Esercizi lezione 27/4/15, Andrea Vaccaro

 $8~{\rm maggio}~2015$

Proposizione 0.1. Se $A \in U$ e $B \in V$, allora $A + B \in U \oplus V$.

 $\begin{array}{ll} \textit{Dimostrazione.} \ A+B\in U\oplus V \iff C=\{n:A+B-n\in V\}\in U. \ \text{Consideriamo} \ a\in A, \ \text{vale allora che} \ B\subseteq A+B-a, \ \text{infatti} \ a+B\subseteq A+B. \ \text{Quindi per ogni} \ a\in A, \ \text{vale che} \ A+B-a\in V, \ \text{dunque} \ A\subseteq C, \ \text{che quindi è in} \ U, \ \text{perciò segue la tesi.} \end{array}$

Proposizione 0.2. Esiste X infinito tale che $X \oplus X = \{x + x' : x, x' \in X, x \neq x'\} \subseteq A$ se e solo se esiste U ultrafiltro non principale tale che $A \in U \oplus U$.

Dimostrazione. \Leftarrow . Dato X infinito, se \mathcal{F} è il filtro di Fréchet, allora la famiglia $\mathcal{F} \cup \{X\}$ ha la proprietà dell'intersezion finita, poiché essendo X infinito, deve per forza intersecare ogni insieme cofinito, altrimenti sarebbe contenuto nel complementare, che è appunto finito. Sia allora U ultrafiltro che estende $\mathcal{F} \cup \{X\}$, cioè un ultrafiltro non principale contenente X. Consideriamo $U \oplus U$; dobbiamo verifiare che $X \oplus X \in U \oplus U$ per concludere la prima parte della dimostrazione. Sia $n \in X$, e consideriamo $X \oplus X - n = \{m : n + m \in X \oplus X\} \supseteq Y = \{m : m \in X \setminus \{n\}\}$; poiché $X \in U$, e quest'ultimo è non principale, anche Y è in U, poiché altrimenti si avrebbe $\{n\} \in U$. Questo significa che, quando $n \in X$, allora $X \oplus X - n \in U$, e quindi $\{n : X \oplus X - n \in U\} \supseteq X \in U$, che garantisce $X \oplus X \in U$.

⇒. Suppniamo ora esista U non principale tale che $A \in U \oplus U$. Questo significa che $\hat{A} = \{n : A - n \in U\} \in U$. Si verifica che quindi $\hat{A} = \{a_1, a_2, \cdots\}$ è infinito. Definiamo $x_1 = a_1$; a questo punto, poiché $a_1 \in \hat{A}$, allora $A - a_1 \in U$, perciò $\hat{A} \cap (A - a_1) \in U$, quindi è infinita. Considero allora un elemento $x_2 \in \hat{A} \cap (A - a_1)$ diverso da a_1 . Dal momento che $x_2 \in A - a_1$, si ha che $x_1 + x_2 \in A$. Procediamo nel definire gli x_i in modo induttivo. Se abbiamo l'insieme $\{x_1, \cdots, x_k\}$ tale per cui $x_i \neq x_j$ quando $i \neq j$ e tale che ogni $x_i \in \hat{A}$ e $x_i \in A - x_j \in U$ per ogni j < i (così che $x_i + x_j \in A$ se $i \neq j$), definisco allora x_{k+1} come un elemento in $\hat{A} \cap \bigcap_{i \leq k} A - x_i$ diverso da x_j con $j \leq k$ (cosa che posso fare perché l'insieme considerato è in U, dunque è infinito). In questo modo si ha che $x_{k+1} + x_j \in A$ per ogni $j \leq k$, e la costruzione può proseguire, e si ottiene la tesi definendo $X = \{x_1, x_2, \cdots\}$.

Proposizione 0.3. Esistono X e Y infiniti tali che $X + Y \subseteq A$ se e solo se esistono U e V ultrafiltri non principali tali che $A \subseteq (U \oplus V) \cap (V \oplus U)$.

Dimostrazione. Dati X e Y infiniti, considero U ultrafiltro non principale contenente X (prendo un qualunque ultrafiltro contenente $\mathcal{F} \cup \{X\}$ dove \mathcal{F} è il filtro di Fréchet) e V ultrafiltro non principale contenente Y (similmente). Per il primo degli esercizi qui raccolti, allora $X+Y\in U\oplus V$ e $Y+X=X+Y\in V\oplus U$, dunque segue che se $A\supseteq X+Y$ allora $A\in (U\oplus V)\cap (V\oplus U)$.

Viceversa, sia $A \in (U \oplus V) \cap (V \oplus U)$ con $U \in V$ non principali. Vale allora che $\hat{A}_1 = \{n : A - n \in V\} \in U$ e $\hat{A}_2 = \{m : A - m \in U\} \in V$; sia $x_1 \in \hat{A}_1$, ciò implica che $A-x_1 \in V$, perciò $\hat{A}_2 \cap (A-x_1) \in V$, dunque non vuoto, posso quindi scegliere in esso y_1 , e vale che $x_1 + y_1 \in A$. Poiché $y_1 \in \hat{A}_2$, allora $A-y_1\in U$, quindi $\hat{A}_1\cap (A-y_1)\in U$ perciò è infinito, e posso trovare un $x_2 \neq x_1$, tale per cui valga $x_2 + y_1 \in A$ (poiché $x_2 \in A - y_1$). A questo punto si ragiona con x_2 come si è fatto per x_1 , e si trova un $y_2 \in \hat{A}_2 \cap (A - x_1) \cap (A - x_2)$ che sia diverso da y_1 . Più in generale, il passo induttivo funziona così: abbiamo due insiemi $X_k = \{x_1, \dots, x_k\} \subseteq A_1$ e $Y_{k-1} = \{y_1, \dots, y_{k-1}\} \subseteq A_2$ tali per cui $x_i \in A_1 \cap \bigcap_{j < i} A - y_j \in U$ per ogni $i \le k$ e $y_j \in A_2 \cap \bigcap_{i < j} A - x_i \in V$ per (j < k), il che significa che $x + y \in A$ per ogni $x \in X_k$ e $y \in Y_{k-1}$. A questo punto, dal momento che $x_k \in A_1$, vale che $A - x_k \in V$, posso quindi trovare $y_k \in \hat{A}_2 \cap \bigcap_{i \le k} A - x_i$ diverso da ogni y_j con j < k poiché l'insieme indicato è in V, dunque è infinito. Poiché però abbiamo scelto $y_k \in \hat{A}_2$, vale che $A - y_k \in U$, perciò posso trovare in $\hat{A}_1 \cap \bigcap_{j < k+1} A - y_j$ un elemento x_{k+1} diverso da tutti gli x_i precedenti, poiché questo insieme è in U, dunque è infinito. Possiamo allora definire $X_{k+1} = X_k \cup \{x_{k+1}\}$ e $Y_k = Y_{k-1} \cup \{y_k\}$, i quali verificano tutte le proprietà volute. Definendo quindi $X = \{x_1, x_2, \dots\}$ e $Y = \{y_1, y_2, \dots\}$ si ottengono gli insiemi cercati.

Proposizione 0.4. Sia V ultrafiltro e F filtro. Esiste W ultrafiltro tale che $W \subseteq F \oplus V$ se e solo se $W = U \oplus V$ dove U è un ultrafiltro che estende F.

Dimostrazione. Prima di cominciare, una piccola nota topologica. Dato un filtro F su \mathbb{N} , a questo possiamo associare in modo univoco un chiuso non vuoto di $\beta\mathbb{N}$, che è $\bigcap_{A\in F}\mathcal{O}_A$, e chiameremo C_F , non vuoto poiché contiene ogni ultrafiltro che può estendere F, e viceversa a ogni chiuso non vuoto $\bigcap_{i\in I}\mathcal{O}_{A_i}$ possiamo associare il filtro generato da $\{A_i\}_{i\in I}$ (sappiamo di poter generare un filtro poiché il chiuso è non vuoto, quindi gli A_i godono della proprietà dell'intersezione finita, in quanto elementi di almeno un ultrafiltro).

Otteniamo le tesi se verifichiamo che $C_{F \oplus V} = \{U \oplus V : U \text{ ultrafiltro che estende } F\} = H$, poiché un ultrafiltro W estende $F \oplus V$ se e solo se appartiene al chiuso $C_{F \oplus V}$.

Da un lato, vale che $H \subseteq C_{F \oplus V}$. Se U è un ultrafiltro che estende F, allora $W = U \oplus V \supseteq F \oplus V$, infatti $A \in F \oplus V$ se e solo se $\{n : A - n \in V\} \in F$, quindi, poiché $F \subseteq U$, $\{n : A - n \in V\} \in U$, cioè $A \in U \oplus V$.

Se mostriamo che \hat{H} è un chiuso, abbiamo finito. Se infatti H fosse chiuso e fosse strettamente contenuto in $C_{F \oplus V}$, allora sarebbe C_G per un filtro G che estende $F \oplus V$ ma diverso da quest'ultimo. Se considero allora $A \in G$ ma non in $F \oplus V$, ho che $\hat{A} = \{n : A - n \in V\} \notin F$; dire che $A \in G$, implica che $C_G \subseteq \mathcal{O}_A$, e quindi ogni ultrafiltro che estende F contiene \hat{A} , perciò \hat{A}^c è disgiunto dall'intersezione di almeno una famiglia finita di elementi di F (altrimenti potrei estendere $F \cup \{\hat{A}^c\}$ con un ultrafiltro), quindi \hat{A} contiene tale intersezione, che è un elemento di F; ma allora $\hat{A} \in F$, e dunque $A \in F \oplus V$, contro l'ipotesi.

Mostriamo infine che $H = \overline{H}$. Supponiamo $W \in \overline{H} \setminus H$. Vale che per ogni $U \in H$ esiste $B_U \subseteq \mathbb{N}$ tale che $B_U \in W$ ma $B_U \notin U$. D'altra parte, poiché $W \in \overline{H}$, per ognuno dei B_U esiste un W_U ultrafiltro che estende F tale che $B_U \in W_U \oplus V$, quindi $\hat{B}_U = \{n : B_U - n \in V\} \in W_U$. Consideriamo ora \hat{B}_{U_1} e \hat{B}_{U_2} per due $U_i \in H$ qualunque; sempre perché $W \in \overline{H}$, esiste allora un ultrafiltro \overline{U} che estende F tale che $B_{U_1}\cap B_{U_2}\in \overline{U}\oplus V$. Vale però che $\hat{B}_{U_1}\cap B_{U_2}$ $\hat{B}_{U_2} = \{n : B_{U_1} - n \in V \land B_{U_2} - n \in V\} = \{n : B_{U_1} - n \cap B_{U_2} - n \in V\} =$ $\{n: (B_{U_1} \cap B_{U_2}) - n \in V\} = (B_{U_1} \cap B_{U_2})$ che è in \overline{U} poiché $B_{U_1} \cap B_{U_2} \in \overline{U} \oplus V;$ quindi l'intersezione fra \hat{B}_{U_1} e \hat{B}_{U_2} è non vuota, e più in generale i \hat{B}_U godono della proprietà dell'intersezione finita. Poiché ogni intersezione finita di \hat{B}_U è in un ultrafiltro che estende F (fatto che si dimostra come per il caso con intersezione di 2 elementi visto sopra), la proprietà dell'intersezione vale anche per $F \cup \{\hat{B}_U\}_{U \in \mathcal{H}}$, esiste cioè un ultrafiltro \overline{W} che estende F più la famiglia $\left\{\hat{B}_U\right\}_{U\in H}$. Consideriamo ora $\overline{W}\oplus V$. Da un lato vale, per la scelta dei B_U , che $B_{\overline{W} \oplus V} \notin \overline{W} \oplus V$. Però questo equivale a dire che $\hat{B}_{\overline{W} \oplus V} \notin \overline{W}$, il che è assurdo per costruzione di \overline{W} .