]U <ϕ [ah]U . By the proof of Lemma 15.2.10, we have
that [ahγ ]U <ϕ [c]U . It follows that ([am]U)m<ω and ([ahγ ]U)γ<lcf(U) form a

ϕ- lcf(U)-gap, whence κ(ϕ,MU) ≤ lcf(U).
For the other direction, suppose that ([am]U)m<ω and ([bγ ]U)γ<κ(ϕ,MU )

form a gap. We use these [am]U ’s to put us in Situation (∗) as in Exam-
ple 15.2.7(2). We define, by recursion on γ < κ(ϕ,MU), a <U -decreasing
sequence hγ from NN

U ,∞ as follows: Let h0 ∈ NN
U ,∞ be any function with

h ≤U Φ. Now suppose that hδ has been defined for all δ < γ. By mini-
mality of κ(ϕ,MU), there is [b]U ∈ MU such that [am]U <ϕ [b]U < [ahδ

]U
for all m ∈ N and δ < γ. By Lemma 15.2.10, there is g1 ∈ NN

U ,∞ such

that [ag1 ]U < [b]U . By Lemma 15.2.10 again, there is g2 ∈ NN
U ,∞ such that

[ag2 ]U <ϕ [bγ ]U . Let hγ := min(g1, g2). Then hγ ∈ NN
U ,∞ is such that

hγ <U hδ for all δ < γ by Lemma 15.2.10, and [hγ ]U <ϕ [bγ ]U .

We claim that the sequence (hγ)γ<κ(ϕ,MU ) is coinitial. Indeed, suppose

that h ∈ NN
U ,∞ is such that h <U hγ for all γ < κ(ϕ,MU). By construction,

that implies that [ah]U <ϕ [bγ ]U for all γ, contradicting that ([am]U)m<ω

and ([bγ ]U)γ<κ(ϕ,MU ) formed a gap. It follows that lcf(U) ≤ κ(ϕ,MU), as
desired. �

This completes the first part of the proof of Theorem 15.2.3. Before
moving onto the second part of the proof, we make a quick digression, re-
turning to the subject of Keisler’s order from Section 8.6 and making good
on a promise made after Corollary 8.6.29.

First, we need:

Exercise 15.2.11. Suppose that T is unstable and U is an ultrafilter (not
necessarily on N). Prove that, for any M |= T , we have that MU is not
lcf(U)+-saturated. (Hint. The proof of Theorem 15.2.6 above works for any
ultrafilter U , not just those on N.)

We also need the following generalization of Theorem 8.6.25:
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Theorem 15.2.12 (Shelah). For any infinite cardinals κ, λ, and ν satisfy-
ing λℵ0 = λ ≤ 2κ and ℵ0 < ν ≤ λ, there is a regular ultrafilter U on κ such
that pfc(U) = λ and lcf(U) = ν.

Here is the promised improvement of Corollary 8.6.29:

Corollary 15.2.13. Suppose that T1 and T2 are countable theories such that
T1 is stable and T2 is unstable. Then T1 � T2.

Proof. Without loss of generality, we may assume that T1 has the fcp. Fix
an uncountable cardinal κ and let U be a regular ultrafilter on κ such that
pfc(U) = 2κ and such that lcf(U) ≤ κ; this is possible by Theorem 15.2.12.
Then by Theorem 8.6.20, we have that U saturates T1. However, by Exercise
15.2.11, U does not saturate T2. �

In order to complete the proof of Theorem 15.2.3, it suffices to prove:

Theorem 15.2.14. For each regular cardinal κ with ℵ1 ≤ κ ≤ c, there is
U ∈ βN such that lcf(U) = κ.

Remark 15.2.15. In Theorem 15.2.14, κ must be assumed to be regular
as coinitiality is always a regular cardinal.

The reader is warned that the proof of Theorem 15.2.14 is fairly techni-
cal. The key to proving this theorem is to build the ultrafilter slowly as in
the construction of good ultrafilters.

Let F ⊆ ωω be of large oscillation modulo the cofinite filter with |F | = κ
(see Definition 8.5.2); this is possible by Lemma 8.5.6. We enumerate F =
(fα)α<κ. Given f ∈ F , we define gf : βω → ω + 1 by declaring gf (U) = n if
f(m) = n for U -almost all m; if no such n exists (that is, if f is U -infinite),
then we declare gf (U) = ω. We put all of these functions into a single

function G : βω → (ω + 1)F , that is, G(U)(f) := gf (U).

Exercise 15.2.16.

(1) Prove that G is continuous.

(2) Prove that G(βω \ω) = (ω+1)F . (Hint. This uses the assumption
that F is of large oscillation modulo the cofinite filter.)

By Proposition 3.1.15 and Exercise 15.2.16, there is a closed subset K
of βω \ ω such that G(K) = (ω + 1)F but G(K ′) �= (ω + 1)F for any proper
closed subset K ′ of K. In the rest of this section, we fix such a closed subset
K of βω \ ω.

For C ⊆ κ and x, y ∈ (ω + 1)F , we write x ≡C y if x(fα) = y(fα) for all
α ∈ C.
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Definition 15.2.17. For A ⊆ ω, a support for A is a subset C ⊆ κ such
that, for any x, y ∈ (ω + 1)F , if x ≡C y, then x ∈ G(UA ∩K) if and only if
y ∈ G(UA ∩K).

Given the graph s of a finite partial function from F to ω + 1, we let
[s] denote all those elements of (ω + 1)F which extend s. Given A ⊆ ω, let
supp(A) denoted the set of α < κ for which there are s and n such that
[s] �⊆ G(UA ∩K) but [s ∪ (fα, n)] ⊆ G(UA ∩K).

Lemma 15.2.18. supp(A) is the smallest support for A.

Proof. We first show that supp(A) is contained in every support for A.
Suppose that C ⊆ κ is a support for A and yet, toward a contradiction,
that supp(A) �⊆ C. Take α ∈ supp(A) \ C. Let s and n witness that
α ∈ supp(A). Take y ∈ [s] \ G(UA ∩ K). Let x ∈ (ω + 1)F be such that
x(fα) = n and x(fβ) = y(fβ) for all β �= α. Since s∪{(fα, n)} ⊆ x, we have
that x ∈ G(UA ∩K). Since α /∈ C, we have x ≡C y, whence y ∈ G(UA ∩K)
since C is a support for A, yielding a contradiction.

We now show that supp(A) is a support for A.

Claim. Suppose that s witnesses that α ∈ supp(A). If fβ ∈ F is such that
β /∈ supp(A), then s \ {(fβ, s(fβ))} also witnesses that α ∈ supp(A).

Proof of Claim. Note that [s \ {(fβ, s(fβ))}] �⊆ G(UA ∩K). If

[s \ {(fβ, s(fβ)) ∪ (fα, n)] �⊆ G(UA ∩K),

then since [s ∪ (fα, n)] ⊆ G(UA ∩ K), we would get that β ∈ supp(A).
Consequently, [s \ {(fβ, s(fβ)) ∪ (fα, n)] ⊆ G(UA ∩K), as desired.

By the claim, given any witness s to the fact that α ∈ supp(A), one can
always find a subset s′ ⊆ s such that s′ also witnesses that α ∈ supp(A) and
with dom(s′) ⊆ supp(A).

Now suppose that x ≡supp(A) y and x ∈ G(UA ∩ K). Since
⋂

s⊆x[s] \
G(UA ∩ K) = ∅, by compactness there is some s ⊆ x such that [s] \
G(UA ∩K) �= ∅. Since s is finite and [∅] \ G(UA ∩K) = ∅, we may as well
assume that s is such that there is some α < κ for which [s ∪ (fα, x(fα))] ⊆
G(UA∩K). By the above fact, we may also assume that dom(s) ⊆ supp(A).
Consequently, y ∈ G(UA ∩K), as desired. �

Lemma 15.2.19. Given A ⊆ ω, there is a countable support for A. Con-
sequently, supp(A) is countable.

Proof. Let S :=
⋃

H∈Pf (F )(ω + 1)H . Let T ⊆ S be maximal such that

T ′ := {[t] : t ∈ T} is a maximal colleciton of pairwise disjoint subsets of
G(UA ∩K). Note that T is countable.
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Claim 1.
⋃

T ′ is dense in (ω + 1)F \G(K \ UA).

Proof of Claim 1. Fix f ∈ (ω + 1)F \ G(K \ UA) and take s ∈ S with
s ⊆ f such that [s] ⊆ (ω + 1)F \ G(K \ UA). Note that [s] ⊆ G(UA ∩K),
otherwise, there is g ∈ [s] such that g /∈ G(UA ∩K), whence g ∈ G(K \UA),
contradicting that [s] ⊆ (ω+1)F \G(K \UA). It follows that [s]∩

⋃
T ′ �= ∅,

otherwise we contradict the maximality of T ′.

Claim 2. G(G−1(
⋃

T ′) ∩K) ∪G(K \ UA) = (ω + 1)F .

Proof of Claim 2. Suppose f ∈ (ω + 1)F \G(K \UA). By Claim 1, there
is a net (gi) from

⋃
T ′ such that f = lim gi. Let Ui ∈ K be such that

G(Ui) = gi. Since K is compact, after passing to a subnet, we might as

well assume that Ui → U ∈ K. It follows that gi = G(Ui) → G(U) ∈
⋃

T ′,
whence U ∈ G−1(

⋃
T ′) ∩K. Since G(U) = f , the claim is proven.

Claim 3. G(UA ∩K) =
⋃

T ′.

Proof of Claim 3. By Claim 2, G((G−1(
⋃
T ′)∩K)∪(K\UA)) = (ω+1)F .

Since G−1(
⋃

T ′) ∩ K and K \ UA are closed, by the choice of K, we have

G−1(
⋃

T ′) ∩K) ∪ (K \ UA) = K. Now since
⋃

T ′ ⊆ (ω + 1)F \G(K \ UA),

we have that
⋃
T ′ ⊆ G(UA ∩K). On the other hand, if U ∈ UA ∩K, then

U ∈ G−1(
⋃

T ′) ∩K, whence G(U) ∈
⋃

T ′, as desired.

For each t ∈ T , let Ht := dom(t). Set suppT (A) := {α < κ : fα ∈⋃
t∈T Ht}. Since T is countable and each Ht is finite, we have that suppT (A)

is countable. It remains to prove:

Claim 4. suppT (A) is a support for A.

Proof of Claim 4. Suppose that x ≡suppT (A) y and x ∈ G(UA ∩ K). By

Claim 3, it suffices to show that y ∈
⋃

T ′. Fix α < κ and set s := y|{fα}. We
want to find an element of

⋃
T ′ which agrees with y on fα. First suppose that

α ∈ suppT (A), say α ∈ Ht. Since x(fα) = y(fα) and x ∈ G(UA∩K) =
⋃

T ′,
we are done in this case. Otherwise, suppose α /∈ suppT (A). Let z ∈

⋃
T ′

be such that z(fα) = x(fα). Let z
∗ ∈ (ω + 1)F be such that z∗(fα) = y(fα)

while z∗(fβ) = z(fβ) for all β �= α. Since α /∈ suppT (A), if t ⊆ z with t ∈ T ,
then we still have that t ⊆ z∗, whence z∗ ∈

⋃
T ′, and again we are done. �

Before explaining the construction of U , we need a bit more notation
and terminology. First, we set Fα := (fδ)α≤δ<κ. For a filter F on ω and
h ∈ ωω, we say that h is F -infinite if, for every m ∈ ω, we have that {n ∈ ω :
h(n) > m} ∈ F ; this extends our earlier terminology of U -infinite to the case
of arbitrary filters. We also write f <F g if {n ∈ ω : f(n) < g(n)} ∈ F .
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We proceed by constructing an increasing sequence of filters Fα on ω for
α < κ satisfying the following properties.

(1) If A ∈ Fα, then supp(A) ⊆ α.

(2) If A ⊆ ω is such that supp(A) ⊆ α, then either A ∈ Fα+1 or
ω \A ∈ Fα+1.

(3) Fα is of large oscillation modulo Fα.

(4) fα is Fα+1-infinite.

(5) For every h ∈ Hα := {h ∈ ωω : h is Fα-infinite}, we have fα <Fα+1

h.

We start the construction by defining F0 := {A ⊆ ω : K ⊆ UA}.
We leave it to the reader to verify that properties (1) and (3) are indeed
satisfied.

Now suppose that Fγ has been defined for all γ < α. It is easy to see
that if α is a limit ordinal, then setting Fα :=

⋃
γ<αFγ is as desired.

Now suppose that Fα has been constructed; we show how to construct
Fα+1. We first let F ′

α+1 denote the filter generated by Fα together with the

sets of the form
⋃

n>m(f−1
α (n) ∩ h−1(n, ω)), for m ∈ ω and h ∈ Hα.

Exercise 15.2.20. Verify the following facts about F ′
α+1:

(1) F ′
α+1 is a proper filter.

(2) fα is F ′
α+1-infinite.

(3) fα <F ′
α+1

h for all h ∈ Hα.

(4) For every A ∈ F ′
α+1, α + 1 is a support for A, whence supp(A) ⊆

α+ 1.

We now let Fα+1 be an extension of F ′
α+1 maximal with respect to the

property that every element has its minimal support contained in α+1. By
the previous exercise, it follows that all of the properties needed of Fα+1 are
true except for property (3), which we verify now.

Claim. Fα+1 is of large oscillation modulo Fα+1.

Proof of Claim. Take A ∈ Fα+1, distinct δ1, . . . , δn ≥ α + 1, and m1, . . .,
mn ∈ ω. Since F0 ⊆ F ′

α+1, there is x ∈ G(UA ∩K). Let y ∈ (ω + 1)F be
defined by setting y(fδ) = x(fδ) for δ ≤ α and y(fδi) = mi for i = 1, . . . , n
(and defined on the other members of F arbitrarily). Since supp(A) ⊆ α+1,
it follows that y ∈ G(UA ∩ K). Also, y ∈ G(

⋂n
i=1 Uf−1

δi
(mi)

), and it is

clear that this then implies that G−1(y) ⊆
⋂n

i=1 Uf−1
δi

(mi)
. It follows that

UA ∩
⋂n

i=1 Uf−1
δi

(mi)
�= ∅, as desired.
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Set U :=
⋃

α<κFα. By Exercise 15.2.20(2), U is actually an ultrafilter
on ω. (Note that this uses the regularity of κ: for any A ⊆ ω, supp(A) ⊆ α
for some α < κ and then Fα+1 decides A.) We claim that lcf(U) = κ.

First suppose that H ⊆ ωω is such that |H| < κ and each h ∈ H is
U -infinite. Then by the regularity of κ again, there is some α < κ such
that, for each h ∈ H and each n ∈ ω, supp(h−1(n, ω)) ⊆ α. (This uses that
each such minimal support is countable.) Since Fα+1 must then decide each
supp(h−1(n, ω)) and h is U -infinite, we must have that h is Fα+1-infinite.
Since fα+1 is Fα+2-infinite and fα+1 <Fα+2 h for every h ∈ Hα+1, it follows
that H is not coinitial, whence lcf(U) ≥ κ.

On the other hand, it is clear that fα+1 <U fα and the proof of the
previous paragraph (in the case that |H| = 1) shows that F forms a coinitial
sequence, whence lcf(U) ≤ κ, and thus lcf(U) = κ. This concludes the proof
of Theorem 15.2.14 and thus the proof of Theorem 15.2.3.

15.3. The case when M is stable

In this section, we sketch a proof of Theorem 15.1.6(2), freely making use
of important facts from the area of model theory known as stability theory.
Clearly, Theorem 15.1.6(2) follows from Corollary 6.8.4, Theorem 8.1.9, and
the following theorem:

Theorem 15.3.1. Suppose that M is a stable structure in a countable lan-
guage and U ∈ βN \ N. Then MU is c-saturated.

By Theorem 8.2.1, MU is always ℵ1-saturated. The importance of the
previous theorem is that, in caseM is stable, the level of saturation can be
improved to c-saturation (which is only an actual improvement if CH fails).

To prove Theorem 15.3.1, we will need to use one of the most important
facts of stability theory, namely that a stable theory possesses a well-behaved
notion of independence generalizing linear independence in vector spaces and
algebraic independence in algebraically closed fields.

In the rest of this section, we assume that M is a stable structure and
we fix a c-saturated elementary extension M of MU . By a small subset of
M, we mean a subset of M of size < c.

For small subsets A and B of M, we consider the type of A over B,
which is the set

tp(A/B) := {ϕ(x) : ϕ is an LB-formula and M |= ϕ(A)}.
This notation is a bit sloppy: we really should fix an enumeration A =
(ai)i<λ, where λ < c, and then ϕ(xi1 , . . . , xik) is a formula with parameters
from B and i1, . . . , ik < λ, and M |= ϕ(ai1 , . . . , aik).

When B = ∅, we simply write tp(A) instead of tp(A/∅).
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Fact 15.3.2. There is a relation |� defined on triples of small subsets of M
satisfying the following properties:

(1) Invariance. If tp(ABC) = tp(A′B′C ′), then A |�C
B if and only if

A′ |�C′ B
′.

(2) Symmetry. A |�C
B if and only if B |�C

A.

(3) Transitivity. A |�C
BD if and only if A |�C

B and A |�BC
D.

(4) Finite character. A |�C
B if and only if a |�C

B for all finite tuples
a from A.

(5) Extension. For all A,B,C, there is A′ such that tp(A/C) =
tp(A′/C) and A′ |�C

B.

(6) Local character. For any finite tuple a and any B, there is a count-
able B0 ⊆ B such that a |�B0

B.

(7) Stationarity of types. For all A, A′, B, and all small elementary
submodels N , if tp(A/N) = tp(A′/N), A |�N

B, and A′ |�N
B,

then tp(A/BN) = tp(A′/BN).

Here, we use the usual model-theoretic convention of writing BC instead of
B ∪ C.

Remark 15.3.3. One should think of A |�C
B as saying that one learns

no new information about A using BC than one already had using C alone.
With this in mind, most of the above properties should be more or less
intuitive, except perhaps for stationarity of types. That being said, it is
stationarity of types that, in some sense, differentiates the stable theories
from other theories which possess relations satisfying the other six axioms.

Besides the previous fact, we will also need to know that certain nice
kinds of sequences exist in M.

Definition 15.3.4. Suppose that I is a linearly ordered set and (ai)i∈I is a
sequence from M. Suppose also that A is a small subset of M. We say that
(ai)i∈I is:

(1) an indiscernible sequence over A (or A-indiscernible) if, for
all n ∈ N and all i1 < · · · < in and j1 < · · · < jn from I, we have
tp(ai1 · · · ain/A) = tp(aj1 · · · ajn/A);

(2) an independent sequence over A (or A-independent) if, for
all i ∈ I, we have ai |�A

a<i, where a<i := {aj : j < i};
(3) a Morley sequence over A if it is both an indiscernible sequence

over A and an independent sequence over A. Moreover, if p(x) is
the common type of the elements of (ai)i∈I over A, we say that
(ai)i∈I is a Morley sequence in p.
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Here is the crucial fact that we will need:

Fact 15.3.5. Suppose that I is a small linearly ordered set, A is a small
subset of M, and p(x) is a 1-type over A. Then there is a sequence (ai)i∈I
from M that is a Morley sequence in p.

Exercise 15.3.6. Suppose that (ai)i∈I is a Morley sequence in p and

tp((ai)i∈I/A) = tp((bi)i∈I/A).

Then (bi)i∈I is also a Morley sequence in p.

Exercise 15.3.7. Suppose that (ai)i∈I is an independent sequence over A.

(1) Suppose that J,K ⊆ I are such that J < K, that is, j < k for all
j ∈ J and k < K. Prove that aK |�A

aJ , where aJ := {aj : j ∈ J}
and aK := {ak : k ∈ K}.

(2) Prove that (ai)i∈I is also an independent set over A, that is, for
any i ∈ I, we have ai |�A

a�=i, where a�=i := {aj : j �= i}.

Exercise 15.3.8. Suppose that A ⊆ MU is countable and (an)n∈N is a
Morley sequence over A whose common type is p. Prove that there is a
set D ⊆ MU that is an A-independent set of realizations of p of size c.
(Hint. By Exercise 15.3.7(2), (an)n∈N is an A-independent set. Let An ⊆M
be finite of increasing size realizing larger fragments of tp((an)n∈N/A). Let
D =

∏
U An and argue that D is an A-independent set of realizations of p.

Use Theorem 6.8.4 to conclude that |D| = c.)

Proof of Theorem 15.3.1. Suppose that B ⊆ MU is such that |B| < c

and suppose that q(x) is a set of LB-formulae that is finitely satisfiable
in MU . We need to show that q can be realized in MU . Using upward
Löwenheim-Skolem (and enlarging B if necessary), we may assume that B
is an elementary submodel of MU .

Since M is c-saturated, we may find c ∈ M which realizes q. By lo-
cal character, there is a countable B0 ⊆ B such that c |�B0

B. Let B1

be a countable elementary submodel of B containing B0. By transitivity,
c |�B1

B. Set p to be the restriction of q to B1. By Fact 15.3.5, there is a

countable sequence from M that is a Morley sequence in p. By ℵ1-saturation
of MU and Exercise 15.3.6, there is a sequence (an)n∈N from MU that is
a Morley sequence in p. By Exercise 15.3.8, there is D ⊆ MU that is a
B1-independent set and |D| = c.

The rest of the proof proceeds by “forking calculus.” By finite character,
local character, transitivity, and the fact that |B| < c, there is D0 ⊆ D with
|D0| < c such that B |�D0

D. Fix a ∈ D \ D0; we show that a realizes q,

finishing the proof of the theorem. By transitivity and symmetry, we have
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that a |�D0
B. Using that D is a B1-independent set and transitivity, we

also have a |�B1
D0. By transitivity again, we have that a |�B1

B. Recall

also that c |�B1
B and tp(a/B1) = tp(c/B1) = p. By stationarity of types,

we have that tp(a/B) = tp(c/B). Recalling that c realized q, we see that a
realizes q, as desired. �

15.4. Notes and references

Our proof of Theorem 15.2.6 follows that developed in [53] (which was
written for operator algebraists). Theorem 15.2.14 is due to Dow [46], and
we follow that article quite closely. Our proof of Theorem 15.3.1 follows the
proof given in [54, Theorem 5.6(1)]. The requisite stability theory needed
in the proof of Theorem 15.3.1 can be found in the textbook [174].





Chapter 16

The Keisler-Shelah
theorem

In this chapter, we prove the Keisler-Shelah theorem, which states that two
structures (in the same language) are elementarily equivalent if and only
if they have isomorphic ultrapowers. This was proven by Keisler using the
GCH and we gave this argument in Section 8.4. The proof presented in
Section 16.1, which makes no extra set-theoretic assumptions, is due to
Shelah [157]. In the remaining sections we give a few sample applications
of the Keisler-Shelah theorem: Section 16.2 gives a soft criteria for when
a collection of structures in a given language is axiomatizable, Section 16.3
gives a quick proof of Robinson’s joint consistency theorem, and Section 16.4
presents a theorem describing exactly when two matrix rings over a pair of
fields are elementarily equivalent.

16.1. The Keisler-Shelah theorem

The purpose of this section is to prove the Keisler-Shelah theorem, which
gives an ultrapower-theoretic reformulation of elementary equivalence:

Theorem 16.1.1 (Keisler-Shelah theorem). LetM and N be L-structures.
Then M and N are elementarily equivalent if and only if there is an ultra-
filter U such that MU ∼= N U .

Of course, the hard direction is the forward direction. The idea of the
proof is really a combination of two techniques we have already seen thus
far: we construct the ultrafilter as an increasing chain of filters by transfinite
recursion, at each stage taking care of requirements such as ensuring that

297
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a particular set or its complement is put in the filter. (This technique was
done in the section on constructing good ultrafilters.) As we are doing so,
we will also enumerate the direct power of the structures in such a way
that the resulting map induces a bijection of the corresponding ultrapowers.
Naturally, as we are building the filter, we will need to make sure that
sets are put in that capture the truth of formulas of the previously defined
elements, and so balancing both of these things is a delicate act.

We first prove Theorem 16.1.1 under a technical simplifying assumption.
Afterward, we will explain a simple “reduct trick” which allows us to deduce
the general case.

For a cardinal λ, we define the cardinal μ(λ) to be the least cardinal η
for which λη > λ. The following facts are clear:

Lemma 16.1.2.

(1) μ(ℵ0) = ℵ0.
(2) For any cardinal λ, μ(λ) ≤ λ.

(3) For any cardinal λ, μ(2λ) ≥ λ+.

Here is the version of Theorem 16.1.1 we will prove first:

Theorem 16.1.3. Fix a cardinal λ. Suppose that M and N are elemen-
tarily equivalent L-structures with |L| ≤ λ and max(|M |, |N |) < μ(λ). Then
there is an ultrafilter U on λ such that MU ∼= N U .

We now work toward proving Theorem 16.1.3. First, for a cardinal λ,
by a λ-pair, we mean a pair (F,F), where

• F ⊆ μ(λ)λ and

• F is a filter on λ.

As in the chapter on good ultrafilters, we need a notion of a filter having
many possible extensions. For our purposes, a slightly more general notion
of consistency is needed. We describe this notion now.

Definition 16.1.4. We say that a filter F is κ-generated if it has a base
of cardinality at most κ.

Here is the notion of consistency that will be useful for us. It is a natural
strengthening of the notion of a set of functions having large oscillation
modulo a filter presented in Definition 8.5.2.

Definition 16.1.5. If κ and λ are cardinals, we say that a λ-pair (F,F) is
κ-consistent if:

(1) F is κ-generated; and
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(2) Given a set X ∈ F , a cardinal β < μ(λ), a sequence (fρ)ρ<β of
distinct elements of F , a sequence (σρ)ρ<β of ordinals less than
μ(λ), we have that

X ∩ {ζ < λ : fρ(ζ) = σρ for all ρ < β} �= ∅.

We will need some coherence properties of the notion of consistent pairs
that follow easily from the definition and we thus leave them as an exercise.

Exercise 16.1.6.

(1) If (F,F) is a κ-consistent λ-pair and κ < γ, then (F,F) is also
γ-consistent.

(2) If (F,F) is a κ-consistent λ-pair and F ′ ⊆ F , then (F ′,F) is also
a κ-consistent λ-pair.

(3) Suppose that δ is a cardinal and for every ζ < δ, we have a κζ-
consistent λ-pair (Fζ ,Fζ). Suppose further that Fζ ⊇ Fρ and Fζ ⊆
Fρ for ζ < ρ < δ. Suppose that each κζ ≤ κ and the cofinality of δ
is ≤ κ. Then (

⋂
ζ<δ Fζ ,

⋃
ζ<δ Fζ) is a κ-consistent λ-pair.

The first lemma helps us get started building “large” consistent pairs.
The proof is almost identical to the proof of Lemma 8.5.6 (and is in fact
easier due to the fact that we are only working with the filter {λ}). We thus
leave it as an exercise.

Lemma 16.1.7. Given a cardinal λ, there is F ⊆ μ(λ)λ with |F | = 2λ such
that (F, {λ}) is a λ-consistent λ-pair.

Exercise 16.1.8. Prove Lemma 16.1.7.

Note, of course, that (F, {λ}) as in the previous lemma is a κ-consistent
λ-pair for any κ ≥ 1.

The next lemma is the analogue of Lemma 8.5.7 to the current situation.
As before, we ask that we can extend our filter to decide a given set at the
cost of losing a “small” number of extensions.

Some notation will be useful: given a filter F on λ and A ⊆ λ, let F [A]
be the filter generated by F and {A}. Note that if F is κ-generated, so is
F [A].

Lemma 16.1.9. Suppose that (F,F) is a κ-consistent λ-pair and A ⊆ λ.
Then there is F ′ ⊆ F with |F \ F ′| < μ(λ) such that either (F ′,F [A]) is a
κ-consistent λ-pair or (F ′,F [λ \A]) is a κ-consistent λ-pair.

Proof. Suppose that (F,F [A]) is not κ-consistent. By definition, there is
X ∈ F , β < μ(λ), distinct fρ from F for ρ < β and ordinals σρ < μ(λ) for
ρ < β such that X ∩ A ∩ B = ∅, where B := {ζ < λ : fρ(ζ) = σρ}. Let
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F ′ := F \ {fρ : ρ < β}. We claim that (F ′,F [λ \ A]) is κ-consistent. To
see this, fix Y ∈ F , β′ < μ(λ), distinct f ′

ρ from F ′ with ρ < β′, and ordinals
σ′
ρ < μ(λ) for ρ < β′. Let B′ := {ζ < λ : f ′

ρ(ζ) = σ′
ρ for all ρ < β′}.

We need to show that Y ∩ (λ \ A) ∩ B′ �= ∅. Since (F,F) is κ-consistent,
we have that B ∩ B′ ∩ X ∩ Y �= ∅. Since X ∩ A ∩ B = ∅, we have that
Y ∩ (λ \A) ∩B′ �= ∅, as desired. �

A simple induction argument applied to the preceding lemma gives the
following:

Lemma 16.1.10. Suppose that (F,F) is a κ-consistent λ-pair with μ(λ) ≤
κ. Suppose that, for each ζ < κ, Aζ ⊆ λ is given. Then there is F ′ ⊆ F
with |F \F ′| ≤ κ, and a filter F ′ on λ extending F such that (F ′,F ′) is a κ-
consistent λ-pair for which, given any ζ < κ, either Aζ ∈ F ′ or (λ\Aζ) ∈ F ′.

When proving Theorem 16.1.3, we will find ourselves in the situation
where we have already built a filter that thinks some existential statements
with parameters are true most of the time and that filter is consistent.
We would like to find an actual witness to the existential statements while
maintaining consistency. The next lemma aids us in this endeavor.

Lemma 16.1.11. Suppose that M is an L-structure with |M | < μ(λ) and
that (F,F) is a κ-consistent λ-pair. Let (ϕζ(x, y1, . . . , yn(ζ)))ζ<κ be a set

of L-formulas closed under conjunction. For each ζ < κ, fix a tuple aζ :=

(aζ1, . . . , a
ζ
n(ζ)) of functions from Mλ. Suppose that, for each ζ < κ, we have

{ν < λ : M |= ∃xϕζ(x, a
ζ(ν))} ∈ F .

Then there are b ∈Mλ, F ′ ⊆ F with |F \ F ′| ≤ κ, and a filter F ′ ⊇ F such
that (F ′,F ′) is a κ-consistent λ-pair and such that, for every ζ < κ, we have

{ν < λ : M |= ϕζ(b(ν), a
ζ(ν))} ∈ F ′.

In order to prove the previous lemma, we will actually need to introduce
a more general version of consistent pairs.

Definition 16.1.12. A λ-triple is a triple (F,G,F), where (F,F) is a
λ-pair and G is a collection of functions g : λ → β(g) for some cardinal
β(g) < μ(λ). A λ-triple is κ-consistent if item (2) of the definition of
κ-consistent λ-pair is replaced by

(2 ′) given X ∈ F , a cardinal β < μ(λ), a sequence (fρ)ρ<β of distinct
elements of F , a sequence (σρ)ρ<β of ordinals less than μ(λ), f ∈ F
distinct from the fρ’s, and g ∈ G, we have that

X ∩ {ζ < λ : fp(ζ) = σρ for all ρ < β} ∩ {ζ < λ : f(ζ) = g(ζ)} �= ∅.
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We need to show that κ-consistent λ-pairs can always be expanded to
κ-consistent λ-triples at the expense of removing a small number of elements
from F .

Lemma 16.1.13. Suppose that (F,F) is a κ-consistent λ-pair and that
g : λ→ γ is a function, where γ is a cardinal below μ(λ). Suppose also that
μ(λ) ≤ κ. Then there is F ′ ⊆ F with |F \ F ′| ≤ κ such that (F ′, {g},F) is
a κ-consistent λ-triple.

Proof. Suppose that the lemma is false, in other words:

(∗) for every F̃ ⊆ F , if |F̃ | ≤ κ, the λ-triple (F \ F̃ , {g},F) is not
κ-consistent.

This allows us to define sets Fζ , F̃ζ for ζ < κ+ for which:

• F0 = F ;

• F̃ζ ⊆ Fζ , |F̃ζ | ≤ κ, and the λ-triple (Fζ \ F̃ζ , {g},F) is not
κ-consistent;

• Fζ+1 := Fζ \ F̃ζ ;

• Fη :=
⋂

ζ<η Fζ if η is a limit ordinal.

Moreover, the F̃ζ ’s may be chosen so that, for each ζ < κ+, we may find

cardinals βζ < μ(λ), distinct functions f ζ
ρ from F̃ζ for ρ < βζ and ordinals

σζ
ρ < μ(λ) for ρ < βζ , and f ζ ∈ F̃ζ distinct from the f ζ

ρ ’s such that, setting

Aζ := {ν < λ : f ζ
ρ (ν) = σζ

ρ for all ρ < βζ} ∩ {ν < λ : f ζ(ν) = g(ν)},
we have that F [Aζ ] is not a proper filter on λ, whence there are sets Xζ ∈ E
(where E is a generating set for F) such that Aζ ∩Xζ = ∅. Since |E| ≤ κ,
there is some X ∈ E and κ+-many ζ for which X = Xζ . Since μ(λ) ≤ κ,
there is β < μ(λ) and κ+-many of the aforementioned ζ for which βζ = β.
By re-indexing, we may as well assume that βζ = β and Xζ = X for all
ζ < κ+.

Suppose that γ < μ(λ) is such that g ∈ γλ. Consider the set

A := {ν < λ : f ζ
ρ (ν) = σζ

ρ for all ζ < γ and ρ < β}
∩ {ν < λ : f ζ(ν) = ζ for all ζ < γ}.

Since we are considering |γ|+ |β| < μ(λ) many distinct functions and (F,F)
is κ-consistent, we see that A ∩X �= ∅. Fix ν ∈ A ∩X. Set ζ := g(ν); then
ν ∈ Aζ ∩X, a contradiction to the fact that Aζ ∩X = ∅. �

Lemma 16.1.14. Suppose that (F,F) is a κ-consistent λ-pair and that G
as above is such that μ(λ)+ |G| ≤ κ. Then there is F ′ ⊆ F with |F \F ′| ≤ κ
such that (F ′, G,F) is a κ-consistent λ-triple.
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Proof. For each g ∈ G, let Fg ⊆ F satisfy the conclusion of the previous
lemma. Then F ′ :=

⋂
g∈G Fg is as desired. �

Proof of Lemma 16.1.11. For the convenience of the reader, we recall the
hypotheses of the lemma:

• M is an L-structure with |M | < μ(λ).

• (F,F) is a κ-consistent λ-pair.

• (ϕζ(x, y1, . . . , yn(ζ)))ζ<κ is a set of L-formulas closed under conjunc-
tion.

• For each ζ < κ, aζ := (aζ1, . . . , a
ζ
n(ζ)) is a tuple of functions from

Mλ.

• For each ζ < κ, we have

{ν < λ : M |= ∃xϕζ(x, a
ζ(ν))} ∈ F .

We seek to find b ∈Mλ, F ′ ⊆ F with |F \ F ′| ≤ κ and a filter F ′ ⊇ F such
that (F ′,F ′) is a κ-consistent λ-pair and such that, for every ζ < κ, we have

{ν < λ : M |= ϕζ(b(ν), a
ζ(ν))} ∈ F ′.

Set δ := |M | and let (aζ)ζ<δ enumerate M . We want to expand our
κ-consistent pair to a κ-consistent triple using the set of functions G :=
{gζ : ζ < κ}, where gζ(ν) = the first ordinal η such that M |=
ϕζ(aη, a

ζ(ν)) if such an η exists; otherwise, set gζ(ν) = 0. Since μ(λ)+ |G| ≤
κ, Lemma 16.1.14 allows us to find F̃ ⊆ F with |F \ F̃ | ≤ κ for which

(F̃ , G,F) is a κ-consistent λ-triple.

Fix f ∈ F̃ and define b ∈ Mλ by b(ν) = af(ν) unless f(ν) ≥ δ, in which

case b(ν) := a0. For each ζ < κ, set Bζ := {ν < λ : M |= ϕζ(b(ν), a
ζ(ν))}.

Let F ′ be the filter generated by F and the Bζ ’s. Note that F ′ is still κ-

generated. Finally, set F ′ := F̃ \ {f}. We show that these choices are as in
the conclusion of the lemma.

The only item that needs checking is that (F ′,F ′) is κ-consistent. To-
ward this end, fix X ∈ F , β < μ(λ), a sequence of distinct elements fρ
from F ′, and ordinals σρ less than μ(λ). Let B := {ν < λ : fρ(ν) =
σρ for all ρ < β}. Since the formulae are closed under taking conjunction,
it suffices to show that, for each ζ < κ, we have that B ∩X ∩ Bζ �= ∅. Set

U := {ν < λ : f(ν) = gζ(ν)} and V := {ν < λ : M |= ∃xϕζ(x, a
ζ(ν))}.

Note that U ∩ V ⊆ Bζ and V ∈ F . Set B′ := B ∩ U . Since (F̃ , G,F) is a
κ-consistent λ-triple, we know that B′ ∩ V ∩ X �= ∅. Since B′ ∩ V ∩ X ⊆
B ∩X ∩Bζ , we have the desired conclusion. �

We are now ready to prove the technical simplification of the Keisler-
Shelah theorem:
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Proof of Theorem 16.1.3. Suppose that λ is a cardinal and M and N
are elementarily equivalent L-structures with |L| ≤ λ and max(|M |, |N |) <
μ := μ(λ). Let (Aρ)ρ<2λ enumerate the subsets of λ. We now construct, for

ρ < 2λ, sequences (Fρ), (Fρ), (aρ), and (bρ), such that:

(1) each Fρ is a collection of functions λ→ μ with Fρ ⊇ Fρ+1;

(2) each Fρ is a filter on λ with Fρ ⊆ Fρ+1;

(3) |F0 \ Fρ| ≤ λ+ |ρ|;
(4) (Fρ,Fρ) is a (λ+ |ρ|)-consistent λ-pair;
(5) either Aρ ∈ Fρ+1 or λ \Aρ ∈ Fρ+1;

(6) Mλ = {aρ : ρ < 2λ} and Nλ = {bρ : ρ < 2λ};
(7) for any ζ < 2λ, any formula ϕ(x1, . . . , xn), and any ρ1, . . . , ρn < ζ,

either

X(ϕ, ρ1, . . . , ρn,M) ∈ Fζ or X(¬ϕ, ρ1, . . . , ρn,M) ∈ Fζ ;

(8) for any ζ < 2λ, any formula ϕ(x1, . . . , xn), and any ρ1, . . . , ρn < ζ,
we have

X(ϕ, ρ1, . . . , ρn,M) ∈ Fζ ⇔ X(ϕ, ρ1, . . . , ρn,N ) ∈ Fζ .

Here, X(ϕ, ρ1, . . . , ρn,M) := {ν < λ : M |= ϕ(aρ1(ν), . . . , aρn(ν))}, and
analogously for X(ϕ, ρ1, . . . , ρn,N ). If we can successfully carry out the
construction of these sequences, then item (5) says that U :=

⋃
ρ<2λ Fρ is

an ultrafilter on λ while item (8) says that the map [aρ]U �→ [bρ]U is an
isomorphism MU → N U , yielding the desired result.

We can start by Lemma 16.1.7: there is F0 ⊆ μλ with |F0| = 2λ such
that (F0, {λ}) is a λ-consistent λ-pair, so we may set F0 := {λ}.

It is also clear how to define Fη and Fη for limit ordinals η: set Fη :=⋂
ρ<η Fρ and Fη :=

⋃
Fρ. By Exercise 16.1.6, these are as desired.

Assume now that we have defined Fρ, Fρ for ρ ≤ σ and aρ and bρ for
ρ < σ. We show how to define Fσ+1, Fσ+1, aσ, and bσ.

To do a proper back-and-forth, we need to explain how to put each
element of Mλ in the domain and each element of Nλ in the range, but
since the arguments are the same, let us only show how to put a particular
element of Mλ in the domain. So let aσ be an element of Mλ not already
listed as some aρ. Since (Fσ,Fσ) is a (λ+|σ|)-consistent λ-pair and there are
at most λ+ |σ|-many sets X(ϕ, σ, ρ1, . . . , ρn,M) of formulae ϕ(x, y1, . . . , yn)
and ρ1, . . . , ρn < σ, Lemma 16.1.10 implies that we can find F ′ ⊆ Fσ and
F ′ ⊇ Fσ such that |Fσ \ F ′| ≤ λ + |σ|, (F ′,F ′) is λ + |σ|-consistent, and,
either X(ϕ, σ, ρ1, . . . , ρn,M) ∈ F ′ or λ \X(ϕ, σ, ρ1, . . . , ρn,M) ∈ F ′. Let

Γ := {ϕ(x, aρ1 , . . . , aρn) : X(ϕ, σ, ρ1, . . . , ρn,M) ∈ F ′}.
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It is clear that if ϕ(x, aρ1 , . . . , aρn) /∈ Γ, then ¬ϕ(x, aρ1 , . . . , aρn) ∈ Γ. Note
also that if ϕ(x, aρ1 , . . . , aρn) ∈ Γ, then X(∃xϕ, ρ1, . . . , ρn,N ) ∈ F ′. Indeed,
if this were not the case, then we would have X(∃xϕ, ρ1, . . . , ρn,N ) /∈ Fσ,
whence by (8) we have that X(∃xϕ, ρ1, . . . , ρn,M) /∈ Fσ and thus, by
(7) we have X(¬∃xϕ, ρ1, . . . , ρn,M) ∈ Fσ ⊆ F ′, yielding a contradic-
tion. Thus, by Lemma 16.1.11, there is bσ : λ → N and F ′′ ⊆ F ′ and
F ′′ ⊇ F ′ such that |F ′ \ F ′′| ≤ λ+ |σ| and (F ′′,F ′′) is a (λ+ |σ|)-consistent
λ-pair and, for each ϕ(x, aρ1 , . . . , aρn) ∈ Γ, we have {ν < λ : N |=
ϕ(bσ(ν), bρ1(ν), . . . , bρn(ν))} ∈ F ′′. Finally, apply Lemma 16.1.9 to get
Fσ+1 ⊆ F ′′ with |F ′′ \ Fσ+1| ≤ λ + |σ| and such that either (Fσ+1,F ′′[Aσ])
is λ+ |σ|-consistent or (Fσ+1,F ′′[λ \Aσ]) is λ+ |σ|-consistent, and let Fσ+1

be whichever one it is. This completes the construction and the proof of the
theorem. �

We now explain how to deduce the general Keisler-Shelah theorem, The-
orem 16.1.1, from the technical simplification Theorem 16.1.3. The main
idea is the following simple exercise:

Exercise 16.1.15. Suppose that T is a complete L-theory which has a
model of size κ. Prove that there is a sublanguage L′ ⊆ L with |L′| ≤ 2κ

with the property that any model of T � L′ has a unique expansion to a
model of T .

We are now ready to explain the general Keisler-Shelah theorem:

Proof of Theorem 16.1.1. Suppose M and N are elementarily equiva-
lent L-structures and let T := Th(M) = Th(N ). Let κ := max(|M |, |N |).
Let L′ ⊆ L be as in Exercise 16.1.15. Set λ := 2κ. By Lemma 16.1.2, we
have that μ(λ) ≥ κ+ > max(|M |, |N |). Thus, by Theorem 16.1.3, there is
an ultrafilter U on λ such that (M � L′)U ∼= (N � L′)U . Since taking ultra-
powers commutes with taking reducts, the defining property of L′ implies
that MU ∼= N U , as desired. �

We end this section with one observation comparing the proof of the
Keisler-Shelah theorem from GCH given in Section 8.4 and the above proof.
Suppose that M and N are elementarily equivalent L-structures and set
κ := max(|M |, |N |, |L|). The proof of Theorem 16.1.1 given above constructs
an ultrafilter U on 2κ such that MU ∼= N U . On the other hand, the proof
from GCH given in Section 8.4 yielded an ultrafilter V on the smaller cardinal
κ itself for which MV ∼= N V .

It is natural to wonder if there is a construction that leads to a ZFC
proof of the Keisler-Shelah theorem where one can take the ultrafilter U to
be on κ itself. Shelah showed that is not the case. In fact, he showed the
following stronger result:
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Theorem 16.1.16 (Shelah [160]). It is consistent with ZFC that there are
countable elementarily equivalent graphs Γ1 and Γ2 such that, for any ultra-
filters U and V on N, ΓU

1 �∼= ΓV
2 .

16.2. Application: Elementary classes

Definition 16.2.1. Let L be a language, and letK be a class of L-structures.
We say that K is an elementary class (or an axiomatizable class) if there
is a set T of L-sentences such that K = Mod(T ), the class of models of T .
In this case, we call T a set of axioms for K.

In “nature” one often encounters a class of L-structures that one believes
forms an elementary class, even though one may not be able to come up with
a set of axioms for the class. In this section, we show how to use the Keisler-
Shelah theorem to give an equivalent characterization of axiomatizable class
that does not make mention of any specific set of axioms, but rather checks
that the class K satisfies three very natural closure properties.

Definition 16.2.2. Given a class K of L-structures, we let the theory of
K be

Th(K) := {σ : M |= σ for all M∈ K}.
If N |= Th(K), we say that N is pseudo-K. We let PseudoK denote the
class of pseudo-K structures.

Exercise 16.2.3. Prove the following:

(1) PseudoK is the smallest elementary class containing K.
(2) N ∈ PseudoK if and only if, wheneverN |= σ, then there isM∈ K

such that M |= σ.

Lemma 16.2.4. N ∈ PseudoK if and only if there is a set I, an ultrafilter
U on I, and a family (Mi)i∈I of structures from K such that N ≡

∏
U Mi.

Proof. The backward direction is obvious. For the forward direction, sup-
pose that N ∈ PseudoK. Let I be the set of finite subsets of Th(N ).
For each σ ∈ Th(N ), let Xσ := {i ∈ I : σ ∈ i}. Note that the family of
(Xσ)σ∈Th(N ) has the FIP. Let U be an ultrafilter on I containing eachXσ. By
Exercise 16.2.3(2), for each i ∈ I, there is Mi ∈ K such that Mi |=

∧
σ∈i σ.

Then for each σ ∈ Th(N ), since Xσ ∈ U , we have that
∏

U Mi |= σ. It
follows that

∏
U Mi |= Th(N ), whence it follows that N ≡

∏
U Mi. �

Corollary 16.2.5. For a class K of L-structures, the following are equiva-
lent:

(1) K is an elementary class.

(2) K is closed under ultraproducts and elementary equivalence.
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(3) K = PseudoK.

Using the Keisler-Shelah theorem, we can do even better. First, we
say that a class K of L-structures is closed under ultraroots if, for any L-
structure M and any ultrafilter U , MU belongs to K, then so does M.

Corollary 16.2.6. For a class K of L-structures, we have that K is an
elementary class if and only if it is closed under isomorphism, ultraproducts,
and ultraroots.

Proof. The forward direction is clear. For the backward direction, suppose
that K is closed under isomorphism, ultraproduct, and ultraroots. We show
that K is an elementary class by verifying item (2) of Corollary 16.2.5. Since
we are already assuming that K is closed under ultraproducts, we just need
to show that it is closed under elementary equivalence. Toward this end,
suppose that M ≡ N and M ∈ K; we must show that N ∈ K. By the
Keisler-Shelah theorem, there is an ultrafilter U such thatMU ∼= N U . Since
K is closed under ultraproducts, we have thatMU belongs to K, whence so
does N U since K is closed under isomorphisms. Finally, since K is closed
under ultraroots, it follows that N ∈ K, as desired. �

16.3. Application: Robinson’s joint consistency theorem

We can use the Keisler-Shelah theorem to give a short proof of the following
classical theorem of Robinson:

Theorem 16.3.1 (Robinson’s joint consistency theorem). Suppose that L1

and L2 are first-order languages and T1 and T2 are consistent L1 and L2

theories, respectively. Let L := L1∩L2 and suppose that there is a complete
L-theory T ⊆ T1 ∩ T2. Then T1 ∪ T2 is consistent.

Proof. Let M1 |= T1 and M2 |= T2. For i = 1, 2, let Ni denote the reduct
of Mi to L. Then N1,N2 |= T , whence, since T is complete, we have that
N1 ≡ N2. By the Keisler-Shelah theorem, there is an ultrafilter U such
that N U

1
∼= N U

2 . Let f : N U
1 → N U

2 be an isomorphism. Since MU
i = NU

i

for i = 1, 2, we can expand N U
2 to an L1-structure P by interpreting the

symbols in L1 \ L so that f :MU
1 → P is an isomorphism. Note then that

P |= T1. One can then extend P further to an L1 ∪ L2 structure Q by
interpreting the symbols in L2 \ L in the same manner as MU

2 . It follows
that Q |= T1 ∪ T2, as desired. �

Exercise 16.3.2. Show that the conclusion of Robinson’s joint consistency
theorem may fail if one does not assume that there is a complete L-theory
contained in T1 ∩ T2.
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There are certainly more elementary proofs of Robinson’s joint consis-
tency theorem (see [28, Section 2.2]), but when you have a hammer, why
not use it?

16.4. Application: Elementary equivalence of matrix rings

In this section, we use the Keisler-Shelah theorem to give a quick proof of
a fact concerning elementary equivalence of matrix rings. We first need the
following algebraic result:

Proposition 16.4.1. If K and L are fields and m,n ∈ N, then Mm(K) ∼=
Mn(L) (as rings) if and only if m = n and K ∼= L.

Proof Sketch. First, note that Km is a simple Mm(K)-module and is in
fact the only one: if M is also a simple Mm(K)-module, then, fixing v ∈
M \ {0}, we have that Av �→ A	e1 is a module morphism that is injective as
M is simple and surjective as Mm(K) is simple.

Next note that the map a �→ (	x �→ a	x) : K → EndMm(K)K
m is an

isomorphism; this follows from the fact that the only matrices that commute
with all matrices are the diagonal ones.

Thus, if Mm(K) ∼= Mn(L), then their unique simple modules are isomor-
phic, whence so are the corresponding endomorphism rings, that is, K ∼= L.
But then once K ∼= L, we have that m = n by dimension considerations. �

The Keisler-Shelah theorem allows us to obtain the analogous fact for
elementary equivalence immediately. First, we need:

Exercise 16.4.2. For any ring R and any n ∈ N, prove that Mn(R)U ∼=
Mn(R

U ) as rings.

Theorem 16.4.3. If K and L are fields and m,n ∈ N, then Mm(K) ≡
Mn(L) as rings if and only if m = n and K ≡ L (as rings).

Proof. This follows immediately from the Keisler-Shelah theorem, Propo-
sition 16.4.1, and Exercise 16.4.2. �

16.5. Notes and references

Our proof of the Keisler-Shelah theorem given in Section 16.1 follows [28]
quite closely. For a proof of the Keisler-Shelah theorem in Henson’s posi-
tive bounded logic (a precursor to the continuous logic presented in Section
11.4), see [88]. For a proof of the Keisler-Shelah theorem for modern contin-
uous logic from the Keisler-Shelah theorem for classical logic, see the recent
preprint [69]. The soft test for axiomatizability of a class of structures pre-
sented in Section 16.2 is due to Keisler [97]. Robinson’s joint consistency
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theorem is due to Robinson (of course) [36]. The result in Section 16.4 is a
special case of a much more general class of results due to Mal′cev [118].



Chapter 17

Large cardinals

In this chapter, we investigate what happens when some definitions and
results from throughout this book involving ℵ0 are asked to hold for un-
countable cardinals instead. It turns out that the resulting cardinals are so
large that they cannot even be proven to exist in ZFC. The discussion of
these large cardinals begins with the notion of worldly cardinals in Section
17.1 and inaccessible cardinals in Section 17.2. Section 17.3 discusses the
notion of measurable cardinals in depth, which are cardinals that possess
a maximally complete ultrafilter. Section 17.4 begins with a discussion of
infinitary logic, ultimately leading to the notions of weakly and strongly
compact cardinals. The last kind of large cardinal introduced is a Ramsey
cardinal in Section 17.5. The modern viewpoint of large cardinals as critical
points of elementary embeddings is presented in Section 17.6. Finally, in
Section 17.7, we present a theorem of Martin showing that the existence of
a Ramsey cardinal allows one to prove analytic determinacy (as introduced
in Section 5.3), which in turn implies that all Σ1

2 sets of reals are both
Lebesgue and Baire measurable.

We advise the reader that this chapter assumes a fair amount more set
theory than the previous chapters. The uninitiated reader may wish to
consult Appendix B before proceeding.

17.1. Worldly cardinals

Any discussion of large cardinals should really start from the notion of
worldly cardinals. To motivate these cardinals, we first mention the fol-
lowing:

309
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Fact 17.1.1. For any uncountable cardinal κ, Vκ is a model of all the axioms
for ZFC except for possibly the replacement axiom.

Definition 17.1.2. An uncountable cardinal κ is called worldly if Vκ |=
ZFC.

In other words, κ is worldly if and only if Vκ satisfies the replacement
axiom: whenever x ∈ Vκ and f : x → Vκ is a function definable over Vκ,
then the image of f also belongs to Vκ.

Theorem 17.1.3. ZFC does not prove that there exist worldly cardinals.

Proof. If ZFC proved that there exist worldly cardinals, then ZFC proves
Con(ZFC), contradicting Gödel’s second incompleteness theorem. �

In fact, the following stronger version of the previous theorem is true:

Theorem 17.1.4. ZFC ' Con(ZFC)→ Con(ZFC + ¬∃κ worldly).

Proof. Suppose that λ is the least worldly cardinal. We claim that Vλ is a
model of ZFC without any worldly cardinals. Indeed, if κ < λ is a cardinal
such that Vλ believes that κ is worldly, then by absoluteness, κ is a worldly
cardinal in V itself, contradicting that λ is the least worldly cardinal. �

On the other hand:

Theorem 17.1.5. ZFC �' Con(ZFC)→ Con(ZFC + ∃κ worldly).

Proof. If ZFC ' Con(ZFC) → Con(ZFC + ∃κ worldly), then since
ZFC + ∃κ worldly ' Con(ZFC), we get

ZFC + ∃κ worldly ' Con(ZFC + ∃κ worldly),

contradicting Gödel’s second incompleteness theorem again. �

We phrase the conclusion of the previous theorem as: the theory
ZFC + ∃κ worldly has larger consistency strength than ZFC. Note the
difference between this and, say, the independence of CH. In this latter
situation, Con(ZFC) and Con(ZFC + CH) are equivalent in ZFC, whence
they have the same consistency strength (and likewise for Con(ZFC) and
Con(ZFC + ¬CH)).

Remark 17.1.6. One can view the axiom “there exists a worldly cardinal”
as a beefed-up version of the axiom of infinity. Indeed, let ZFC− Inf denote
the axioms of ZFC without the axiom of infinity. Then since Vω is a model
of ZFC− Inf, we see that ZFC ' Con(ZFC− Inf), and thus ZFC has larger
consistency strength than ZFC− Inf.
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In what follows, we always consider ZFC as our “base theory” and mea-
sure consistency strength relative to ZFC. We will thus omit ZFC from our
theories and so, for example, refer to the existence of a worldly cardinal
when we really mean ZFC together with the existence of a worldly cardinal.

17.2. Inaccessible cardinals

As mentioned in the previous section, we will consider large cardinal notions
motivated by asking that uncountable cardinals satisfy some properties sat-
isfied by ℵ0. The first of these is motivated by considering the fact that ℵ0
is a regular limit cardinal. In fact, ℵ0 is a regular strong limit cardinal in
the sense of the following definition.

Definition 17.2.1. Let κ be a cardinal. We say that κ is a strong limit
cardinal if, for every cardinal λ < κ, we have that 2λ < κ.

Of course, GCH implies that the notions of limit cardinal and strong
limit cardinal are the same. Uncountable (strong) limit cardinals are not
hard to find:

Example 17.2.2.

(1) ℵω is a limit cardinal.

(2) �ω is a strong limit cardinal, where �0 := ℵ0, �α+1 := 2�α , and
�γ := supβ<γ �β when γ is a limit ordinal.

Note that the cardinals in the previous example are singular. It becomes
more difficult to find an example of a (strong) limit cardinal that is also
regular. We give such cardinals a name:

Definition 17.2.3. Let κ be an uncountable cardinal. We say that κ is a
strongly inaccessible cardinal (resp., weakly inaccessible cardinal)
if it is both regular and a strong limit cardinal (resp., limit cardinal).

Exercise 17.2.4. Suppose that κ is strongly inaccessible.

(1) For each α < κ, |Vα| < κ.

(2) For each x ⊆ Vκ, we have x ∈ Vκ if and only if |x| < κ.

Armed with Exercise 17.2.4, we can now establish:

Theorem 17.2.5. Strongly inaccessible cardinals are worldly.

Proof. Suppose that x ∈ Vκ and f : x → Vκ is a function. Let y ⊆ Vκ be
the image of f . By Exercise 17.2.4, |x| < κ, whence |y| ≤ |x| < κ, and thus
y ∈ Vκ by Exercise 17.2.4 again. It follows that Vκ satisfies the replacement
axiom. �
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As a consequence of the previous theorem, ZFC cannot prove that strong-
ly inaccessible cardinals exist, and, in fact, the existence of a strongly inac-
cessible cardinal has higher consistency strength than ZFC alone.

Remark 17.2.6. The existence of a strongly inaccessible cardinal has higher
consistency strength than the existence of a worldly cardinal. Indeed, one
can show that the smallest worldly cardinal, should it exist, is singular
(in fact has cofinality ℵ0), and thus, in particular, is not strongly inac-
cessible. Thus, if κ is a strongly inaccessible cardinal, then the small-
est worldly cardinal is below κ and thus belongs to Vκ. It follows that
ZFC + ∃κ strongly inaccessible ' Con(ZFC + ∃κ worldly).

As mentioned in the preceding remark, worldy cardinals can be singular.
However, for regular cardinals, they are the same as strongly inaccessible:

Proposition 17.2.7. A worldly cardinal is a strong limit cardinal. In par-
ticular, a regular cardinal is worldly if and only if it is strongly inaccessible.

Proof. Suppose that κ is a worldly cardinal. Fix λ < κ; we show that 2λ <
κ. For this, it suffices to show that 2λ ∈ Vκ. Note that P(λ) ∈ Vλ+2 ⊆ Vκ

and P(λ) is the same whether it is calculated in V or Vκ. Since Vκ |= ZFC,
there is a minimal γ ∈ Vκ for which there is a bijection f : γ → P(λ) that
belongs to Vκ. Consequently, 2

λ = γ belongs to Vκ, as desired. �

Remark 17.2.8. The existence of a weakly inaccessible cardinal is equicon-
sistent with the existence of a strongly inaccessible cardinal, for a weakly
inaccessible cardinal in V becomes strongly inaccessible in L.

We can posit a stronger large cardinal axiom by asserting that there are
two strongly inaccessible cardinals, for if κ1 < κ2 are strongly inaccessible
cardinals, then Vκ2 is a model of ZFC with a strongly inaccessible cardinal.
In general, for any ordinals β < α, asserting that there is a sequence of
strongly inaccessible cardinals of length α is stronger than asserting the
existence of such a sequence of length β.

Of course, one can then posit the existence of a proper class of strongly
inaccessible cardinals, and such a theory has stronger consistency strength
than the existence of a sequence of strongly inaccessible cardinals of any
given ordinal length.

A strongly inaccessible cardinal κ is said to be 2-inaccessible if κ is a
limit of strongly inaccessible cardinals. Equivalently, κ is 2-inaccessible if κ
is the κth strongly inaccessible cardinal. It is a fact that the existence of a 2-
inaccessible cardinal has higher consistency strength than the existence of a
proper class of strongly inaccessible cardinals. Then there are 3-inaccessible
cardinals, which are strongly inaccessible limits of 2-inaccessible cardinals.
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One can continue in this manner, leading to the definition of α-inaccessible
cardinals for every ordinal α. The interested reader can consult [94] for a
proper definition.

We now turn to a large cardinal notion that is even stronger than 2-
inaccessible. To do so, we need to introduce some terminology.

Definition 17.2.9. Suppose that κ is a regular uncountable cardinal and
C ⊆ κ. We say that C is:

(1) closed in κ if, for every X ⊆ C with supX < κ, we have that
supX ∈ C;

(2) unbounded in κ if, for every α < κ, there is β ∈ C such that
α < β;

(3) club in κ if it is both closed in κ and unbounded in κ.

Exercise 17.2.10. Suppose that κ is a strongly inaccessible cardinal. Prove
that the following subsets of κ are club subsets of κ:

(1) {λ < κ : λ is a cardinal},
(2) {λ < κ : λ is a limit cardinal},
(3) {λ < κ : λ is a strong limit cardinal}.

Lemma 17.2.11. If C and D are club subsets of κ, then so is C ∩D.

Proof. It is fairly clear that C ∩ D is closed in κ. To see that C ∩ D is
unbounded in κ, fix α < κ and take α1 ∈ C with α < α1; this is possible
since C is unbounded in κ. Then take α2 ∈ D with α1 < α2; this is possible
since D is unbounded in κ. Continuing in this fashion, we construct an
increasing sequence (αn)n<ω of ordinals less than κ with αn ∈ C for n odd
and αn ∈ D for n even. Let α′ := supn αn. Since cof(κ) > ω, we have
that α′ < κ, whence α′ ∈ C ∩D since C and D are both closed in κ. Since
α < α′, we see that C ∩D is unbounded in κ, as desired. �
Exercise 17.2.12. If λ < κ and (Cα)α<λ are all club subsets of κ, then⋂

α<λCα is also a club subset of κ.

Definition 17.2.13. The club filter on κ, denoted Club(κ), is the filter
on κ generated by the club subsets of κ

It follows that D ∈ Club(κ) if and only if there is a club subset C of κ
such that C ⊆ D. The previous exercise shows that Club(κ) is a κ-complete
filter on κ. Club(κ) is never an ultrafilter on κ; see [90, Theorem 12.5].
(Interestingly enough, the proof for κ = ℵ1 necessarily uses AC, for it is
consistent with ZF that Club(ℵ1) is an ultrafilter; see [90, Theorem 12.12].)

Definition 17.2.14. S ⊆ κ is stationary if the filter generated by Club(κ)
and S is a proper filter on κ.
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In other words, S is stationary if S ∩ C �= ∅ for all club subsets C of κ.
Note that all club subsets of κ are stationary.

Definition 17.2.15. A cardinal κ is Mahlo if it is strongly inaccessible
and

{λ < κ : λ is a strongly inaccessible cardinal}
is a stationary subset of κ.

Since we think of stationary subsets of κ as large subsets of κ, a Mahlo
cardinal is a strongly inaccessible cardinal such that there are a lot of
strongly inaccessible cardinals below κ.

Exercise 17.2.16. Mahlo cardinals are 2-inaccessible.

One can show that the converse of the previous exercise is not true: if κ is
the least 2-inaccessible cardinal, then κ is not Mahlo (see [89, Exercise 8.6]).
In fact, the existence of a Mahlo cardinal has higher consistency strength
than the existence of a 2-inaccessible cardinal.

Perhaps positing the existence of cardinals such as Mahlo cardinals seems
a bit ridiculous. However, it turns out that such large cardinals are “small”
in a quasi-technical sense. Moreover, starting with the next section, we will
turn our attention to large cardinal notions that appear rather organically in
terms of the themes presented throughout this book and yet these cardinals
are indeed “larger” than the larger cardinals presented thus far.

17.3. Measurable cardinals

We recall the following definition from Remark 6.6.10:

Definition 17.3.1. An uncountable cardinal κ is measurable if there is a
nonprincipal κ-complete ultrafilter on κ.

Since all ultrafilters are ℵ0-complete, the previous definition is indeed
the uncountable generalization of the fact that nonprincipal ultrafilters on
ω exist.

Exercise 17.3.2. Measurable cardinals are regular.

Measurable cardinals are large:

Theorem 17.3.3. Measurable cardinals are strongly inaccessible.

Proof. By the previous exercise, we know that measurable cardinals are
regular. It remains to show that they are strong limit cardinals. We prove
the contrapositive, whence we assume there is some λ < κ such that κ ≤ 2λ.
We may thus find S ⊆ P(λ) such that |S| = κ. Suppose that U is a κ-
complete ultrafilter on S; it suffices to show that U is principal. For each
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α ∈ λ, let Xα := {X ∈ S : α ∈ X}, and let εα ∈ {−1, 1} be such
that X εα

α ∈ U , where X 1
α := Xα and X−1

α := S \ Xα. By κ-completeness,⋂
α<λX εα

α ∈ U . It remains to note that
⋂

α<λX εα
α contains at most one

element, namely {α < λ : εα = 1}. It follows that U is principal. �

The next result shows that the existence of a countably complete non-
principal ultrafilter is equiconsistent with a measurable cardinal, a result
which was alluded to in Remark 6.6.10.

Proposition 17.3.4. Suppose that κ is the least cardinal that possesses a
countably complete nonprincipal ultrafilter. Then κ is measurable.

Proof. Let U be a countably complete nonprincipal ultrafilter on κ. Sup-
pose, toward a contradiction, that κ is not measurable, whence there are
λ < κ and sets (Xi)i<λ, with Xi /∈ U for each i < λ and yet

⋃
i<λXi ∈ U .

We may also assume that the Xi’s are pairwise disjoint by replacing each
Xi by Xi \

⋃
j<iXj . We now define V ⊆ P(λ) by declaring, for Y ⊆ λ, that

Y ∈ V if and only if
⋃

i∈Y Xi ∈ U . We complete the proof by verifying that
V is a countably complete nonprincipal ultrafilter on λ; since λ < κ, this
contradicts the defining property of κ.

It is clear that ∅ /∈ V and λ ∈ V by the choice of the sets Xi. It is also
clear that V is closed under superset. We now verify that V is closed under
countable intersections. Suppose that Yn ∈ V for each n < ω. Since the sets
(Xi)i<λ are pairwise disjoint, we have that

⋃
i∈

⋂
n<ω Yn

Xi =
⋂

n<ω

⋃
i∈Yn

Xi;

since U is countably complete, we see that
⋂

n<ω

⋃
i∈Yn

Xi ∈ U , whence⋂
n<ω Yn ∈ V, as desired. Finally, since each Xi /∈ U , we have that V is

nonprincipal. �

We now show that every measurable cardinal κ possesses a κ-complete
nonprincipal ultrafilter that has a nice extra technical property that we will
use in what follows.

Lemma 17.3.5. Suppose that κ is an uncountable cardinal and U is a κ-
complete nonprincipal ultrafilter on κ. Furthermore, set L := {R}, with R
a binary relation and consider the L-structure M := (κ, ε). Then:

(1) RMU
is a well-ordering.

(2) d(κ) is an initial segment of RMU
, that is, for each α < κ, d(α) is

the αth element of MU .

(3) The order type of RMU
is strictly larger than κ.

Proof. (1). It is clear from �Loś’s theorem that RMU
is a linear ordering.

To see that it is a well-ordering, suppose, toward a contradiction, that
[f0]U > [f1]U > · · · is a strictly decreasing sequence. For each n ∈ ω, let
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Xn := {i ∈ κ : fn(i) > fn+1(i)}. By assumption, each Xn ∈ U , whence,
by countable completeness, there is i ∈

⋂
n<ω Xn. We then have that

f0(i) > f1(i) > f2(i) > · · · , contradicting that κ is an ordinal.

One proves (2) by induction on α < κ. Suppose this is true for all
β < α. We must show that the predecessors of d(α) are precisely the d(β)

for β < α. Since d is an embedding, we have RMU
(d(β), d(α)), so each such

d(β) is indeed a predecessor of d(α). Now suppose that [f ]U ∈ MU is such

that RMU
([f ]U , d(α)). For each β < α, let Xβ := {i ∈ κ : f(i) = β}. Then

by assumption
⋃

β<αXβ ∈ U . By κ-completeness, there is some β < α such

that Xβ ∈ U , whence [f ]U = d(β).

To prove (3), we first note that, by (2), the order type of RMU
is at least

κ. However, by Exercise 6.6.14, since U is not κ+-complete, d is not onto,
which completes the proof. �

Let us refer to the order type of RMU
above as κU . The question now

arises: what is the κth element of κU?

Definition 17.3.6. A κ-complete nonprincipal ultrafilter U on the uncount-
able cardinal κ is called normal if [id]U is the κth element of κU , where
id : κ→ κ is the identity map.

Given an ultrafilter U on κ and a function g : κ → κ, we say that g is
U-regressive if g(α) < α for U -many α ∈ κ. Here is a useful reformulation
of normality:

Exercise 17.3.7. A κ-complete nonprincipal ultrafilter U on the uncount-
able cardinal κ is normal if and only if whenever g : κ → κ is U -regressive,
then g is constant on a set in U .

Here is an example of the utility of normal ultrafilters:

Proposition 17.3.8. Suppose that κ is a cardinal of uncountable cofinality
and U is a normal ultrafilter on κ. Then Club(κ) ⊆ U . In particular, every
element of U is stationary.

Proof. Suppose toward a contradiction that C ⊆ κ is a club subset with
κ\C ∈ U . For α < κ, define f(α) := sup{β ∈ C : β < α}. Note that, since
C is closed, we have that f(α) < α for α ∈ κ \ C, whence f is U -regressive.
It follows that there is X ∈ U and ξ < κ such that f(α) = ξ for all α ∈ X.
Since C is unbounded in κ, there must exist β ∈ C such that ξ < β. Also,
since U is nonprincipal and κ-complete, X is unbounded in κ, whence there
is α ∈ X such that β < α. Thus, f(α) ≥ β > ξ, which is a contradiction. �

We now show that a measurable cardinal always possesses a normal
ultrafilter:
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Proposition 17.3.9. If κ is a measurable cardinal, then there is a normal
ultrafilter on κ.

Proof. Fix an arbitrary nonprincipal κ-complete ultrafilter U on κ. Fix
f : κ → κ such that [f ]U is the κth element of κU . We claim that f(U) is
a normal ultrafilter on κ. By Exercise 6.6.8, f(U) is κ-complete. Note that
f(U) is also nonprincipal: for α < κ, {α} ∈ f(U) if and only if f−1(α) ∈ U ,
which implies that [f ]U = d(α), contradicting the fact that [f ]U is the κth
element of κU while d(α) is the αth element. LetM be as in Lemma 17.3.5.

As discussed in Exercise 6.7.3, MU [f ] ∼=Mf(U) and the isomorphism sends
[f ]U to [id]f(U); since [f ]U is clearly the κth element of MU [f ], we are
done. �

Corollary 17.3.10. Measurable cardinals are Mahlo.

Proof. Suppose that κ is measurable. We already know that κ is strongly
inaccessible. To complete the proof, it suffices to show that the set F of
regular cardinals below κ is stationary. Indeed, by Exercise 17.2.10, the set
F ′ of strong limit cardinals below κ is club, whence F ∩ F ′ is stationary, as
desired.

Let U be a normal ultrafilter on κ. By Proposition 17.3.8, it suffices to
show that F ∈ U . Suppose, toward a contradiction, that κ\F ∈ U . It follows
that the function α �→ cof(α) is U -regressive, whence, by Exercise 17.3.7,
there is λ < κ such that Eλ ∈ U , where Eλ := {α ∈ κ : cof(α) =
λ}. For each α ∈ Eλ, there is an increasing sequence (xα,ξ) ξ<λ such that
supξ<λ xα,ξ = α. For each ξ < λ, there is some yξ < κ and some Aξ ∈ U
such that xα,ξ = yξ for all α ∈ Aξ; this is because the map α �→ xα,ξ
is U -regressive. By κ-completeness,

⋂
ξ<λAξ ∈ U . However,

⋂
ξ<λAξ :=

{supξ<λ yξ}, contradicting that U is nonprincipal. �

It is a fact that the existence of a measurable cardinal has higher con-
sistency strength than the existence of a Mahlo cardinal.

We end this section with a digression on how large cardinals need not
be so large if one does not assume the axiom of choice. For example:

Theorem 17.3.11. If there is a measurable cardinal, then it is consistent
with ZF that ℵ1 is measurable.

The previous theorem is beyond the scope of this book (see [90, Theorem
12.2] for a proof), but we can prove something of a similar nature.

In the rest of this section, we work in ZF. Below, AD refers to the axiom
of determinacy as introduced in Section 5.3.

Theorem 17.3.12 (Solovay [165]). AD implies that ℵ1 is measurable.
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We give Martin’s proof [127] of Theorem 17.3.12, which relies on the
theory of computability. (The reader unfamiliar with computability theory
can refer to the friendly introduction [51].)

Definition 17.3.13. Given x, y ∈ NN, we say that x is computable from
y (or that x is Turing reducible to y), denoted x ≤T y, if there is a
computer program with access to y such that, given n ∈ N, after a finite
period of time it will halt and return the value x(n).

Of course the previous definition is not mathematically precise, relying
on the intuitive notion of computer program. There are, however, several
formalizations of this notion that one can pursue. For our purposes, we will
rely on this intuitive definition and some of its basic properties, listed below:

Facts 17.3.14. The relation ≤T on NN satisfies the following properties:

(1) ≤T is reflexive and transitive.

(2) For every x ∈ NN, the set {y ∈ NN : y ≤T x} is countable.

(3) If (xn)n∈N is a countable sequence from NN, then there is x ∈ NN

such that xn ≤T x for all n ∈ N.

(4) For every x ∈ NN, there is y ∈ NN such that x ≤T y but y �≤T x.

Proof idea. (1) follows immediately from the definition of ≤T , and (2)
follows from the fact that there are only countably many programs that
have access to a particular x ∈ NN.

For (3), take any x ∈ NN such that, for all m,n ∈ N, we have x(pm+1
n ) :=

xn(m), where pn is the (n+ 1)-st prime.

Finally, (4) can be proven by recursion using a diagonalization argument
over all possible functions computable by x to ensure that the function
constructed is not computable from x. �

By Fact 17.3.14(1), we get an equivalence relation ≡T on NN by declaring
x ≡T y if and only if x ≤T y and y ≤T x. The equivalence class of x is called
the (Turing) degree of x and is denoted x. The relation ≤T descends to
a partial order, also denoted ≤T , on the set D of degrees by setting x ≤T y
if and only if x ≤T y.

Definition 17.3.15. Given a degree x ∈ D, we set the cone of x to be the
set c(x) := {y : x ≤T y}. A cone in D is a set of the form c(x) for some
x ∈ D.

The key to Martin’s proof of Theorem 17.3.12 is the following:

Theorem 17.3.16 (Martin). Suppose that AD holds and A ⊆ D. Then
either A contains a cone or D \ A contains a cone.
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Proof. Let A := {x ∈ NN : x ∈ A}. We claim that if player I has a
winning strategy in G(A), then A contains a cone while if player II has a
winning strategy in G(A), then D \ A contains a cone. We will only prove
the former case, leaving the latter to the reader.

Suppose that σ : N<N → N<N is a winning strategy for player I. By using
familiar Gödel numbering of finite sequences, we may view σ as an element
of NN and thus can consider its degree σ.

We claim c(σ) ⊆ A, finishing the proof of the theorem. Toward this end,
suppose that x ∈ c(σ). Consider a play of the game where player II plays
x and player I plays according to σ. This produces a sequence y ∈ NN such
that y ∈ A (as player I plays according to its winning strategy). It remains
to note that y = x. Indeed, x ≤T y (as it is just the “even part” of y) while
y is computable from x and σ; but since σ is computable from x, we have
that y is computable from x alone, that is, y ≤T x. �

We will need one other ingredient:

Lemma 17.3.17. AD implies that ℵ1 is a regular cardinal.

Proof. It is standard that the regularity of ℵ1 follows from the countable
axiom of choice for R, which states that every countable family of nonempty
subsets of NN has a choice function. We show that this latter statement
follows from AD.

Let X0, X1, . . . be countably many nonempty subsets of NN. We set

X := {a ∈ NN : (a(1), a(3), a(5), . . .) /∈ Xa(0)}.
By AD, GX is determined. However, player I cannot have a winning strategy
in GX , for if the strategy told player I to start with n, then player II can
win by just playing some sequence (a(1), a(3), a(5), . . .) ∈ Xn, contradicting
that the strategy was winning for player I. Consequently, it must be player
II who has the winning strategy. We can thus define a choice function for the
above family by setting F (n) to be the sequence of moves player II makes
according to the winning strategy if player I plays (n, 0, 0, . . .). �
Remark 17.3.18. The previous lemma might seem strange at first, but in
models of ZF without choice, ℵ1 need not be regular.

Proof of Theorem 17.3.12. Let V := {A ⊆ D : A contains a cone}.

Claim 1. V is a nonprincipal countably complete ultrafilter on D.

Proof of Claim 1. It is clear that ∅ /∈ V. To see that D ∈ V, note that the
cone determined by any computable sequence (such as a constant sequence)
is all of D. It also clear that V is closed under supersets. Theorem 17.3.16
shows that, given any A ⊆ D, either A ∈ V or D \A ∈ V. V is nonprincipal



320 17. Large cardinals

since there is more than one cone by Fact 17.3.14(4). It remains to prove
closure under countable intersections. Suppose that An ∈ V for all n ∈ N.
By the countable axiom of choice for R (see the proof of Lemma 17.3.17),
for each n ∈ N, we can choose xn ∈ NN such that c(xn) ⊆ An. By Fact
17.3.14(3), there is x ∈ NN such that xn ≤T x for all n ∈ N. It follows that
c(x) ⊆

⋂
n∈NAn, whence

⋂
nAn ∈ V.

Let G : NN → ℵ1 be a surjective map (which exists without needing to
use AC) and define F : D → ℵ1 by setting F (x) := sup{G(y) : y ≤T x}.
By Fact 17.3.14(2), we are indeed taking the supremum of a countable set
of ordinals, which, by Lemma 17.3.17, is still a countable ordinal, whence F
really does take values in ℵ1.

We now set U := F (V), an ultrafilter on ℵ1. Since U ≤RK V, it follows
that U is countably complete. To finish the proof of the theorem, it suffices
to establish:

Claim 2. U is nonprincipal.

Proof of Claim 2. It suffices to show that, for any α < ℵ1, we have that
{x : F (x) ≥ α} ∈ V. Take y ∈ NN such that G(y) = α. By definition,
c(y) ∈ V. However, y ≤T x implies F (x) ≥ G(y) = α, that is, {x : F (x) ≥
α} ⊇ c(y), finishing the proof. �

17.4. Strongly and weakly compact cardinals

In this section, we consider the following “infinitary” extensions of first-order
logic:

Definition 17.4.1. Given a language L and a cardinal κ, the set of Lκ-
formulae are obtained by allowing two additional ways of constructing new
formulae:

• If α < κ and (ϕβ)β<α is a family of Lκ-formulae, then so is
∧

β<α ϕβ .

• If α < κ, (xβ)β<α is a sequence of variables and ϕ is an Lκ-formula,
then so is (∃xβ)β<αϕ.

Note that the Lℵ0-formulae are the same as the ordinary first-order L-
formulae. One can extend the semantics of ordinary first-order logic in the
obvious way to define the truth of an Lκ-formula in an L-structure.

Here is an example of the greater expressive power of infinitary logics:

Exercise 17.4.2. Let L = {R}, where R is a binary relation. Show that
there is an Lℵ1-sentence σ such that, for any L-structureM, M |= σ if and
only if RM is a well-ordering of M .
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Given the obvious connection between intersections and conjunctions,
the following extension of �Loś’s theorem should not be too surprising:

Theorem 17.4.3 (�Loś’s theorem for Lκ). Suppose that (Mi)i∈I is a family
of L-structures and U is a κ-complete ultrafilter on I. Further suppose that
α < κ, ϕ((xβ)β<α) is an Lκ-formula, and [aβ]U ∈

∏
U Mi for β < α. Then∏

U
Mi |= ϕ(([aβ]U)β<α)⇔ {i ∈ I : Mi |= ϕ((aβ(i))β<α)} ∈ U .

Exercise 17.4.4. Prove Theorem 17.4.3.

One of the first issues that arises with the infinitary logics Lκ is that the
compactness theorem no longer holds!

Exercise 17.4.5. Let L = {c, c0, c1, . . .}, and set

Σ := {c �= cn : n < ω} ∪ {∀x
∨
n<ω

x = cn}.

Show that Σ is finitely satisfiable but not satisfiable.

The compactness theorem for first-order logic can be viewed as the state-
ment: whenever Σ is a set of sentences of Lℵ0 such that every subset of size
< ℵ0 has a model, then Σ has a model. The literal extension of this state-
ment to uncountable cardinals leads to the following notion:

Definition 17.4.6. Suppose that κ is an uncountable cardinal. We say that
κ is strongly compact if: whenever Σ is a set of sentences of Lκ such that
every subset of size < κ has a model, then Σ has a model.

Exercise 17.4.7. Prove that strongly compact cardinals are regular.

The usual equivalence between the compactness theorem and the ul-
trafilter theorem can be extended to give an ultrafilter characterization of
strongly compact cardinals:

Theorem 17.4.8. Suppose that κ is an uncountable cardinal. Then κ is
strongly compact if and only if, for every set I and every κ-complete filter
F on I, there is a κ-complete ultrafilter U on I extending F .

Before proving this theorem, we establish some notation. Fix a set I
with |I| ≥ κ. We set Pκ(I) := {x ⊆ I : |x| < κ}. For each x ∈ Pκ(I), set
x̂ := {y ∈ Pκ(I) : x ⊆ y}.

Exercise 17.4.9. Verify that the set

{X ⊆ Pκ(I) : x̂ ⊆ X for some x ∈ Pκ(I)}
is a κ-complete filter on Pκ(I).
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Proof of Theorem 17.4.8. We leave the proof of the forward direction as
an exercise. We now prove the backward direction. Suppose that Σ is a set
of Lκ sentences such that every subset of Σ of size < κ has a model. Let
F := {X ⊆ Pκ(Σ) : x̂ ⊆ X for some x ∈ Pκ(Σ)}, a κ-complete filter on
Pκ(Σ) by Exercise 17.4.9. By assumption, there is a κ-complete ultrafilter
U on Pκ(Σ) extending F . For each x ∈ Pκ(Σ), let Mx be an L-structure
such that Mx |= x. Set M :=

∏
U Mx. We claim that M |= Σ. Indeed,

given σ ∈ Σ, set x := {σ}. Since x̂ ∈ F ⊆ U and My |= σ for all y ∈ Pκ(Σ)
with σ ∈ y, we obtain that M |= σ from �Loś’s theorem for Lκ. �
Exercise 17.4.10. Prove the forward direction of the previous theorem.
(Note that this direction does not require κ to be uncountable. When κ =
ℵ0, the theorem states that the by-now familiar fact that the compactness
theorem implies that every filter can be extended to an ultrafilter.)

Definition 17.4.11. For any cardinal κ and set I with |I| ≥ κ, an ultrafilter
U on Pκ(I) is called fine if it is κ-complete and extends the filter {X ⊆
Pκ(I) : x̂ ⊆ X for some x ∈ Pκ(I)}.

Thus, the proof of Theorem 17.4.8 actually showed:

Corollary 17.4.12. κ is strongly compact if and only if for any set I with
|I| ≥ κ, there is a fine ultrafilter on Pκ(I).

Corollary 17.4.13. Strongly compact cardinals are measurable.

Proof. Suppose that κ is strongly compact. Let F := {X ⊆ κ : |κ \X| <
κ}. Note that F is a κ-complete filter on κ. By strong compactness, there
is a κ-complete ultrafilter U on κ extending F . It is immediate that U is
nonprincipal, whence it follows that κ is measurable. �

The existence of a strongly compact cardinal has higher consistency
strength than the existence of a measurable cardinal.

As we saw in the previous section, having normal κ-complete ultrafilters
yielded desirable consequences. It thus makes sense to consider a notion of
normality in this context as well. Given a cardinal κ, a set I with |I| ≥ κ,
a function f : Pκ(I) → I, and an ultrafilter U on Pκ(I), we say that f is
U -regressive if f(x) ∈ x for U -almost all x ∈ Pκ(I).

Definition 17.4.14. Given a cardinal κ and a set I with |I| ≥ κ, a fine
ultrafilter U on Pκ(I) is normal if whenever f : Pκ(I)→ I is U -regressive,
then f is constant on a set in U .

Unlike the previous section, it is not the case that, whenever κ is strongly
compact, there is a normal ultrafilter on Pκ(I). We need to give this stronger
property a name. But what is stronger than “strong”? Why, “super”, of
course!
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Definition 17.4.15. If κ is an uncountable cardinal, then κ is called
supercompact if, whenever |I| ≥ κ, there is a normal ultrafilter on Pκ(I).

Remark 17.4.16. Why is it we say that being supercompact is stronger
than strongly compact? Well, it is consistent that there is a model with a
strongly compact cardinal that is not supercompact. It is also consistent
that all strongly compact cardinals are supercompact. It is an interesting
open question whether or not the existence of a supercompact cardinal is
equiconsistent with the existence of a strongly compact cardinal.

We previously saw that strongly compact cardinals are measurable. It
turns out measurable cardinals have a reformulation in terms of a compact-
ness-like principal as well. In order to explain this, we first need an exercise,
which should remind the reader of the hyperfinite generators of ultrafilters
from Section 9.7.

Exercise 17.4.17. Fix a cardinal κ and let L := {PS : S ⊆ κ}, where
each PS is a unary relation symbol. LetM be the L-structure with universe
κ such that PM

S = S for all S ⊆ κ. Let N be an elementary extension ofM
in the sense of Lκ. For any b ∈ N , let Ub := {S ⊆ κ : b ∈ SN }. Prove that
Ub is a κ-complete ultrafilter on κ. Moreover, prove that Ub is principal if
and only if b ∈ κ.

Theorem 17.4.18. Suppose that κ is an uncountable cardinal. Then the
following are equivalent:

(1) κ is measurable.

(2) For every increasing sequence (Σα)α<κ of Lκ-sentences, if each Σα

has a model, then
⋃

α<κΣα has a model.

(3) If M is an L-structure of cardinality κ, then M has a proper Lκ-
elementary extension.

Proof. (1) ⇒ (2): Let U be a nonprincipal κ-complete ultrafilter on κ. For
α < κ, let Mα |= Σα. We claim

∏
U Mα |=

⋃
α<κΣα. To see this, fix σ ∈

Σα. Then Mβ |= σ for all β ≥ α. By nonprincipality and κ-completeness,
we have that {β < κ : α ≤ β} ∈ U . It follows thatMβ |= σ for U -almost all
β, whence, by �Loś’s theorem for Lκ, we have that

∏
U Mα |= σ, as desired.

(2) ⇒ (3): Let (aβ)β<κ be an enumeration of M . Let T := ThLκ(MM )
denote the Lκ-elementary diagram of M. Let c be a new constant symbol.
For any α < κ, set Σα := T ∪ {c �= aβ : β < α}. For any α < κ, note that
(MM , aα) |= Σα. Thus, by (2),

⋃
α<κΣα has a model, whose reduct to L is

a proper Lκ-elementary extension of M.

(3) ⇒ (1) follows immediately from Exercise 17.4.17. �
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We now consider one further compactness theorem for Lκ, the weakest
of them all (whence the name):

Definition 17.4.19. An uncountable cardinal κ is weakly compact if it
is strongly inaccessible, and whenever Σ is a set of sentences of Lκ with
|Σ| = κ such that every subset of size < κ has a model, then Σ has a model.

Note that the difference between the compactness statements in the
definitions of strongly compact and weakly compact cardinals is that weakly
compact cardinals put a size limitation on the set of sentences we are trying
to show has a model.

Remark 17.4.20. It is slightly unattractive to have to insert strong inac-
cessability into the definition of weakly compact cardinals. However, if Lκ

satisfies the weak compactness theorem in the definition of weakly compact
cardinals, then one can only show in ZFC that κ is weakly inaccessible (see
[89, Exercises 17.17 and 17.18]). An unpublished result of Kunen (see Boos’
article [17]) shows that if μ is a measurable cardinal, then there is a forc-
ing extension of the universe in which μ becomes c and almost all (in the
sense of a normal ultrafilter on U) κ < μ are such that Lκ satisfy the weak
compactness theorem. Since no uncountable cardinal below c is a strong
limit cardinal, we see that these κ show that it is consistent that satisfying
the weak compactness theorem need not imply strong inaccessibility. To
summarize: if you insist that all large cardinals be at least worldly, then one
needs to insert that into the definition of the weakly compact cardinal. An
even more compelling reason is that there are a number of other interesting
reformulations of a weakly compact cardinal that only hold if one assumes
that the cardinal is strongly inaccessible to begin with. See [89, Section 17]
for more on this.

Theorem 17.4.18 above gives:

Corollary 17.4.21. Measurable cardinals are weakly compact.

Proof. Suppose that κ is a measurable cardinal. We already know that κ
is strongly inaccessible. Now suppose that Σ is a set of sentences of Lκ with
|Σ| = κ and such that every subset of size < κ has a model. We need to show
that Σ has a model. Enumerate Σ as (σβ)β<κ and let Σα := {σβ : β < α}.
Then Σβ ⊆ Σα for β < α and each Σα has a model as |Σα| = |α| < κ. Thus,
by Theorem 17.4.18, Σ has a model. �

Later, we will see that if κ is measurable, then for any κ-complete non-
principal ultrafilter U on κ, there are U -many weakly compact cardinals
below κ. In particular, the existence of a measurable cardinal has a higher
consistency strength than the existence of a weakly compact cardinal.
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One can also show that weakly compact cardinals are Mahlo. However,
any such proof of this result often involves a detour through one of the many
other reformulations of weak compactness.

17.5. Ramsey cardinals

We now seek to generalize the infinite version of Ramsey’s theorem to un-
countable cardinals. In order to do this, we first introduce the convenient
(although slightly confusing) arrow notation. Suppose that X is a set and

η is a cardinal with |X| ≥ η. We extend our earlier notation by letting X [η]

denote the subsets of X of cardinality η. If κ, λ, and μ are also cardinals, we
write κ → (λ)ημ to mean any coloring f : κ[η] → μ of κ[η] with μ colors has

a homogeneous subset H of size λ, that is, f restricted to H [η] is constant.
(Of course, for this to even be possible, one needs λ, η ≤ κ.)

With this notation in hand, one can now state the infinite Ramsey the-
orem as for any m,n < ℵ0, we have ℵ0 → (ℵ0)nm.

When attempting to generalize the above statement to uncountable car-
dinals, we will not simply replace all occurrences of ℵ0 by some uncountable
cardinal κ and see what happens (this leads to something different). We
instead first consider the property: for all n < ℵ0 and all μ < κ, κ→ (κ)nμ.
Unfortunately, this leads us to a large cardinal notion that we have already
considered (see [28, Exercises 7.3.21 and 7.3.22]):

Theorem 17.5.1. Suppose that κ is an uncountable cardinal. Then the
following are equivalent:

(1) κ is weakly compact.

(2) For every n < ℵ0 and μ < κ, κ→ (κ)nμ.

(3) κ→ (κ)22.

However, there is a (seemingly) slight tweak that one can make that
leads to a new large cardinal notion.

Definition 17.5.2. A cardinal κ is a Ramsey cardinal if, for any coloring
c of Pf (κ) with μ < κ colors, there is A ⊆ κ with |A| = κ such that, for any

n ∈ ω, c restricted to A[n] is constant.

We extend the arrow notation to cover the conclusion of the definition:
κ→ (κ)<ω

μ .

Remark 17.5.3. It turns out that κ is Ramsey if and only if κ → (κ)<ω
2 .

(See [89].)
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By Theorem 17.5.1, Ramsey cardinals are weakly compact. One can
show that Ramsey cardinals have a higher consistency strength that weakly
compact cardinals.

It is worth pointing out that, unlike the other large cardinal notions, the
defining property does not hold for ℵ0:

Proposition 17.5.4. ℵ0 �→ (ℵ0)<ω
2 .

Proof. Define a coloring c on the finite subsets of ω by c(s) = 0 if |s| ∈ s and
c(s) = 1 otherwise. We show that there is no infinite homogeneous subset.
Let A ⊆ ω be infinite with n := min(A). Enumerate A = {a0, a1, . . . , }
in increasing order. Then c({a0, a1, . . . , an−1}) = 0 and c({a1, . . . , an}) =
1. �

Theorem 17.5.5. Measurable cardinals are Ramsey cardinals.

Proof. Suppose that κ is a measurable cardinal and fix a normal ultrafilter
U on κ.

Claim. For any n ∈ ω and any coloring c : κ[n] → μ with μ < κ, there is a
set H ∈ U that is homogeneous for c.

Proof of Claim. We prove the claim by induction on n. The case n = 1
follows immediately from κ-completeness. We now suppose it is true for n
and fix a coloring c : κ[n+1] → μ with μ < κ. Each s ∈ κ[n] induces a coloring
cs on κ\s by defining cs(α) := c(α∪{s}). By the base case of the induction,
we may fix Hs ∈ U monochromatic for cs with color qs. The function s �→ qs
is a coloring of κ[n], so by induction there is a homogeneous set H̄ ∈ U for
that coloring with color q.

We set H := {α ∈ H̄ : α ∈ Hs for all s ∈ (α ∩ H̄)[n]}. Note first that
c is homogeneous on H with color q. Indeed, suppose that t ∈ H [n+1] and
set α := max(t) and s := t \ {a}. Then s ∈ (α ∩ H̄)[n], whence α ∈ Hs,
and hence cs(α) = q, that is, c(t) = q. It remains to show that H ∈ U .
To see this, suppose that α ∈ H̄ \ H. Then there is s ∈ (α ∩ H̄)[n] such
that α /∈ Hs. Pick such an s and enumerate s = {f1(α), . . . , fn(α)}. For
α /∈ H̄ \H, define fi(α) arbitrarily. Suppose, toward a contradiction, that
H /∈ U . Then H̄\H ∈ U and fi(α) < α for all α ∈ H̄\H and i = 1, . . . , n. In
other words, each fi is U -regressive. By normality, there are X1, . . . , Xn ∈ U
such that fi � Xi is constant. Setting X := X1 ∩ · · · ∩Xn, we see that there
is a single s such that, for all α ∈ X, we have s = {f1(α), . . . , fn(α)}. It
remains to note that X ∩Hs = ∅, a contradiction. This proves the claim.

Now fix a coloring c : Pf (κ) → μ with μ < κ and let cn denote its

restriction to κ[n]. By the claim, for each n ∈ ω, there is a set Hn ∈ U which
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is homogeneous for cn. Set H :=
⋂

n∈ω Hn. By countable completeness,
H ∈ U . Since U is nonprincpal and κ-complete, |H| = κ, and is thus as
desired. �

We will see an application of Ramsey cardinals in Section 17.7.

We have now introduced all of the large cardinals that we plan on dis-
cussing in this book. (There are many, many more interesting large cardinal
notions, but we have focused on those connected to the themes already
discussed in this book. See [89] and [94] for more information on large
cardinals.) To summarize, we have

supercompact⇒ strongly compact⇒ measurable⇒ Ramsey

⇒ weakly compact

⇒ Mahlo⇒ 2-inaccessible

⇒ strongly inaccessible⇒ worldly.

Moreover, all of these implications represent a strict increase in consistency
strength except for perhaps the first implication (which is still an open
question).

17.6. Measurable cardinals as critical points of elementary
embeddings

In this section, we discuss a more modern viewpoint of large cardinals as so-
called critical points of elementary embeddings of the set-theoretic universe.

First, suppose that U is an ultrafilter on an index set I. We would like to
consider the ultrapower V U of the set-theoretic universe V . Unfortunately,
the näıve idea of considering equivalence classes of functions f : I → V
under equality modulo U does not work as then equivalence classes would
be proper classes. However, an idea of Scott is to consider those elements of
the equivalence class of minimal rank. More precisely, given f : I → V , we
define the restricted equivalence class of f with respect to ∼U to be

[f ]rU := {g ∈ V I : f ∼U g and for any h ∈ V I with f ∼U h

we have rank(g) ≤ rank(h)}.

Note now that [f ]rU is a set. We define the ultrapower of V with respect
to U to be V U := {[f ]rU : f : I → V }. We consider the relation E on V U

given by membership: [f ]rU E [g]rU if and only if f(i) ∈ g(i) for U -almost all
i ∈ I.

Exercise 17.6.1. Verify that �Loś’s theorem holds in the following context:
if ϕ(x1, . . . , xn) is a formula in the language of set theory and [f1]

r
U , . . . , [fn]

r
U
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are elements of V U , show that

(V U , E) |= ϕ([f1]
r
U , . . . , [fn]

r
U)⇔ {i ∈ I : (V, ε) |= ϕ(f1(i), . . . , fn(i))} ∈ U .

Conclude that the diagonal embedding d : (V, ε)→ (V U , E) is an elementary
embedding.

The Mostowski collapse procedure allows one to find a unique inner
model M ⊆ V with (V U , E) ∼= (M, ε) if :

(1) for each [f ]rU ∈ V U , the collection of all [g]rU with [g]rU E [f ]rU is a
set; and

(2) E is well founded.

Item (1) holds for any U by the way we defined V U . In connection with
item (2), we have:

Exercise 17.6.2. Prove that E is well founded if and only if U is countably
complete.

Based on the previous exercise, we assume from now on that U is at
least countably complete, whence (V U , E) ∼= (M, ε) for a unique inner model
M ⊆ V . For simplicity, we often identify V U with M .

Before we go any further, we gather some basic facts about elementary
embeddings:

Exercise 17.6.3. Suppose that M is an inner model, j : V → M is an
elementary embedding, and α is an ordinal. Prove that:

(1) j(α) is an ordinal.

(2) α ≤ j(α).

(3) If j(β) = β for all β ∈ α, then j(x) = x for all x ∈ Vα.

It is worth emphasizing that in the previous exercise, one only needs
to assume that M is a transitive class and that there is an elementary
embedding j : V →M , for then it follows that M is an inner model of ZFC.

In the rest of this section, M denotes an inner model of ZFC.

Lemma 17.6.4. Suppose that U is a nonprincipal κ-complete ultrafilter on
κ. Then d(γ) = γ for all γ < κ.

Proof. Suppose that [f ]rU < d(γ). Then f(α) < γ for U -almost all α ∈ κ.
By κ-completeness, there is η < γ such that f(α) = η for U -almost all α ∈ κ,
whence [f ]rU = d(η). �

Proposition 17.6.5. Suppose that j : V → M is a nontrivial elementary
embedding. Then the least ordinal α such that α < j(α) is a cardinal.
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Proof. Let α be the least ordinal such that α < j(α). Fix β < α and
f : β → α; it suffices to show that f is not a surjection. First note that,
for ξ < β, we have that j(f)(ξ) = j(f)(f(ξ)) = j(f(ξ)) = f(ξ). It remains
to note that if f were surjective, then by elementarity, j(f) would also be
surjective; since the codomain of j(f) is f(α) > α, this contradicts the fact
that j(f)(ξ) = f(ξ) for all ξ < β. �

Definition 17.6.6. If j : V → M is a nontrivial elementary embedding,
then the critical point of j, denoted crit(j), is the least ordinal κ such
that κ < j(κ).

Theorem 17.6.7. Suppose that κ is a measurable cardinal and U is a non-
principal κ-complete ultrafilter on κ. If d : V → V U is the correspond-
ing diagonal embedding, then d is a nontrivial elementary embedding with
crit(d) = κ.

Proof. By Lemma 17.6.4, we already know that crit(d) ≥ κ. Let id : κ→ κ
be the identity map. Suppose γ < κ. Then {α < κ : γ < α} ∈ U by
κ-completeness, whence γ = d(γ) < [id]rU and thus κ ≤ [id]rU . On the other
hand, [id]rU < d(κ). It follows that κ < d(κ) and thus crit(d) = κ. �

Exercise 17.6.8. Suppose that U is a nonprincipal κ-complete ultrafilter
on the uncountable cardinal κ. Then the following are equivalent:

(1) U is normal.

(2) In V U , κ = [id]rU .

(3) For every X ⊆ κ, X ∈ U if and only if κ ∈ d(X).

We now prove the converse of Theorem 17.6.7. The previous exercise
gives us a hint of how to proceed:

Theorem 17.6.9. Suppose that j : V → M is a nontrivial elementary
embedding with crit(j) = κ. Then κ is measurable. In fact, Uj := {X ⊆ κ :
κ ∈ j(X)} is a normal ultrafilter on κ.

Proof. Since j(ω) = ω, we have that κ is uncountable. We now verify the
latter claim:

• Since κ < j(κ), we have that κ ∈ j(κ), so κ ∈ Uj .
• Since j(∅) = ∅, ∅ /∈ Uj.
• Suppose that X ∈ Uj and X ⊆ Y . Since j(X) ⊆ j(Y ), we have
that κ ∈ j(Y ), so Y ∈ Uj .

• Suppose that X,Y ∈ Uj. Since κ ∈ j(X) ∩ j(Y ) = j(X ∩ Y ), we
have that X ∩ Y ∈ Uj .
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• Suppose that X ⊆ κ. If X /∈ Uj, then κ ∈ j(κ) \ j(X) = j(κ \X),
so κ \X ∈ Uj.

• Suppose α < κ. Then j({α}) = {j(α)} = {α} by Lemma 17.6.3,
whence κ /∈ j({α}) and so Uj �= Uα and thus Uj is not principal.

• κ-complete: Suppose that γ < κ and X = (Xα)α<γ is a collection
from Uj . By elementarity, in M , j(X ) is a sequence of length j(γ)
of subsets of j(κ); these facts remain true in V . By Lemma 17.6.3,
j(X ) = (j(Xα) : α < γ). Then κ ∈

⋂
α<γ j(Xα) = j(

⋂
α<γ Xα),

and hence
⋂

α<γ Xα ∈ Uj .
• Suppose f : κ→ κ is Uj-regressive. Let X := {γ < κ : f(γ) < γ}.
Then X ∈ Uj , so κ ∈ j(X) = {γ < j(κ) : j(f)(γ) < γ}, so
j(f)(κ) < κ, say j(f)(κ) = α. Let Y = {γ < κ : f(γ) = α}. Then
κ ∈ j(Y ), so Y ∈ Uj and so f is Uj-constant. �

Using the notation of the previous theorem, setting d : V → V U to be
the diagonal embedding, Exercise 17.6.8 states that Ud = U if and only if U
is normal. In general, we have the following result:

Theorem 17.6.10. Suppose that j : V → M is a nontrivial elementary
embedding with crit(j) = κ. Define Uj as in the previous theorem. Then
there is an elementary embedding j′ : V Uj →M such that j′ ◦ dUj = j.

Proof. Given [f ]rUj
∈ V Uj , set j′([f ]rUj

) := j(f)(κ). (Note that this makes

sense as f : κ→ V so j(f) : j(κ)→M and κ < j(κ).) Of course, one must
check that this definition is independent of representatives. Toward this end,
suppose that [f ]rUj

= [g]rUj
. It follows that X := {α < κ : f(α) = g(α)} ∈

Uj, whence κ ∈ j(X) = {α < j(κ) : j(f)(α) = j(g)(α)}, as desired.
Why is j′ elementary? Suppose V Uj |= ϕ([f ]rUj

). Then X = {α < κ :

ϕ(f(α))} ∈ Uj, so κ ∈ j(X) = {α < j(κ) : M |= ϕ((j(f)(α))}. Thus
M |= ϕ(j(f)(κ)), i.e. M |= ϕ(j′([f ]rUj

)), as desired.

Finally, we show that j′ ◦ dUj = j. Fix a ∈ V . Then dUj(a) = [ca]
r
Uj
,

where ca : κ → V is the function constantly equal to a. Then j(ca) is the
function on j(κ) constantly equal to j(a). In particular, j(ca)(κ) = j(a).
By the definition of j′, we have j′(dUj(a)) = j(a), as desired. �

Before moving on, we give a nice application of this perspective:

Theorem 17.6.11 (Scott [154]). If V = L, then there are no measurable
cardinals. Consequently, measurable cardinals do not exist in L.

Proof. Suppose that V = L and yet, toward a contradiction, that there
is a measurable cardinal. Let κ be the least measurable cardinal and let
d : V → V U be the diagonal embedding corresponding to some nonprincipal
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κ-complete ultrafilter on κ. Since V = L, we have that V U = V . Since d is
elementary, we have that d(κ) is the least measurable cardinal in V U = V .
Since d(κ) > κ, we have reached a contradiction. �

Large cardinal notions stronger than measurable cardinals can often be
rephrased in terms of the existence of elementary embeddings j : V → M
with M ’s that “resemble” V more closely. One way in which we can measure
this is to ask what subsets of M actually belong to M .

Definition 17.6.12. For a cardinal λ, we say that an elementary embedding
j : V →M is λ-supercompact if Mλ ⊆M .

We now give a criteria for λ-supercompactness. Recall that for a function
f : X → Y and a subset Z ⊆ X, we set f ′′Z := {f(x) : x ∈ Z} to be the
image of Z under f .

Proposition 17.6.13. Suppose that U is a countably complete ultrafilter on
a set S, set M := V U , and let d : V →M be the diagonal embedding. Then
for any cardinal λ, d is λ-supercompact if and only if d′′λ ∈M .

Proof. The forward direction is clear. Now suppose that d′′λ ∈ M and
suppose that Y ⊆M is such that |Y | ≤ λ. Write Y = {[fα]rU : α < λ}. Let
h : S → P(λ) be such that [h]rU = d′′λ. Define g : S → V by declaring g(i)
is a function with domain h(i) and such that g(i)(α) = fα(i). It follows that
[g]rU(d(α)) = [fα]

r
U for every α < λ and the domain of [g]rU = d′′λ, whence

the range of [g]rU is Y and thus Y ∈M . �

The next result follows immediately from Proposition 17.6.13:

Corollary 17.6.14. If κ is a measurable cardinal and U is a nonprincipal
κ-complete ultrafilter on κ, then the diagonal embedding d is κ-supercompact.

Before moving on, here is an application:

Theorem 17.6.15. Suppose that U is a normal ultrafilter on κ. Then for
U-almost all λ < κ, λ is weakly compact.

Proof. By Corollary 17.6.14 and Theorem 17.5.1, we see that κ remains
weakly compact in V U . The result now follows Exercise 17.6.8. �

There is a limit to how supercompact the diagonal embedding can be.
In the context of Proposition 17.6.13, we have:

Proposition 17.6.16. If d is λ-supercompact, then λ ≤ |S|.

Proof. We show that d′′(|S|+) /∈M . Fix [f ]rU ∈M ; we show that d′′(|S|+) �=
[f ]rU . Set A := {i ∈ S : |f(i)| ≤ |S|}.
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Case 1. A ∈ U . Since |
⋃

i∈A f(i)| ≤ |S|, we may take α ∈ |S|+ \
⋃

i∈A f(i).
We claim that d(α) /∈ [f ]rU ; since d(α) ∈ d′′(|S|+), this suffices to finish the
proof in this case. Suppose, toward a contradiction, that d(α) ∈ [f ]rU . Then
α ∈ f(i) for U -almost all i. In particular, there is i ∈ A such that α ∈ f(i),
a contradiction to the choice of α.

Case 2. S \A ∈ U . In this case, since |S| < |f(i)| for all i ∈ S \A, we may
find an injective function h : S → V such that h(i) ∈ f(i) for all i ∈ S \ A.
It follows that [h]rU ∈ [f ]rU . If [h]

r
U ∈ d′′(|S|+), then there would be α < |S|+

such that h(i) = α for U -almost all i. We would then have that h is both
injective and constant on a U -large set, a contradiction. �

In order to get stronger large cardinal notions, we are thus searching for
cardinals κ that admit λ-supercompact elementary embeddings with λ ≥ κ.
We have to make a choice between the relationship between λ and j(κ). If
we choose that j(κ) ≤ λ, then the resulting cardinals will be huge, which is
a different story. We thus focus on λ < j(κ).

Definition 17.6.17. We say that κ is λ-supercompact if there is a λ-
supercompact embedding j : V →M such that crit(j) = κ and j(κ) > λ.

Since d′′κ = κ for a nonprincipal κ-complete ultrafilter on κ, we are
motivated to define an ultrafilter U ′

d by setting X ∈ U ′
d if and only if d′′λ ∈

d(X). But what is the ultrafilter defined on? Notice that M |= |d′′λ| < d(κ),
so d′′λ ∈ PM

d(κ)(d(λ)), whence Pκ(λ) ∈ U ′
d. This hints that maybe we should

have that be the index set for U ′
d.

To summarize: for λ ≥ κ, we set U ′
j to be the ultrafilter on Pκ(λ) given

by X ∈ U ′
j if and only if j′′λ ∈ j(X).

Theorem 17.6.18. If λ ≥ κ and κ is λ-supercompact as witnessed by the
embedding j : V →M , then U ′

j is a normal ultrafilter on Pκ(λ).

Exercise 17.6.19. Prove the previous theorem.

The previous theorem is actually one half of the following:

Theorem 17.6.20. There is a normal ultrafilter on Pκ(λ) if and only if κ
is λ-supercompact.

Proof. Suppose that U is a normal ultrafilter on Pκ(λ). Note that it follows
that κ is uncountable (Exercise). Let d : V → V U be the corresponding
diagonal embedding. We show that d is a λ-supercompact embedding with
crit(d) = κ and d(κ) > λ.

Let id : Pκ(λ)→ Pκ(λ) be the identity map. By Proposition 17.6.13, in
order to show that d is λ-supercompact, it suffices to show that d′′λ = [id]rU .
First suppose that α < λ. Then α ∈ x for U -almost all x by fineness, whence
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d(α) ∈ [id]rU . It follows that d′′λ ⊆ [id]rU . For the other direction, suppose
that [f ]rU ∈ [id]rU . Then f(x) ∈ x for U -almost all x. By normality, f is
constant on a set in U , whence [f ]rU = d(α) for some α < κ.

Arguing as in Lemma 17.6.4, it can be seen that crit(d) ≥ κ. It remains
to show that d(κ) > λ (which also establishes that crit(d) = κ). Indeed,
this follows from the fact that the order-type of [id]rU is less than d(κ) in V U

(as the order-type of x is less than κ for U -almost all x) together with the
fact that the order-type of [id]rU is the order-type of d′′λ (by the previous
paragraph), which in turn is λ. �
Corollary 17.6.21. κ is supercompact if and only if κ is λ-supercompact
for all λ ≥ κ.

Exercise 17.6.22. Suppose that κ is supercompact. Prove that there is a
normal ultrafilter U on κ such that α is measurable for U -almost all α < κ.

While not quite as easy to state as Corollary 17.6.21, there is also an
elementary embedding characterization of strongly compact cardinals. The
reader may consult [89] for a proof.

Theorem 17.6.23. κ is strongly compact if and only if, for all λ ≥ κ,
there is an elementary embedding j : V → M with crit(j) = κ satisfying
for any X ⊆ M with |X| ≤ λ, there is Y ∈ M such that X ⊆ Y and
M |= |Y | < j(κ).

17.7. An application of large cardinals

In this chapter, we have spent a lot of time talking about various kinds of
large cardinals. But what if you do not care about large cardinals? What
if you only care about, say, the real numbers? Well, it turns out that large
cardinals can help you prove things about the real numbers as well.

Recall in Section 5.2 we mentioned that all analytic sets of real numbers
are both Lebesgue and Baire measurable, but that one cannot prove, in
ZFC, the same fact for the next level of the projective hierarchy. However,
you can prove this result using large cardinals:

Theorem 17.7.1 (Solovay [167]). If there is a measurable cardinal, then
all Σ1

2 subsets of R are Lebesgue and Baire measurable.

Solovay’s proof uses a lot of set theory that we are not assuming in
this book. We instead give Martin’s proof of Solovay’s theorem that pro-
ceeds via determinacy. The proof given here also reduces the large cardinal
assumption:

Theorem 17.7.2 (Martin [128]). Suppose that there exists a Ramsey car-
dinal. Then analytic determinacy holds.
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Recall from Section 5.3 that analytic determinacy implies that all Σ1
2

subsets of R are Lebesgue and Baire measurable, whence we really do obtain
Solovay’s result as a corollary.

We devote the rest of this section to proving Theorem 17.7.2. We need
three bits of preparation: a lemma on Ramsey cardinals, a theorem on deter-
minacy of open games, and a discussion on tree-representations of analytic
sets.

We start with the lemma on Ramsey cardinals.

Lemma 17.7.3. Suppose that κ is a Ramsey cardinal and fi : κ
[mi] → N

is a coloring for each i ∈ N. Then there is X ⊆ κ of cardinality κ that is
homogeneous for each fi.

Proof. Let f : Pf (κ) → NN be given by f(X)(i) := fi(X
′), where X ′ is

obtained from X by either adding elements to X or deleting elements from
X so that |X ′| = mi. Since κ is strongly inaccessible, f is a coloring with
“few” colors, so since κ is a Ramsey cardinal, there is A ⊆ κ with |A| = κ
that is homogeneous for f . It follows that A is homogeneous for each fi. �

Remark 17.7.4. In our proof of Martin’s theorem, we will really only need
there to be a homogeneous subset of size ℵ1, whence the large cardinal
hypothesis really needed in the proof is that the Erdős cardinal ηω1 exists.

We now prove that all open games are determined:

Theorem 17.7.5 (Gale-Stewart). For any set X, if A ⊆ XN is open, then
G(A) is determined.

Proof. Suppose that player I does not have a winning strategy. We show
that player II does have a winning strategy. The strategy can be summarized
as “play not to lose”. Suppose that player I opens with a0 ∈ X. Since
player I does not have a winning strategy, this means that there must be
some a1 ∈ X that does not lead to an automatic loss for player II. Suppose
that player I responds with a2 ∈ X. Again, since player I does not have a
winning strategy, there must be some a3 ∈ X such that, if player II responds
with a3, then they have not automatically lost the game. Player II continues
to play in this fashion.

Why is this strategy winning for player II? Suppose, toward a con-
tradiction, that it is not a winning strategy, whence there is some play
(a0, a1, . . .) ∈ XN played according to this strategy such that player I wins
the game, that is, (a0, a1, . . .) ∈ A. Since A is open, there is some k ∈ N
with k even such that all infinite extensions of this finite sequence belong
to A. This means that the position (a0, . . . , ak) is winning for player I,
contradicting the fact that they do not have a winning strategy. �
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Our final bit of preparation is a short discussion on trees on N and the
connection with analytic sets. Given a set X, a tree on X is a set T ⊆ X<N

such that if u ∈ T and v is an initial segment of u, then v ∈ T . In particular,
∅ ∈ T (if T �= ∅) and is called the root of T . An infinite branch in T
is a function f ∈ XN such that f � n = (f(0), . . . , f(n − 1)) ∈ T for all
n ∈ N. We let [T ] denote the set of branches through T . T is said to be
well founded if [T ] = ∅ and ill founded otherwise.

In connection with analytic sets, we will be concerned with trees on sets
of the form X × Y . If T is a tree on X × Y , then technically [T ] is a subset
of (X × Y )N. But (X × Y )N ∼= XN × Y N, whence we often write infinite
branches of T as (f, g), with f ∈ XN and g ∈ Y N. Under this identification,
we have that (f(0), g(0), . . . , f(n − 1), g(n − 1)) ∈ T for all n ∈ N. For
x ∈ XN, we write

T (x) = {(u0, . . . , un−1) ∈ Y <N : (x(0), u0, . . . , x(n− 1), un−1) ∈ T}.
It is easy to check that T (x) is a tree on Y .

Fact 17.7.6 (Tree representation of analytic sets). Given A ⊆ NN, we have
that A is analytic if and only if there is a tree T on N× N such that x ∈ A
if and only if T (x) is ill founded.

Given u, v ∈ N<N, we set u ≤KB v if and only if:

• u ⊇ v, or

• u and v are incompatible and u(n) < v(n) where n is the first place
that they differ.

It is clear that≤KB is a linear ordering on N<N, called theKleene-Brouwer
ordering on N<N.

Exercise 17.7.7. Given a tree T on N, show that the following are equiv-
alent:

(1) T is well founded;

(2) (T,≤KB) is a well-ordering;

(3) (T,<KB) embeds (as a linear ordering) into (ω1, <).

Finally, we fix an enumeration (un)n∈N of N<N such that |un| ≤ n for
each n ∈ N.

We are now ready to prove Theorem 17.7.2.

Proof of Theorem 17.7.2. Let A ⊆ NN be co-analytic and let T ⊆
(N× N)<N be a tree such that x ∈ A if and only if T (x) is well founded.

In order to show that G(A) is determined, we introduce a new game,
G′(A), which we know is determined, and for which a strategy for each
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player in G′(A) can be used to yield a strategy for the corresponding player
in G(A).

In the game G′(A), player II continues to play elements of N while player
I plays elements of N× κ. So a play of the game looks like

(x0, η0, x1, x2, η1, x3, . . .),

where each xi ∈ N and each ηi ∈ κ. Let x denote the sequence (xn)n∈N. We
say that player I wins G′(A) if and only if the following two conditions hold:

• If ui /∈ T (x), then ηi = 0.

• If ui, uj ∈ T (x), then ui <KB uj if and only if ηi < ηj .

Note that if player I wins G′(A), then <KB is well founded on T (x)
(otherwise we would obtain an infinite descending chain of ordinals below
κ), and thus x ∈ A. Thus, if player I has a winning strategy for winning
G′(A), then player I also has a winning strategy for winning G(A) (just follow
the strategy for G′(A) but do not actually play the elements of κ).

Claim. G′(A) is determined.

Proof of Claim. Define G′′(A) to be just like G′(A) except that player II
also has to play elements of κ. Note then that G′′(A) is an open game on
N × κ, whence, by the Gale-Stewart theorem, G′′(A) is determined. It is
straightforward to see that it follows that G′(A) is also determined. �

By the claim and the paragraph preceding it, we are left to show if
player II has a winning strategy for G′(A), then player II also has a winning
strategy for G(A). Suppose that s ∈ N2n+1, so s = (s0, s1, . . . , s2n), which
we think of as the first 2n+1 moves of the game G(A). How should player II
respond? In order to take advantage of the fact that player II has a winning
strategy in G′(A), we should somehow simulate a play of the game G′(A)
where the s2k’s are the first coordinates of player I’s moves and the s2k+1’s
are player II’s moves. Let us assume that player I is playing this simulated
version of G′(A) to win. More precisely, let Ds consist of those i < n for
which (s � k, ui) ∈ T for some k (namely k = |ui|). Set ms := |Ds|; note
that ms ≤ n. We then want to consider a partial play of the game G′(A),
namely (s0, η0, s1, s2, η1, s3, . . . , s2n, ηn), where:

• If i /∈ Ds, then ηi = 0.

• If i, j ∈ Ds, then ui <KB uj if and only if ηi < ηj .

Note that the ηi’s in the second clause can be any ms elements of κ, as long
as they are ordered appropriately.
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Thus, given any Q ∈ κ[ms], we consider the play sQ of the game G′(A)
which is as above and with Q = {ηi : i ∈ Ds}. We can then define fs(Q) to
be what the winning strategy for player II tells us the next move for player
II should be if sQ has been played thus far.

Since κ is a Ramsey cardinal, by Lemma 17.7.3, there is H ⊆ κ with
|H| = κ such that H is homogeneous for each fs with s ∈ N2n+1, n ∈ N. We
can now define a strategy for player II in G(A) to be given by σ(s) := fs(Q)
for any Q ⊆ H [ms].

We claim that σ is a winning strategy for player II in G(A). Suppose,
toward a contradiction, that this is not the case. Then there is a play of
the game x ∈ NN played according to σ such that player II lost, that is,
x ∈ A, that is, T (x) is well founded. It follows that there is an embedding
f : (T (x), <KB)→ (H,<) (this is where all we needed is that |H| ≥ ℵ1). We
thus consider the play of the game G′(A) where ηi := f(ui) when ui ∈ T (x)
and ηi = 0 otherwise. It is clear that player I wins this play of the game
G′(A). However, it is also clear that player II played according to their
winning strategy in this play of the game, a contradiction. This concludes
the proof of Theorem 17.7.2.

Martin’s theorem was later generalized by Martin and Steel [130]:

Theorem 17.7.8. Fix n ∈ ω and assume that there are n Woodin car-
dinals with a measurable cardinal above them. Then Π1

n+1-determinacy
holds.

We will not mention what Woodin cardinals are except to say that they
can be defined using elementary embeddings as above and that they are im-
portant in the connection between large cardinals and descriptive set theory
(as evidenced by the previous theorem).

We conclude by mentioning a different result of Solovay [168] along these
lines that also involves large cardinals:

Theorem 17.7.9 (Solovay). Suppose that there is a strongly inaccessible
cardinal. Then it is consistent that all sets of reals are Lebesgue and Baire
measurable.

Note the differences between the two Solovay theorems. The latter one,
while using a weaker large cardinal hypothesis, only gives a consistency
result, although it is for all sets of reals.
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17.8. Notes and references

The study of large cardinals forms a huge part of modern set theory, and
it can be quite overwhelming to the uninitiated. We highly recommend the
introductory articles

https://plato.stanford.edu/entries/independence-large-

cardinals/

and

https://plato.stanford.edu/entries/large-cardinals-

determinacy/#LarCarA

We follow Jech [89] and Kanamori [94] in most places, but occasionally also
borrow from Neeman’s survey article [138]. The term “wordly cardinal”
is due to Hamkins. Our proof of Theorem 17.3.12 follows Jech’s treatment
in [90]. We follow [28] in our discussion of weakly and strongly compact
cadinals. Our proof that measurable cardinals are Ramsey follows Neeman
[138] as does much of Section 17.6, although we also use [89] to help fill in
some details. Our proof of Martin’s theorem, Theorem 17.7.2, was heavily
influenced by some lecture notes of Rosendal, which can be found at

http://homepages.math.uic.edu/~rosendal/WebpagesMathCourses/

MATH511-notes/DST%20notes%20-%20AnalyticDeterminacy03.pdf

https://plato.stanford.edu/entries/independence-large-cardinals/
https://plato.stanford.edu/entries/independence-large-cardinals/
https://plato.stanford.edu/entries/large-cardinals-determinacy/#LarCarA
https://plato.stanford.edu/entries/large-cardinals-determinacy/#LarCarA
http://homepages.math.uic.edu/~rosendal/WebpagesMathCourses/MATH511-notes/DST%20notes%20-%20AnalyticDeterminacy03.pdf
http://homepages.math.uic.edu/~rosendal/WebpagesMathCourses/MATH511-notes/DST%20notes%20-%20AnalyticDeterminacy03.pdf
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Logic

A.1. Languages and structures

Definition A.1.1. A language L consists of three types of symbols: re-
lation symbols, function symbols, and constant symbols. Moreover, each
relation and function symbol comes equipped with a natural number, called
its arity.

Note that some authers lump constant symbols in with the function
symbols as 0-ary function symbols.

Example A.1.2. One may consider the language L = {R,F,G, c}, where R
is a relation symbol of arity 2 (otherwise known as a binary relation symbol),
F is a binary function symbol, G is a function symbol of arity 1 (otherwise
known as a unary function symbol), and c is a constant symbol.

Definition A.1.3. Let L be a language. An L-structure M consists of
the following data:

(1) A nonempty set M , called the universe of the structure.

(2) For each n-ary relation symbol R, a subset RM ⊆Mn.

(3) For each n-ary function symbol F , a function FM : Mn →M .

(4) For each constant symbol c, an element cM ∈M .

The relation RM is called the interpretation of R in M. One uses the
same nomenclature for FM and cM.

Example A.1.4. We return to the language introduced in Example A.1.2.
One may consider the structure M whose universe consists of R, whose
interpretation of R is the usual ordering on R, whose interpretation of F is
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addition of real numbers, whose interpretation of G is the additive inverse
of a real number, and whose interpretation of c is 0. One might denote this
structure as M = (R;<,+,−, 0).

Remark A.1.5. If one’s intention was to study the previous structure using
first-order logic, then it is common to label the symbols using the same
symbol as their intended interpretation. In other words, one might replace
F by +, G by −, c by 0, and R by <. (One might even then write 2 < 3
instead of (2, 3) ∈<M.)

However, if one does indeed adopt this convention, one must be careful
to not conflate the symbol with its interpretation. Indeed, one may consider
the L-structure N whose universe is the set {6, 7, 8}, whose interpretation
of < is equality, whose interpretation of + is the constant function 6, whose
interpretation of − is the constant function 8, and whose interpretation of 0
is also 8. This is still a legitimate L-structure even though the interpretations
of the symbols no longer resemble the “intended” use.

Definition A.1.6. If L1 ⊆ L2 are both languages andM is an L2-structure,
the reduct ofM to L1 is the L1-structure obtained fromM by “forgetting”
to interpret the symbols in L2 \ L1. If N is the reduct ofM to L1, one also
says that M is an expansion of N to L2.

Example A.1.7. (R; +, 0) is the reduct of (R;<,+,−, 0) to the language
consisting just of F and c.

Example A.1.8. Suppose thatM is an L-structure and A ⊆M is a subset
of the universe. One defines the language LA to be the language obtained
by adding to L new constant symbols ca, one for every a ∈ A. There is then
a natural expansion ofM to an LA-structure, denotedMA, where c

MA
a = a

for every a ∈ A.

A.2. Syntax and semantics

Fix a language L. We also fix a collection (vi) of variables.

Definition A.2.1. The set of L-terms is defined by recursion:

(1) Each variable vi is an L-term.

(2) Each constant symbol c is an L-term.

(3) If t1, . . . , tn are previously defined L-terms and F is an n-ary func-
tion symbol, then Ft1 · · · tn is also an L-term.

One thinks of terms as the “nouns” in our set-up as they are intended
to name elements of our universe. However, if a term has variables, then
it does not name anything until the variables are replaced by elements of
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the universe. To define this precisely, given an L-structure M, by an as-
signment of variables in M, we mean a map vi �→ bi which maps every

variable to an element bi ∈M . We write 	b as shorthand for this assignment
of variables.

Definition A.2.2. Given an L-structure M and an assignment of vari-

ables 	b, we define the interpretation of t in M with respect to the

assignment 	b, denoted tM[	b], by recursion on the complexity of t:

(1) vMi [	b] = bi.

(2) cM[	b] = cM.

(3) (Ft1 · · · tn)M[	b] = FM(tM1 [	b], . . . , tMn [	b]).

Example A.2.3. Returning to Example A.1.2, an example of a term is

t = +v20. For the sake of sanity, we might write this term as v2 + 0. If 	b

is an assignment of variables in M = (R;<,+,−, 0), then tM[	b] = b2 + 0,
where this latter 0 is the number 0, as opposed to the symbol 0.

Remark A.2.4. If the vi’s that occur in t are amongst v1, . . . , vn, then we

write t(v1, . . . , vn) and denote the interpretation tM[	b] as tM(b1, . . . , bn) (for
the other values of the variables are irrelevant).

We now describe the “assertions” in our set-up:

Definition A.2.5. We define the L-formulae by recursion:

(1) If t1 and t2 are L-terms, then t1 = t2 is an L-formula.

(2) If t1, . . . , tn are L-terms and R is an n-ary relation symbol, then
Rt1 · · · tn is an L-formula.

(3) If ϕ is an L-formula, then so is ¬ϕ.
(4) If ϕ1 and ϕ2 are L-formulae, then so is ϕ1 ∧ ϕ2.

(5) If ϕ is an L-formula, then so is ∃viϕ for any variable vi.

The first two kinds of formulae are called atomic L-formulae. A for-
mula is called quantifier-free if it is built up using the first four clauses
in the previous definition, that is, it does not have any appearances of the
quantifier ∃.

We now explain how to define the truth of a formula in a structure:

Definition A.2.6. Given an L-structureM and an assignment of variables
	b, one defines the relation M |= ϕ[	b] by recursion on the complexity of ϕ:

(1) M |= t1 = t2[	b] if and only if tM1 [	b] = tM2 [	b].

(2) M |= Rt1 · · · tn[	b] if and only if (tM1 [	b], . . . , tMn [	b]) ∈ RM.

(3) M |= ¬ϕ[	b] if and only if M �|= ϕ[	b].
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(4) M |= (ϕ1 ∧ ϕ2)[	b] if and only if
[
M |= ϕ1[	b] and M |= ϕ2[	b]

]
.

(5) M |= ∃viϕ[	b] if and only if there is a ∈M such thatM |= ϕ[	bvi/a],

where	bvi/a is the assignment of variables defined exactly as	b except
vi is mapped to a.

An occurence of a variable in a formula is free if it is not bound by a
quantifier. (This is a bit vague but can be formalized by a definition by
recursion.) If the free variables of ϕ are amongst v1, . . . , vn, then we write

ϕ(v1, . . . , vn) and then write M |= ϕ(b1, . . . , bn) instead of M |= ϕ[	b]. An
L-sentence is an L-formula without free variables. If σ is a sentence, then
the choice of variable assignment is irrelevant, and we just write M |= σ.
An L-theory is a set of L-sentences. If T is an L-theory, we writeM |= T if
M |= σ for all σ ∈ T . If there is an L-structure M such that M |= T , then
we say that T is satisfiable. We write T |= σ if for every M |= T , we have
M |= σ. Note that if T is not satisfiable, then T |= σ for all L-sentences σ.
L-theories T1 and T2 are called equivalent, denoted T1 ≡ T2, if they have
the same class of models.

Definition A.2.7. L-structuresM and N are called elementarily equiv-
alent, denotedM≡ N if, for all L-sentences σ, we haveM |= σ if and only
if N |= σ.

Definition A.2.8. A satisfiable L-theory T is called complete if whenever
M,N |= T , we have M≡ N .

Definition A.2.9. Given an L-structure M, the theory of M, is the
theory

Th(M) := {σ : M |= σ}.

Note that Th(M) is a complete theory. Moreover, this is the only ex-
ample of a complete theory: a satisfiable theory T is complete if and only if
T ≡ Th(M) for some (equivalently any) M |= T .

A.3. Embeddings

Fix a language L.

Definition A.3.1. Suppose thatM andN are L-structures and f : M → N
is a function. We say that:

(1) f is a homomorphism from M to N , denoted f :M→N , if:
(a) for all n-ary relation symbols R and 	a ∈ Mn, we have 	a ∈

RM ⇒ f(	a) ∈ RN ;
(b) for all n-ary function symbols F and 	a ∈ Mn, we have

f(FM(	a)) = FN (f(	a));
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(c) for all constant symbols c, we have f(cM) = cN .

(2) If f : M → N is a homomorphism, we further say that f is an
embedding from M into N if f is injective and (a) above is
strengthened to:
(a′) for all n-ary relation symbols R and 	a ∈ Mn, we have a ∈

RM ⇔ f(	a) ∈ RN .

(3) f is an isomorphism if it is a surjective embedding.

(4) An isomorphism f :M→M is called an automorphism of M.

Definition A.3.2. L-structuresM and N are called isomorphic, denoted
M∼= N , if there is an isomorphism f :M→N .

Note that isomorphism is an equivalence relation on the class of L-
structures.

Exercise A.3.3. Prove that isomorphic structures are elementarily equiv-
alent.

Definition A.3.4. Given L-structures M and N , we say that M is a
substructure of N , denoted M ⊆ N , if M ⊆ N and the inclusion map
i : M → N is an embedding i :M→N .

Definition A.3.5. Suppose thatM andN are L-structures and f : M → N
is a function. We say that f is an elementary embedding if, for all L-
formulae ϕ(v1, . . . , vn) and all a1, . . . , an ∈M , we have

M |= ϕ(a1, . . . , an)⇔ N |= ϕ(f(a1), . . . , f(an)).

If M ⊆ N and the inclusion map i :M→ N is an elementary embedding,
then we say that M is an elementary substructure of N , denoted M 
N .

Example A.3.6. Suppose that L = {<}, M = (N, <), and N = (Z, <).
Then M ⊆ N but M � N , for if ϕ(x) is the formula ∃y(y < x), then
M �|= ϕ(0) but N |= ϕ(0).

Definition A.3.7. Suppose that M is an L-structure. We define the di-
agram of M to be the set of quantifier-free LM -sentences σ such that
MM |= σ. The elementary diagram ofM is defined in the same manner
except one does not require that σ be quantifier-free.

Theorem A.3.8. The models of the diagram (resp., elementary diagram) of
M are those LM -structures of the form (N , (h(a))a∈M), where h :M→N
is an embedding (resp., elementary embedding).

Theorem A.3.9 (Löwenheim-Skolem theorems). Suppose that M is an L-
structure.



346 A. Logic

(1) Upward Löwenheim-Skolem. For every cardinal κ≥max(|L|, |M |),
there is an elementary extension N of M with |N | = κ.

(2) Downward Löwenhim-Skolem. Given any subset X ⊆ M , there is
an elementary substructure N of M such that X ⊆ N and with
|N | = max(|X|, |L|).

Definition A.3.10. Suppose that (I,<) is a linearly ordered set and for
each i ∈ I, Mi is an L-structure. We say that the family (Mi)i∈I forms
a chain (resp., elementary chain) of L-structures if, for all i, j ∈ I with
i < j, we have that Mi ⊆Mj (resp., Mi  Mj).

Theorem A.3.11. If (Mi)i∈I is a chain of L-structures, then the union⋃
i∈I Mi is naturally the universe of a structure

⋃
i∈IMi such that Mj ⊆⋃

i∈IMi for all j ∈ I. Moreover, if the chain is an elementary chain, then
Mj  

⋃
i∈IMi for all j ∈ I.

A.4. References

A standard undergraduate textbook in logic is Enderton’s book [50]. Two
good graduate-level textbooks in model theory are Marker’s [126] and Tent
and Ziegler’s [174]. A classic text, which includes many things covered in
the rest of this book, is Chang and Keisler’s [28]. A recent text in model
theory aimed at undergraduates is Kirby’s book [105].



Appendix B

Set theory

B.1. The axioms of ZFC

In this book (and in most mathematics textbooks), our underlying axiomatic
set theory will be ZFC, which stands for Zermelo-Fraenkel set theory
with choice. While we will not go into extreme depth into these axioms
(see [38] for a fantastic introduction), we would like to at least give a short
explanation of the axioms. This will become useful in parts of the book
where we are highlighting certain foundational issues concerning ultrafilters.

First, there is an axiom which states the “obvious” property that a set is
determined by its members. More precisely, the axiom of extensionality
states that, given any two sets x and y, if, for all sets z, we have z ∈ x if
and only if z ∈ y, then x = y.

Next, there is a group of axioms that allow one to construct new sets from
pre-existing sets. For example, the pairset axiom allows one to conclude,
from sets x and y that are known to exist, that there is a set z such that
x ∈ z and y ∈ z. Similarly, given a set x, the unionset axiom allows one
to conclude the existence of a set y such that, for all w ∈ x and all z ∈ w,
we have that z ∈ y. The powerset axiom allows one to conclude, given a
set x, the existence of a set y that contains all the subsets of x as members.

Notice that in the above axioms we did not say, for example, that the
set z in the pairset axiom consisted precisely of x and y, that is, z = {x, y},
but rather that merely that x ∈ z and y ∈ z. However, one can infer the
existence of such a set using the comperehension axiom, which states
that if x is a set and ϕ(v) is a formula (with parameters) in the first-order
language of set theory (which consists solely of a binary relation symbol,
interpreted as membership), then there is a set y that consists of precisely

347
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those sets in x that satisfy ϕ. Thus, if one lets ϕ(v) be v = x ∨ v = y, then
one can form w = {a ∈ z : ϕ(a)}, and it is clear then that w = {x, y}.

There is one final “set-creation” axiom (besides the axiom of choice,
which we will describe in detail later), called the axiom of replacement,
which is a little harder to motivate (but is ultimately very useful) and which
states: if x is a set and ϕ(v1, v2) defines a function on x, that is, for all
w ∈ x, there is a unique z such that ϕ(w, z) holds, then there is a set y
consisting of precisely those z for which there is w ∈ x such that ϕ(w, z).
In other words, one is allowed to “replace” all the elements of x by their
“images” under the function whose graph is ϕ and collect them into a new
set.

At this point, we do not actually have any guarantee that there are any
sets at all! We need an axiom that guarantees that there is a set, and the
most minimalistic way of achieving this is the nullset axiom, which simply
states that there is a set x with no members, that is, for all sets y, we have
y /∈ x. By the axiom of extensionality, this set is unique and is denoted by
∅.

Now that we have some set at our disposal, with the aid of our set-
creating axioms, we can make some new sets, such as {∅, ∅} = {∅}. With
more effort, we can make all sorts of finite sets. Mathematics would be
fairly mundane if we only had finite sets, so we need an axiom asserting that
infinite sets exist. The axiom of infinity states that there is a set x such
that ∅ ∈ x and, for all y ∈ x, one also has {y} ∈ x. It is a fairly easy exercise
to see that such a set is infinite.

We have now listed all but two of the axioms of ZFC. The axiom of
foundation asserts that there is no infinite, decreasing sequence of sets
x1 ( x2 ( x3 ( · · · . The real utility of this axiom is that the hierarchical
perspective on the set-theoretic universe given in Section B.4 is accurate.

The axioms mentioned thus far constitute the axioms of ZF. There is
one axiom which turns ZF into ZFC, and that is the axiom of choice
(AC), which states the following: Suppose that x is a set whose elements
are nonempty and pairwise disjoint. Then there is a set y that contains
exactly one element of each element of x. In other words, there is a choice
function for x which assigns, to each w ∈ x, an element f(w) ∈ w. The set
y above is just the image of this function.

While AC is an axiom in the spirit of the unionset, pairing, replacement,
and comprehension axioms in that it creates new sets from old, it is not
quite as “intuitive” or “constructive” as the others. Nevertheless, nearly
almost all mathematicians treat AC as an acceptable axiom and most do
not make a fuss when using it. In fact, AC is actually equivalent, in ZF,
to familiar statements of mathematics, such as Tychonoff’s theorem, which
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states that a product of compact spaces is compact again. Tychonoff’s
theorem is ubiquitous throughout mathematics and thus if one is willing to
accept it as a valid result, then one must also accept AC as well.

On the other hand, AC does yield some pathological consequences, such
as the existence of non-Lebesgue measurable sets. For this reason, some
mathematicians make a point of explicitly noting when AC is used in a
proof. For a very interesting and thorough discussion of AC, we refer the
reader to [90].

As we will discuss in Section B.5, AC does not follow from the axioms
of ZF, and thus we really are obtaining a stronger theory in ZFC by adding
it as an axiom.

While the version of AC that we presented is the easiest to define (and
it explains the name), in practice, one often uses AC in one of a variety of
other avatars, as we now explain.

Definition B.1.1. A partially ordered set (or poset) is a set P equipped
with a binary relation ≤ satisfying, for all x, y, z ∈ P :

(1) x ≤ x;

(2) x ≤ y and y ≤ x implies x = y;

(3) x ≤ y and y ≤ z implies x ≤ z.

The poset (P,≤) is called a linearly ordered set if it further satisfies, for
all x, y ∈ X:

(4) x ≤ y or y ≤ x.

If ≤ is a partial ordering, then the associated strict ordering is the binary
relation < defined by x < y if x ≤ y but x �= y.

Definition B.1.2. Suppose that (P,≤) is a poset.

(1) A chain in (P,≤) is a linearly ordered subset of P .

(2) For A ⊆ P , an upper bound for A is an element x ∈ P such that
a ≤ x for all a ∈ A.

(3) An element x ∈ P is called maximal if there does not exist y ∈ P
with x ≤ y and x �= y. The notion of a minimal element is defined
analogously.

Definition B.1.3. Zorn’s lemma is the statement: for any poset (P,≤),
if every chain in (P,≤) has an upper bound, then (P,≤) has a maximal
element.

Theorem B.1.4. In ZF, AC is equivalent to Zorn’s lemma.
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Definition B.1.5. A linear ordering ≤ on a set I is called a well-ordering
of I if every nonempty subset of I has a minimal element. If ≤ is a well-
ordering on I, we call the pair (I,≤) a well-ordered set.

Theorem B.1.6. In ZF, AC is equivalent to the well-ordering principle,
which states that every set can be well ordered, that is, for any set x, there
is a well-ordering ≤ on x.

B.2. Ordinals

Definition B.2.1. A set x is transitive if for all y ∈ x and z ∈ y, we have
z ∈ x.

Definition B.2.2. An ordinal is a set x such that x is transitive and (x,∈)
is a well-ordered set. The class of ordinals is denoted On.

Lemma B.2.3. The class of ordinals is transitive and well ordered by ∈.

One often uses Greek letters such as α and β for ordinals. By the
previous lemma, we sometimes write α < β instead of α ∈ β.

Lemma B.2.4. If α and β are ordinals, then (α,∈) ∼= (β,∈) if and only if
α = β.

Lemma B.2.5. If (x,≤) is a well-ordering, then there is a unique ordinal
α such that (x,≤) ∼= (α,∈).

Lemma B.2.6.

(1) ∅ is an ordinal. If α is any ordinal, then ∅ ≤ α.

(2) If α is an ordinal, then α ∪ {α} is also an ordinal, denoted α + 1.
Moreover, if β is an ordinal, then either β ≤ α or else α + 1 ≤ β.
For this reason, α+ 1 is called the successor of α.

(3) If C is a set of ordinals, then supC is also an ordinal and is equal
to
⋃

α∈C α.

Example B.2.7. One often denotes ∅ by 0. Note then that {0} is an ordinal,
which we denote by 1. It follows then that {0, 1} is an ordinal, which
we denote by 2. In this way, every natural number n is an ordinal when
identified with {0, . . . , n − 1}. One then sets ω =

⋃
n∈N n = {0, 1, 2, . . .},

which is the first infinite ordinal. But then one can keep going, considering
ω + 1 = ω ∪ {ω}, which is also an ordinal, and so on.

A successor ordinal is one of the form α + 1 for some ordinal α. An
ordinal that is not a successor ordinal is called a limit ordinal.

One can perform proofs by “transfinite induction” on ordinals:
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Theorem B.2.8. Suppose that P is a statement about ordinals. Suppose
that:

• P is true for 0.

• For any ordinal α, if P is true for α, then P is true for α+ 1.

• For any limit ordinal α, if P is true for β for all β < α, then P is
true for α.

Then P is true for all ordinals.

B.3. Cardinals

Definition B.3.1. If A is a set, the cardinality of A, denoted |A|, is
the least ordinal α such that there is a well-ordering < on A such that
(A,≤) ∼= (α,∈).

Thus, the cardinality of a set is an ordinal. Note that by the axiom
of choice, every set admits a well-ordering, so every set has a cardinality.
Ordinals that are cardinalities of sets are called cardinals. One often uses
κ, λ to denote cardinals.

Exercise B.3.2. For any two sets A and B, we have that |A| = |B| if and
only if there is a bijection A→ B.

Exercise B.3.3. Every element of ω is a cardinal. ω is also a cardinal.

It is customary to write ℵ0 when thinking of ω as a cardinal.

Exercise B.3.4. For any set X, |X| < |P(X)|.

Theorem B.3.5 (Schroder-Berenstein). |A| = |B| if and only if |A| ≤ |B|
and |B| ≤ |A|.

Definition B.3.6. A set is countable if |A| ≤ ℵ0.

Set ω1 := {α : α is a countable ordinal}.

Exercise B.3.7. Prove the following:

(1) ω1 is an ordinal.

(2) ω1 is uncountable.

(3) ω1 is a cardinal.

We usually write ℵ1 when we think of ω1 as a cardinal. More generally:

Definition B.3.8.

(1) ℵα+1 = {δ : |δ| = ℵα}.
(2) If α is a limit ordinal, then ℵα = supβ<α ℵβ .
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Lemma B.3.9.

(1) Each ℵα is a cardinal.

(2) α < β if and only if ℵα < ℵβ.
(3) If κ is an infinite cardinal, then κ = ℵα for some α.

Definition B.3.10. κ+ is the least cardinal bigger than κ.

Note that κ+ exists by Exercise B.3.4.

Exercise B.3.11. ℵα+1 = ℵ+α .

A successor cardinal is one of the form κ+ for some κ. Nonzero
cardinals that are not successor cardinals are called limit cardinals.

Definition B.3.12. Given any ordinal α, the cofinality of α, denoted
cof(α), is the least cardinal λ such that there is a function f : λ → α for
which f(λ) is unbounded in α.

Exercise B.3.13. Prove that cof(ℵ0) = ℵ0. More generally, prove that
cof(ℵα) = cof(α).

Definition B.3.14. An infinite cardinal κ is called regular if cof(κ) = κ;
otherwise, it is called singular.

Lemma B.3.15. Any infinite successor cardinal is regular.

Definition B.3.16. If κ and λ are cardinals, we define:

(1) κ+ λ to be the cardinality of the disjoint union of κ and λ.

(2) κ · λ to be the cardinality of κ× λ.

Lemma B.3.17. Suppose that κ and λ are cardinals:

(1) If κ, λ ∈ ω, then κ + λ and κ · λ agree with usual natural number
addition and multiplication.

(2) Suppose that κ �= 0, λ �= 0, and one of κ or λ are infinite. Then
κ+ λ = κ · λ = max(κ, λ).

Definition B.3.18. Suppose that κ and λ are cardinals. We define κλ to
be the cardinality of the set of functions λ→ κ.

Another name for 2ℵ0 is c.

Exercise B.3.19. Suppose that κ and λ are finite cardinals. Prove that
the above definition of κλ agrees with the usual exponentiation of natural
numbers.

Lemma B.3.20. Suppose that κ, λ, and μ are cardinals. Then:

(1) (κλ)μ = κλμ.
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(2) If λ is infinite and 2 ≤ κ < λ, then 2λ = κλ = λλ.

(3) If κ is regular and λ < κ, then κλ = max(κ, supμ<κ μ
λ).

Proposition B.3.21 (König’s theorem). If κ is infinite, then κcof(κ) > κ.

Definition B.3.22. The continuum hypothesis (CH) is the statement
that 2ℵ0 = ℵ1. The generalized continuum hypothesis (GCH) is the
statement that, for all ordinals α, we have 2ℵα = ℵα+1.

B.4. V and L

The ZFC axioms allow us to paint a nice picture of the way the set-theoretic
universe is constructed from the bottom up. One starts with the 0th level
V0 = ∅. Supposing the αth level Vα has been constructed (where α is some
ordinal), one constructs the next level Vα+1 := Vα∪P(Vα), that is, one adds
to Vα all subsets of Vα. If α is a limit ordinal, then one sets Vα :=

⋃
β<α Vβ .

(There is a healthy use of both the unionset and replacement axioms here.)
In this way, one can continue this process through all of the ordinals and one
sets V :=

⋃
α Vα, which is then the universe of all sets (which is a proper

class, that is, is not a set). This presentation of the set-theoretic universe is
called the Zermelo hierarchy.

A useful construction, due to Gödel, is to reconsider what to do at suc-
cessor stages in the previous process, namely, instead of adding all subsets of
Vα to Vα+1, one instead should only add “definable” subsets. The hierarchy
thus obtained is then denoted L =

⋃
α Lα and is called the constructible

universe. To be clear, at stage α+ 1, one only adds those sets of the form
{x ∈ Lα : ϕ(x) holds}, where ϕ is a formula with parameters from Lα,
and where “holding” means that if we interpret all quantifiers to range only
over Lα, then the resulting formula is true. (See Appendix B.6 for a precise
definition.)

One can show that L is also a model of ZFC. The axiom of con-
structibility is the statement V = L and is an interesting extension of
ZFC. For example, while ZFC cannot prove nor disprove CH (see the next
section), ZFC, together with the axiom of constructibility, can prove CH.

L is a prototypical example of an inner model of ZFC, where an inner
model of ZFC is a transitive class M such that (M,∈) is a model of ZFC
containing all ordinals.

B.5. Relative consistency statements

By Gödel’s completeness theorem for first-order logic, ZF is consistent (that
is, does not prove both some sentence σ and its negation ¬σ) if and only if
it has a model, which would be a structure M = (M,E) in the language of
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set theory such that all axioms of ZF are true in M. (We expand on this
somewhat in the next section.) Unfortunately, Gödel’s second incomplete-
ness theorem implies that if ZF is consistent, then it cannot prove its own
consistency. More precisely, there is a sentence Con(ZF) in the language
of set theory which asserts that ZF is consistent and that ZF �' Con(ZF)
unless ZF is itself inconsistent (in which case it proves all assertions). Of
course, if ZF is consistent, then ZF �' ¬Con(ZF) either, whence Con(ZF) is
an example of a sentence in the language of set theory which is independent
of ZF.

In this book, we adopt the philosophy adopted by (nearly) all mathe-
maticians, namely that ZF is in fact consistent.

In the last section, we mentioned that the constructible universe L was
a model of ZF. This use of the word model is somewhat imprecise in that L
is a class, not a set, and thus cannot be a model in the sense we are using
here. To be more precise, working in ZF, if one starts with a model M of
ZF, then by mimicking the construction of L, but now inside of M , then one
obtains a submodel N of M that is now a model of ZFC. Consequently, the
statement Con(ZF)→ Con(ZFC) is an axiom of ZF.

One refers to this kind of a a result as a relative consistency result
in that ZFC is consistent if one assumes that ZF itself is consistent, and this
implication is actually provable from the axioms of ZF. Since Con(ZFC)
clearly implies Con(ZF), we say that ZF and ZFC are equiconsistent in ZF.
Thus, our standing assumption that ZF is consistent also implies that ZFC
is consistent.

It turns out that the negation of the axiom of choice is also relatively
consistent with ZF, namely that if one starts with a modelM of ZF, then one
can construct an outer model M [G] obtained using the method of forcing,
such that M [G] is a model of ZF+¬AC. Consequently, ZF and ZF+¬AC
are also equiconsistent in ZF.

Note also that, if ZF ' AC, then ZF + ¬AC would be an inconsistent
theory, whence so would ZF since it is equiconsistent with ZF+¬AC. Thus,
ZF �' AC. For the same reason, ZF �' ¬AC and AC is another statement
independent of ZF.

Another example of this kind of discussion concerns the continuum hy-
pothesis CH. In the model L, CH is true; consequently ZFC + CH is
equiconsistent with ZFC in ZFC. As in the case of AC, one can use forc-
ing to produce an outer model of ZFC+ ¬CH, whence ZFC + ¬CH is also
equiconsistent with ZFC. As a result, CH is independent of ZFC.
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B.6. Relativization and absoluteness

Throughout this discussion, we fix a class M and a binary relation E on M .
Given a formula ϕ(x1, . . . , xn), one defines its relativization to (M,E),

denoted ϕ(M,E), by recursion on complexity of formulae:

• (x = y)(M,E) is simply the formula x = y;

• (x ∈ y)(M,E) is simply the formula x ∈ y;

• (¬ϕ)(M,E) is the formula ¬ϕ(M,E);

• (ϕ ∧ ψ)(M,E) is the formula ϕ(M,E) ∧ ψ(M,E);

• (∃xϕ)(M,E) is the formula ∃x(x ∈M ∧ ϕ(M,E)).

When E is just membership in M , we write ϕM instead of ϕ(M,E). In-
tuitively speaking, ϕM is the statement ϕ relativized to M in the sense that
all quantifiers are restricted to varying over M instead of the entire universe
V .

Given a sentence σ in the language of set theory, we say that (M,E)

is a model of σ if σ(M,E) is a true statement. Thus, when we spoke of a
model (M,E) of ZF in the previous sections, we really meant that for every

sentence σ in the axioms for ZF, σ(M,E) is a true statement.

From now on, we speak only of models (M,∈). A formula ϕ(x1, . . . , xn)
is absolute for M if, for any a1, . . . , an ∈M , we have ϕM (a1, . . . , an) holds
if and only if ϕ(a1, . . . , an) holds. In other words, truth in M and truth in
V coincide for instances of ϕ with parameters from M .

It is important to note that a large class of formulae are absolute for
any transitive model. First, we let Δ0 denote the smallest class of formulae
containing the quantifier-free formulae, closed under connectives, and closed
under bounded quantification, that is, if ϕ is a Δ0 formula, then so are
(∃x)(x ∈ y ∧ ϕ) and (∀x)(x ∈ y → ϕ). It is routine to show that all Δ0

formulae are absolute for any transitive model. Moreover, many familiar
notions can be expressed using Δ0-formulae, such as “x is a subset of y”, “x
is transitive”, and “x is an ordinal”. Building an inventory of the formulae
that are Δ0 and, more generally, the formulae that are absolute, is important
in considering various models of set theory. It is also important to note that
statements involving cardinals are often not absolute (and thankfully so, for
that is what allows one to prove independence of statements such as CH).

Given any set x, let rank(x) be the least ordinal α such that x ∈ Vα+1.
It is a fact that the rank function is absolute for transitive models of ZF.



356 B. Set theory

B.7. References

As mentioned above, Devlin’s book [38] is a nice, casual introduction to set
theory. Another booked aimed at undergraduates is Enderton’s book [49].
An encyclopedic treatment of set theory (and a source for many set-theoretic
facts occurring throughout this book) is Jech’s monograph [89]. For an in
depth discussion of the axiom of choice, see Jech’s book [90]. A treatment
of forcing aimed at mathematicians (as opposed to logicians) is Weaver’s
book [182].



Appendix C

Category theory

C.1. Categories

In this section, we develop the small bit of category theory needed through-
out the book. The basic idea behind category theory is that almost always,
when one encounters some new mathematics, they are presented first with
the type of objects that will be studied and the appropriate functions be-
tween these objects. A category axiomatizes this common thread:

Definition C.1.1. A category C consists of the following data:

(1) a class of objects Obj(C),
(2) for each pair of objects X and Y , a collection HomC(X,Y ) of mor-

phisms from X to Y , and

(3) a composition operation that assigns, to each triple of objects
X, Y , and Z, a map ◦ : HomC(Y, Z)×HomC(X,Y )→ HomC(X,Z)

satisfying the following two axioms:

(i) for each quadruple of objects X, Y , Z, and W and morphisms
f ∈ HomC(X,Y ), g ∈ HomC(Y, Z), and h ∈ HomC(Z,W ), we have
h ◦ (g ◦ f) = (h ◦ g) ◦ f , and

(ii) for each object X, there is a morphism 1X ∈ HomC(X,X) with the
property that, for any object Y , we have
• for any morphism f ∈ HomC(X,Y ), we have f ◦ 1X = f , and
• for any morphism g ∈ HomC(Y,X), we have 1X ◦ g = g.

Item (i) in the previous definition simply asks that composition be asso-
ciative, while item (ii) asks for the existence of an identity morphism. Note
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that there is no requirement that HomC(X,Y ) be nonempty for each pair of
objects X and Y .

Examples C.1.2.

(1) The category of sets, denoted Set, is defined to be the category
whose objects are sets X, whose morphisms f ∈ HomSet(X,Y ) are
simply functions f : X → Y , and whose composition is given by
usual function composition.

(2) The category of vector spaces over some field F , denoted F -vs, is
defined to be the category whose objects are vector spaces over F ,
whose morphisms T ∈ HomF -vs(V,W ) are linear tranformations
T : V → W , and whose composition is given by usual function
composition.

(3) The category of groups, denoted Group, is defined to be the
category whose objects are groups, whose morphisms f ∈
HomGroup(G,H) are group homomorphisms f : G→ H, and whose
composition is given by usual function composition.

(4) The category of topological spaces, denoted Top, is defined to be the
category whose objects are topological spaces X, whose morphisms
f ∈ HomTop(X,Y ) are continuous functions f : X → Y , and whose
composition is given by usual function composition.

(5) Given a first-order language L, the category of L-structures has as
its objects L-structures and whose morphisms are homomorphisms
between L-structures (see Section 6.10).

We often use the suggestive notation f : X → Y to denote an element
f ∈ HomC(X,Y ) as morphisms are usually genuine functions. So as to not
give the reader the idea that morphisms in categories are always functions
and composition is always composition of functions, we present the following
example:

Example C.1.3. Let P := (P,≤) be a partially ordered set. We can con-
sider this partially ordered set as a category (which we also denote by P)
whose objects are the elements x of P and where, for each x, y ∈ P , we have
that HomP(x, y) �= ∅ if and only if x ≤ y, in which case there is a unique
morphism in this set. (There is a unique choice of composition map in this
case.)

Definition C.1.4. Suppose that C is a category. We say that C is locally
small if, for all objects X and Y , HomC(X,Y ) is a set (as opposed to a
proper class). If, in addition, Obj(C) is a set, we say that C is small.

Definition C.1.5. A morphism f : X → Y is an isomorphism if there is
a morphism g : Y → X such that g ◦ f = 1X and f ◦ g = 1Y .
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Definition C.1.6. A morphism f : X → Y is a(n):

(1) epimorphism if for all morphisms g1, g2 : Y → Z, g1 ◦ f = g2 ◦ f
implies g1 = g2;

(2) monomorphism if for all morphisms g1, g2 : Z → X, f ◦g1 = f ◦g2
implies g1 = g2.

Definition C.1.7. If C and D are categories, we say that D is a subcate-
gory of C if:

(1) Obj(D) ⊆ Obj(C);
(2) for all X,Y ∈ Obj(D), we have HomD(X,Y ) ⊆ HomC(X,Y );

(3) for all X ∈ Obj(D), 1X ∈ HomD(X,X); and

(4) if f ∈ HomD(X,Y ) and g ∈ HomD(Y, Z), then the composition of
f and g in the categories C and D coincide.

D is further said to be a full subcategory of C if, for any two objects X
and Y in D, HomC(X,Y ) = HomD(X,Y ).

Example C.1.8. The category of compact Hausdorff spaces, equipped with
continuous functions as morphisms, is a full subcategory of the category of
all topological spaces.

Definition C.1.9. Given a category C, the opposite category, denoted
Cop, has the same objects as C but for which one defines HomCop(Y,X) :=
HomC(X,Y ), that is, the arrows of the morphisms are “reversed”.

C.2. Functors, natural transformations, and equivalences of
categories

Now that we have defined categories, we now describe the appropriate maps
between categories. There are actually two kinds of maps that one consid-
ers, namely those that “preserve” the directions of arrows and those that
“reverse” the directions of arrows.

Definition C.2.1. Suppose that C and D are categories. A covariant
functor F from C to D, denoted F : C → D, is described by the data

(1) each object X from C is mapped to an object F (X) from D, and
(2) each morphism f : X → Y from C is mapped to a morphism

F (f) : F (X)→ F (Y ),

satisfying the axioms

(i) F (1X) = 1F (X) for all objects X from C, and
(ii) for all morphisms f : X → Y and g : Y → Z from C, one has

F (g ◦ f) = F (g) ◦ F (f).
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One defines a contravariant functor F : C → D in the same way
except that (2) above is replaced with

(2′) each morphism f : X → Y from C is mapped to a morphism
F (f) : F (Y )→ F (X),

and item (ii) is replaced with

(ii′) for all morphisms f : X → Y and g : Y → Z from C, one has
F (g ◦ f) = F (f) ◦ F (g).

Various examples of functors will be encountered throughout the text.

Exercise C.2.2. Verify that the category whose objects are categories and
whose morphisms are covariant functors is actually a category. In particular,
verify that the composition of two functors is a functor.

We finally need to explain what the appropriate notion of isomorphism
is for categories. The definition does not simply state that there is a functor
that has an inverse but rather that there is a pair of functors whose compo-
sition in either order are “naturally the same” as the identity functor. This
leads us first to the definition of natural transformation.

Definition C.2.3. Suppose that F : C → D and G : C → D are two covari-
ant functors. A natural transformation η from F to G is an assignment
to each object X from C, a morphism ηX : F (X)→ G(X) in D so that, for
each morphism f : X → Y from C, we have ηY ◦ F (f) = G(f) ◦ ηX . We say
that the natural transformation is a natural isomorphism if each ηX is
an isomorphism.

Definition C.2.4. We say that C and D are equivalent if there are co-
variant functors F : C → D and G : D → C such that G ◦ F is naturally
isomorphic to 1C and F ◦ G is naturally isomorphic to 1D. We say that C
and D are dually equivalent if the same is true but with contravariant
functors.

C.3. Limits

Definition C.3.1. Let I and C be categories. Then a diagram in C of
shape I is a functor F : I → C. The diagram is small if I is small.

Definition C.3.2. Let F : I → C be a diagram.

(1) A cone for F is a an object C ∈ C and a collection of morphisms
fA : C → F (A), one for each object A of I, such that, for all
morphisms f : A→ B in I, we have F (f) ◦ fA = fB .
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(2) A limit of F is a universal cone (L, f) of F , meaning that if (C, g)
is any other cone for F , then there is a unique morphism h : C → L
such that fA ◦ h = gA for all objects A of I.

Using the universal property, if a limit of F exists, then it is unique,
whence we may refer to it as the limit of F . In regards to our discussion in
Section 6.10, we will only need the following special cases of limits.

First suppose that I consists of a set of objects I and whose only mor-
phisms are the identity morphisms. (Such a category is called a discrete
category.) In this case, a diagram F : I → C with shape I is simply a
family (Ai)i∈I of objects in C. In this case, the limit of F , should it exist, is
called the product of the family (Ai)i∈I , denoted

∏
i∈I Ai. The cone prop-

erty, in this case, simply states that, for every i ∈ I, there is a morphism
fi :
∏

i∈I Ai → Ai, while the universality property implies that, whenever B
is an object from C equipped with morphisms gi : B → Ai for each i ∈ I,
then there is a unique morphism h : B →

∏
i∈I Ai such that fi ◦ h = gi.

In the category of sets, products always exist and are simply cartesian
products with the usual projection maps. Likewise, products exist in the
category of groups and the category of topological spaces (with the usual
product topology) as well as the full subcategory of compact (Hausdorff)
spaces (by Tychonoff’s theorem).

Another special case of limits is when the objects of I are the elements
in a directed poset (I,≤), where the morphisms are as in Example C.1.3.
(Recall that a poset (I,≤) is directed if, for all a, b ∈ I, there is c ∈ I such
that a ≤ c and b ≤ c.) In this case, we consider diagrams F : Iop → C, and
the limit, if it exists, is called the inverse limit or projective limit of the
directed family (Ai)i∈I , denoted lim←−Ai. The cone property now implies that

the maps fi : lim←−Ai → Ai satisfy pijfi = fj when i ≤ j (here, the unique

morphism from Ai → Aj is denoted pij).

Inverse limits exist in the category of sets: lim←−Ai = {(ai)i∈I ∈
∏

i∈I Ai :

aj = pij(ai) for all i ≤ j}. The same underlying set works in the case of the
groups and compact topological spaces.

The dual notion of colimit is defined by turning the arrows around.
More precisely, a cocone of F is an object C with morphisms fA : F (A)→ C
such that, for all morphisms f : A→ B, we have fB ◦F (f) = fA. A colimit
of F is a universal cocone (L, f) of F , meaning that for every cone (C, g) of
F , there is a unique morphism h : L → C such that, for all objects A ∈ I,
we have h ◦ fA = gA. Once again, if the colimit of F exists, it is unique.

In the case of diagrams stemming from discrete categories, colimits are
called coproducts and are denoted

∐
i∈I Ai. In the case of the category

of sets, the coproduct is just the disjoint union with inclusion maps. In
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the category of topological spaces, the coproduct is the direct sum. (The
category of compact Hausdorff spaces is more complicated and is discussed
in Section 6.10.)

In the case of digrams stemming from directed sets, the colimit, if it
exists, is called the direct limit of the family and is denoted lim−→Ai. The
direct limit in the case of the category of sets is the directed union.

Suppose that G : C → D is a covariant functor and F : I → C is a
diagram in C. If (C, f) is a cone for F , then (GC,Gf) is easily seen to be
a cone for the diagram G ◦ F . If (C, f) is the limit of F , it need not be the
case that (GC,Gf) is the limit of G ◦ F ; if it is, we say that G preserves
the limit (C, f). We say that G is continuous if it preserves all limits.
The same discussion can be made for colimits, leading to the notion of a
co-continuous functor. If G is contravariant, then it takes cones (resp.,
co-cones) of F to co-cones (resp., cones) of (G ◦ F ) and is called continuous
(resp., co-continuous) if it takes limits (resp., colimits) to co-limits (resp.,
limits).

A category C is called complete if all limits of small diagrams in C exist
and similarly for co-complete. It is called bi-complete if it is both. Exam-
ples of bicomplete categories include sets, groups, and (compact Hausdorff)
topological spaces.

C.4. References

A standard resource for category theory is Maclane’s book [116].



Appendix D

Hints and solutions
to selected exercises

Chapter 1. Ultrafilter basics

Exercise 1.1.11. To see that ∅ /∈ U and S ∈ U , apply the hypothesis with the
partition S = S ∪ ∅. To see that U is closed under supersets, suppose that
A ∈ U and A ⊆ B. By considering the partition S = (S \B) ∪ (B \A) ∪A,
one sees that S \ B /∈ U ; by considering the partition S = (S \ B) ∪ B, we
infer that B ∈ U . Finally, if A,B ∈ U , then by considering the paritition
S = (A ∩ B) ∪ (A�B) ∪ (S \ (A ∪ B)) and using closure under supersets,
one infers that A ∩B ∈ U .

Exercise 1.1.16. For the “if” direction, suppose that F is an ultrafilter and
F ′ is a filter containing F . Suppose, toward a contradiction, that there
is A ∈ F ′ \ F . Since F is an ultrafilter, we have that S \ A ∈ F ⊆ F ′,
whence ∅ ∈ F ′, which is a contradiction. For the “only if” direction, if F is
a maximal filter and A ⊆ S is such that A /∈ F , then by Exercise 1.1.7 and
the fact that F ∪ {A} does not have the FIP (else it would generate a filter
extending F), we see that S \ A ∈ F .

Exercise 1.1.20. Let F := {A ⊆ N :
∑

n∈N\A
1
n converges}. Verify that F

is a filter on N and that any ultrafilter U on N extending F is as desired.

Exercise 1.2.4. For (1), take C ∈ U and set A := (N \ C) × C. For (2),
it is straightforward to show that both statements are equivalent to the
statement that {s ∈ N : (s, n) ∈ B} ∈ U .

Exercise 1.3.8. Both parts follow from Exercise 1.3.3.
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Exercise 1.4.6. If U is an ultrafilter on κ, show that its isomorphism class
has size at most 2κ.

Exercise 1.5.2. The upper bound is obvious. For the lower bound, one must
show that no countable collection B of subsets of N can be a base for an
ultrafilter. To see this, enumerate B = (Bn)n∈N and recursively define a set
C ⊆ N such that Bn �⊆ C and Bn �⊆ N \ C for any n ∈ N.

Exercise 1.6.2. By assumption, we have that [g1 ◦ f ]U = [g2 ◦ f ]U , that is,
g1(f(s)) = g2(f(s)) for U -almost all s ∈ S. Since the range of f belongs to
V, we see that g1(t) = g2(t) for V-almost all t ∈ T , that is, [g1]V = [g2]V .

Chapter 2. Arrow’s theorem on fair voting

Exercise 2.1.4. Suppose that π(v)(i) > π(v)(j) for all v ∈ V . Fix v ∈ V and
define a new state of the election π′ such that π′(w) = π(v) for all w ∈ V .
Apply (IA) to to π and π′ and (U) to π′ to conclude that f(π)(i) > f(π)(j).

Exercise 2.2.8. Fix a state of the election π. By Theorem 2.2.7, there is a
unique σ ∈ Sn such that {v ∈ V : π(v) = σ} ∈ Uf . By definition, this set
is decisive for f , whence f(π) = σ. By definition, it follows that f = fUf

.

Chapter 3. Ultrafilters in topology

Exercise 3.1.4. Fix ε > 0. Then the set {n ∈ N : d(xn, x) < ε} is cofinite,
and thus belongs to U since U is nonprincipal.

Exercise 3.1.5(3). First note that the assumption implies that yn �= 0 for a
U -large set of 0, whence xn

yn
is defined for a U -large set of n, which is good

enough for considering the ultralimit of this latter sequence. Fix 0 < δ < |y|
and M ∈ N such that |x|, |y| ≤M . Then for U -almost all n ∈ N, we have∣∣∣∣xnyn −

x

y

∣∣∣∣ ≤ |xn − x||y|+ |x||yn − y|
|y||yn|

≤ M

(|y| − δ)|y|(|xn − x|+ |yn − y|).

Since the U -ultralimit of the right-hand side is 0, the result follows.

Exercise 3.1.12. Use Theorem 3.1.6 and Theorem 3.1.9.

Exercise 3.2.4. Unabusing the notation might help, that is, show that
limx,U ι(x) = U .

Exercise 3.3.13. For the forward direction, show that U ∪ {C} is once again
a z-filter on X, and thus C ∈ U by maximality of U . For the backward
direction, suppose that F is a z-filter on X properly extending U . Take
C ∈ F \ U and obtain a contradiction by showing that C ∩ Z �= ∅ for all
Z ∈ U .
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Exercise 3.4.13. First show that for any given b ∈ B, the evaluation map
x �→ x(b) : 2B → 2 is continuous. Then use that preimages under continuous
maps of points are closed.

Exercise 3.4.34. It is clear that the ultrafilter theorem for Boolean algebras
implies the usual ultrafilter theorem. Conversely, suppose that the ultrafilter
theorem holds. Note that this assumption yields Tychonoff’s theorem for
compact Hausdorff spaces without having to assume the axiom of choice.
Consequently, we also have that S(B) is compact. Now given a filter F
on B, the set

⋂
a∈B Ua is nonempty as it is the intersection of a family of

nonempty closed subsets with the FIP. Any U in this intersection is an
ultrafilter on B extending F .

Chapter 4. Ramsey theory and combinatorial number theory

Exercise 4.1.2. Suppose, inductively, that a sequence x1, . . . , xd−1 has been
constructed in increasing order such that, for all i = 1, . . . , d− 1, we have

xi ∈
⋂

1≤j<k<d

A(xj ,xk) ∩
⋂

1≤j<d

Bxj ∩ C.

We wish to extend this sequence by a new element xd so that the extended
sequence satisfies the analogous properties. Since U is nonprincipal, we may
choose xd > xd−1 for which

xd ∈
⋂

1≤j<k≤d−1

A(xj ,xk) ∩
⋂

1≤j≤d−1

Bxj ∩ C,

continuing the construction as desired. We note that all of the sets in the
above display are in U by the inductive construction.

Exercise 4.1.3. Fix U ∈ βN\N. For j = 0, . . . , k−1 and x1, . . . , xk−j−1 ∈ N,

we inductively define the sets Aj
(x1,...,xk−j−1)

. For each x1, . . . , xk−1 ∈ N, let

A0
(x1,...,xk−1)

:= {z ∈ N : (x1, . . . , xk−1, z) ∈ C1}.

Without loss of generality, we may assume that

(Ux1) · · · (Uxk−1)A
0
(x1,...,xk−1)

∈ U .

We inductively define Aj
(x1,...,xk−j−1)

by setting

Aj
(x1,...,xk−j−1)

:= {xk−j ∈ N : Aj−1
(x1,...,xk−j)

∈ U}.

Note that Ak−1 ∈ U , so we may take x1 ∈ Ak−1. Now take x2 ∈
Ak−1 ∩ Ak−2

x1
with x2 > x1. Then take x3 ∈ Ak−1 ∩ Ak−2

x1
∩ Ak−2

x2
∩ Ak−3

(x1,x2)

with x3 > x2. Continue in this manner, making the inductive step precise
as in the solution of Exercise 4.1.2.
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Exercise 4.3.4. It is clear that if A is thick, then BD(A) = 1. Conversely,
suppose that A is not thick, say there is m ∈ N such that A does not contain
any intervals of length m. Let N ∈ N be a sufficiently large natural number
and let I be an interval of length N such that BD(A) is approximately equal

to |A∩I|
N . Divide I into N/m intervals I1, . . . , IN/m of length m with a small

left-over interval. Now each interval Ik contains an element of N \ A by
assumption. Consequently, BD(A) is approximately less than or equal to
N−N

m
N = 1− 1

m .

Exercise 4.3.6. Let (In)n∈N be a sequence of intervals with |In| = n such

that δ(A∪B, n) = |(A∪B)∩In|
n . Since |(A∪B)∩ In| ≤ |A∩ In|+ |B ∩ In|, we

see that δ(A ∪B, n) ≤ |A∩In|
n + |B∩In|

n ≤ δ(A, n) + δ(B, n).

Exercise 4.3.13. Fix f ∈ B(Z) and k ∈ Z. Let M ∈ N be such that |f(x)| ≤
M for all x ∈ Z. Next note that, writing In = [an, bn] (and assuming,
without loss of generality, that an ≥ k), we have∣∣∣∣∣

∑
x∈In

f(x)−
∑
x∈In

(k.f)(x)

∣∣∣∣∣ ≤
k∑

i=1

|f(a− i)|+
k−1∑
i=0

|f(b− i)| ≤ 2Mk.

By dividing both sides by |In| and taking ultralimits (and using the fact
that limU |In| =∞), we obtain the desired result.

Exercise 4.4.8. First show that if I is a sufficiently long interval, then I
contains a Δr-set. Thus, if A is not syndetic, then there are sufficiently
long intervals contained in N \ A, and consequently there will be a Δr-set
contained in the complement of A, whence A is not a Δ∗

r-set.

Chapter 5. Foundational concerns

Exercise 5.1.12. Fix a filter F on X. Note that

F := {f ∈ 22
X
: f is a filter on X extending F}

is closed in 22
X
. Also, for any A ⊆ X, we have that

DA := {f ∈ 22
X
: f(A) = 1 or f(X \A) = 1}

is closed in 22
X
. Notice that {F} ∪ {DA : A ⊆ X} has the FIP. Hence, by

the compactness of 22
X
, F ∩

⋂
A⊆X DA is nonempty; any element of this

intersection is an ultrafilter on X extending F .

Exercise 5.2.14. Take X ∈ U and Y ∈ 2N which are eventually equal. Take
k ∈ N so that, for every n ≥ k, n ∈ X ⇐⇒ n ∈ Y . Then Y contains
X ∩ [k, ω), which belongs to U .
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Exercise 5.3.1. Let (σα)α<2ω be an enumeration of the strategies for player I
and let (τα)α<2ω be an enumeration of the strategies for player II. Inductively
build sequences (xα)α<2ω and (yα)α<2ω of sequences from NN such that:

• {xα : α < 2ω} ∩ {yα : α < 2ω} = ∅;
• for every α < 2ω, yα is a play of the game where player I plays
according to σα;

• for every α < 2ω, xα is a play of the game where player II plays
according to τα.

If this can be done, it follows that {xα : α < 2ω} is not determined. To
see that this construction can be carried out, assume (xα)α<γ and (yα)α<γ

are constructed as above for some γ < 2ω. Choose yγ such that yγ is a play

of a game where player I plays according to σγ (of which there are 2ℵ0), and
yγ �∈ {xα : α < γ}. Similarly, choose xγ such that xγ is a play of a game
where player II plays according to τγ , and xγ �∈ {yα : α ≤ γ}.

Exercise 5.3.7. For any a ∈ NN which is not strictly increasing, let I(a) be
the restriction of a to the largest initial segment for which a is strictly in-
creasing. Extend the notion of Aa to finite sequences in the obvious way.
Define f : NN → 2N by f(a) = Aa if a is strictly increasing, f(a) =
(N ([0,maxAI(a)] AI(a))) if a is not strictly increasing and odd breaks,
and f(a) = AI(a) if a is not strictly increasing and even breaks. Then

f−1(U) = DU and f is continuous.

Exercise 5.4.2. Assume first that U is selective and let f : N → N be a
function. If range(f) is finite, then f is constant on a set in U . Otherwise,
we write N =

⊔
a∈range(f) f

−1({a}). If f is not constant on a set in U , then
f−1({a}) �∈ U for any a ∈ range(f). Since U is selective, there is B ∈ U such
that |B ∩ f−1({a})| = 1 for all a ∈ range(f), whence f is injective on B.

For the converse, let (Ai)i∈N be a partition of N with Ai �∈ U for all
i ∈ N. Define f : N → N by f(n) = i iff n ∈ Ai. Note f is not constant on
a set in U as f−1({i}) = Ai �∈ U . Thus, there exists B ∈ U such that f is
injective on B. Hence |B ∩Ai| ≤ 1 for all i < ω, as desired.

Exercise 5.4.7. If cf(α) = 1, then the last member of the sequence is an infi-
nite pseudo-intersection. Otherwise, cf(α) = ω and there exists a sequence
(αn)n<ω of ordinals such that supn<ω αn = α. Note that, for any finite
I ⊆ α,

⋂
i∈I Bi is infinite since Bmax I \

⋂
i∈I Bi =

⋃
i∈I Bmax I \ Bi is finite

as Bmax I ⊆∗ Bi for all i ∈ I.

We define (xn)n<ω inductively as follows. Choose x0 ∈ Bα0 . If (xn)n≤k

has been constructed, choose xk+1 ∈
(⋂

n≤k+1Bαn

)
\ {xn : n ≤ k}. Then

X := {xn : n < ω} is an infinite subset of N. For any γ < α, let n < ω be
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such that γ < αn, and observeX ⊆∗ Bαn ⊆∗ Bγ , soX ⊆∗ Bγ . Consequently,
X is an infinite pseudo-intersection of (Bβ)β<α.

Exercise 5.4.13. Let f : N→ N be such that f(U) = V and let N =
⊔

n<ω An

be a partition with An �∈ V for each n < ω. Set Bn := f−1(An) and observe
that Bn �∈ U for any n < ω. Since U is weakly selective, there is B ∈ U
such that B ∩ Bn is finite for all n < ω. Set A := f(B), so A ∈ V as
f−1(A) ⊇ B ∈ U . Now, if z ∈ A ∩ An, then there exists b ∈ B such that
f(b) = z ∈ An, so b ∈ B ∩ f−1(An) = B ∩ Bn. Hence A ∩ An ⊆ f(B ∩ Bn)
is finite.

Exercise 5.4.16. For (1), for any i < ω and n < ω, we see Xn \ [i, ω) ⊆ [0, i)
is finite, so Xn ⊆∗ [i, ω), whence [i, ω) ∈ F . In particular, N ∈ F . Also,
∅ �∈ F since the Xn’s are infinite. If A,B ∈ F , then for all but finitely many
n < ω, we see Xn \ (A∩B) = (Xn \A)∪ (Xn \B) is finite, so Xn ⊆∗ A∩B.
Hence A∩B ∈ F . Finally, if A ∈ F and A ⊆ B ⊆ N, then for all but finitely
many n < ω, we see Xn \B ⊆ Xn \ A is finite, so Xn ⊆∗ B. Hence B ∈ F .
Thus, F is a filter containing the Frèchet filter.

For (2), let U be an ultrafilter extending F . In particular, U is non-
principal. Consider the partition N =

⊔
n<ω Xn, and observe that, for every

n < ω, Xn �∈ U since N \Xn =
⋃

k �=nXk ∈ F . For any Z ⊆ N, if Z ∩Xn is

finite for all n < ω, then for any n < ω, Xn \ (N \ Z) = Xn ∩ Z is finite, so
Xn ⊆∗ N \ Z. Hence N \ Z ∈ F ⊆ U . Thus, U is not a P-point.

Chapter 6. Classical ultraproducts

Exercise 6.3.6. It is clear that NF contains the identity. Suppose that a, b ∈
NF . Since filters are closed under intersections, we have that a(i) = b(i) = e
for F -many i ∈ I, whence a(i)b(i) = e for F -many i ∈ I, and thus ab ∈ NF .
That NF is closed under inversion and conjugation is straightforward, so
one has that NF is a normal subgroup of

∏
i∈I Gi.

Now let φ :
∏

i∈I G)i/NF →
∏

F Gi be given by φ(gNF ) := [g]F . Note

indeed that φ is well defined: if gNF = hNF , then h−1g ∈ NF , that is,
h(i)−1g(i) = eGi for F -many i ∈ I, that is, g(i) = h(i) for F -many i ∈ I,
and thus [g]F = [h]F . Reversing the previous reasoning shows that φ is
injective. It is clear that φ is surjective, whence φ is a bijection. It follows
immediately from the definitions that φ is an isomorphism of structures.

Exercise 6.4.9. For each σ ∈ T , let Xσ = {Δ ∈ I : σ ∈ Δ}. Given finitely
many L-sentences σ1, . . . , σn ∈ T , we have that {σ1, . . . , σn} ∈

⋂n
i=1Xσi ,

whence the collection (Xσ)σ∈T has the FIP. Let U be an ultrafilter on I
containing each Xσ. We claim that

∏
U MΔ |= T . Indeed, given σ ∈ T ,

MΔ |= σ whenever σ ∈ Δ, that is, whenever Δ ∈ Xσ; since Xσ ∈ U , we
have that

∏
U MΔ |= σ by �Lós’s theorem.
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Exercise 6.5.5. The exercise hinges on the fact that given any proper filter
F ′ extending F and any A ⊆ I, either F ′ ∪ {A} generates a proper filter or
F ′ ∪ {I \ A} generates a proper filter.

Exercise 6.6.2. It is clear that d is a bijection when U is principal. Conversely,
fix a ∈ MN such that a(m) �= a(n) for all distinct m,n ∈ N. Take b ∈ M
such that d(b) = [a]U , whence b = an for U -almost all n. It follows that
there is a unique n ∈ N such that {n} ∈ U , whence U is principal.

Exercise 6.6.7. The backward direction is clear. For the forward direction,
suppose that U is countably incomplete and let (Fn)n∈N be a countable
collection of elements of U such that

⋂
n∈N Fn = ∅. Set E0 := I and for each

n ∈ N, set En+1 := F0 ∩ · · · ∩Fn. It is clear that the sequence (En)n∈N is as
desired.

Exercise 6.6.11. First suppose that U is countably incomplete. Following the
hint, take (En)n∈N from U such that I = E0 ⊇ E1 ⊇ E2 ⊇ · · · and such
that

⋂
n∈NEn = ∅. Define f : I → N by setting f(x) = the maximal n ∈ N

such that x ∈ En. We must show that f(U) is nonprincipal. If, toward
a contradiction, f(U) = Un, then f(x) = n for U -many x ∈ I. However,
f(x) ≥ n+1 for x ∈ En+1, whence f(x) ≥ n+1 for U -many x ∈ I, yielding
a contradiction. Conversely, suppose that there is a nonprincipal ultrafilter
V on N such that V ≤RK U . By Lemma 6.6.9, V is countably incomplete.
By Exercise 6.6.8, it follows that f(U) is also countably incomplete.

Exercise 6.7.3. We only prove the first part of (3). While one can do this
by hand (by induction on complexity of formulae), the shortest proof uses
the Tarski-Vaught test for elementary substructures. To use this test, we
suppose that ϕ(x1, . . . , xn, y) is a L-formula and g1, . . . , gn : M → M are
functions such thatMU |= ∃yϕ([g1◦f ]U , . . . , [gn◦f ]U , y). We must show that
such a witness can be found in N [f ]. Take X ∈ U such that, for all i ∈ X,
we have thatM |= ∃y(g1(f(i)), . . . , gn(f(i)), y) as witnessed by ai ∈M . We
may of course assume that if f(i) = f(j) for some i, j ∈ X, then ai = aj .
In this case, this allows us to define, for i ∈ X, define h : M → M so that
h(f(i)) = ai. (One defines h on M \f(X) in an arbitrary fashion.) It follows
that MU |= ϕ([g1 ◦ f ]U , . . . , [gn ◦ f ]U , [h ◦ f ]U), whence the Tarski-Vaught
test is successful and N [f ]  MU .

Exercise 6.10.3. One treats function symbols just as in the case of groups.
For example, if F is a unary function symbol, then for all i ∈ I and a ∈Mi, if
gi : Mi ↪→M is the canonical inclusion, we define FM(gi(a)) := gi(F

Mi(a)).
Note that this is well defined (that is, independent of representative) by
the fact that the system of structures is directed. The interpretation of
predicates is a little more interesting: if there is some i ∈ I and a ∈Mi such
that a ∈ PMi , then we declare that gi(a) ∈ PM.
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Exercise 6.10.4. The proof is exactly like the proof of Theorem 6.10.1, not-
ing that the maps in the abstract case are in fact homomorphisms of L-
structures.

Exercise 6.11.9. Let σ be a sentence such that
∏

F Mi |= σ. Suppose that σ
is determined by (γ;ψ1, . . . , ψm) and let Xj := {i ∈ I : Mi |= ψj}, whence
P(I)/F |= γ([X1]F , . . . , [Xm]F ). Since Mi ≡ Ni for each i ∈ I, we have
that Xj = X ′

j := {i ∈ I : Ni |= ψj}, whence
∏

F Ni |= σ as well.

Chapter 7. Applications to geometry, commutative algebra, and
number theory

Exercise 7.1.4. This follows from �Loś’s theorem and the fact that being an
algebraically closed field is a first-order property. To see this latter fact, note
that a field K is algebraically closed if and only if K |= σn for all n ≥ 1,
where σn is the sentence

∀a0 · · · ∀an(an �= 0→ ∃x(a0 + a1x+ · · ·+ anx
n = 0)).

Exercise 7.2.16. Suppose the statement of the exercise fails for some n and
d. For each t ∈ N, let Kt be a field, and f1(t), . . . , fm(t) ∈ Kt[X1, . . . , Xn]
all have degree at most d satisfying:

• gh ∈ (f1(t), . . . , fm(t)) implies g ∈ (f1(t), . . . , fm(t)) or h ∈
(f1(t), . . . , fm(t)) for all g, h ∈ Kt[X1, . . . , Xn] of degree at most
t, and

• (f1(t), . . . , fm(t)) is a proper ideal of Kt[X1, . . . , Xn] that is not
prime.

Fix a nonprincipal ultrafilter U on N. For each t ∈ N, take g(t), h(t) ∈
Kt[X1, . . . , Xn] such that g(t)h(t) ∈ (f1(t), . . . , fm(t)) but g(t), h(t) /∈
(f1(t), . . . , fm(t)). It follows that g, h ∈

∏
U Kt[X1, . . . , Xn] are such that

gh ∈ (f1, . . . , fm) but g, h /∈ (f1, . . . , fm). Thus, f1, . . . , fm do not generate
a prime ideal in

∏
U Kt[X1, . . . , Xn]. It is also clear that (f1, . . . , fm) gen-

erate a proper ideal of
∏

U Kt[X1, . . . , Xn] (for otherwise (f1(t), . . . , fm(t))
generate Kt[X1, . . . , Xn] for U -almost all t ∈ N).

However, for each i = 1, . . . ,m, we have that fi ∈
∏

U Kt[X1, . . . , Xn]
has degree ≤ d, and thus belongs to (

∏
U Kt)[X1, . . . , Xn]. By Theorem

7.2.15, f1, . . . , fm do not generate a prime ideal in (
∏

U Kt)[X1, . . . , Xn]
either. Consequently, there are a, b ∈ (

∏
U Kt)[X1, . . . , Xn] such that ab ∈

(f1, . . . , fm) but a, b /∈ (f1, . . . , fm). Since both a(t) and b(t) have degree at
most t for U -almost all t ∈ N, this is a contradiction to our choices.

Exercise 7.3.5. For (1), first suppose that R is a local ring with unique
maximal ideal m. Suppose that x, y ∈ R are noninvertible elements. Then
the principal ideals generated by x and y must be proper and thus contained
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inm. Consequently, x+y ∈ m, whence x+y is also noninvertible. Conversely,
if m1 and m2 are distinct maximal ideals of R, then taking x ∈ m2\m1, we see
that the ideal generated by m1 and x is all of R, whence there is y ∈ m1 and
a ∈ R such that ax+y = 1. Thus, ax and y are noninvertible elements of R
whose sum is invertible. (2) now follows from (1). For (3), note that, by (1),
the unique maximal ideal in a local ring consists precisely of the noninvertible
elements. For (4), the fact that R is a local ring follows directly from (2)
and �Loś’s theorem and the fact that m ∼=

∏
U mi follows directly from (3).

It is readily verified that the obvious map (
∏

U Ri)/(
∏

U mi)→
∏

U (Ri/mi)
is an isomorphism.

Chapter 8. Ultraproducts and saturation

Exercise 8.1.14. The forward direction follows from Exercise 8.1.4 and Propo-
sition 8.1.11. To prove the converse, suppose that MA is κ+-universal for
every A ⊆ M with |A| < κ. Let Σ(x) be a finitely satisfiable set of LA-
formulae; we seek a realization of Σ in M . Let N be a model of Th(MA) of
cardinality ≤ κ containing a realization b of Σ(x). By assumption, there is
an elementary embedding i : NA ↪→MA. It follows that i(b) is a realization
of Σ(x) in M .

Exercise 8.2.4. The backward direction follows immediately from �Loś theo-
rem. To prove the forward direction, let {n0, n1, . . . , } be an enumeration of
N \M and let Σ(x0, x1, . . . , ) be the collection of quantifier-free LM -formulae
ϕ(x0, . . . , xk) (as k varies over ω) such that N |= ϕ(n0, . . . , nk). It suffices
to show that there is a realization (a0, a1, . . . , ) of Σ(x) inMU , for then the
map ni �→ ai is the desired embedding. SinceMU is ℵ1-saturated, it suffices
to show that Σ is finitely satisfiable in MM , which follows from the fact
that M is e.c. in N .

Exercise 8.3.6. First suppose that U is κ-regular. Let E be a κ-regularizing
set for U and enumerate E as (Aα)α<κ. For each i ∈ I, set f(i) :=
{αi

1, . . . , α
i
m}, where Aαi

1
, . . . , Aαi

m
denote the finitely many elements of U

containing i. (If i does not belong to any set in E, set f(i) = ∅.) This f is
as desired.

For the converse, fix an f as in the statement of the exercise. For α < κ,
set Aα := {i ∈ I : α ∈ f(i)}. One readily checks that {Aα : α < κ}
has cardinality κ (although it may contain some repetitions) and is a κ-
regularizing set for U .

Exercise 8.3.7. Suppose that U is κ-regular and U ≤RK V. Suppose that
the index sets of U and V are I and J , respectively. Take g : J → I such
g(V) = U and take f : I → Pf (κ) as in Exercise 8.3.6 witnessing that U is
κ-regular. Exercise 8.3.6, now applied to f ◦g, shows that V is also κ-regular.
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Exercise 8.3.14. A standard compactness argument shows that if M |=
Th∀(N ), then there is N ′ ≡ N such that M ⊆ N ′. By downward Löwen-
heim-Skolem, we may assume that |N ′| ≤ κ = max(|M |, |L|). If U is κ-
regular, then N U is κ+-universal, whence N ′ embeds into N U and (2) fol-
lows. (2) implies (3) is trivial and (3) implies (1) follows from �Loś’s theorem.

Exercise 8.4.1. Fix a multiplicative concern function C : Pf (Σ) → U . First
suppose that C is locally finite and fix i ∈ I. Let u1, . . . , uk ∈ Pf (Σ)
enumerate those u such that i ∈ C(u). Then i ∈ C(u1) ∩ · · · ∩ C(uk) =
C(u1 ∪ · · · ∪ uk). Set Ci := u1 ∪ · · · ∪ uk. To see that Ci is as desired,
fix u ∈ Pf (Σ). If i ∈ C(u), then u = uj for some j and hence u ⊆ Ci.
Conversely, if u ⊆ Ci, then C(Ci) ⊆ C(u) and hence i ∈ C(u).

Next suppose that there is Ci ∈ Pf (Σ) with the stated properties. Fix
i ∈ I and suppose that u ∈ Pf (Σ) is such that i ∈ C(u). Then u ⊆ Ci.
Since Ci is finite, this leaves finitely many possibilities for u.

Exercise 8.4.19. Suppose that U is a nonprincipal ultrafilter on ω and let
f : Pf (ω) → U be antimonotonic. Given u ∈ Pf (ω), set nu ∈ ω to be the
minimal n ∈ ω such that u ⊆ n. (Recall that a natural number is defined as
the set of natural numbers below it.) Define g : Pf (ω) → U to be g(u) :=
f(nu). Since u ⊆ nu and f is antimonotonic, we have that g(u) = f(nu) ⊆
f(u), so g refines f . To see that g is multiplicative, note that g(u ∪ v) =
f(nu∪v) = f(max(nu, nv)). Since f is antimonotonic, f(max(nu, nv)) =
f(nu) ∩ f(nv), whence we have g(u ∪ v) = g(u) ∩ g(v).

Exercise 8.4.20. Suppose that V is κ-regular. First suppose that U × V is
κ+-good. To show that V is κ+-good, fix a language L with |L| ≤ κ and an
L-structure M; it suffices to show that MV is κ+-saturated. Since V is κ-
regular,MV is κ+-saturated if and only if (MU)V =MU×V is κ+-saturated;
this latter fact holds since U × V is assumed to be κ+-good. The converse
can be argued in the same fashion.

Exercise 8.4.22. Let U be a regular ultrafilter on κ that is not good (which
exists since κ is uncountable) and let V be a good ultrafilter on κ. By
Exercise 8.4.20, U × V is good while V × U is not good. Let M be as in
Theorem 8.4.16. Then MU×V is κ+-saturated while MV×U is not. Thus
MU×V �∼=MV×U and so U × V �≡RK V × U by Theorem 6.7.1.

Chapter 9. Nonstandard analysis

Exercise 9.2.12. To see that there are no largest or smallest infinite galaxies,
take even N ∈ N∗ \ N and note that γ(N2 ) < γ(N) < γ(2N). For the
other statement, if γ(M) < γ(N) with both M and N even, note that
γ(M) < γ(M+N

2 ) < γ(N).
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Exercise 9.3.10. Define the function Sf : N→ R by Sf (n) =
∑n−1

i=0 f( 1n) ·
1
n ,

so
∫ 1
0 f(x)dx = limn→∞ Sf (n). Now the right-hand side of the exercise is

merely suggestive notation for Sf (N) for infinite N ∈ N∗.

Exercise 9.5.12. This follows essentially from Exercise 9.5.10 and the defini-
tion of iterated ultrapower.

Exercise 9.5.14. The forward direction follows immediately from Exercise
9.5.12 and Corollary 6.9.8. The reverse direction follows from the fact that
limit ultrapowers are elementary extensions of the original structures.

Exercise 9.5.24. Show that the map σ̃ :MU|FY →MU|FX given by σ̃([f ]Y ) =
[f ◦ σ]X is an induced embedding. Conclude using Example 9.5.22.

Exercise 9.6.11. Show that nonempty internal subsets of R∗ that are bounded
above have least upper bounds.

Exercise 9.6.20. For (1), note that A = {x ∈ X∗ : (∃y ∈ X∗) (x, y) ∈ Γ(f)};
by the internal definition principle, A is thus internal. The proof for why
range(f) is internal is similar. (2) follows from an application of the overflow
principle (Exercise 9.6.12).

Exercise 9.7.7. First suppose that T is an S-subsemigroup. Given α, β ∈ T ,
take γ ∈ T such that γ ∼ α+ β∗. It follows that

π(α)⊕ π(β) = Uα ⊕ Uβ = Uα+β∗ = Uγ = π(γ),

i.e., π(T ) is closed under ⊕, so it is a subsemigroup of βN. Reversing the
above line of reasoning establishes the converse.

Exercise 9.7.10. First suppose that α is idempotent and take A ⊆ N such
that α ∈ A∗. Since α ∼ α+ α∗, we have that α + α∗ ∈ A∗∗. By transfer, it
follows that α ∈ (Aα)

∗, whence α ∈ A∗ ∩ (Aα)
∗ = (αA)

∗. For the converse,
suppose that α is not idempotent, whence there is some A ⊆ N such that
α ∈ A∗ but α+ α∗ /∈ A∗∗. By transfer again, it follows that α /∈ (αA)

∗.

Now suppose that α is idempotent and s ∈ Aα. Then s+α ∈ A∗, whence
α ∈ (A−s)∗. By the first part of the exercise, we have α ∈ (α(A−s)∗), that
is, α+α∗ ∈ (A− s)∗∗, whence s+α+α∗ ∈ A∗∗. It follows that s+α ∈ A∗

α.
The case that s ∈ αA is handled similarly.

Exercise 9.8.2. Suppose that U is a Hausdorff ultrafilter on I and V ≤RK U
as witnessed by V = h(U), where h : I → J . Suppose that f, g : J → J
are such that f(V) = g(V). Then (f ◦ h)(U) = (g ◦ h)(U). Let k : J → I
be any function that is injective on both (f ◦ h)(I) and (g ◦ h)(I). Since
(k ◦ f ◦ h)(U) = (k ◦ g ◦ h)(U) and U is Hausdorff, we have that k ◦ f ◦ h ≡U
k ◦ g ◦h; since k is injective on (f ◦h)(I)∪ (g ◦h)(I), it follows that f ≡V g,
as desired.
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Chapter 10. Limit groups

Exercise 10.2.5. (1) is trivial if the group is Z; otherwise, use the well-known
fact that centralizers of elements in nonabelian free groups are all cyclic. (2)
follows from (1) and the fact that commutative transitivity is a universally
axiomatizable property.

Exercise 10.2.6. We prove (1) by contrapositive: if a, b ∈ G \ {e} do not
commute and c ∈ Z(G) \ {e}, then the facts that a and c commute and that
b and c commute show that G is not commutative transitive. (2) follows
from (1) since G×H is nonabelian (as it contains the nonabelian subgroup
G×{e}) and has nontrivial center (as the center contains {e}×H). F2×Z
shows that none of the three named classes are closed under direct products.

Exercise 10.2.11. Suppose thatH is a maximal abelian subgroup of F2. Then
H = 〈a〉 for some a ∈ H. Suppose b ∈ F2 \H. Since H is a maximal abelian
subgroup, it follows that 〈a, b〉 is a free subgroup of F2. If baib−1 = aj for
some i, j �= 0, then baib−1a−j = e is a nontrivial relation in 〈a, b〉, yielding a
contradiction.

Exercise 10.3.16. Suppose that G1 and G2 are universally free groups. Sup-
pose that H is a finitely generated subgroup of G1 ∗G2; it suffices to show
that H is fully residually free. Take finitely generated subgroups H1 and H2

of G1 and G2, respectively, such that H is a subgroup of H1 ∗H2; it suffices
to show that H1 ∗H2 is fully residually free. This is fairly straightforward
using the fact that free products of free groups are free together with the
normal form for elements of free products.

Exercise 10.4.11. Fix k ∈ N; it suffices to show that ν((G,S), (Hi, Si)) ≥ k
for U -almost all i ∈ I. However, this follows from an immediate application
of �Loś’s theorem.

Exercise 10.4.14. Suppose that G is a nonabelian limit group generated by
a and b. By Theorem 10.4.13, there are free groups Gi with generators ai
and bi such that (Gi, Si) converges to (G,S) in G2. Since a and b do not
commute, it follows that ai and bi do not commute for sufficiently large i,
whence ai and bi freely generate Gi. It follows that a and b freely generate
G as well.

Chapter 11. Metric ultraproducts

Exercise 11.3.3. Fix a sequence (In)n∈N such that In ⊇ In+1 for all n ∈ N
and such that

⋂
n∈N In = ∅. For each i ∈ I, set n(i) to be the maximal

n ∈ N such that i ∈ In. Fix [f ]U ∈
∏

U Mi and define g ∈
∏

i∈I Xi by

letting g(i) be any element of Xi such that di(f(i), g(i)) <
1

n(i) . We claim

that [f ]U = [g]U , finishing the proof. Indeed, given any n ≥ 1 and any
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i ∈ In, we have that n(i) ≥ n and thus di(f(i), g(i)) < 1
n(i) ≤

1
n . Since

In ∈ U , we have that d([f ]U , [g]U) ≤ 1
n . Letting n tend to ∞, we get that

[f ]U = [g]U .

Exercise 11.4.7. One proves this result by induction on the complexity of
formulae. If ϕ(	x) = P (	x) for some predicate symbol P , set Δϕ := ΔP . If
ϕ(	x) = u(ψ1(	x), . . . , ψn(	x)) for some continuous function u : [0, 1]n → [0, 1],

then set Δϕ(ε) := mini=1,...,n Δψi
(Δu(ε)

2 ). Finally, if ϕ(	x) = supy ψ(	x, y),
then set Δϕ := Δψ.

Exercise 11.4.9. One proves the result by induction on the complexity of ϕ.
As in the classical case, one has, for any term t(x1, . . . , xn) and any [	a]U =
([a1]U , . . . , [an]U) ∈ M , that tM(	a) = [i �→ tMi(	a(i))]U . Consequently, if
ϕ(	x) = P (	x) for some predicate symbol P , we have that

ϕM([	a]U) = PM(tM1 ([	a]U), . . . , t
M
n ([	a]U))

= lim
U

PMi(tMi
1 (	a(i)), . . . , tMi

n (	a(i)))

= lim
U

ϕMi(	a(i)).

The second equality follows from the aforementioned fact about interpreta-
tions of terms.

Next suppose that ϕ(	x) = u(ψ1(	x), . . . , ψn(	x)), where each ψj is a for-
mula and u is a continuous function. We then have

ϕM([	a]U) = u(ψM
1 ([	a]U), . . . , ψ

M
n ([	a]U))

= u(lim
U

ψMi
1 (	a(i)), . . . , lim

U
ψMi
n (	a(i)))

= lim
U

u(ψMi
1 (	a(i)), . . . , ψMi

n (	a(i)))

= lim
U

ϕMi(	a(i)).

The second equality follows from the induction hypothesis and the third
equality follows from Theorem 3.1.14.

We finally suppose that ϕ(	x) = supy ψ(	x, y). Set r := ϕM([	a]U), ri :=

ϕMi(	a(i)), and s := limU ri. We want to prove that s = r. We first show
that r ≤ s. To see this, fix [b]U ∈ M and note that ψMi(	a(i), b(i)) ≤ ri,
whence limU ψMi(	a(i), b(i)) ≤ limU ri = s. By the induction hypothesis,
we know that the left-hand side of the above inequality is ψM([	a]U , [b]U),
whence taking the supremum over b gives r ≤ s. We now prove that s ≤ r.
To see this, fix ε > 0 and take b(i) ∈Mi such that ψMi(	a(i), b(i)) ≥ ri−ε. By
the inductionhypothesis we have that ψM([	a]U , [b]U)=limU ψMi(	a(i), b(i))≥
limU(ri − ε) = s − ε. It follows that r = ϕM([	a]U) ≥ s − ε. Letting ε tend
to 0 gives r ≥ s, as desired.
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Exercise 11.5.2. Fix a, b, c ∈
∏

i∈I Mi. It is clear that d(a, a) = 0 and
d(a, b) = d(b, a). We now check the triangle inequality. Fix ε > 0. Take
J1 ∈ F such that supi∈J1 di(a(i), b(i)) < d(a, b) + ε. Similarly, take J2 ∈ F
such that supi∈J2 di(b(i), c(i)) < d(b, c) + ε. Then supi∈J1∩J2 di(a(i), c(i)) ≤
d(a, b) + d(b, c) + 2ε. Since J1 ∩ J2 ∈ F , we have that

d(a, c) = inf
J∈F

sup
i∈J

di(a(i), c(i)) < d(a, b) + d(b, c) + 2ε.

Letting ε tend to 0 establishes the triangle inequality.

Chapter 12. Asymptotic cones and Gromov’s theorem

Exercise 12.2.6. This follows from the fundamental theorem of finitely gen-
erated abelian groups together with the fact that having polynomial growth
is closed under taking finite direct sums.

Exercise 12.2.11. The first part of (1) is obvious and the second part of (1)
follows from the fact that any finite generating set for Δ can be extended to
a finite generating set for Γ. We now prove (2). Suppose that Y is a finite
generating set for Δ and let T be a finite set of coset representatives for Δ in
Γ. Let m ∈ N be big enough so that whenever we multiply a · b with a ∈ T
and b ∈ Y ∪ T , we can write the resulting product as y1 · · · yk · z, where
y1, . . . , yk ∈ Y , z ∈ T , and k ≤ m. It follows that any element of BX(n)
can be written as y1 · · · yl · z, where y1, . . . , yl ∈ Y , z ∈ T , and l ≤ mn.
Consequently, GX(n) ≤ |X| ·GY (mn), as desired.

Exercise 12.4.4. By assumption, we know, for all x, x′ ∈ X, that

1

K
dX(x, x′) ≤ dY (f(x), f(x

′)) ≤ KdX(x, x′).

Consequently, given any [x]U , [x′]U ∈ Cone(X;U , o, r), we have

1

K
dX(x(n), x′(n)) ≤ dY (f(x(n)), f(x

′(n))) ≤ KdX(x(n), x′(n)).

Dividing all sides by r(n) and taking the U -ultralimit yields that fU is also
a K-bi-Lipschitz homeomorphism.

Exercise 12.4.8. Set fn : BΓ∗(e,R)× · · · ×BΓ∗(e,R)→ BΓ∗(e, nR) to be the
map

fn(γ1, . . . , γn) := γ1 · · · γn.
Note that if d(γi, ηi)/R ≈ 0 for all i = 1, . . . , n, then an inductive argu-
ment, using bi-invariance of the metric, shows that d(γ1 · · · γn, η1 · · · ηn)/R ≤∑n

i=1 d(γi, ηi)/R ≈ 0 as well. Consequently, we get an induced map f̂n :

BY (eμ, 1)× · · · ×BY (eμ, 1)→ BY (eμ, n). To see that f̂n is continuous, fix
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ε > 0 and note that if dY (γiμ, ηiμ) <
ε
n for all i = 1, . . . , n, then d(γi,ηi)

R < ε
n

for all i = 1, . . . , n, and thus

d(γ1 · · · γn, η1 · · · ηn)/R ≤
n∑

i=1

d(γi, ηi)/R < ε,

whence dY (γ1 · · · γnμ, η1 · · · ηnμ) ≤ ε, as desired. Finally, to see that f̂n is
surjective, fix γ ∈ Γ∗ such that dY (γμ, eμ) < n, that is, st(d(γ, e)/R) < n.
This allows us to write γ = γ1 · · · γn ·η, where each |γi|/R < n and |η|/R ≈ 0.

It follows that f̂n(γ1μ, . . . , γnμ) = γμ.

Exercise 12.5.4. Take a∈ Γ∗ with |a|≤r such that δ(η−1γη, r)=d(η−1γηa, a).
We then note that

d(η−1γηa, a) = d(γηa, ηa) ≤ d(γηa, γa) + d(γa, a) + d(a, ηa).

Using that the metric is bi-invariant, we have that the last expression equals

d(η, e) + d(γa, a) + d(e, η) ≤ δ(γ, r) + 2|η|,

as desired.

Chapter 13. Sofic groups

Exercise 13.1.11. Note that

tr((u− v)(u− v)∗) =
1

n

n∑
i=1

n∑
j=1

(u− v)ij(u− v)∗ji =
1

n

n∑
i,j=1

|uij − vij |2.

The bi-invariance of dHS actually follows from this formula. Indeed,

tr((wu− wv)(wu− wv)∗) = tr(w(u− v)(u− v)∗w∗)

= tr((u− v)(u− v)∗w∗w) = tr((u− v)(u− v)∗).

Here, we have used the fact that tr(ab) = tr(ba) for all a, b ∈Mn(C).

Exercise 13.2.4. Parts (1) and (2) are straightforward calculations. For (3),
suppose that G1 and G2 are sofic groups, F ⊆ G1×G2 is finite, and ε > 0 is
given. Without loss of generality, we may assume that F = F1 × F2, where
F1 and F2 are finite subsets of G1 and G2, respectively. For each i = 1, 2,
let φi : Fi → Sni be an (Fi, ε)-morphism. By part (1), we may assume
that n1 = n2; call this common value n. Let φ : F → S2n be given by
φ(a, b) = ι(φ1(a), φ2(b)), where ι : Sn × Sn ↪→ S2n is the embedding defined
in part (2). We claim that φ is a (F, ε)-morphism. Indeed, if g = (g1, g2)
and h = (h1, h2) are elements of F such that gh ∈ F , then by part (2) of
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the exercise, we have

d(φ(g)φ(h), φ(gh)) = d(ι(φ1(g1)φ1(h1), φ2(g2)φ2(h2)), ι(φ1(g1h1), φ2(g2h2))

=
1

2

2∑
i=1

d(φi(gi)φi(hi), φi(gihi)) < ε.

The proof of the second part of the definition of (F, ε)-morphism is
similar. For the third part, suppose that g, h ∈ F as above are distinct.
Suppose, without loss of generality, that g1 �= h1. Then d(φ(g), φ(h)) ≥
1
2d(φ1(g1), φ1(h1)) ≥ 1

4 . While this does not quite align with the definition
of (F, ε)-morphism, this inequality is still good enough in light of Corollary
13.2.9, which is hinted at in Remarks 13.2.2(1).

Exercise 13.2.6. Fix σ, τ ∈ Sn and let X = {i : σ(i) = τ(i)}. Then

1− dHamm(σ, τ) =
|X|
n . On the other hand, {(i1, . . . , ik) : σ⊗k(i1, . . . , ik) =

τ⊗k(i1, . . . , ik)} = Xk, so 1 − dHamm(σ
⊗k, τ⊗k) = |X|k

nk . The desired result
follows.

Exercise 13.2.10. In the proof of Theorem 13.2.7, choose φ = φ(F, 1
n
)

to be an (F, 1
n)-morphism except that for distinct g, h ∈ F , we have

dHamm(φ(g), φ(h)) ≥ 1 − 1
n , which is possible by Corollary 13.2.9. The

resulting embedding φ : G→
∏

U S(F, 1
n
) is now distance preserving.

Exercise 13.3.5. The backward direction is clear. To prove the forward di-
rection, enumerate G = (gn)n∈N and, for each n ∈ N, set Gn := (gk)k≤n.
Letting Fn be a finite (Gn,

1
n)-Følner set, we see that (Fn)n∈N is a Følner

sequence for G.

Exercise 13.3.7. For (1), suppose that H is a subgroup of G. We will show
that H is amenable using Theorem 13.3.6. By Theorem 13.3.6, there is a
finitely additive left-invariant probability measure μ on G. Fix a set T of
right coset representatives for H. Define ν : P(H) → [0, 1] by ν(A) :=
μ(AT ). One can check that ν is a finitely additive left-invariant probability
measure on H. Perhaps the trickiest part is finite additivity. To see this,
suppose that A and B are disjoint subsets of H; to show that ν(A ∪ B) =
ν(A) + ν(B), by finite additivity of μ, it suffices to show that AT and BT
are disjoint subsets of G. If ax = by for some a ∈ A, b ∈ B, and x, y ∈ T ,
then by the definition of T , we must have x = y; but then it follows that
a = b, which contradicts that A and B are disjoint.

For (2), fix finite K ⊆ H and ε > 0. For each y ∈ K, take xy ∈ G such
that f(xy) = y and set K ′ := {xy : y ∈ K}. Fix a finite (K ′, ε)-Følner set
F ⊆ G. Then f(F ) is a (K, ε)-Følner set.
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Chapter 14. Functional analysis

Exercise 14.1.3. Consider the function Φ:�∞(Xi)→
∏

U Xi given by Φ(x) :=
[x]U . It is clear that Φ is linear and surjective. Moreover, Φ is contrac-
tive, that is, ‖Φ(x)‖ ≤ ‖x‖. Indeed, ‖Φ(x)‖ = ‖[x]U‖ = limU ‖x(i)‖ ≤
supi∈I ‖x(i)‖ = ‖x‖. Thus, by the FIP for Banach spaces, we have that

Φ̂ : �∞(Xi)/ ker(Φ) →
∏

U Xi given by Φ̂(x + ker(Φ)) = Φ(x) is an isomor-
phism. It remains to notice that Y = ker(Φ).

Exercise 14.1.7. For (1), since the diagonal embedding of X into XU is an
isometric embedding, if we can show that dim(XU) = dim(X), then the
diagonal embedding is necessarily onto and thus an isomorphism between X
and XU . To see this dimension equality, suppose that [x1]U , . . . , [xn]U ∈ XU

are linearly independent. Lemma 14.1.6 then implies that x1(i), . . . , xn(i)
are linearly independent elements of X for U -almost all i ∈ I; as a result,
we have that n ≤ dim(X), whence dim(XU) ≤ dim(X).

We now prove (2). It suffices to check that if there is n ∈ N such
that dim(Xi) = n for U -almost all i ∈ I, then dim(

∏
U Xi) = n. Indeed,

suppose that this statement is true and dim(
∏

U Xi) = m <∞. Take a basis
[x1]U , . . . , [xm]U for

∏
U Xi. By Lemma 14.1.6, x1(i), . . . , xm(i) are linearly

independent for U -almost all i ∈ I, whence dim(Xi) ≥ m for U -almost all
i ∈ I. Suppose, toward a contradiction, that dim(Xi) > m for U -almost all
i ∈ I and let Zi be an (m + 1)-dimensional subspace of Xi for these i ∈ I.
Then by the above statement, dim(

∏
U Zi) = m+ 1, contradicting the fact

that
∏

U Zi is a subspace of
∏

U Xi.

We now prove the above statement. Suppose that there is n ∈ N
such that dim(Xi) = n for U -almost all i ∈ I. For these i ∈ I, let
x1(i), . . . , xn(i) ∈ Xi be a basis for Xi consisting of vectors of norm at most
1. By considering quotient spaces, one may even assume that, for these i ∈ I,
we have d(xk(i), span(x1(i), . . . , xk−1(i))) ≥ 1

2 for all 1 ≤ k ≤ n. We show
that [x1]U , . . . , [xn]U form a basis for

∏
U Xi. It is clear that [x1]U , . . . , [xn]U

span
∏

U Xi. Moreover, if [x1]U , . . . , [xn]U were linearly dependent, then we
would have, without loss of generality, [xn]U ∈ span([x1]U , . . . , [xn−1]U),
whence d(xn(i), span(x1(i), . . . , xn−1(i))) <

1
2 for U -almost all i ∈ I, contra-

dicting our choice of bases.

Exercise 14.2.16. Suppose that X is a super-reflexive Banach space and Y is
a closed subspace of X; we wish to show that both Y and X/Y are super-
reflexive. To see that Y is super-reflexive, by Corollary 14.2.13, it suffices to
show that Y U is reflexive for every ultrafilter U . However, Y U is a subspace
of the Banach space XU , which is reflexive by Corollary 14.2.13, and hence
is itself reflexive by Fact 14.2.12. Similarly, by Proposition 14.1.8, (X/Y )U
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is isomorphic to XU/Y U , which is reflexive by Corollary 14.2.13 and Fact
14.2.12.

Exercise 14.2.23. First suppose that limU ϕi = ϕ in the weak*-topology
and fix x ∈ X. Since the evaluation at x map is continuous, it follows
from the ultralimit characterization of continuity that limU ϕi(x) = ϕ(x).
Conversely, suppose that limU ϕi(x) = ϕ(x) for all x ∈ X. We wish to
show that limU ϕi = ϕ in the weak*-topology. To see this, fix a ba-
sic open neighborhood U of ϕ in X∗. Consequently, U = {ψ ∈ X∗ :
maxj=1,...,n |ϕ(xj) − ψ(xj)| < ε} for some x1, . . . , xn ∈ X and ε > 0. Given
j = 1, . . . , n, since limU ϕi(xj) = ϕ(xj), we have that |ϕi(xj) − ϕ(xj)| < ε
for U -almost all i ∈ I. Consequently, we have that ψi ∈ U for U -almost all
i ∈ I, as desired.

Exercise 14.3.19. For part (1), first assume that X is connected and f ∈
P(C(X)). By Exercise 14.3.10, we have that f(x) ∈ {0, 1} for all x ∈
X; since X is connected, f must be constant and thus f = 0 or f = 1.
Conversely, if X is not connected, then we can find a nonempty, proper
clopen subset Y of X and the function f : X → C given by f(x) = 0 if
x ∈ Y and f(x) = 1 if x ∈ X \ Y belongs to P(C(X)) \ {0, 1}.

For (2), we may assume, without loss of generality, that U is countably
incomplete. Fix a family (In)n∈N of elements of U such that In ⊇ In+1 for
all n ∈ N and such that

⋂
n∈N In = ∅. Now fix [f ]U ∈ P(

∏
U C(Xi)). For

each n ∈ N, set

Jn :=

{
i ∈ In : max(‖f(i)∗ − f(i)‖, ‖f(i)2 − f(i)‖) < 1

n

}
.

For each i ∈ I, let n(i) be the maximal n ∈ N such that i ∈ Jn. Note
that limU n(i) = ∞. For each i ∈ I, let g(i) ∈ P(C(Xi)) be such that
‖f(i) − g(i)‖ < 1

n(i) . Since limU n(i) = ∞, it follows that [f ]U = [g]U , as

desired.

For (3), suppose that each Xi is connected; by part (1), in order to show
that

∐
U Xi is also connected, it suffices to show that the only projections

in C(
∐

U Xi) are the constantly 0 and 1 functions. Since C(
∐

U Xi) ∼=∏
U C(Xi), it suffices to show that the only projections in

∏
U C(Xi) are the

elements [0]U and [1]U , which is indeed the case by parts (1) and (2) and
the assumption that each Xi is connected.

Exercise 14.4.17. Note first that every element of L(G) can be written in
the form x =

∑
g∈G agug. Next observe that, for each g ∈ G, the matrix

representation of ug with respect to the basis (ζh)h∈G is a permutation ma-
trix and that all diagonal entries of this matrix representation of ug are 0
whenever g �= e. Conclude that for any x =

∑
g∈G agug, the normalized

trace of the matrix representation of x is ae, the coefficient of ue.
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Chapter 15. Does an ultrapower depend on the ultrafilter?

Exercise 15.2.16. For (1), fix distinct f1, . . . , fm, f ′
1, . . . , f

′
n ∈ F , subsets

U1, . . . , Um ⊆ ω, and ordinals k1, . . . , kn ∈ ω. It suffices to show that

m⋂
i=1

{U ∈ βω : gfi(U) ∈ Ui} ∩
n⋂

i=1

{U ∈ βω : gf ′
i
(U) ≥ ki}

is an open subset of βω. However, {U ∈ βω : gfi(U) ∈ Ui} = {U ∈ βω :

f−1
i (Ui) ∈ U} is a basic open set in βω and {U ∈ βω : gfi(U) ≥ ki} is the

complement of the closed set
⋃ki−1

j=1 {U ∈ βω : f−1
i (j) ∈ U}, whence also

open.

For (2), fix a function Ψ : F → ω+1; we see U ∈ βω such that G(U) = Ψ.
Fix f ∈ F . If Ψ(f) ∈ ω, then set Xf := {n ∈ ω : f(n) = Ψ(f)}. If
Ψ(f) = ω, then for each m ∈ ω, set Xf,m := {n ∈ ω : f(n) ≥ m}. It suffices
to show that the family (Xf )f∈Ψ−1(ω)∪ (Xf,m)f∈Ψ−1({ω}),m∈ω, together with
the Fréchet filter, has the FIP, for then any ultrafilter U containing all of
these sets is a nonprincipal ultrafilter such that G(U) = Ψ. However, the
fact that this family has the FIP follows immediately from the fact that F
is of large oscillation modulo the Fréchet filter.

Exercise 15.3.7. For part (1), by finite character, it suffices to assume that
K is finite. When |K| = 1, we are trying to show that ak |�A

aJ . Since

aJ ⊆ a<k, we conclude that ak |�A
aJ by monotonicity. Now suppose that

|K| > 1 and write K = L∪ {k}, where k > L. By the induction hypothesis,
we know that aL |�A

aJ , whence aJ |�A
aL by symmetry. By the defini-

tion of an A-independent sequence (and transitivity again), we have that
ak |�A

aJaL. By transitivity, we have ak |�AaL
aJ , and thus by symmetry,

we have aJ |�AaL
ak. By transitivity, we conclude that aJ |�A

aLak, that is,

aJ |�A
aK , and by symmetry one last time, we have aK |�A

aJ , as desired.

For (2), fix i ∈ I and write a�=i = a<ia>i. By the definition of an
A-independent sequence, we have ai |�A

a<i. By part (1) of the exercise,

we have that a>i |�A
a≤i, whence a>i |�Aa<i

ai by transitivity, and thus

ai |�Aa<i
a>i by symmetry. By transitivity, we have ai |�A

a<ia>i, as de-

sired.

Chapter 16. The Keisler-Shelah theorem

Exercise 16.1.15. Take M |= T such that |M | = κ. Define an equivalence
relation on L, where symbols of the same type are related if their inter-
pretations in M are the same. Choose a representative from each equiva-
lence class and let L′ be the collection of all such representatives. Observe
|L′| ≤ 2|M | = 2κ. Conclude using the completeness of T .
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Exercise 16.2.3. For (1), it is clear that Pseudo-K is an elementary class
containing K. If T is an L-theory such that every element of K is a model
of T , then T ⊆ Th(K), whence every element of Pseudo-K is a model of T .
(2) follows from the definition by considering negations.

Exercise 16.3.2. Let L1 = {P,Q} and L2 = {Q,R}, where P , Q, and R
are unary predicate symbols. Let T1 = {∀x(P (x) ∧ Q(x))} and let T2 =
{∀x(¬Q(x) ∧R(x))}. Then T1 ∪ T2 is not satisfiable.

Exercise 16.4.2. It is readily verified that the map which sends the element
[A(k)]U of Mn(R)U to the matrix over RU whose (i, j)-entry is [A(k)ij]U is
an isomorphism of rings, where A(k)ij is the (i, j)-entry of the matrix A(k).

Chapter 17. Large cardinals

Exercise 17.2.4. One proves (1) by induction on α < κ. Clearly, |V0| = 0 < κ.
If |Vα| < κ, then |Vα+1| = 2|Vα| < κ since κ is a strong limit cardinal. If
|Vξ| < κ for all ξ < α, then |Vα| =

⋃
ξ<α |Vξ| < κ since κ is regular.

For (2), take x ⊆ Vκ. If x ∈ Vκ =
⋃

α<κ Vα, then x ∈ Vα for some α < κ.
Since Vα is transitive, x ⊆ Vα, and by (1), |Vα| < κ, so |x| < κ. On the other
hand, if |x| < κ, by regularity of κ, there exists α < κ such that x ⊆ Vα,
whence x ∈ Vα+1 ⊆ Vκ.

Exercise 17.2.12. Let η be such that cof(η) > ω. We proceed by induction
on λ < cof(η) to show that for any sequence (Cα)α<λ of club subsets of η,⋂

α<λCα is a club subset of η. By Lemma 17.2.11, we see that if
⋂

α<λCα is a

club subset of η, then D∩
(⋂

α<λCα

)
is a club subset of η for any club subset

D of η, whence the successor case holds. Now assume Dγ :=
⋂

α≤γ Cα is a

club subset of η for any γ < λ. Then (Dγ)γ<λ is a decreasing sequence of club
subsets of η, and

⋂
γ<λDγ =

⋂
α<λCα, whence it is enough to show

⋂
γ<λDγ

is a club subset of η. Clearly,
⋂

γ<λDγ is closed. Now take ξ < η. We

construct a sequence (ξγ)γ<λ as follows: Choose ξ0 ∈ D0 such that ξ < ξ0.
For each 0 < γ < λ, choose ξγ ∈ Dγ such that ξγ > sup{ξγ′ : γ′ < γ}. Set
ξ′ := sup{ξγ : γ < λ} < κ. Then ξ′ ∈

⋂
γ<λDγ and ξ < ξ′. Hence

⋂
γ<λDγ

is unbounded.

Exercise 17.3.2. Let U be a nonprincipal κ-complete ultrafilter on κ. Assume,
toward a contradiction, that cof(κ) < κ. Let κi < κ be such that κ =
supi<cof(κ) κi. For every i < cof(κ), observe [κi, κ) :=

⋂
ξ<κi

(κ \ {ξ}) ∈ U .
Consequently, ∅ =

⋂
i<cof(κ)[κi, κ) ∈ U , a contradiction.

Exercise 17.3.7. First assume U is normal and let g : κ→ κ be U -regressive.
Let X ∈ U be such that g is regressive on X. Then for any α ∈ X, we
have that g(α) < α = id(α), so [g]U < [id]U . Since U is normal, [id]U is
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the κth element of κU , so by Lemma 17.3.5, there exists α < κ such that
[g]U = d(α). Thus, g is constant on a set in U .

For the converse, assume that whenever g : κ → κ is U -regressive, then
g is constant on a set in U . First observe that d(α) < [id]U for any α < κ.
Now let g : κ → κ be such that [g]U < [id]U . Hence g is U -regressive, so
by assumption there exists α < κ such that [g]U = d(α). Thus, the set of
predecessors of [id]U is simply {d(α) : α < κ}, and by Lemma 17.3.5, we
conclude [id]U is the κth element of κU and thus U is normal.

Exercise 17.4.10. Assume κ is strongly compact. Let F be a κ-complete
filter on I. Let L be the language which has a unary relation symbol X for
every X ∈ P(I). Let I be the L-structure on I where XI := X for every
X ∈ P(I). Set Σ := ThLκ(I) ∪ {X(c) : X ∈ F} where c is a new constant
symbol. Then every subset of Σ of size less than κ has a model since F is
κ-complete. Since κ is strongly compact, there is a model N of Σ. Define
U ⊆ P(I) by declaring that, for every X ∈ P(I), X ∈ U iff N |= X(c).
Show that U is a κ-complete ultrafilter on I which extends F .

Exercise 17.6.2. First assume that E is not well founded, whence there exists
a sequence ([fn]

r
U)n<ω such that [fn+1]

r
UE[fn]

r
U for any n < ω. For n <

ω, set Xn := {i ∈ I : fn+1(i) ∈ fn(i)} and observe that each Xn ∈ U .
If i ∈

⋂
n<ω Xn, then (fn(i))n<ω is an infinite descending ∈-sequence in

V . Since V is well founded, we conclude that
⋂

n<ω Xn = ∅, whence U
is countably incomplete. The other direction follows from the fact that
countably incomplete ultrafilters yield ℵ1-saturated ultrapowers.

Exercise 17.6.8. (1) =⇒ (2): If g : κ → V is such that [g]rU ∈ [id]rU , then
there exists X ∈ U such that g(α) ∈ α for any α ∈ X. Define f : κ → κ
by f(α) = g(α) if α ∈ X and f(α) = 0 otherwise. Then [f ]U < [id]U . By
Lemma 17.3.5, [id]U is the κth element of κU , whence there exists γ < κ such
that [f ]U = γ = [γ̂]U where γ̂ : κ → κ is such that range(γ̂) = {γ}. Hence
g =U γ̂, whence [g]rU = d(γ) = γ < κ by Lemma 17.6.4. Thus [id]rU = κ.

For (2) =⇒ (3), note that, for every X ⊆ κ, we have X ∈ U iff
[id]rU ∈ d(X). Indeed, for any X ⊆ κ, we have [id]rU ∈ d(X) if and only if
{α < κ : id(α) ∈ X} ∈ U if and only if X ∈ U .

For (3) =⇒ (1), observe that for any functions f, g : κ → κ, the
following items are equivalent:

• f =U g,

• {α < κ : f(α) = g(α)} ∈ U ,
• κ ∈ d({α < κ : f(α) = g(α)}),
• κ ∈ {α < d(κ) : d(f)(α) = d(g)(α)},
• d(f)(κ) = d(g)(κ).
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Now let f : κ → κ be U -regressive. By definition, there exists some X ∈ U
such that f is regressive on X. Since κ ∈ d(X), and d(f) is regressive on
d(X), there must exist γ < κ such that d(f)(κ) = γ. At the same time,
d(γ̂)(κ) = γ, where γ̂ : κ → κ is such that range(γ̂) = {γ}. Hence, by
the above equivalence, we have that f =U γ̂, whence f is U -constant. By
Exercise 17.3.7, U is normal.

Exercise 17.6.22. Let κ be 2κ-supercompact, so there exists a transitive
model M and an embedding j : V → M such that crit(j) = κ, j(κ) > 2κ,
and M2κ ⊆ M . By Theorem 17.6.9, Uj := {X ⊆ κ : κ ∈ j(X)} is a
normal ultrafilter on κ. Observe that M |= ZF and On ⊆ M . Since j
is κ-supercompact, we have PM (κ) = P(κ). Since j is 2κ-supercompact,
we have Uj ∈ M . It follows that M |= [Uj is a normal ultrafilter on κ]
and thus M |= [κ is measurable]. By Theorem 17.6.10, there is an ele-
mentary embedding j′ : V Uj → M defined by j′([f ]rUj

) = j(f)(κ). Since

j′(κ) = j′([id]rUj
) = j(id)(κ) = κ, we have that V Uj |= [κ is measurable] by

elementarity of j′. By Exercise 17.6.8, {α < κ : α is measurable} ∈ Uj.
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arithmetic progressions, J. Analyse Math. 31 (1977), 204–256, DOI 10.1007/BF02813304.
MR498471

[63] Anthony M. Gaglione and Dennis Spellman, Even more model theory of free groups, Infinite
groups and group rings (Tuscaloosa, AL, 1992), Ser. Algebra, vol. 1, World Sci. Publ., River
Edge, NJ, 1993, pp. 37–40. MR1377955

[64] D. Galvin, Ultrafilters, with applications to analysis, social choice and combinatorics, un-
published notes, 2009.

[65] Murray Gerstenhaber and Oscar S. Rothaus, The solution of sets of equations in groups,
Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 1531–1533, DOI 10.1073/pnas.48.9.1531. MR166296

[66] Saeed Ghasemi, Reduced products of metric structures: a metric Feferman-Vaught theorem,
J. Symb. Log. 81 (2016), no. 3, 856–875, DOI 10.1017/jsl.2016.20. MR3569108

[67] Leonard Gillman and Meyer Jerison, Rings of continuous functions, Graduate Texts in
Mathematics, No. 43, Springer-Verlag, New York-Heidelberg, 1976. Reprint of the 1960
edition. MR0407579

[68] Robert Goldblatt, Lectures on the hyperreals: An introduction to nonstandard analy-
sis, Graduate Texts in Mathematics, vol. 188, Springer-Verlag, New York, 1998, DOI
10.1007/978-1-4612-0615-6. MR1643950

[69] I. Goldbring and H. J. Keisler, Continuous sentences preserved under reduced products, to
appear in Journal of Symbolic Logic.

[70] R. I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant
means (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), no. 5, 939–985. MR764305

[71] Mikhael Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études
Sci. Publ. Math. 53 (1981), 53–73. MR623534

[72] M. Gromov, Endomorphisms of symbolic algebraic varieties, J. Eur. Math. Soc. (JEMS) 1
(1999), no. 2, 109–197, DOI 10.1007/PL00011162. MR1694588
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[160] Saharon Shelah, Vive la différence I: Nonisomorphism of ultrapowers of countable models,
in Set Theory of the Continuum, Springer, 1992, pp. 357–405.

[161] Saharon Shelah, Proper and improper forcing, vol. 5 of Perspectives in Logic, Cambridge
University Press, 2017.

https://www.ams.org/mathscinet-getitem?mr=3059438
https://www.ams.org/mathscinet-getitem?mr=741395
https://www.ams.org/mathscinet-getitem?mr=2460675
https://www.ams.org/mathscinet-getitem?mr=1503375
https://www.ams.org/mathscinet-getitem?mr=2436761
https://www.ams.org/mathscinet-getitem?mr=1576401
https://www.ams.org/mathscinet-getitem?mr=1043446
https://www.ams.org/mathscinet-getitem?mr=1373196
https://www.ams.org/mathscinet-getitem?mr=644485
https://www.ams.org/mathscinet-getitem?mr=273581
https://www.ams.org/mathscinet-getitem?mr=1874893
https://www.ams.org/mathscinet-getitem?mr=3325875
https://www.ams.org/mathscinet-getitem?mr=2676525
https://www.ams.org/mathscinet-getitem?mr=1863735
https://www.ams.org/mathscinet-getitem?mr=297554
https://www.ams.org/mathscinet-getitem?mr=294113


Bibliography 393

[162] S. Shelah and M. E. Rudin, Unordered types of ultrafilters, Topology Proc. 3 (1978), no. 1,
199–204 (1979). MR540490

[163] W. Sierpiński, Fonctions additives non complètement additives et fonctions non mesurables,
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[171] E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta
Arith. 27 (1975), 199–245, DOI 10.4064/aa-27-1-199-245. MR369312

[172] Terence Tao, Hilbert’s fifth problem and related topics, Graduate Studies in Mathemat-
ics, vol. 153, American Mathematical Society, Providence, RI, 2014, DOI 10.1088/0253-
6102/41/3/335. MR3237440

[173] A. Tarski, Une contribution à la théorie de la mesure, Fundamenta Mathematicae, 15
(1930), pp. 42–50.

[174] Katrin Tent and Martin Ziegler, A course in model theory, Lecture Notes in Logic, vol. 40,
Association for Symbolic Logic, La Jolla, CA; Cambridge University Press, Cambridge, 2012,
DOI 10.1017/CBO9781139015417. MR2908005
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