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Introduction and definitions

In 1936, P. Erdos and P. Turan conjectured that if a set A of positive integers
satisfies the condition . . M ,.

hm sup L-:-J-i > 0,
n

then A contains arbitrarily long arithmetic progressions. This conjecture was settled
affirmatively by E. Szemeredi in 1975. In 1977 H. Furstenberg gave quite another
proof using methods of ergodic theory (see [1]). Since then many other applications
of ergodic theory and topological dynamics to Ramsey theory have appeared [2,3,4].
In this paper we use measure-theoretic and ergodic methods to obtain some new
properties of difference sets in 2m. For A a lm the difference set A -A is defined by

A —A = {ax — a2 \ ax, a2 e A).

Of course, as A — A if and only if A 0 (A + a) # 0 . It often happens that it is easier to
prove that the intersection A n (A + a) is' large' rather than to prove that it is non-empty.
In what follows different notions of' largeness' of sets in Zm are used.

For A c N set d(A) = limw | A 0 [1, ri\ \/n if the limit exists and is positive; in this
case d(A) is called the density of A. In any case lim sup | A 0 [1, n] \/n always exists;
it is called the upper density of A and is denoted d*(A). Thus, Szemeredi's theorem
is a statement about sets of positive upper density. What is really important for this
type of result to hold is that there exist arbitrarily long intervals [ak, bk] of Z in which
the 'percentage' of elements of A is positive. The following definitions are taken from
[!]•

A set A <= Z is said to have positive upper Banach density if there exists a
sequence of intervals [ak, bk] c Z such that bk — ak-+co and

l i m
(bk-ak+\)

The notion of upper Banach density extends naturally to Zm. By a block in Zm we
mean a product of intervals. The width of a block is the length of its shortest edge.
A set A c Zm is said to have positive upper Banach density if, for some sequence of
blocks Bn whose widths approach infinity, | A n Bn \/\ Bn \ > S > 0. In the sequel we
shall also need the notion of a measure-preserving system. A measure-preserving
system will be a quadruple {X, 08, ft, G), where X is an abstract space, 08 is a a-algebra
of subsets of X, ̂  is a probability measure on 08, and G is a group of measure-preserving
transformations of X.
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1. Combinatorial properties of intersections in sequences of sets of positive measure
in a probability measure space

THEOREM 1.1. Let (X,08,fi) be a probability measure space and suppose that
Ane3S, fi(An) = a > 0, for n= 1,2,.... Then there exists a set P c N such that
d*{P) ̂  a and for any finite subset F <= P we have

fi(f]An)>0.
neF

Proof For a finite set Fa N we denote the intersection (~)neFAn by AF.
First of all let us show that there exists a set N c= X of measure zero such that if

F c= N is finite and (X\N) (\AF^0 then fi(AF) > 0. Let <$ be the (countable!) set of
all finite products of characteristic functions \An of the sets An. F o r / e # write

Obviously fi(Nf) = 0 and thus fi(N) = 0. Suppose that f c N is a finite set and
(X\N) C\AF*0. We shall show that fi{AF) > 0.

Let xs(X\N) n AF a n d / = IlneF W ^K^F) = <>> then H/J^ = sup ess | / | = 0
and xeNf, which contradicts the fact that xeX\N. So, subtracting, if necessary, the
set iV from X we shall assume without loss of generality that if AF ^ 0thenfi(AF) > 0.
Now,let/n(x) = l /nSj-j lAk(x). Note that 0 ^fn(x) < 1 for all xand \fnd^ = a > 0.
Letf{x) = limsupn/n(A:). By Fatou's lemma we have

fd/i = lim sup/n dfi ^ lim sup /„ = a > 0.
J J n n J

Thus \f ^ a and, as n{X) = 1, there exists x0 e X such that lim supn /n(x0) = f[x0) ^ a.
Then there exists a sequence {n^^ such that

fni(o) % ^ W W 0)
"i k-i

Let P = {ne N \xoeAn}. It follows from (1.1) that d*(P) ^ a and as x o e^ n for all
n in P we have n(AF) > 0 for every finite subset Fa P.

Suppose now that T is a measure-preserving transformation of (X,&,/J). Let
AQESS, /J.(A0) = a > 0, and define /ln = r~M0. It follows from the ergodic theorem
that, for almost every x,

lim± £ U(*) =./(*)
w fc-i

exists. As Jy(x) = a we conclude that there exists a sequence {«m}^_i of positive
density d({nm}) ^ a such that

fi(T-niA0 n ... n r-n«,40) > 0 for any meN.

Taking account of the fact that T is measure preserving and that sequences
{nm — HJOT-I

 a nd {wm}m-i n a v e t n e s a m e density, we obtain the following refinement
of Poincare's classical recurrence theorem.
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THEOREM 1.2. Let (X, 08, pi, T) be a measure-preserving system and let Ae@,
fi(A) = a > 0. Then there exists a sequence {«m}m-i with d({nm}) ^ a such that, for any
meN, [i(A 0 T~n^A n ... n T~nmA) > 0.

2. Applications to countable amenable groups

Let G be a countable amenable group and let LG be an invariant mean on the set
B{G) of all complex-valued bounded functions on G. Identifying subsets of G with
their characteristic functions, let us assume that LG(An) ^ a > 0 for a sequence {An}^x

of subsets of (/.Then Theorem 1.1 implies the following.

THEOREM 2.1. Suppose that subsets An, for n=\,2,...,ofan amenable group G
satisfy the condition LG(An) ^ a > 0. Then there exists a sequence {n^}^ such that
d*({nk}) ^ a and for any keN

LG(Ani0...0Ank)>0.

Proof. Denote by sf the uniformly-closed and closed-under-conjugation algebra
of functions on G, generated by characteristic functions \An of sets An. Then s/ is
a separable C*-algebra with respect to the supremum norm, and by the Gelfand
representation theorem we can represent s/ as s/ ^ C(X), where A^s a compact metric
space. The mean LG extends to a positive linear functional L^ on s/, and L^ in its
turn induces a positive linear functional L on C(X). Forfes/ let/denote its image
in C(X). By a well-known theorem of F. Riesz there exists a regular Borel measure
fj. such that, for a n y / e C(X),

Note that images in C(X) of characteristic functions of sets in s/ are also characteristic
functions. For correspondence between s/ and C(X) preserves algebraic operations
and the characteristic functions are the only idempotents in C(X). So there exist sets
An, for nsN, such that for any nx < n2 < ... < nk we have

LG(Ani n ... 0Ank) = fi{Ani n ... 0Ank).

The theorem now follows from Theorem 1.1.

Let us consider the special case in which G = Z and En = E+n, where £ is a set
of positive upper Banach density. Proceeding as in the proof of Theorem 2.1 and taking
into account that a shift on / induces a measure-preserving transformation of X, we
obtain as a consequence of Theorem 1.2 the following statement.

THEOREM 2.2. Let E al.be a subset of positive upper Banach density. Then there
exists a set R<=Z such that for any n1,...,nkeR the upper Banach density of the set
E D E+ nx fi... fl E+nk is positive and R is a set whose density exists and is not less than
the upper Banach density of E.

This gives us the following proposition which is attributed in [1] to R. Ellis.

COROLLARY 2.2.1. Let E c Z be a subset of positive upper Banach density. There
exists a set R c Z with the property that ifFis any finite subset ofR, then some translate
F+ h cz E where heZ, and R is a set whose density exists and is positive.

REMARK. It follows from Theorem 2.2 that h can be an element of E.
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3. A property of difference sets in Z2

THEOREM 3.1. If(X,08,fj.) is a probability measure space, and T, S are commuting
invertible measure-preserving transformations of(X,@,fi) then for any set A e 08 with
H(A) > 0 there exists a sequence {fcj^ of positive upper density such that, for all i,je N,

li(A fl Tki Ski A) > 0.

Proof A subset P a Z is called syndetic if there exists a finite set F c Z such
that P+F=Z. In other words the complement of P does not contain too long
intervals of integers. It is an apparently well-known fact (referred to as Khintchine's
recurrence theorem) that if T is an invertible measure-preserving transformation of
a probability measure space (X,0&,n) and A e@, fi(A) > 0, then the set

{n\/i(Af]TnA)>fi(A)2-e}

is syndetic for any e > 0. For instance, one can obtain it as a consequence of von
Neumann's uniform ergodic theorem.

Applying Khintchine's recurrence theorem to the transformation ST we obtain
a syndetic sequence {/«„}*_! such that for some a, with 0 < a < fi(A)2,

H(An(ST)mnA)Z<x, n=\,2,....

As S is an invertible measure-preserving transformation and T, S commute we can
rewrite this expression as

Writing An = S~mn A n Tmn A and applying Theorem 1.1 we obtain a sequence {n^^
with d*({ni)) > 0 such that, for any

»ninAn2(\...nAnk)>0. (3.1)

It follows from (3.1) that

n(S-m»iA0Tm")A)>0 for any i,jeN. (3.2)

As {mn} is a syndetic sequence and {nt} has positive upper density we conclude that
the sequence {wnj}|^1 has positive upper density. Writing mn< = kt we obtain from (3.2)
that

/i(A C\Sk* Tki A) > 0 for any ij e N,

where d*({ki}) > 0.

COROLLARY 3.1.1. Let A cz Z2 and suppose that A has positive upper Banach
density. Then there exists 5 c Z such that d*(B) > 0 and

A-Az> BxB.

Here A —A denotes the set of differences of elements of A and BxB is the Cartesian
square of B.

Proof. Define Q = {0, \}z\ Then Q is the space of all double sequences with
entries 0 or 1. Now Q can be made into a compact metric space, taking as metric

p(co,(of) = inf co{ilt ia) = a/ft, i8) for 11\ |, 1121 < k\.
J
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Define transformations T, S of Q, by

Tco(ix, i2) = ©(ij + 1 , i2), Sco(ix, i2) = co(/l5 i2 +1).

Of course TS = STand we see that powers of these transformations generate in a
natural way a Z2-action on Q. We shall regard the characteristic functions of subsets
of Z2 as points of Q.

Let £ = \A(n,m), where A c Z2 is a subset of positive upper Banach density, and
let X be the closure in Q, of all translates of <!;:

X={TnSm£\(n,m)eZ2}.

Let Ax = {coeX\co(0,0) = 1}. One can show that there exists a probability measure
/i on the Borel sets of X satisfying n(Ax) > 0 and invariant with respect to T and S
(see for example [1, p. 152]).

By Theorem 3.1 there exists a sequence of positive upper density {nt} c= Z such that
for all iJeN we have

Let coeA1 n TniSniAv Then co(0,0) = co^ttj) = 1. But tu is in the orbit closure of
£,. Thus we can find (n0, m0) e Z2 such that Tn<> Sm<>€ and co have the same coordinates
at the point (n{, n^). Then

l^(«0, m0) = li4(«0 + «i,

It follows that (n^n^eA — A and the theorem is proved.

COROLLARY 3.1.2. IfAaZ and A has positive upper Banach density then there
exists a set B cz Z of positive upper density such that

A-A^B+B.

Proof. Let A cz Z be a set of positive upper Banach density. We can regard the
characteristic function \A(n) as a point in {0,1}Z. Let X be the closure in {0,1}Z of
the set of all translates of £ = \A(n). Define Ax = {xeX\x(Q) = 1}. Let // be a
probability measure on Borel sets of Xsatisfyingn(Ax) > 0. Taking T = Sin Theorem
3.1 we see that there exists a set {wj <= Z of positive upper density such that

X D Tni+n) Ax) > 0 for any ije fcl.

Taking account of the facts that if xeAx n Tni+niAx, then

and that x lies in the orbit closure of £,, we conclude that there exists m such that

r - £ ( « , + « , ) = 1 ,
or

This gives us the desired result.

REMARK. We do not know the answer to the following questions.

Question 1. Let A c Z3 be a set of positive upper Banach density. Is it true that
there exists a set B a Z of positive upper density such that A-A 3 BxBxBl
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Question 2. Let A a Z be a set of positive upper Banach density. Is it true that
there exists a set B a Z of positive upper density such that A — A=>B+B+B!

On the other hand we have the following.

THEOREM 3.2. Let A c Zm be a set of positive upper Banach density. Then there
exists an infinite set BeZ such that

(where Bm stands for the m-fold Cartesian product of B with itself).

Proof. We shall show that for any m invertible and commuting measure-
preserving transformations Tx, T2,..., Tm of a probability measure space (X,0S,n)
and any Ae@ with n{A) > 0 there exists an infinite set B <= N such that, for any
(nx,n2,...,nm)eBm,

TpTF...T*mA)>0. (3.3)

The reduction of this result to the desired combinatorial statement can be made in
complete analogy with the proof of Corollary 3.1.1.

We shall use the multidimensional ergodic Szemeredi theorem of Furstenberg and
Katznelson [3] which states that if Sx,S2,...,Sk are invertible commuting measure-
preserving transformations of a probability measure space (X, $,fi) and Ae@ with
H{A) > 0 then

1 N

liminf- I fi(A(\Sl
%A(\...(\S%A)>0.

JV-»oo ™ n - l

To avoid cumbersome notation we shall show (3.3) for m = 3. The same proof holds
for any meH.

By the theorem of Furstenberg and Katznelson there exists bx e N such that the
set

AX = A n T\*A n T^A n r3M n T^T^A n T^T^A n T^T^A n T^T^T^A

has positive measure. Applying the theorem to the set Ax, we can find b2 such that
the set

A2 = Axf] Tx
b*Ax n T$*AX n T$*AX n T»*T^AX n T»*T»>AX 0 T!>*T$*AX n T^T$*T»*AX

has positive measure. It is clear that all triples made from elements of the set {bx, b2)
satisfy (3.3). Continuing in this manner we find an infinite sequence of sets Ak of
positive measure such that Ak c= Ak_x for all keN (here Ao = A) and an infinite
sequence {bt}%ix such that, for any k,

*k = Ak_x n T**Ak_x n T**Ak_x 0 T»kAk_x 0 T?kT»icAk_x n r»*

n 1 2 *•* 3 f c y ^ f c - i ("i - * i

has positive measure.
We see that (3.3) holds for any m-tuple made from elements of B = {bx,b2,...}.

This completes the proof of Theorem 3.2.

Taking Tx = T2 = ... = Tm = T we see that for any measure-preserving trans-
formation T of a probability measure space (X, 08, n) and for any A e & with fi(A) > 0
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there exists an infinite set B such that for any (not necessarily distinct!) nx, n2,...,nmeB

w e h a v e n T^+n^- + nmA) > 0.

This gives the following result.

COROLLARY 3.2.1. Let A czZ be a set of positive upper Banach density. Then for
any meN there exists an infinite set B c Z such that

A - A => { b i t + b u + . . . + b i m \ b i j e B J = 1,2, . . . ,w}.

REMARK. The set 5 in Theorem 3.2 and Corollary 3.2.1. can be chosen to be
symmetric about the origin. To see this one applies the Furstenberg-Katznelson
theorem to products of transformations Tlt T2,..., Tm, Tf1, T2\..., T~l.

4. Sets of recurrence

Let G be a countable group with £ c G a n infinite subset of G. We call E a .sef
of recurrence if for any measure-preserving system (X, @,n, Tg,geG) and any A e@,
/i(A) > 0 there exists geE such that

p(A n r -M) > 0.

We shall say that E is a sef of strong recurrence if, for any measure-preserving system
{X, 81, ii, Tg, g e G), any A e $ with /i(A) > 0 and any positive sufficiently small a there
exists an infinite subset E' c E such that

H(A n ^-M) > a for any g e E'.

REMARK. We know of no example of a set of recurrence which is not a set of
strong recurrence.

We pose the following question.

Question. Is it true that the notions of recurrence and strong recurrence coincide?

We now give some examples of sets of (strong!) recurrence in Z. Proofs can be
found in [1].

1. Thick sets. A set R a Z is called thick if it contains arbitrarily long intervals.

2. IP-sets. A subset of Z is called an /P-set if it consists of a sequence of (not
necessarily distinct) integers nx, n2,... together with all sums of these for distinct indices.

3. Sets of the form {/?(«)|«eZ}, where p(n) is a polynomial with integer
coefficients and with p(0) = 0.

Theorem 3.18 of [1] states that if A <= Z is a set of positive upper Banach density
and W cz Z is a set of recurrence then A^AoW contains non-zero integers. An
analogous statement holds also for more general groups. The following theorem points
out the connection between difference sets in Z2 and sets of strong recurrence in Z.

THEOREM 4.1. Let D a Z be a set of strong recurrence and let A cz Z2 be a set of
positive upper Banach density. Then there exists an infinite set B a D such that

A-A^ BxB.
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Proof. First of all one can prove (analogously to the proof of Theorem 3.1) that
if D c Z is a set of strong recurrence and T, S are commutative invertible measure-
preserving transformations of a probability measure space (X, B, fi), then for any A e B
with fi(A) > 0 there exists an infinite subset B c D such that for any n, m e B we have

n Tn SmA) > 0.

The rest of the proof follows the lines of the proof of Corollary 3.3.1.

COROLLARY 4.1.1. Let pin) be a polynomial with integer coefficients and with
p(0) = 0, and let A czZ2 be a set of positive upper Banach density. Then there exists
an infinite sequence {nk}f.x such that

A-A=> BxB,
where B = {p(nk)\k = 1,2,...}.

The proof of this corollary is immediate since if a polynomial p(n) satisfies the
conditions above then p(Z) is a set of strong recurrence. A proof of this fact can be
given similarly to the proof of [4, Theorem 3.5]. The following consequence of it is
given in [4, Proposition 3.6].

PROPOSITION. Let S c Z be a set of positive upper Banach density and let p(n)
be a polynomial taking integer values at the integers and including 0 in its range on the
integers. Then there exists a solution to the equation

x—y=p(z), x,yeS, zeZ, x ^ y.

This proposition was also proved independently by Sarkozy and Conze. We
remark that Corollary 4.1.1 can be regarded as a generalization of this proposition.
We shall see later that an even stronger result holds (see Corollary 4.2.1 below).

The following theorem can be proved analogously to [4, Theorem 3.5].

THEOREM 4.2. Let Tx, T2,..., Tk be invertible commuting transformations of a
probability measure space (X,0§,n)- Suppose that Pi(n),...,pk(n) are poly-
nomials with integer coefficients such that pt(0) = 0, for i= 1,2, ...,&. Let Ae@,
fx{A) > 0. Then there exists n e 2, n ^ 0, such that

H( f| 77>i<B> 7?«( B>. . . Tg>c{n)A) > 0.

In other words, the set
{{pl(n),-,Pk(n))\neZ}czZk

is a set of recurrence.

COROLLARY 4.2.1. Suppose that S c Zk is a set of positive upper Banach density
and let p1(n),p2(n), ...,pk(n) be polynomials with integer coefficients such thatp^O) = 0,
for i = 1,2,...,k. Then there exists a solution to the equation

x-y = (p1(n),p2(n),...,pk(n)),

where x,y e S, x # y, n e Z.

Proof Let Q = {0,1}Z* and denote by

vx = (1,0, ...,0), v2 = (0,1, . . . ,0) . . . , vk = (0,..., 1)
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the basis vectors in Zk. Define 7>Q -• Q by

Tico(n) = co(n + vi), neZk, i = 1,2, ...,k.

Obviously, the Tt commute. Let <!;(«) be the characteristic function of the set S, and
let X be the closure in Q of the set of all translates of £:

X = {T?> 7?.... 7 > £ I (nls..., nk)e Zk}.

Let ^ = [xeX\x(0) =1}. In complete analogy with the one-dimensional situation
one can show that there exists a probability measure fi on the Borel sets ofX, satisfying
(i(A) > 0. It follows from Theorem 4.2 that there exists n e Z, n ̂  0, such that

H(A n r f i<") Tpw... T2*<n>A) > 0.

If xev* n 77>i(n) r/»«<">... TjPk^A, then

x(0) = 1 = x(px(n),p2(n),...,pk(n)).

As x lies in the orbit closure of £, there exists (mx,m2, ...,mk)eZk such that

7\mi ra
m2... 7^*^(0) = 77"! T^i... TJP'k£(px(ri), ...,pk(n)) = 1

or ^(ml5 ...,/w^.) = ^(wii +p1(n), ...,mk +pk(n)) = 1, and this proves the corollary.

5. Generalizations and concluding remarks

(i) The results obtained in this paper for sets of differences A —A, where A is a
set of positive upper Banach density in Zm, are also valid for finite intersections of
such sets. To illustrate this we shall indicate how the following generalization of
Corollary 3.1.1 can be proved.

THEOREM 5.1. Suppose that Ax, A2, ...,Ak are sets of positive upper Banach density
in Z2. Then there exists a set B cz Z of positive upper density such that

(Ax-Ax)0(A2-A2)f]...0(Ak-Ak)^BxB.

Sketch of the proof. First of all we need an appropriate version of Theorem 3.1.
Let (X^^^fii) be probability measure spaces and Q e J j , ^ (Q) > 0. Suppose that
Tt,St are commuting invertible measure-preserving transformations of {X^^S^fi^),
for 1= 1,2, ...,k. Let k :

i-l

be the product measure space. This means that X is the Cartesian product of Xt, 0&
is the ff-algebra generated by Cartesian products of sets from ^9i5 and
ft = fix xfi2x... xfik is tlje product measure on 0&. Define the product maps
T = 7i x T2 x ... x Tk and S = Sx x S2 x ... x Sk by

T(xx,...,xk) = (Txxx, T2x2,..., Tkxk), S(xx,x2,...,xk) = (oxxx, S2x2,..., Skxk).

Let C = n f - 1 C i £ ^ . Obviously p(C) = TlU KQ) > 0 and TS = ST. Applying
Theorem 4.1 to C, Tand S we obtain a sequence {/i^x of positive upper density such
that, for any>, leN,

(Cf\TniSniC) > 0. (5.1)
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Remembering that C = II*_iQ we obtain from (5.1) that for any j , /eN and all
Z = 1 2 * ^ 5 / ' i g > 0 . (5.2)

Now let Q = {0,1}Z\ Zi = \Ai, for i = 1,2, ...,k, and let T,S be as in the proof of
Corollary 3.1.1. Define

Foreach/, 1 ^ / < k, let //* be a probability measure on Xt such that /^(Q) > 0. Forming
the appropriate product space and applying (5.2) we obtain the desired result.

(ii) The following generalization of Theorem 3.1 can be obtained by using
Furstenberg's and Katznelson's multidimensional ergodic Szemeredi theorem instead
of Khintchine's recurrence theorem.

THEOREM 5.2. If (X,09,n) is a probability measure space and TX,T2 ,Tk are
commuting invertible measure-preserving transformations of (X, 8i, /*), then for any
Ae&8 with fi(A) > 0 there exists a sequence {«(0)i^i of positive upper density such that
for any ilf i2, ...,ikeN we have

(A n 7?«iU n 7?<'iU n... n T^VA) > o.

A combinatorial consequence of Theorem 5.2 is the following.

THEOREM 5.3. Let A cZ1" be a set of positive upper Banach density and let
v1,v2, ...,vneZm. Then there exists a set fie N of positive upper density such that
for any k1,k2,...,kneB the set A contains a congruent image of the set
{0,k1v1,k2v2,...,knvn}.

(iii) We were not interested in quantitative statements about the density of sets
which appear in our discussion. In most cases such statements can be formulated and
rather precise bounds can be given. For example one can show that if A c Z with
d*(A) = a > 0, then there exists a sequence of integers {n^ff^ such that d*({nk}) > \a*
and, for any ij, n%+n$eA — A.
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