Esercizi su finita immergibilità, densità asintotiche, spessità, sindeticità (seconda parte)

Guglielmo Nocera

16 maggio 2015

Definizione 1. Si dice che $A \leq_{fe} B$ (finitamente immergibile) se $\forall F \subset A$ finito $\exists x \ F + x \subset B$.

Esercizio 1. A spesso, $A \leq_{fe} B \Longrightarrow B$ spesso. Più precisamente, A è massimale rispetto $a \leq_{fe} se$ e solo se è spesso.

<u>Dim.</u> Per ogni intervallo I_n lungo n contenuto in A esiste x t.c. $I_n + x \subset B$. Quindi anche B "e spesso. Per la seconda affermazione, ogni insieme B può essere immerso finitamente in A spesso, dato che ogni suo sottoinsieme finito è contenuto in un intervallo di una certa lunghezza che ha un traslato in A; quindi, A è \leq_{fe} —massimale. Viceversa, se A è massimale è anche spesso, dato che certamente $A \leq_{fe} \mathbb{N}$ e quindi per massimalità $\mathbb{N} \leq_{fe} A$, quindi A è spesso.

Esercizio 2. A AP-rich, $A \leq_{fe} B \Longrightarrow B$ AP-rich.

<u>Dim.</u> Se A contiene progressioni aritmetiche arbitrariamente lunghe, queste possono essere traslate in B mantenendosi tali, da cui la tesi.

Esercizio 3. (1) $A \leq_{fe} B \Longrightarrow BD(A) \leq BD(B)$.

(2) Non vale invece: $A \leq_{fe} B \Longrightarrow \overline{d}(A) \leq \overline{d}(B)$.

Dim.

(1)
$$BD(A) = \lim_{k \to +\infty} \max_{x \in \mathbb{Z}} \frac{|A \cap [x+1, x+k]|}{k} \le \lim_{k \to +\infty} \max_{x \in \mathbb{Z}} \frac{|B \cap [x+1, x+k]|}{k}$$

dato che, a k fissato, se x realizza il massimo, $A \cap [x+1,x+k]$ è finito e dunque esiste y t.c. $B \cap [x+y+1,x+y+k]$ ha almeno la stessa cardinalità del precedente.

(2) L'insieme

$$A = \{2\} \cup \{4, 5\} \cup [11, 13] \cup \cdots \cup [m+1, n] \cup [2n+1, 2n+n-m] \cup \cdots$$

contiene intervalli arbitrariamente lunghi, quindi $\mathbb{N} \leq_{fe} A$, con $\overline{d}(\mathbb{N}) = 1$; ma $\overline{d}(A) \leq \frac{1}{2}$ perché ogni segmento aggiuntivo è immergibile nel buco immediatamente precedente.

Esercizio 4. (1) A sindetico a tratti $A \leq_{fe} B \Longrightarrow B$ sindetico a tratti.

(2) Non vale invece: A sindetico, $A \leq_{fe} B \Longrightarrow B$ sindetico.

Dim.

- (1) Basta osservare che si può immergere in B la successione di intervalli bucati arbitrariamente lunghi contenuti A (la limitazione sui buchi di questi intervalli può solo migliorare).
- (2) Vale ancora il controesempio dell'esercizio precedente: \mathbb{N} è sindetico, ma A non lo è, dato che l'ampiezza dei buchi cresce arbitrariamente.

Esercizio 5. (1) A spesso $\iff \exists \mathcal{V} \text{ non principale } t.c. \ \beta \mathbb{N} \oplus \mathcal{V} \subseteq \mathcal{O}_A.$

(2) A sindetico $\iff \forall \mathcal{V} \text{ non principale } \beta \mathbb{N} \oplus \mathcal{V} \cap \mathcal{O}_A \neq \varnothing$.

 $\underline{Dim.}$

(1)(\Longrightarrow) Vogliamo mostrare che per un certo \mathcal{V} vale $\forall \mathcal{U} \in \beta \mathbb{N} \oplus \mathcal{V} \ A \in \mathcal{U} \oplus \mathcal{V}$, cioè

$$\{n \in \mathbb{N} | A - n \in \mathcal{V}\} \in \mathcal{U}.$$

Scegliamo \mathcal{V} come ultrafiltro generato da tutti i traslati di A. Esso esiste (ed è non principale) perché i traslati hanno la SPIF: infatti se per ogni k A-m contiene intervalli lunghi k del tipo $[a_k-m+1,b_k-m]$ mentre A-n,n>m, contiene intervalli lunghi k del tipo $[a_k-m+1,b_k-n]$, allora per ogni k>m-n i due intervalli hanno intersezione di cardinalità k-(n-m). Quindi l'insieme $(A-n\cap A-m)$ deve essere infinito perché contiene sottoinsiemi di cardinalità arbitraria. Quindi esiste \mathcal{V} come richiesto.

(\Leftarrow) Se vale l'ipotesi, poiché l'unico elemento comune a tutti gli ultrafiltri è \mathbb{N} , per ogni $n \in \mathbb{N}$ deve valere $A - n \in \mathcal{U}$, e quindi come sopra l'intersezione di due qualsiasi traslati deve essere infinita. Supponiamo per assurdo che A contenga intervalli di lunghezza al più k. Allora l'intersezione

$$A-1\cap A-2\cap\cdots\cap A-k-2$$

è vuota. Infatti ogni intervallo perde, nel fare l'intersezione, almeno un punto per ogni traslato, e quindi bastano k+1 intersezioni per ottenere il vuoto. Graficamente, per k=4 (i '+' rappresentano gli elementi che restano nell'intersezione):

$$A-1$$
 ... $++++$ $++++$... $A-2$... $-+++$ $-+++$... $A-3$... $--++$ $--++$... $A-4$... $---+$... $A-5$... $----$

(2)(\Longrightarrow) Se A è sindetico un numero finito di suoi traslati copre \mathbb{Z} . Per l'assioma di ultrafiltro, fissato \mathcal{V} esiste un n t.c. $A-n\in\mathcal{V}$, e quindi se $\mathcal{U}=\bigsqcup_n$ si ha

$${n|A-n \in \mathcal{V}} \in \mathcal{U}.$$

(\Leftarrow) Supponiamo per assurdo A non sindetico e quindi A^c spesso. Allora per il punto (1) esiste \mathcal{V} non principale t.c. $\beta \mathbb{N} \oplus \mathcal{V} \subseteq \mathcal{O}_{A^c}$ che è disgiunto da \mathcal{O}_A , assurdo.