SETS OF RECURRENCE OF Z"-ACTIONS AND PROPERTIES
OF SETS OF DIFFERENCES IN Z™

VITALY BERGELSON

Introduction and definitions

In 1936, P. Erdos and P. Turan conjectured that if a set A of positive integers
satisfies the condition 1AL A
0

lim sup
n

2

then A4 contains arbitrarily long arithmetic progressions. This conjecture was settled
affirmatively by E. Szemerédi in 1975. In 1977 H. Furstenberg gave quite another
proof using methods of ergodic theory (see [1]). Since then many other applications
of ergodic theory and topological dynamics to Ramsey theory have appeared [2, 3, 4].
In this paper we use measure-theoretic and ergodic methods to obtain some new
properties of difference sets in Z™. For 4 < Z™ the difference set A — A is defined by

A—A ={a,—a,|a,,a,€ A}.

Of course, ae A — A if and only if A N (4+a) # . It often happens that it is easier to
provethattheintersection 4 N (4 + a)is ‘large’ rather than to prove thatitisnon-empty.
In what follows different notions of ‘largeness’ of sets in Z™ are used.

For A = N set d(4) = lim, | A n[1, n]|/n if the limit exists and is positive; in this
case d(A) is called the density of 4. In any case limsup| A4 N[l,#n])|/n always exists;
it is called the upper density of A and is denoted @*(A4). Thus, Szemerédi’s theorem
is a statement about sets of positive upper density. What is really important for this
type of result to hold is that there exist arbitrarily long intervals [a,, b;] of Z in which
the ‘percentage’ of elements of A is positive. The following definitions are taken from
[11.

A set A = Z is said to have positive upper Banach density if there exists a
sequence of intervals [ay, b,] = Z such that b, —a;, — o and

| AN [ag, bl
Gr—ap i) "

The notion of upper Banach density extends naturally to Z™. By a block in Z™ we
mean a product of intervals. The width of a block is the length of its shortest edge.
A set A = Z™ is said to have positive upper Banach density if, for some sequence of
blocks B, whose widths approach infinity, | 4 n B, |/| B, | > é > 0. In the sequel we
shall also need the notion of a measure-preserving system. A measure-preserving
system will be a quadruple (X, 8, u, G), where X is an abstract space, % is a g-algebra
of subsets of X, u is a probability measure on 4, and G is a group of measure-preserving
transformations of X.

lim sup
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1. Combinatorial properties of intersections in sequences of sets of positive measure
in a probability measure space

THEOREM 1.1. Let (X,%,u) be a probability measure space and suppose that
A, €B, wl(A,) =a>0, for n=1,2,.... Then there exists a set P = N such that
d*(P) = a and for any finite subset F = P we have

u(nQF A,) > 0.

Proof. For a finite set F = N we denote the intersection (), 4, by 4p.

First of all let us show that there exists a set N ¢ X of measure zero such that if
F = N is finite and (X\N) N A # & then u(Az) > 0. Let € be the (countable!) set of
all finite products of characteristic functions 1, of the sets 4,,. For fe € write

Ny = {x||fix)| > supess|fl}, N= f&}w N;.

Obviously u(N;) =0 and thus u(N) = 0. Suppose that F< N is a finite set and
(X\N)n Az # . We shall show that u(4g) > 0.

Let xe(X\N)N Apand f=[1,cr 14, If u(Ap) =0, then | f||,, = supess|f| =0
and x € Ny, which contradicts the fact that xe X\ N. So, subtracting, if necessary, the
set N from X we shall assume without loss of generality thatif A # & then u(4z) > 0.
Now, letf,,(x) = 1/nX;_, 14 (x). Notethat 0 < f,(x) < 1 forallxand | f, du = a > 0.
Let f{x) = lim sup,, f,,(x). By Fatou’s lemma we have

dey = Jlimsupf,,d,u = lim sup J‘fu =a>0.
n n

Thus | £ > aand, as u(X) = 1, there exists x, € X such that lim sup,, £,,(x,) = flx,) > a.
Then there exists a sequence {n;} 2, such that

1 n,
falw) =~ L Lax0) > fix) > @ (11)
1 k=1
Let P = {neN|x,e4,}. It follows from (1.1) that d*(P) > a and as x,e 4,, for all
n in P we have u(4z) > 0 for every finite subset F < P.
Suppose now that T is a measure-preserving transformation of (X, %, ). Let
A € B, u(A,) = a > 0, and define 4, = T~"A,. It follows from the ergodic theorem
that, for almost every x,
.12
lim- X 1,,(x)=Ax)
npey
exists. As [ f{x) = a we conclude that there exists a sequence {n,}5_, of positive
density d({n,,}) = a such that

T MA,N0..NT ™ A,) >0 forany meN.

Taking account of the fact that T is measure preserving and that sequences
{n, —n}%S_, and {n,}%._, have the same density, we obtain the following refinement
of Poincaré’s classical recurrence theorem.
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THEOREM 1.2. Let (X,%B,u,T) be a measure-preserving system and let A€ %,
u(A) = a > 0. Then there exists a sequence {n,,}%., with d({n,,}) = a such that, for any
meN, y(ANT™AN..NT "= A4)>0.

2. Applications to countable amenable groups

Let G be a countable amenable group and let L, be an invariant mean on the set
B(G) of all complex-valued bounded functions on G. Identifying subsets of G with
their characteristic functions, let us assume that L;(A4,,) = a > 0for asequence {4,}2.,
of subsets of G.Then Theorem 1.1 implies the following.

THEOREM 2.1. Suppose that subsets A, for n = 1,2, ..., of an amenable group G
satisfy the condition Lo(A,) =2 a > 0. Then there exists a sequence {n;}., such that
d*({n,}) = a and for any ke N

Lo(An, N ... N 4,) > 0.

Proof. Denote by & the uniformly-closed and closed-under-conjugation algebra
of functions on G, generated by characteristic functions 1, of sets 4,,. Then & is
a separable C*-algebra with respect to the supremum norm, and by the Gelfand
representation theorem we can represent o7 as of =~ C(X), where X is a compact metric
space. The mean L. extends to a positive linear functional L, on &, and L, in its
turn induces a positive linear functional L on C(X). For fe o let f denote its image
in C(X). By a well-known theorem of F. Riesz there exists a regular Borel measure

4 such that, for any fe C(X),
' L)) = L) = [ P

Note that images in C(X) of characteristic functions of sets in & are also characteristic
functions. For correspondence between &/ and C(X') preserves algebraic operations
and the characteristic functions are the only idempotents in C(X). So there exist sets
A,, for neN, such that for any n, < n, < ... < n, we have

Le(Ap, NN Ap) = (A, n...n4,).

The theorem now follows from Theorem 1.1.

Let us consider the special case in which G = Z and E,, = E+n, where E is a set
of positive upper Banach density. Proceeding as in the proof of Theorem 2.1 and taking
into account that a shift on Z induces a measure-preserving transformation of X, we
obtain as a consequence of Theorem 1.2 the following statement.

THEOREM 2.2. Let E < Z be a subset of positive upper Banach density. Then there
exists a set R = Z such that for any n,, ...,n, € R the upper Banach density of the set
EnE+n,n...N E+nyis positive and R is a set whose density exists and is not less than
the upper Banach density of E.

This gives us the following proposition which is attributed in [1] to R. Ellis.
COROLLARY 2.2.1. Let E c Z be a subset of positive upper Banach density. There
exists a set R < Z with the property that if F is any finite subset of R, then some translate

F+h < E where he Z, and R is a set whose density exists and is positive.

ReMARK. It follows from Theorem 2.2 that 4 can be an element of E.
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3. A property of difference sets in Z*

THEOREM 3.1.  If (X, &, u) is a probability measure space, and T, S are commuting
invertible measure-preserving transformations of (X, #, 1) then for any set A€ # with
u(A) > 0 there exists a sequence {k;}2, of positive upper density such that, for all i,je N,

u(A n TkS% A) > 0.

Proof. A subset P < Z is called syndetic if there exists a finite set F = Z such
that P+ F = Z. In other words the complement of P does not contain too long
intervals of integers. It is an apparently well-known fact (referred to as Khintchine’s
recurrence theorem) that if 7 is an invertible measure-preserving transformation of
a probability measure space (X, %, u) and 4 e B, u(4) > 0, then the set

{n|lw(ANT"A4) > w(A)*—¢}

is syndetic for any £ > 0. For instance, one can obtain it as a consequence of von
Neumann’s uniform ergodic theorem.

Applying Khintchine’s recurrence theorem to the transformation ST we obtain
a syndetic sequence {m,}3., such that for some «, with 0 < & < u(A4)?,

HAN(ST)™A)Zza, n=1,2,....

As S is an invertible measure-preserving transformation and 7, S commute we can
rewrite this expression as
WS ™ ANT™n A) 2 a.

Writing 4,, = S~™a A N T™» A and applying Theorem 1.1 we obtain a sequence {n;}{2,
with d*({n,}) > 0 such that, for any ke N,

WAp, N Ap,N...0A4y) > 0. 3.1
It follows from (3.1) that

(S ANT™A)>0 foranyi,jeN. (3.2)
As {m,} is a syndetic sequence and {n,} has positive upper density we conclude that
the sequence {m,, }{2, has positive upper density. Writing m,,, = k; we obtain from (3.2)

that
wAnS*T* 4) >0 foranyi,jeN,

where d*({k;}) > 0.

COROLLARY 3.1.1. Let A < Z® and suppose that A has positive upper Banach
density. Then there exists B c Z such that d*(B) > 0 and

A—A > BxB.

Here A— A denotes the set of differences of elements of A and B x B is the Cartesian
square of B.

Proof. Define Q = {0,1}%*. Then Q is the space of all double sequences with
entries 0 or 1. Now Q can be made into a compact metric space, taking as metric

po,0) = 1nf{k—H‘w(ll,z2) = w'(i}, i) for [i,|, |i,] < k}.
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Define transformations T, S of Q by
Tw(iy, i) = o(iy+1,1,), Sw(i,i,) = w(i,i;+1).

Of course TS = ST and we see that powers of these transformations generate in a
natural way a Z*%-action on Q. We shall regard the characteristic functions of subsets
of Z2 as points of Q.

Let & = 1 4(n,m), where A = Z2 is a subset of positive upper Banach density, and
let X be the closure in Q of all translates of &:

X={T"S™E|(n,m)e 7%

Let A, = {we X|w(0,0) = 1}. One can show that there exists a probability measure
u on the Borel sets of X satisfying u(4,) > 0 and invariant with respect to T and S
(see for example [1, p. 152]).

By Theorem 3.1 there exists a sequence of positive upper density {n,} = Z such that

for all i,je N we have WA, N TS A,) > 0.

Let we 4, N T S™ A,. Then w(0,0) = w(n;, n;) = 1. But w is in the orbit closure of
£. Thus we can find (n,, m,) € Z2 such that 7% S™0 £ and o have the same coordinates
at the point (n;, n;). Then

1 4(ng, my) = 1,4(ny+ny, mo+"j) =1

It follows that (n;, nj)e A— A4 and the theorem is proved.

COROLLARY 3.1.2. If A < Z and A has positive upper Banach density then there
exists a set B = Z of positive upper density such that

A—A > B+B.

Proof. Let A < Z be a set of positive upper Banach density. We can regard the
characteristic function 14(n) as a point in {0, 1}Z. Let X be the closure in {0, 1}Z of
the set of all translates of & = 1,(n). Define 4, ={xeX|x(0)=1}. Let u be a

probability measure on Borel sets of X satisfying u(4,) > 0. Taking T = Sin Theorem
3.1 we see that there exists a set {n;} = Z of positive upper density such that

wA,nT™*t" A4)>0 foranyi,jeN.
Taking account of the facts that if xe 4, N T™*" A4,, then
x(0) = x(n;+ny) =1,
and that x lies in the orbit closure of &, we conclude that there exists m such that
T™{0) = T™¢(n+ny) =1,
&(m) = <(m+n;+ny) = 1.

This gives us the desired result.

or

REMARK. We do not know the answer to the following questions.

Question 1. Let A c Z3 be a set of positive upper Banach density. Is it true that
there exists a set B = Z of positive upper density such that A—4 > Bx Bx B?
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Question 2. Let A = Z be a set of positive upper Banach density. Is it true that
there exists a set B = Z of positive upper density such that A—4 > B+ B+ B?

On the other hand we have the following.

THEOREM 3.2. Let A = Z™ be a set of positive upper Banach density. Then there
exists an infinite set Be Z such that

A—A > B™"
(where B™ stands for the m-fold Cartesian product of B with itself).

Proof. We shall show that for any m invertible and commuting measure-
preserving transformations T3, T,, ..., T,, of a probability measure space (X, %, u)
and any Ae# with u(A) > 0 there exists an infinite set B < N such that, for any
(n,,n,,...,n,)e B™,

HWANTM TP ... Tin A) > 0. 3.3)

The reduction of this result to the desired combinatorial statement can be made in
complete analogy with the proof of Corollary 3.1.1.

We shall use the multidimensional ergodic Szemerédi theorem of Furstenberg and
Katznelson [3] which states that'if S, S,, ..., S, are invertible commuting measure-
preserving transformations of a probability measure space (X, £, u) and A€ % with
u(A) > 0 then

TS
liminf— ¥ 4(ANSPAN...NSEA)>0.

N—-wo n=1
To avoid cumbersome notation we shall show (3.3) for m = 3. The same proof holds
for any meN.

By the theorem of Furstenberg and Katznelson there exists b, € N such that the
set

A = ANTHANTHANTHANTOTHANTHTHANTHTHANTHTHTYHA

has positive measure. Applying the theorem to the set 4,, we can find b, such that
the set

Ay = A NTPA, N TPA, N TPA, N Tr:T22A, N TP:T22A, \ T2:TE2A, N TP:T2TP:A,

has positive measure. It is clear that all triples made from elements of the set {b,, b,}
satisfy (3.3). Continuing in this manner we find an infinite sequence of sets 4; of
positive measure such that A, < A,_, for all keN (here 4, = 4) and an infinite
sequence {b;}:2, such that, for any k,

A=A N TPeAy N TPeAp 0 TeAy_ 0 TReT2kA,_ 0 TPxTPkA,
NTReTeAp_y N TPeTeTx A,

has positive measure.
We see that (3.3) holds for any m-tuple made from elements of B = {b,,b,,...}.
This completes the proof of Theorem 3.2.

Taking 7, =T, = ... = T,, = T we see that for any measure-preserving trans-
formation T of a probability measure space (X, 4, 1) and for any 4 € & with u(4) > 0
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there exists an infinite set B such that for any (not necessarily distinct!) n,, n,, ..., n,, € B
we have H(A N Trtnst 470 4) > 0.

This gives the following result.

CoROLLARY 3.2.1. Let A c Z be a set of positive upper Banach density. Then for
any meN there exists an infinite set B ¢ Z such that

A-A> {bil+bi2+"'+bimlbijEB’j= l,2,...,m}.

ReMARK. The set B in Theorem 3.2 and Corollary 3.2.1. can be chosen to be
symmetric about the origin. To see this one applies the Furstenberg—Katznelson
theorem to products of transformations 7, 75, ..., T,,, T, T3 %, ..., Tk

4. Sets of recurrence

Let G be a countable group with E = G an infinite subset of G. We call E a set
of recurrence if for any measure-preserving system (X, 4, 4, T;, g€ G) and any A€ &,
H1(A) > 0 there exists g € E such that

wWANT*4) > 0.
We shall say that E is a set of strong recurrence if, for any measure-preserving system

(X, %, u, T, geG), any A€ & with u(4) > 0 and any positive sufficiently small « there
exists an infinite subset £’ = E such that

wWANT;*A) > o for any ge E'.

REMARK. We know of no example of a set of recurrence which is not a set of
strong recurrence.
We pose the following question.

Question. Isit true that the notions of recurrence and strong recurrence coincide?

We now give some examples of sets of (strong!) recurrence in Z. Proofs can be
found in [1].

1. Thick sets. A set R < Z is called thick if it contains arbitrarily long intervals.

2. IP-sets. A subset of Z is called an IP-set if it consists of a sequence of (not
necessarily distinct) integers n,, n,, ... together with all sums of these for distinct indices.

3. Sets of the form {p(n)|neZ}, where p(n) is a polynomial with integer
coefficients and with p(0) = 0.

Theorem 3.18 of [1] states that if 4 = Z is a set of positive upper Banach density
and W c Z is a set of recurrence then 4— A4 n W contains non-zero integers. An
analogous statement holds also for more general groups. The following theorem points
out the connection between difference sets in Z2 and sets of strong recurrence in Z.

THEOREM 4.1. Let D < Z be a set of strong recurrence and let A = Z* be a set of
positive upper Banach density. Then there exists an infinite set B = D such that

A—A > BxB.
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Proof. First of all one can prove (analogously to the proof of Theorem 3.1) that
if D c Z is a set of strong recurrence and T, S are commutative invertible measure-
preserving transformations of a probability measure space (X, B, #), then for any A € B
with u(A) > 0 there exists an infinite subset B = D such that for any n,me B we have

wWANT*S™A) > 0.
The rest of the proof follows the lines of the proof of Corollary 3.3.1.

CoROLLARY 4.1.1. Let p(n) be a polynomial with integer coefficients and with
p(0) =0, and let A = Z* be a set of positive upper Banach density. Then there exists
an infinite sequence {n,}., such that

A—A > BxB,
where B ={p(n,)|k=1,2,...}.

The proof of this corollary is immediate since if a polynomial p(n) satisfies the
conditions above then p(Z) is a set of strong recurrence. A proof of this fact can be
given similarly to the proof of [4, Theorem 3.5]. The following consequence of it is
given in [4, Proposition 3.6].

PROPOSITION. Let S < Z be a set of positive upper Banach density and let p(n)
be a polynomial taking integer values at the integers and including 0 in its range on the
integers. Then there exists a solution to the equation

x—y=p(), x,y€S,zeZ, x#y.

This proposition was also proved independently by Sarkozy and Conze. We
remark that Corollary 4.1.1 can be regarded as a generalization of this proposition.
We shall see later that an even stronger result holds (see Corollary 4.2.1 below).

The following theorem can be proved analogously to [4, Theorem 3.5].

THEOREM 4.2. Let T,,T,,..., T, be invertible commuting transformations of a
probability measure space (X,%,u). Suppose that p,(n),...,p(n) are poly-
nomials with integer coefficients such that p,(0) =0, for i=1,2,...,k. Let Ae%,
U(A) > 0. Then there exists neZ, n # 0, such that

U(A N TP TP TPe™ 4) > 0.

In other words, the set

{2, ....pe(n) | ne 2} < Z*
is a set of recurrence.

COROLLARY 4.2.1.  Suppose that S = Z¥ is a set of positive upper Banach density
and let p,(n), p,(n), ..., pi(n) be polynomials with integer coefficients such that p,(0) = 0,
Jori=1,2,....k. Then there exists a solution to the equation

x—y = (p,(n), po(n), ..., pi(n)),
where x,y€S, x # y, ne”Z.

Proof. Let Q = {0, 1}Z* and denote by
o, = (1,0,...,0), 0, = (0, 1,...,0) ..., v = (0, ..., 1)
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the basis vectors in Z*. Define T;:Q — Q by
T, w(n) = w(n+v,), neZk i=1,2,..,k.

Obviously, the T; commute. Let £(n) be the characteristic function of the set S, and
let X be the closure in Q of the set of all translates of ¢:

X ={TP Tp:... TP E|(ny, ..., n,) € ZF},

Let A = [xeX|x(0) = 1}. In complete analogy with the one-dimensional situation
one can show that there exists a probability measure x on the Borel sets of X, satisfying
u(A) > 0. It follows from Theorem 4.2 that there exists neZ, n # 0, such that

HANTP® TP | TP 4) > 0.
If xe AN TP® TP | TPM A, then

x(0) = 1 = x(py(n), py(n), -.., pi(n)).
As x lies in the orbit closure of &, there exists (m,, m,, ..., m,) € Z* such that

T T T d(0) = T T TRk E(py(n), ..., pe(n) = 1
or &(my, ...,my) = E(m,+p,(n), ...,m,+p,(n)) = 1, and this proves the corollary.

5. Generalizations and concluding remarks

(i) The results obtained in this paper for sets of differences 4 — A4, where 4 is a
set of positive upper Banach density in Z™, are also valid for finite intersections of
such sets. To illustrate this we shall indicate how the following generalization of
Corollary 3.1.1 can be proved.

THEOREM 5.1.  Suppose that A,, A,, ..., A;, are sets of positive upper Banach density
in Z%. Then there exists a set B = Z of positive upper density such that

(Al_Al) n(A2—A2)n “es n(Ak—Ak) o BXB.

Sketch of the proof. First of all we need an appropriate version of Theorem 3.1.
Let (X, 8,, u;) be probability measure spaces and C, € 8,, 4;,(C;) > 0. Suppose that
T,, S, are commuting invertible measure-preserving transformations of (X;, 4, u,),
fori=1,2,...,k. Let c -
(X’ ‘@a/‘) = ’l'.I:Il (Xiaaiuui)

be the product measure space. This means that X is the Cartesian product of X;, &
is the o-algebra generated by Cartesian products of sets from %, and
=y Xy X ... x Y, is the product measure on %. Define the product maps
T=T,xT,x..xT,and S =S8, xS, x... xS, by

T(xy, .., i) = (Ty Xy TyXgsooes T Xi)y  S(x, Xgy ooy Xg) = (Sy X35 S5 Xy -0y Sg X))

Let C= Hf_, C,e 3. Obviously u(C)= e, u(C) >0 and TS = ST. Applying
Theorem 4.1 to C, T and S we obtain a sequence {n;}§2, of positive upper density such

that, for any j,/eN,
CnTHS™C) > 0. (5.1)
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Remembering that C = [1%, C; we obtain from (5.1) that for any j,/eN and all
i=12...k 1, (Cin T SMC) > 0. (5.2)

Now let Q = {0, 1}, ¢, = 14, fori=12,..,k, and let T, § be as in the proof of
Corollary 3.1.1. Define

Xy ={T"S™¢;|(n,mez?, C;={weX;|w(0,0)=1}

Foreachi,1 < i < k,let u;beaprobability measure on X; such that #,(C;) > 0. Forming
the appropriate product space and applying (5.2) we obtain the desired result.

(ii) The following generalization of Theorem 3.1 can be obtained by using
Furstenberg’s and Katznelson’s multidimensional ergodic Szemerédi theorem instead
of Khintchine’s recurrence theorem.

THEOREM 5.2. If (X, %, p) is a probability measure space and T,,T,. ..., T, are
commuting invertible measure-preserving transformations of (X, %, u), then for any
A eB with u(A) > 0 there exists a sequence {n(i)}2, of positive upper density such that
Sfor any i i,, ... i, €N we have

(ANTPOAN TP AN ... 0 TR A) > 0.

A combinatorial consequence of Theorem 5.2 is the following.

THEOREM 5.3. Let A < Z™ be a set of positive upper Banach density and let
U1y Vpy ..., 0, EZ™. Then there exists a set B = N of positive upper density such that
for any k. k, .. k,eB the set A contains a congruent image of the set
{0,k,v,, ko0, ...k, 0.}

(iii) We were not interested in quantitative statements about the density of sets
which appear in our discussion. In most cases such statements can be formulated and
rather precise bounds can be given. For example one can show that if 4 = Z with
d*(A) = a > 0, then there exists a sequence of integers {n,}i2., such that d*({n,}) > 1a*
and, for any i,j, nf+nfe A—A.

References

1. H. FURSTENBERG, Recurrence in ergodic theory and combinatorial number theory (University Press,
Princeton 1981).

2. H. FURSTENBERG and B. WEIss, ‘Topological dynamics and combinatorial number theory, J. Analyse
Math. 34 (1978) 61-8S.

3. H. FURSTENBERG and Y. KATZNELSON, ‘ An ergodic Szemerédi theorem for commuting transformations’,
J. Analyse Math. 34 (1978) 275-291.

4. H. FURSTENBERG, ‘Poincaré recurrence and number theory’, Bull. Amer. Math. Soc. 5 (1981) 211-234.

Institute of Mathematics
Hebrew University
Jerusalem

Israel



