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POINCARÉ RECURRENCE AND NUMBER THEORY 

BY HARRY FURSTENBERG 

Introduction. Poincaré is largely responsible for the transformation of 
celestial mechanics from the study of individual solutions of differential 
equations to the global analysis of phase space. A system of differential 
equations such as those which embody the laws of Newtonian mechanics 
generates a one-parameter group of transformation of the manifold that 
represents the set of states of a dynamical system. The evolution of the 
dynamical system in time corresponds to a particular solution of the system 
of differential equations; it also corresponds to an orbit of the group of 
transformations acting on a single state. The efforts of the classical analysts in 
celestial mechanics had been directed to extracting by analytical means as 
much information as possible about the individual solutions to the system of 
differential equations. Poincaré's work gave impetus to a global approach 
which studies the totality of solutions and shifts attention to the transforma
tion group of phase space. 

Two of Poincaré's achievements which can be traced to this point of view 
are his theory of periodic solutions and his recurrence theorem. In the former 
of these, the topological nature of the phase space plays a key role; Poincaré 
showed how an essentially topological analysis of orbits, under certain 
conditions, can be used to establish the existence of a periodic solution curve. 
In his recurrence theorem, Poincaré demonstrated how measure-theoretic 
ideas, particularly the idea of a measure-preserving group of transformations, 
lead to the existence of numerous "approximately periodic"—or, "recurrent" 
—solution curves. The impact of these ideas is felt today in the establishment 
of two new disciplines: topological dynamics and ergodic theory. In topologi
cal dynamics one abstracts from the classical setup the topological space 
representing the totality of states of a dynamical system, together with the 
group of homeomorphisms corresponding to the evolution of the system from 
its position at time 0 to its position at time /. For ergodic theory, the phase 
space is replaced by an abstract measure space and the "dynamics" come 
from the action of a group of measure-preserving transformations of the 
measure space. 

Initially these abstract settings for dynamical theory were contemplated in 
order to shed light on classical dynamics by focusing on those aspects of 
dynamical systems that were pertinent to the phenomena being studied. At 
the same time, however, the scope of dynamics was considerably broadened 
by the generality of the new theory, and the groundwork was laid for 
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applying similar ideas to areas that, on the face of it, are quite unrelated to 
dynamics. 

We shall be interested in two particular dynamical theorems and their 
ramifications when taken in the broadest possible context. One of these is the 
Poincaré recurrence theorem alluded to previously; the other is a topological 
analogue due to Birkhoff. Choosing a nonconventional model of a dynamical 
system rather than a classical model, we will obtain results of interest in 
number theory. For example we will see that van der Waerden's theorem on 
arithmetic progressions is a consequence of an appropriate generalization of 
Birkhoff's recurrence theorem. A more recent result is that of Szemerédi 
stating that a subset of the integers having positive upper density contains 
arbitrarily long arithmetic progressions. This will be seen to relate in a natural 
way to an extension of Poincaré's recurrence theorem. 

For a comprehensive treatment of the results described here the reader is 
referred to [3]-[5]. 

1. Dynamical systems and measure-preserving systems. A dynamical system 
evolving in time is described by a one-parameter group {Tn -oo < / < oo}, 
Tt+S = Tt ° Ts, acting on a space X. Since we are interested primarily in 
asymptotic behavior as / -> oo, the dynamical aspects are usually already 
reflected in the action of the subgroup { T „ , « E Z } , Z = integers. For our 
purposes, then, a dynamical system will consist of a space X on which a 
one-one transformation T acts, thereby generating a group [Tn

9 n E Z} of 
transformations. 

The space X will be either a topological space (in our discussion, a metric 
space) in which case we require T to be a homeomorphism, or a measure 
space in which case T will be required to be measure preserving. The central 
phenomenon to be studied is that of recurrence. For this phenomenon to 
occur one must assume some kind of boundedness of X. When A" is a 
topological space, the appropriate assumption is that X is compact. When X 
is a measure space, the boundedness of X is expressed by requiring X to have 
finite measure. 

Let us then define formally a dynamical system as a pair {X, T)9 X being a 
compact metric space, and T a homeomorphism of X. A measure-preserving 
system will be a quadruple (X, ®, /A, T) where X is an abstract space, $ is a 
a-algebra of subsets of X, [i is a probability measure in ®, and T is a 
measure-preserving transformation of (X, 9>, JU). These last two conditions 
mean that [i(A) > 0 for A E %, with ii(X) = 1, and for A E %, T~XA E ffi 
withjii(r-U) = jtx(^). 

In the topological context recurrence is a property of individual points of 
the space X. We shall be studying several versions of this notion, the most 
basic of which we shall simply call recurrence. We say a point x E X is a 
recurrent point of (X, T) if for some sequence nk —> oo, Tnkx —> x. Equiva-
lently we could say that a point x is recurrent if for each neighborhood V of 
x9 Tnx E V for some n > 0. 

Closely related to this is the notion of recurrence implicit in Poincaré's 
recurrence theorem. 
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THEOREM 1.1. Let (X, %, /x, T) be a measure-preserving system, and let 
V G % with fx(V) > 0. There exists some point x G V with Tnx G V for some 
n>0. 

The proof is extremely simple. Assume no point x G V returned to V. 
Then T~nV n V = 0 f or all n > 0, and so T~nV n T~mV « 0 whenever 
n^m. But the sets !T~mK all have the same measure fi(V) > 0, and they 
cannot be disjoint since ]u( U °̂« ! T~nV) < /x(X) = 1. 

Actually Theorem 1.1 implies the stronger statement that almost every 
point (excepting a set of measure 0) x G V returns sometimes to V. For this 
set of points is, in any case, measurable (i.e., in ® ) and we can consider the 
subset V' C F of points that never return to V. A fortiori they never return to 
V' and so, by Theorem 1.1, JU(F') = 0. 

Now take X to be a separable metric space as well as a measure space. 
Cover X by countably many balls of radius e/2, and apply the foregoing to 
each ball. We conclude that almost every point X returns to within e of itself. 
Since e > 0 is arbitrary, we conclude that almost every point ofX is recurrent. 

It can be shown that any (compact) dynamical system (X, T) possesses 
some measure on Borel sets which is preserved by T. Poincaré's theorem then 
implies that for any dynamical system (X, T) there exist points x G X which 
are recurrent. It is Birkhoff who initiated the study of dynamical systems in 
the context of metric spaces [2], and he gave a purely topological proof of this 
statement. Let us present a streamlined proof of this result which we call the 
Birkhoff recurrence theorem. 

THEOREM 1.2. If X is a compact metric space, T a continuous map of X to 
itself, then there exists some point x G X with THkx -> x for some sequence 
nk-+oo. 

PROOF. Consider the family of closed sets Y c X satisfying TY c Y. 
It is easy to see that Zorn's lemma applies to this family (on account of 
compactness) so that there exists a minimal closed invariant set. Let Y0 

be such a set and let y G Y0. Then Yx = { T"y, n = 1, 2, 3, . . . } is again a 
closed invariant set contained in Y0. By minimality Yx = Y0; hence 
y G {Ty, n = 1, 2, 3, . . . }. Thus>> is a recurrent point. 

Actually Birkhoff proved more than this. In fact Birkhoff uses the term 
recurrence for a stronger version of this notion that we shall call "uniform 
recurrence". Birkhoff's argument shows that every compact dynamical system 
possesses uniformly recurrent points. 

DEFINITION. A point x E: X is uniformly recurrent for the dynamical system 
(X, T) if, for any neighborhood V of x, there is a length L < oo, such that 
in any interval (a, b) with b — a > L there is an integer n G (a, b) with 
Tnx G V. 

For a uniformly recurrent point, any sufficiently long segment of its orbit 
comes arbitrarily close to the point. There is a close connection between 
uniform recurrence and the notion of a minimal dynamical system. 

DEFINITION. A system (X, T) is minimal if there does not exist a nonempty 
closed T-invariant subset Y £ X. 
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Equivalently, a system (X, T) is minimal if every (forward) orbit {Tnx, 
n ^ Q}> * ^ X> is dense in X. For if (X, T) is minimal, the closed T-invariant 
set { Tnx, n > 0} must coincide with X. Conversely, if every forward orbit is 
dense, so is every T-invariant set, and the system is minimal. 

THEOREM 1.3. If {X, T) is minimal, then each x G X is uniformly recurrent 
for (X, T). Conversely, if a point x G X is uniformly recurrent, then x belongs 
to a closed T-invariant set Y a X for which the subsystem (Y, T) is minimal. 

According to the second part of the theorem, if every point of X is 
uniformly recurrent, then X is the union of minimal sets, i.e., minimal closed 
J-invariant subsets of X. Note that by definition, two different minimal sets 
are necessarily disjoint. 

PROOF OF THE THEOREM. Assume (X, T) is minimal and let V be any open 
set in X. The set U ^L0 T~nV is an open set whose complement is a 
r-invariant closed set. Since it is nonempty, we must have U£L0 T~nV = X. 
Since X is compact, we will already have U ^Œ0 T~nV = X for some L. Hence 
for any x G X and any n, one of the points Tnx, Tn+lx,, . . , Tn+Lx belongs 
to V. This shows that x is uniformly recurrent. 

Conversely, suppose that x G l i s uniformly recurrent. We wish to show 
that x is contained in a minimal set of X. Suppose Z is a T-invariant closed 
subset of the forward orbit closure of x, Y = { Tnx, n > 0}. If x G Z then Z 
coincides with Y. If x £ Z, then x G V = X \ Z. By uniform recurrence, for 
any n, one of the points Tnx, Tn+1x, . . . , Tn+Lx belongs to V. For any 
z G Z there are points Tnx arbitrarily close to z. It follows that one of the 
points z, Tz, . . . , TLz belongs to V. 

But this is a contradiction since these points are all in Z and Z n V = 0 . 
It follows that Z = Y and so Y is minimal. This completes the proof. 

The proof of the theorem shows that in the case of a minimal system, if V 
is an open set, there is an L so that for each x E: X, one of the points 
x, Tx, . . . , TLx meets V. It follows that for any e > 0 there is some M so 
that each orbit segment x, Tx, . . . , TMx comes within e of each point of the 
space. Using now the second assertion of the theorem, this applies in 
particular to the orbit closure of a uniformly recurrent point. This gives us the 
following characterization of uniform recurrence. 

COROLLARY. A point is uniformly recurrent iff every sufficiently long segment 
of its orbit comes arbitrarily close to every point in its orbit. 

The proof of Theorem 1.2 shows that any system (X, T) with X compact 
possesses a minimal subsystem. On the basis of the foregoing theorems we 
now conclude: 

THEOREM 1.4. If X is a compact metric space, T a homeomorphism of X, there 
exists a point x G X which is uniformly recurrent for (X, T). 

2. Symbolic systems. In the course of our discussion we shall extend and 
refine the recurrence theorems of the preceding section. To obtain results of a 
number-theoretical nature we shall apply these theorems to a particular kind 
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of nonconventional dynamical system—a symbolic system. Let A = 
{a, b9 c, . . . } be a finite set and form the space 

12 = Az of all sequences with entries from A: 

x E 12 <** = { . . . , x(-2), x ( - l ) , x(0), x(l), x(2), . . . }. 

12 can be made into a compact metric space, taking as metric, for example, 

(2.1) d(x, x') = M( l 

k + 1 
x(i) = x'(i) for |/| < /c >. 

Here d(x9 x') = 1 if x(0) 7̂  x'(P), and J(x, x') < otherwise. We define the 
shift homeomorphism T: 12 -» 12 by Tx(n) = x(n + 1). If A' is any closed 
T-invariant subset of 12 we call (X, T) a symbolic dynamical system. 

Given a particular function | : Z —» A so that £ is a point in 12, we form the 
smallest shift invariant closed set X c 12 containing the point £. The idea 
which we shall use repeatedly is that the dynamic properties of (X, T) reflect 
certain aspects of the behavior of £. More specifically, recurrence properties 
for X will imply the existence of certain patterns in the function £(«). 

To illustrate the idea, consider the implication of the following extension of 
Theorem 1.2 which will be proved in §6. 

THEOREM 2.1. Let X be a compact metric space, and let T: X —> X be a 
continuous map. Then for any integer I > 1, there exists a point x E X and a 
sequence nk -* 00 with THkx —> x, T2rtkx -> x, . . . , Tlrtkx -» x. 

Let (X9 T) be any symbolic dynamical system, X c 9 = Az. According to 
Theorem 2.1, there exists x E X and an n > 0 with the points 
x, Tnx, T2nx, . . . , Tlnx within distance < 1 of one another. Now for two 
points of £2, d(x, x') < 1 implies x(0) = x'(0). It follows that x(0) = Tnx(0) = 
T2nx(0) = • • • = r/wx;(0). Bearing in mind that Tkx(0) = *(*:) we have 

PROPOSITION 2.2. Let A be a finite set. If X is any shift invariant closed 
subset of 12 = Az and / > 1, there exists a point x E X and an n > 1 w///i 
x(0) = x(n) = x(2«) = • • • = x(ln). 

If we take A = {1, 2, . . . , r}, then a point £ E Az corresponds to a 
partition of Z into r sets, Z = U C,, where C, = {«: £Q) = /}. Let X c 12 
be the closure of the set of all translates of £: X ={r w £, « G Z } . Apply 
Proposition 2.2 to X, and we find there is an x E X with x(0) = x(ri) 
= • • • = (/«). Since X ={r r t £, « E Z}, in view of the definition of the 
metric on 12, we can find m so that Tn!~ and x agree on the interval (-/«, /«). 
It then follows that £(m) = £(m + n) — £{m + 2n) = • • • = £(m + In). Say 
the common value is j . Then Cj contains the arithmetic progression m,m + 
n, m + 2n9 . . ., m + In. We have thus established van der Waerden's theo
rem on arithmetic progressions. 

THEOREM 2.3. Let Z = Ur
issl Ct be a partition of the integers into r subsets. 

Then one of the sets Cj contains an arithmetic progression of length I + 1. 
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Our next example shows how measure-theoretic ideas can be used. The 
following refinement of Poincaré's recurrence theorem will be proved in the 
next section. 

THEOREM 2.4. Let (X, ®, /x, T) be a measure-preserving system, and let 
A E % with [i(A) > 0. Then there exists an integer of the form n = m2 such 
that [i(A n T~nA) > 0. 

Let us now return to our symbolic dynamical system, taking this time 
A = {0, 1}. Suppose that X c Az is T-invariant and closed and let Ax — 
{x E X; x(0) = 1 } . Assume now that we can find a T-invariant Borel mea
sure [i on X for which fi(Ax) > 0. We can then form the measure-preserving 
system (Ar, ®, ji, T), with ® the Borel sets of X and T the shift. Applying 
Theorem 2.4 to the system with A = Al9 we conclude that there exists some 
point j c G ^ n T~m2Av Then x(0) = 1 and x(m2) - 7mx(0) = 1. 

Now let S c Z be a subset of positive upper density. For the present 
purposes this will be taken to mean that there is a sequence of intervals 
[ak9 bk] c Z with bk — ak -> oo and 

\Sn[ak9bk]\ ^ B 

for some 8 > 0 and all /c. (For any finite set Q9 we denote by |Q| the number 
of elements in Q.) Now set (-(ri) = 1 for n E 5 and £(n) = 0. Again let 
I = { H , n £ Z } . We claim that we can indeed find some T-invariant 
measure on X with ii(Ax) > 0. 

LEMMA 2.5. Let X c (0, 1}Z contain a point £ satisfying £(«) = \for a set of 
n of positive upper density. Then there exists a T-invariant probability measure 
li on the Borel sets of X satisfying fi(A x) > 0. 

PROOF. A Borel measure fx on the compact metric space X determines a 
linear functional on C(X), the continuous functions in X, by 

L(f) -ffdp. 
If JU is a probability measure then L satisfies 

( i ) L ( / ) > Ofor/ > 0 , 
(ii) L(l) = 1. 

Conversely, given L satisfying these conditions there corresponds to L a 
probability measure on Borel sets of X. If /A is a T-invariant Borel measure 
then the corresponding functional satisfies 

(iiï) L(f o T) = L(f). 
Conversely, if L satisfies (i)-(iii) it defines a T-invariant measure /x. 

To obtain a linear functional on C(X) satisfying (i)-(iii) we take the point 
i E X and set 

*»(/) = b -\ + 1 2 /(^)-
°k ak + l n-<*k 

Let {/j, /2, . . . , ƒ „ , . . . } be a countable dense set of functions in C(X). Since 
{Lk(fj)9 k = 1, 2, 3, . . . } is bounded for each /, we can choose a subsequence 
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that converges. By a diagonal procedure we can choose a subsequence {kn} 
so that 

lim LA ft 

exists for each /. Finally, since {ƒ,} is dense in C(X% we find that the 
corresponding limit exists for each ƒ E C(X). Thus replacing {ak, bk] by a 
subsequence we may assume that 

L(f) = Hm _\ £ f{T"i) 
k-*oo Dk ak -h 1 n**ak 

exists for all ƒ E C(Ar). It is readily verified that L satisfies (i)-(iii). 
We next put to use the fact that £(«) = 1 on a set of integers having 

positive upper density. The function 

<p(A) = x(0) 

is a continuous function on X. We have 

L(cp) = lim l—r 2 T»&0) 
k-+cc uk — Uk Ï - 1 n = ak 

^ ~ <*k + ! 

Now if L corresponds to the measure JU, on X, then 

H(AY) = f <pdix = L((p) > 0 . 

This proves the lemma. 
The converse of the lemma is also true. In fact, by the ergodic theorem, 

lim —i—Srtrv-rfîi) 
N-+0O iV T 1 

exists for almost all rj E X with respect to JA, and ƒ g(T?)rf/x(T?) = ƒ <p dju, = 
JKC^J). SO g(T/) > 0 for some T J G I and so TJ(«) = 1 on a set of positive 
density, where now the limit 

N-+O0 N + 1 

exists and is positive. 
Note the following corollary of the proof of Lemma 2.5. 

COROLLARY. If X is a compact metric space and T is a continuous map of X 
to itself there exists some probability measure \i on Borel sets of X which is 
invariant with respect to T. 

Combining Lemma 2.5 and Theorem 2.4 we obtain the following. 

THEOREM 2.6. Let S be a subset of Z having positive upper density. Then 
there exist s, t E S with s — t = m2, m an integer. 

PROOF. AS before let £(«) = 1 for n E S, £(«) = 0 otherwise, and let 
I = ( r , « E Z } c (0, 1}Z. Let Ax = {x E X: x(0) = 1} and let î be a 
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r-invariant measure on X with JJL(AX) > 0. Apply Theorem 2.4 to 
(X, ®, JU, T) and the set Ax c X If / x ^ n r ^ ) > 0 with n = m2, then, in 
particular, ^ n T~nAl =£ 0 , and so there exists 17 G Ax with F™2?} G ^4j. In 
other words there is a point TJ Œ X with TJ(0) = Tj(m2) = 1. Now 17 is in the 
orbit closure of | , and we can find a neighborhood of TJ so small that any 
point in that neighborhood will have the same coordinates as 17 in the interval 
between -m2 and m. It follows that for some s, 

T%0) = Tsi{m2) = 1 

or 

£ (* )=£(*+ m2) = l. 

Hence s G S and s + m2 G S. This concludes the proof. 
The next two theorems describe in a more general manner how recurrence 

results are used to prove the existence of patterns in subsets of integers. These 
theorems extend Theorems 2.3 and 2.6 respectively, and the proofs are 
entirely analogous. In the formulation of these two theorems the term 
configuration will be synonomous with a finite subset of Z, except that two 
sets that are translates of one another are said to define the same configura
tion. 

THEOREM 2.7. Let Q be a family of configurations having the property that for 
any compact metric dynamical system (X, T) and any e > 0, there exists a 
point x0 G X and a configuration (nx, n2, . . . , nt) G Q such that 
Tn*x0, T"2x0, . . . , T

n'x0 are all within e of one another. Then ifZ=Cx\jC2 

U • * • U Cr is any partition of Z into finitely many sets, one of the subsets Cj 
contains some configuration in Q. 

In particular the hypothesis is fulfilled when Q consists of arithmetic 
progressions of a given length, according to Theorem 2.1. Theorem 2.3 is thus 
a special case of the foregoing. It should be remarked that a slight modifica
tion of the argument in proving Theorem 2.7 shows that the same result is 
true for partitions of the natural numbers N = Cx u C2 U • • • U Cr. 

THEOREM 2.8. Let Q be a family of configurations having the property that f or 
any measure-preserving system (X, %, /x, T) and any set A G % with fi(A) > 
0, there exists a subset A' G % with \i{A') > 0 and a configuration 
(nx, n2,...,ni)GQ such that Tn'A' c A, . . . , Tn<A' c A. Then if S is any 
subset of Z of positive upper density, S necessarily contains some configuration 
in Q. 

Theorem 2.6 is the special case of this where Q = {(0, m2), m G Z}. In §7 
we will discuss the applicability of Theorem 2.8 to the case Q = arithmetic 
progression of length /. 

We remark that if g is a family of configurations satisfying the condition 
of Theorem 2.8, it also satisfies the condition of Theorem 2.7. For by the 
corollary to Lemma 2.5, if (X, T) is a compact metric dynamical system, we 
can endow X with a T-invariant probability measure /x and thereby obtain a 
measure-preserving system. For any e > 0 we can find a set of diameter e 
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having positive measure. Let A be such a set and let (nx, n2,. . . , ty) be a 
configuration in Q. If A' satisfies 7"M' c A, Tn*A' C A, . . . , Tn'A' C .4, 
then for any x0 G A\ the points T̂ lXo» T^o , • • • > ^"'^o a r e within e of one 
another. 

We can also see that the conclusion of Theorem 2.8 is stronger than that of 
Theorem 2.7. For if Z = U Ct is a finite partition, some Cj has positive upper 
density. So any configuration that occurs in any set of positive upper density 
also occurs in some subset of any finite partition of Z. 

3. Sets of recurrence. The simplest nontrivial configurations that one can 
look for in subsets of Z are two-point configurations. These may be assumed 
to have the form (0, n). In this section we shall inquire which families Q of 
configurations {(0, n)} satisfy the condition of Theorem 2.8. In other words, 
for which sets R c N can we assert that whenever (X, ®, ft, T) is a 
measure-preserving system, A a subset in ® with ii(A) > 0, then there exists 
A' c A, ii(A') > 0, with TrA' c A for some r e RI A set R with this 
property will be called a set of recurrence. Our considerations in this section 
are measure-theoretic. 

We shall say that a set R c N is an infinite difference set if R consists of all 
differences Sj — si9 i <j where {sx <s2 < • • • < sn < • • • } is some se
quence in N. Our first general result is the following. 

THEOREM 3.1. Every infinite difference set is a set of recurrence. 

The proof is identical to the proof of Poincaré's recurrence theorem. Let 
R = {sjr — si9 i <j) and let (X, <35, /A, T) be a measure-preserving system, 
A <E% with ix{A) > 0. If niT^-^A n A) = 0 for all i <j. Then 

ii{T~sJA n r-Jó4) = o, 

and the sets r~M are essentially disjoint sets all having the same positive 
measure (x(A). So we must have /x(T~^sJ~Si)A n A) > 0 for some / <y and we 
can take A' = T^'^A n A 

Choosing the sequence {sn} rapidly increasing shows that sets of recurrence 
can be extremely sparse. On the other hand a set of recurrence cannot be too 
sparse. 

THEOREM 3.2. If R = {rx < r2 < • • • < / • „ < • • • } is lacunary, i.e., if 
rn+i/rn > Q > 1> ^ e w ^ w wö* a ^ of recurrence. 

Before proving Theorem 3.2 we prove the following general lemma. 

LEMMA 3.3. If Rl9 R2 C N and neither Rx and R2 is a set of recurrence, then 
R = Rx u R2 is not a set of recurrence. 

PROOF. Since Rx and R2 are not sets of recurrence we can find systems 
(*,., %, /A,., 7;.) and sets At G <$>,. with JUÏ(^/) > 0 satisfying /x^,. n TrrA^ = 0 
for r G Ri, i = 1, 2. Form X = Xx X X2, % = %x X %, p = ixx X JU2 and 
let T = TXX T2. It is now clear that 

li((Ax XA2)n T~r(Ax XA2))~Q 

for r G /£. Thus JR is not a set of recurrence. 
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On the basis of this lemma it suffices to establish Theorem 3.2 for 
arbitrarily large q. 

LEMMA 3.4. If R = {r{ < r2 < • • • < rn < • • • } satisfies rn+l/rn > q > 
4, then R is not a set of recurrence. 

PROOF. We shall determine a number a so that the measure-preserving 
system consisting of translation by a in the group R/Z of reals modulo 1 
provides a counterexample to the recurrence of R. Consider the sets An c 
R / Z where An — {t: rnt G A} and A consists of numbers whose fractional 
part is between 1/3 and 2 /3 . An consists of intervals of length (3r/î)~

1 

repeated periodically with period r~x. Since rn+l > 4rn it follows that each An 

interval contains some A„ + 1 interval. Hence H A„ ^ 0 . Take a G Pi A„. We 
let X = R/Z with Lebesgue measure and let T be a translation by a. Finally 
let A be any interval of length < 1/6. Tr»A = A + rna, and since the 
fractional part of the rna is between 1/3 and 2/3, {A + rna) n A = 0 . So 
T~r"A n A = 0 and i? is not a set of recurrence. This completes the proof. 

The next theorem describes sets of recurrence of polynomial growth. 
Theorem 2.4 is a special case of this theorem. 

THEOREM 3.5. Let p{t) be a polynomial with integer coefficients and with 
p(0) = 0. The set {p{n\ n = 1, 2, 3, . . . } is a set of recurrence. 

PROOF. We consider the Hubert space L2(X, ®, //,) and the unitary opera
tor defined on it by 

(Uf)(x)=f(Tx). 

We use < ƒ, g ) to denote the inner product in L2(X, <35, /A). According to the 
spectral theorem, if ƒ G L\X, %, /x), there is a nonnegative measure co on 
[0, 1] such that 

<U%f> = (le2™edu>(0). 

Now let A G % with \x(A) > 0 and let ƒ = \A denote the characteristic 
function of the set A. Suppose that we had ii(T~nA n A) = 0 whenever 
n — p(m), m G N. Then 

(3.1) fle2"ipWdü>(0) = 0 

for every m G N. We now use Weyl's theorem on equidistribution [9] which 
implies that 

1 N 

(3.2) -j- 2 e27rip(m)9->0 
M m=l 

as N —> oo for every irrational 0. Write to = co,- + cor where cor is the atomic 
part of co supported on rational points of [0, 1], and co, is what is left of co. 
Then (3.1) and (3.2) imply 

(3.3) f1 lim 4r 2 e2^m)9do>r(0) = 0, 
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or, cor being atomic, 

(3.4) 2 f Jim ^ £ e^>'L{*}-0. 
Ö E Q / Z { N-><x> " m = \ ) 

Now, since the polynomial p(t) has no constant term, a\p(am) for integers 
a, m. Since (3.1) is equally valid if m is replaced by a multiple of m, we can 
rewrite (3.4) replacing;?(m) byp(k\m)9 h an arbitrary number. However, 

e2mp(k\m)9 = j 

for each rational 0 whose denominator is < k. Hence 

2<or{0} = lim S f Mm 1 2 e ^ " > # k { * } = 0 

by (3.4). Since <or is nonnegative, <or = 0, and, in particular cor{0} = 0. But 
then 
(3.5) 

lim 1 £<{/"ƒ,ƒ> = f' lim 1 2 e2"*" «*«(«) = <o{0} = 0. 

On the other hand, by the mean ergodic theorem, 

lim 1 2 £/«ƒ = ƒ 

exists in L2(X, ©, JU), ƒ is (/-invariant and f f dp =* f f dp. By (3.5), <ƒ, ƒ> — 
0. Hence <ƒ, £/y> = <£/y, I/y> « <ƒ, ƒ> - 0, and by averaging again over 
"> <ƒ> ƒ> - 0, or ƒ = 0. But then 

^)-Jl^rf/i-J/rffi-O, 

a contradiction. This proves the theorem. 
We may now combine this result with Theorem 2.8. Let Q be the family of 

configurations {(0,/?(m))}, p(t) being a polynomial with integer coefficients 
and with no constant term. We obtain the following number-theoretic result. 

THEOREM 3.6. Let S be a subset of Z of positive upper density. Let p(t) be a 
polynomial with integer coefficients and with no constant term. Then one can 
solve the equation 

x - y =p{z) 
in integers x,y, z with x,y E. S and z > 1. 

This result has been obtained independently by Conze and Sarközy. 

4. Proximality and a lemma of Schur. We now turn to a more elaborate 
study of recurrence in the topological framework. In this section the notion of 
uniform recurrence (§1) plays a central role. According to Theorem 1.4, every 
compact dynamical system possesses uniformly recurrent points. In a sense to 
be made explicit, every orbit of a compact dynamical system keeps coming 
closer and closer to the orbit of some uniformly recurrent point. To form a 
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picture of what happens, imagine that X contains a unique minimal closed 
jF-invariant subset which reduces to a point {y}. The point >> is a fixed point 
and certainly uniformly recurrent. Since every orbit closure in X contains 
some minimal subset and in our case there is a unique such set, we conclude 
that every orbit comes arbitrarily close to y. Once the orbit is close to >>, by 
continuity, it will spend a certain interval within a small neighborhood of y. 
In particular, for each e > 0, there will be arbitrarily long intervals of n for 
which d(Tnx,y) < e. This is a special case of what is calledproximality. 

DEFINITION. TWO points x,y E X are proximal for a dynamical system 
(X, T) if 

Xim'mïd{Tnx, T » = 0. 
n—»oo 

Note that in this definition n —> oo and not \n\ —» oo. We might have 
referred to this as "forward" proximality. It is this form which will be useful 
and we call attention to the lack of symmetry of past and future. 

A far reaching extension of Theorem 1.4 is the following result of J. 
Auslander and R. Ellis. 

THEOREM 4A. If (X, T) is a dynamical system, X a compact metric space, 
and if x is any point in X, there exists a uniformly recurrent point y E X such 
that x and y are proximal. 

We refer the reader to [3] or [5] for the proof of this result. We remark that 
it would be easy to show that any point x is proximal to some minimal set Y. 
What is more delicate is showing that x is proximal to a particular point 
y E Y. Recall that by Theorem 1.3, every point in a minimal set is uniformly 
recurrent. 

We now consider what the implications of Theorem 4.1 are for symbolic 
systems. Suppose then that X c Az, A a finite set, with X a closed translation 
invariant subset, and let T be defined on X as the shift Tx(n) = x(n + 1). We 
first inquire what uniform recurrence means for a point x E X. Call a finite 
sequence of elements of A a word. We say that a word occurs in a point 
x E Az if for some «, the sequence x(n), x(n + 1), . . . , x(n + / — 1) coin
cides with the given word. Similarly we speak of a short word occurring in a 
long word. 

PROPOSITION 4.2. A point x0 E X c Az is uniformly recurrent for (X9 T) iff 
every word that occurs in x0 occurs in every sufficiently large word occurring in 
x0. 

The proof is a straightforward adaptation of uniform recurrence to the 
present situation. The metric on X being given by (2.1), a neighborhood of a 
particular point x0 E X consists of all points for which a given word occurs 
as (x(-k), x{-k + 1), . . . , x(k — 1), x(k)) for a particular k. A translate of 
x0 appears in this neighborhood if the word in question occurs later on in x0. 
The assertion of the proposition is then quite clear. 

We now treat proximality. 
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PROPOSITION 4.3. Two points x0,y0 G X are proximal iff arbitrarily long 
words occur at the same position arbitrarily far along the sequences {x0(n)} and 

In other words, for some nt —» oo, we have 

x(ni) = y(*i)> x(ni + 0 = y(*i + 1), • • • , x{nt + / - 1) = y(nj + / - 1). 

Once again, this follows directly from the definition of proximality. If the 
condition in the proposition holds then 

d(Tn^ + lx, Tn^ + ly) <Y~T' 

The converse direction is also clear. 
Let us now apply Theorem 4.1 to the full symbolic system (Az, T). Every 

x G Az is therefore proximal to a point >> G Az which is uniformly recurrent. 
We will use this to conclude the following. 

PROPOSITION 4.4. If x is any point of Az, there exist integers pvp2 > 0 with 
x(Pi + Pi) = x(Pi) = x(Pi)-

PROOF. Let J> G Az be a uniformly recurrent point of Az proximal to x and 
let a = y(0). Since y is uniformly recurrent, the word consisting of the single 
symbol a occurs inside of every sufficiently long word of y. Since y and x 
agree on arbitrarily long blocks of positive values of n, we can find/?! > 0 
with X(PY) = y(Pi) = a. Consider next the word (>>(0), >>(1), . . . ,y(px)). This 
word also occurs inside every sufficiently long word in>>, and there will be a 
word of this length occurring in x at the same position. Then for appropriate 
p2 > 0 we will have 

(x(p2), x(p2 + 1), . . . , x(p2 + Pl)) = (^(0),^(1), . . . ,y(Pl)). 

Hence x(p2) = y(0) = y(Pi) = x(p2 + px). This proves the proposition. 
Proposition 4.4 gives us the following result of Schur [6]. 

THEOREM 4.5. If the natural numbers {1, 2, 3, . . . } are partitioned into 
finitely many sets, then one of these sets contains two numbers pvp2 together 
with their sum pl + p2. 

To see this suppose N = Cx U C2 U • • • U Cr. Define a point x G 
{1, 2, . . . , r}z by setting 

, x [ i if n > 0 and n G C, 
x(n) = < 

[ anything if n < 0. 
According to the proposition we can find P\,P2>Q with x(px) = x{p^ = 
x(px + p2). Hj is this common value ÛiQnpl,p2,pl + p2 G Cj. 

Note that unlike the configurations described in §2, the configuration 
(Pi>P2>Pi + Pi) ls n o t translation invariant. It thus happens that if we 
decompose N into odd and even numbers, one set contains solutions to 
a + b = c whereas the other set does not. In particular the kind of configura
tion described here need not occur in every subset S c N of positive upper 
density. 
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Schur was interested in this combinatorial result because it relates to 
Fermat's last theorem. Theorem 4.5 leads readily to the following "finite" 
version. 

THEOREM 4.5'. There exists an integer-valued function N(k) > 1, such that if 
the interval of integers [1, N(k)] is partitioned into k sets Cx U C2 U • • • U Q , 
then some Cj contains a solution a, b, c to a + b = c. 

Now let q be any natural number and let/? be a prime with/? > N(q) and 
with q\p — 1. The numbers {1, 2, . . . , / ? — 1} may be partitioned into q 
cosets modulo the multiplicative subgroup of q\h powers mod/?. Theorem 4.5' 
asserts that we can find a, b, c inside the same coset satisfying a + b = c. 
This means that the congruence 

aXq + aYq = aZq (mod/?) 

has a nontrivial solution and therefore the congruence 

(4.1) Xq + Yq =Zq (mod/?) 

has a solution with XYZ ^ 0 (mod/?). It follows that for any q, Fermat's 
assertion of the unsolvability of Xq + Yq = Zq is unlikely to be established 
by showing that the corresponding congruence has no solution, since (4.1) 
always has solutions for/? sufficiently large. This is Schur's result. 

To obtain further consequences of Theorem 4.1 we introduce the notion of 
an IP-set of integers. 

DEFINITION. A subset of N is called an IP-set if it consists of a sequence of 
integers (not necessarily distinct) /?i,/?2>JP3, • • • » together with all sums of 
these for distinct indices, i.e., all p^ + ƒ > / + • • • + /^ with ix < i2 < • • • < 
'*• 

The notion of an IP-set is somewhat weaker than that of a semigroup. We 

shall find that IP-sets occur in connection with recurrence. 

PROPOSITION 4.6. Let (X, T) be a dynamical system, X compact metric, let 
x9y E X with x proximal to y and y a uniformly recurrent point. Then for any 
e > 0, there exists an IP-set S = {pix + /?,-2 + • • • +Ptk} ^tn d(Tnx,y) < e 
for n G S. 

PROOF. We prove first that for any 8 > 0 we can find/? such that 

(4.2) d(Tpx,y)<8 and d{T*y,y)<6. 

By uniform recurrence of y there is an JV so that for any n G Z, d(Tn+iy,y) 
< 8/2 for some i = 0, 1, . . . , N. Let 8' be so small that 

d{yx,y2) < «' =» d{Tyv ry2) < 8/2 for i - 0, 1, . . . , N. 

By proximality of x and y there is an n with d(Tnx, T"y) <8'. For some 
i = 0, 1, . . . , TV we will have d(Tn+iy,y) < 8/2 and at the same time 
d(Tn+ix, Tn+'y) < 8/2. Then f or /? = n + i we have both inequalities of 
(4.2). 

Now suppose we have found /?!,/?2> • • • >Pn
 s o t n a t e a c n P = Pi + Pi 

+ • • • +Pt> i\<i2< ' ' ' < ifr satisfies 

(4.3) d(7*x,y)<e9 d(Tpy,y)<e. 
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In these inequalities we can replace y by anything sufficiently close to it. Let 
8 > 0 be chosen so that for any z G X with d(z, y) < 8 we have d(Tpz,y) < e 
for the aforementioned finite set of p. Determine pn+{ so that 

d(T**+*x9y) < 8, d(Tp»+y,y) < 8. 

We then have 

d(Tp+p»+*x,y) < 8, d(Tp+p»+y,y) < 8. 

We can then establish (4.3) for an IP-set of p and this proves the proposition. 
Note than an IP-set in N always contains a solution to a + b = c. It was 

conjectured by Graham and Rothschild that Schur's lemma could be ex
tended to state that in any finite partition of the natural numbers, one of the 
subsets contains an IP-set. This result was proved by N. Hindman. We now 
show how this follows from Proposition 4.6. 

THEOREM 4.7. If the natural numbers (1, 2, 3, . . . } are partitioned into 
finitely many sets, then one of these sets contains an IP-set. 

PROOF. Let N = Cx U C2 u • • • U Cr be the partition in question and 
define x G (1, 2, . . . , r}z by setting 

[j if n > Oandn G C„ 
x(n) = < J 

{ anything for n < 0. 
Let y G {1, 2, . . . , r}z be a uniformly recurrent point proximal to x. Apply 
Proposition 4.6 to x and y taking e = 1. There exists accordingly an IP-set S 
with d(Tpx,y) < 1 for/? G S. Let j = y(0). We have x(p) = j>(0) for p G S; 
i.e., S c Cj. This proves the theorem. 

A still more general result is given in the next theorem which was also 
proved by Hindman. In [3] and [5] it is shown how the more general result 
follows from the special case. 

THEOREM 4.8. If an IP-set of integers is partitioned into finitely many subsets, 
then one of these subsets contains an IP-set. 

5. Recurrent sets and strong recurrence. Let (X, T) be a dynamical system 
with X a compact metric space and let A be a closed subset of X. We shall 
say that the set A is recurrent if for any e > 0 there exist points x,y G A and 
an integer n > 0 with d(Tnx,y) < e. With some additional assumptions on A 
we can conclude that some point of A is recurrent for (X, T) and possibly 
even that every point of A is recurrent. 

DEFINITION. A subset A c X is homogeneous for the system (X, T) if there 
exists a group G of homeomorphisms of X commuting with T, ST = TS for 
S G G, such that for each S G G, SA = A, and moreover that G acts 
transitively on A ; i.e., for x, x' G A there exists S EL G with Sx = x''. A is 
weakly homogeneous if the condition that G is transitive on A is replaced by 
the condition that G acts minimally (so that every G-orbit in A is dense in A). 

We shall prove the following theorem. 
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THEOREM 5 A. If A is a homogeneous recurrent set for (X, T) then every point 
of A is recurrent. If A is weakly homogeneous and recurrent, then there exists a 
dense set of recurrent points in A. 

It is obvious that an automorphism of (X, T), i.e., a homeomorphism 
S: X -> X which commutes with T, takes recurrent points to recurrent points: 

Tn*x ->x=> T"kSx -* Sx. 
Hence both statements of the theorem will follow once it is established that at 
least one point of A is recurrent. We prove this under the hypothesis of weak 
homogeneity of A. 

LEMMA 5.2. Suppose A is a weakly homogeneous recurrent set. Then for any 
e > 0 and for any y G A, there exists x G A with d(Tnx9y) < e for some 
n>0. 

PROOF. By hypothesis we can find sequences {xn}, {yn} with d(Tr*xn,yn) -» 
0. Passing to a subsequence we can assume that we have.y,, ->y'. Then./ has 
the property that for every e > 0 there exists x G A and n > 0 with 
d(Tnx9y') < e. Now the set of points y G A with this property is clearly 
closed. It is also invariant under G. Since G acts minimally on A and the 
property holds for some point of A, it holds for every point of A. 

LEMMA 5.3. Suppose A has the property that for each y G A and e > 0 there 
exists x EL A and n > 0 with d(Tnx, y) < e. Then for any e > 0 there exists a 
point z G A with d(Tnz, z) < e for some n > 0. 

PROOF. Let e > 0 be given. We shall define inductively a sequence of points 
z0, Zj, z2, . . . in A, one of which will satisfy d(Tnz, z) < e. Set el = e/2. 
Choose z0 arbitrarily in A and let Zj G A and nx > 0 be such that 

(5.1) d(T^zvz0)<ex. 

Now choose e2 < ex so that d(z,zl) <e2 implies that the inequality (5.1) 
remains valid when zx is replaced by z. Then if we find z2 G A and n2 > 0 
with 

d{Tn>zx,zx) <e29 

we will also have 

d(Tn>+n>z2,z0)<ex. 

Proceed inductively in this way, obtaining an array of inequalities 

(5.2) ^ ( ^ + ^ ' + ' " + % z , ) < e J + 1 

whenever / <j. The successive ek are chosen so that d(z, zj) < ey+1 implies 
that all the inequalities of (5.2) for i <j9 j fixed, are still valid when Zj is 
replaced by z. Having determined eJ+l we find zJ+x G A and nJ+x > 0 so that 

d(Tn^zj+X9Zj)<eJ+x. 

We then obtain the inequalities of (5.2) fory + 1 instead of j . The hypothesis 
of the lemma enables us to proceed indefinitely. So we can suppose that (5.2) 
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is valid for all i <j < oo. Now for some i9j we shall have d(zi9 zf) < el9 so 
that 

d{T"**"*"+m~+*zpZj) <ei+l + ex <e , 

and this proves the lemma. 
PROOF OF THE THEOREM. AS we have seen it suffices to show that if A is a 

weakly homogeneous recurrent set, it contains a recurrent point. Form the 
function 

F(x) = inf d(Tnx9x). 
n> 1 

Clearly a point is recurrent if F(x) = 0. Now F(x) is readily seen to be upper 
semicontinuous. It follows that it has a point of continuity when restricted to 
A. Let z be such a point. Assume F(z) > 0. We can find a relatively open set 
V c A with F(x) > 8 > 0 for all x G V. Now UseG S(V) is an open 
G-invariant subset of A and by minimality, this must be all of A. By 
compactness of A some finite set of S(V) covers A: A = \JSt(V). Now for 
each S G G9 F(Sx) = inf d(STnx9 Sx)9 and it follows that for 8 > 0 there 
exists e > 0 so that F(x) < e =» i^&x) < ô. Letting 5 = Sfl and taking e' as 
the minimum of the corresponding e, we will have F(x) > e' for all x G A. 
For if Fix) < e' with x G S^K) then F(Srlx) < 8 contradicting the choice of 
8. This shows that F(z) = 0 at a point of continuity z of F. This proves that A 
possesses, in fact, a residual set of recurrent points. This completes the proof. 

We illustrate the theorem by considering "group extensions" of a given 
dynamical system. 

DEFINITION. Let (X9 T) be a dynamical system and let G be^a compact 
group. Let \p: X -> G be a continuous function and define T on X = X X G 
by 

f(x9g) = (Tx9xp(x)g). 

Then (X9 f) is said to be a grow/? extension of (X, T). 
Note that the group G acts on X by setting 

(x, g)g' = (JC, gg% 

and these transformations commute with T. The fibers x X G c X are 
invariant under the actions of G and they form homogeneous closed sets. 
Finally x X G is a recurrent set of (X, T) iff x is a recurrent point of (X9 T). 
Applying Theorem 5.1 we have 

THEOREM 5.3. If (X9 f) is a group extension of (X9 T) then a point (x9 g) G 
X is recurrent for (X9 T) iff x is recurrent for (X9 T). 

We illustrate this in the following proposition. 

PROPOSITION 5.4. Let T denote the circle group T = R/Z. Let h0 G T and for 
i = 1, 2, . . . , d — 1, let ht be a continuous map from T into T. Define a 
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transformation ofTd-*Tdby 

T(0X, 02, . . • , Od) 
(5.3) = {$i + K 9i + hi{0i)> ...,9d + hd_i(9v92,...,ed_,)). 

Then every point of V* is a recurrent point. 

PROOF. By induction on d. Notice that for d + 1 the system in question is a 
group extension of the system for d. For d = 0 we take the system to be a 
single point which is naturally recurrent. 

The toral systems described by (5.3) have another property which we shall 
proceed to study. We call this property strong recurrence. 

To define this notion we recall that the product of two systems (X, T) and 
(X', T) is the system (X X X', T X V) where (T X T')(x, x') = (Tx, Tx'). 

DEFINITION. A point x G l i s strongly recurrent for (X, T) if for any system 
(X', T') and any point x' G X' which is recurrent for it, the pair (x, x') is 
recurrent for the product system (X X X', T X T'). 

We will see presently what are the implications of strong recurrence. In 
particular it will be seen to imply uniform recurrence. In the meantime we 
have the following example. 

PROPOSITION 5.5. Each point of the system described in Proposition 5.4 is 
strongly recurrent. 

PROOF. For in this case (X X X', T X 7") is obtained by a succession of 
group extensions of (X', T'), so by Theorem 5.3, (x, x') is recurrent for 
(X X X', T X T') iff x' is recurrent for (X', V). 

For the remainder of this section we will be concerned with the notion of 
strong recurrence. In the next section we return to the notion of recurrent 
sets. 

The next result relates strong recurrence to IP-sets. 

THEOREM 5.6. A point x is a strongly recurrent point of a dynamical system 
(X, T) iff for any neighborhood V of x and for any IP-set S C N, there exists 
q G S with Tqx G V. 

For the proof of the theorem we will use the following proposition. 

PROPOSITION 5.7. If x0 G X is a recurrent point for (X, T) and V is a 
neighborhood of x0, then the set of n G N for which Tnx0 G V contains an 
IP-set. Conversely, if S is an IP-set in N, there is a system (X, T), a recurrent 
point x0 G X, and a neighborhood V of x0 such that S D {n: Tnx0 G V). 

PROOF. Assume x0 G X is a recurrent point for (X, T) and Fis a neighbor
hood of x0. For some number, say px, we have TPxx G V. Then x G 
V n T~PlV = Vx, and Vx constitutes a neighborhood of x. Letp2 be such that 
TP2x G Vx\ then xE:Vxç\ T~P*VX = V2. Continue in this way obtaining a 
succession of neighborhoods Vk of x0 with Vk+X = Vk n T~*k+xVk. At each 
stage the corresponding power pk+x is defined by the condition TPk+lx0 G Vk. 
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We then have 

*\<h< ' ' • <n 

It follows immediately that {n: Tnx0 G V] contains the IP-set generated by 

For the converse direction suppose S C N is an IP-set; say, S = {pt + pti 

+ • • • +Pi\ i\ < ii < • * * < ik) withpvp2,... a sequence in N. If we set 

tfl - A» + />r1 + l + " ' • +A,> fe - P r a + Pra+1 + * " " + A a 

• • •>* , = /V„ + /V. + 1 + ' * * + / > V " 

where {/•„} and {s-n} are two sequences satisfying rx < sx < r2 < s2 < • • • , 
then the IP-set generated by the qn: {qix + qt + • • • +qt\ ix < i2 < • • • < 
//} is a subset of 5. In this manner we can arrive at an IP-set whose generators 
satisfy qn > 3qn_x. Let R be this set together with 0. Now let X = {0, 1}Z and 
let x0 = 1^ G X. T will be the shift. Let F = { x 6 l : x(0) = 1}. Clearly 
R = {n: Tnx0 G K}, To complete the proof we show that x0 is a recurrent 
point. We claim that T^XQ -» x0. Namely, let m G Z. We show that if m & R9 

then for n large, m + qn é R and if m G /Ê then for n large m + qn EL R. The 
second statement is evident. For the first statement, notice that on account of 
the rate of growth of qn9 

3 

So for any m9 if m + qn G R for large ny then since m + qn~ qn9 m + <?„ = 
fti + ^ 2 + ' " ' +% ^or ^ar&e n ™P^e s n = '*> s o ^ a t m Œ ft, + * * ' + ft*_,-
This completes the proof. 

To prove the theorem we suppose x is strongly recurrent, that V is a 
neighborhood of x and that S is an IP-set. Let x' be a recurrent point for a 
system (X\ T') and K' a neighborhood of JC for which {«: T 'V G F} c S. 
Then (x, x') is recurrent for (X X X\ T X 7"'), and for some /*, 
(T X T')n(x9 x') G F X K'. But then J""* G V' so that « G S; hence r 1 * 
G F for some n G S. Conversely, suppose x has the property in question and 
that x' is recurrent for (X'9 T'). Let W be a neighborhood of (x, x') in 
X X A^. W a V X V' where K, K' are neighborhoods of x9 x' respectively. 
Since Tmx' G V' along some IP-set of n9 and for one of these Tnx G F, by 
hypothesis, we will have (T X T')n(x9 x') G W so that (x, x') is recurrent. 

We shall use this characterization of strong recurrence in order to prove 
that strong recurrence implies uniform recurrence. First a lemma. 

LEMMA 5.8. If a subset 5 c N contains arbitrarily long intervals, then S 
contains an IP-set. 

PROOF. We have [ak9 bk] c S with bk — ak-> oo. Suppose px,p2, . . . ,pn 

have been found in S so that every sum of the form pt + / * , + • • • +pik, 
ix < i2 < - • • < ik < n, belongs to S. We choose pn+x = aj for some j so 
large that bj - Oj >px + p2 + • • • +pn. Clearly every sum pti + pi2 

+ * * * +Ptk> h < h < ' ' ' < h < n + 1> n o w belongs to .S. 
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THEOREM 5.9. Strong recurrence implies uniform recurrence. 

PROOF. Suppose ^ G l i s not uniformly recurrent for the system (X, T). 
Then for some neighborhood V of x, the set {n; Tnx e V} has arbitrarily 
long gaps. By Lemma 5.8, there is an IP-set of n for which Tnx £ V. So by 
Theorem 5.6, x is not strongly recurrent. 

The converse of this is not true. In demonstrating this we shall use the 
following lemma. 

LEMMA 5.10. If xx G Xx is a strongly recurrent point for (Xv Tx) and 
x2 G X2 is strongly recurrent for (X2, T2\ then (xx, x^ is strongly recurrent for 
(Xx X Xl9 Tx X Tz). 

PROOF. Let x' be recurrent for some third system (X', T'). By strong 
recurrence (x2, x') is recurrent for (X2 X X\ T2 X T') and by strong recur
rence of xl9 (JCJ, x2, x') is recurrent for (Xx X X2 X X\ TXX T2X T). But 
this shows that (xx, x2) is strongly recurrent. 

The horocycle flow for a compact 2-dimensional surface of constant 
negative curvature is known to be minimal as a one-parameter flow (X, Tt\ 
-oo < t < oo). It follows that every point of X is uniformly recurrent for the 
flow and so it is uniformly recurrent for (X, Tx). It is also known that the 
horocycle flow is weakly mixing ([1]), so that the product system (X X X9 Tx 

X Tx) possesses dense orbits. Now a point (x9 y) G X X X having a dense 
orbit cannot be uniformly recurrent, for that would imply, by Theorem 1.3, 
that (X X X, Tx X Tx) is minimal, and this cannot be the case since the 
diagonal {(*, x); x S X} is an invariant subset. Hence (x,y) is not uniformly 
recurrent, and so it is not strongly recurrent. But by Lemma 5.10 this means 
that one of the points x and y is not strongly recurrent. We thus see that 
uniform recurrence does not imply strong recurrence. 

The same example shows that Lemma 5.10 is not valid if strong recurrence 
is replaced by uniform recurrence. For each point is uniformly recurrent for 
the horocycle system and yet there are pairs (x, y) which are not uniformly 
recurrent for the product system. 

The next theorem gives two more characterizations of strong recurrence. 
The proof can be found in [3]. 

THEOREM 5.11. Each of the following conditions for a point x E X is 
equivalent to strong recurrence for (X, T). 

(a) x is uniformly recurrent and it is not proximal to any point y ^ x in its 
orbit closure. 

(b) For any uniformly recurrent point x' for a system (X\ Tf) the point (x, x') 
is uniformly recurrent for (X X X\ T X T"). 

The characterization (a) of strong recurrence relates the notion to that of 
point distality. Two points of a system are distal if they are not proximal. A 
minimal system with a point that is distal from every other point is point 
distal. There is a rather deep structure theorem of Veech and Ellis which 
shows how one can construct all point distal metric dynamical systems [8]. 
The idea of the theorem is that certain extensions of point distal systems 
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preserve this property. For example, the considerations leading to Theorem 
5.3 show that if x is strongly recurrent for (X9 T) and (X, T) is a group 
extension of (X, T)9 then each (x, g) is strongly recurrent for (X, f). This 
means that the passage from (X, T) to (X, T) preserves point distality. The 
structure theorem in question asserts that by a possibly transfinite sequence 
of "allowable" extensions of this kind one can arrive at an arbitrary point 
distal system starting with the trivial one-point system. The implication of this 
is that strong recurrence is a relatively rare phenomenon. 

We conclude this section with some observations comparing recurrence 
properties for the systems (X9 T) and (X, Tm). First note that as a special 
case of Proposition 5.5, the periodic system (Ym9 Tm): Ym = (0, 1, . . . , 
m — 1), r^y = 7 + 1 (mod m)9 has every point strongly recurrent. From this 
it follows that if a point x is recurrent for (X, T)9 (x, 0) is recurrent for 
(X X Ym9T X Tm)9 and from this it follows that x is recurrent for (X, Tm). 

By a similar argument, using Theorem 5.11(b), we deduce that if x is a 
uniformly recurrent point for (X, T) then it is also uniformly recurrent for 
(X9 Tm). 

We can also show that a strongly recurrent point of (X, T) is strongly 
recurrent for (X, Tm). For by Theorem 5.6, x is strongly recurrent for 
(X, Tm) iff for every neighborhood V of x and every IP-set 5 c N , some 
Tnx G V for n E S. But if S is an IP-set so is mS; so it follows that some 
Tmnx 6 F for « 6 5. Now this implies that x is strongly recurrent for 
(X9 Tm). 

One can also show that for each of the notions of recurrence a recurrent 
point for (X, Tm) is also recurrent for (X9 T). We leave it to the reader to 
verify this. 

Combining the foregoing remarks with Lemma 5.10 we obtain the follow
ing. 

PROPOSITION 5.11. If x is a strongly recurrent point of (X9 T) then 
(x9 x9 . . . , x) e Xr is a strongly recurrent point of {Xr

9 T X T2 X • • • X Tr). 
In particular it is recurrent and so there exists a sequence nk —> oo with 
Tn"x -+ x9 T2r%kx -* x9 . . . , T

rrtkx -» JC. 

We will see in the next section that the latter property always holds for 
some point of any system (X9 T). On the other hand we do not know if there 
always exists a point x such that (x9 x9. . . , x) is a uniformly recurrent point 
for T X T2 X • • • X f . 

6. Multiple recurrence. We turn now to the proof of Theorem 2.1 which, as 
we saw in §2, implies the van der Waerden theorem on arithmetic progres
sions. We prove the following more general theorem. 

THEOREM 6.1. Suppose X is a compact metric space and Tl9 T29 . . . , Tk are 
commuting maps of X into itself Then there exists a point x E X and a 
sequence nk -» oo with T"kx -> x, T^x -> x, . . . , T^x —> x. 

The idea of the proof is to show that some point of the diagonal A = 
{(x, x, . . . , x) G Xl\ x G X} is recurrent for Tx X T2 X • • • X 7}. In order 
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to do this we make use of the notion of recurrent sets discussed in the 
preceding section. 

We shall assume that the maps Tt are invertible. It is easy to pass from this 
case to the general case. The proof of the theorem will proceed by induction 
on /. The case / = 1 is Birkhoff s theorem (Theorem 1.2). Suppose then that 
the result has been established for / — 1 and we have / invertible maps 
Tl9 T2, . . . , Tl on X. Let Gx be the group of transformations of X generated 
by Tl9 T29 . . . , Tl9 and let Gx consist of the transformations of X1 = X XX 
X • • • XX of the form S = S X S X • • • X S, S G Gx. Note that Gt takes 
the diagonal A into itself, and in fact that action of Gt on A simply mirrors the 
action of Gx on X. Now we can assume that Gx acts minimally on X; 
otherwise simply restrict the discussion to a minimal closed Gj-invariant 
subset of X. If Gx acts minimally on X9 Gt acts minimally on A. Let 
f=TlXT2X>-XTl.T commutes with all the transformations of Gt\ 
hence A is a weakly homogeneous subset for the system (Xl

9 f ) . If we show 
that A is a recurrent set for T9 then by Theorem 5.1, it contains a recurrent 
point and this will prove the theorem. 

Now use the induction hypothesis applied to the / - 1 transformations 
Sx = TxTj~\ S2 = T2Tj~\ . . . , St_x = T^xTfx. Accordingly, there exists a 
point x G X and a sequence nk-*oo with 

Sx
kx -> x9 S2

kx -» x9 . . . , S?±xx -» x. 

This means that for any e > 0 we can find n with the two points 

(x9 x9 . . . , x) G Xl
9 (Tx X T2 X • • • X TtfiT^x, Tj~nx9 . . . , Tfnx) G X1 

within distance e of one another. Since the points (x9 x9 . . .̂ , x) and 
(Trnx9 Tfnx9 . . . , Tfnx) are in A, it follows that A is recurrent for f= TXX 
T2 X - - • X Tf. This now completes the proof of the theorem. 

Theorem 6.1 leads to a multidimensional extension of van der Waerden's 
theorem. Namely suppose Zh = Cx U C2 U • • • U Cr is a partition of the 
/i-dimensional lattice Z \ Consider the space Ö = {1, 2, . . . , r}z and let 
| G 12 be the point £(*>) = / «=» v G C,. Here v denotes a typical point of Z \ 
Let {el9 . . . , et) be any finite subset of Zh

9 and let 7): Q -» Î2 be defined by 
T^iy) = co(p + et), i = 1, . . . , /. Let X c Œ be the smallest closed subset of 
Ü containing £ and invariant under TX9 T29 . . . , 7). The Tt commute and so 
by Theorem 6.1, there exists i) G X and n G N with the points 
Txi)9 T2t)9 . . . , r/fy within distance e of one another. In particular 6 can be 
chosen so that this implies that the values of 7X0) , 7,

2
rti7(0), . . . , 77^(0) 

coincide. This means that t){nex) = 17(^2) = • • • = v(nei)' Using the fact 
that 7} belongs to the closure of translates of £ we find that there is a vector 
v G Zh with 

£{v + nex) = £(v + ne2) = • • • = £{v + net). 

If j is this common value, then v + net G C, for / = 1, 2, . . . , /. We have 
thereby proved the following result, due to Gruenwald. 
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THEOREM 6.2. Let F be any finite configuration in Zh and suppose Zh = Cx U 
C2 U • • • U Cr is a finite partition. Then some Cj contains a configuration 
"similar" to F, i.e., a set of the form v + nF for some v ŒZh and n E N . 

7. Szemerédi's theorem. It is natural to expect that just as Theorem 6.1 
extends Birkhoff's theorem (Theorem 1.2) to the case of commuting transfor
mations, there should exist a theorem extending the Poincaré recurrence 
theorem to "multiple recurrence". This is indeed the case and one has the 
following result. 

THEOREM 7.1. Let (X, %, /x) be a measure space and let Tl9 T2, . . ., Tj be 
commuting measure-preserving transformations of (X, %, /A). Let A E % with 
li(A) > 0. Then there exists n E. N with 

ix(A n T^A n T2
nA n • • • n T^A) > o. 

A special case of Theorem 7.1 consists of setting 7) = T\ i = 1, 2, . . . , / 
where (X, ®, 7") is a measure-preserving system. It follows that the set of 
arithmetic progressions of length / form a set Q of configurations satisfying 
the hypothesis of Theorem 2.8. According to Theorem 2.8 we can conclude 
that any subset of Z of positive upper density contains arithmetic progres
sions of length /. This is Szemerédi's theorem [7]: 

THEOREM 7.2. If S c Z is a subset of positive upper density, then S contains 
arbitrarily long arithmetic progressions. 

As in the case of van der Waerden's theorem, the multiple recurrence 
theorem for arbitrary commuting transformation of a measure space implies 
(indeed, is equivalent to) a multidimensional extension of Szemerédi's theo
rem. Namely we have 

THEOREM 7.3. Let S be a subset of Zh of positive upper density. If F is any 
finite configuration in Z*, S contains a configuration "similar" to F, i.e., 
S D v + nF for some v ELT}1 and n G N. 

Theorem 7.3 is an example of a combinatorial result which was first proved 
(and, so far, this is the only proof) by ergodic-theoretic means. For a 
complete discussion of this as well as the proof of Theorem 7.1 the reader is 
referred to [3] and [4]. 

In contrast to the proof of Theorem 6.1 which is the topological analogue 
of Theorem 7.1, the proof of the measure-theoretic result involves a careful 
study of the structure of the measure space with regard to the action of 
Tv T2, . . ., 7). In proving Theorem 6.1 we presented an argument that 
covers all cases. In proving Theorem 7.1 it seems necessary to distinguish 
between mixing actions of the 7} and some form of almost periodic action. At 
one extreme the expression 

n(A n T{nA n • • • n TfnA) 
tends to a constant, fi(A)l+l. At the other extreme this expression behaves like 
an almost periodic function returning "almost periodically" to the value of 
the expressions for n = 0, namely fi(A). More precisely one forms the group T 
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of transformations generated by Tl9 T2, . . . , 7). The measure space {X, %, /i) 
is then decomposed into a succession of factors such that at each stage the 
group T operates and T decomposes into two subgroups, one operating in a 
relatively mixing manner, and the other in a relatively compact manner. It is 
rather curious, and not yet understood, why in the topological situation there 
is no need to carry out such a careful analysis of the structure of the action, 
whereas this appears, so far, unavoidable in the measure-theoretic case. 
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