Esercizi lezione 24/3/15, Andrea Vaccaro

12 aprile 2015

Proposizione 0.1. Verificare che se $A \cap B = \emptyset$

$$\underline{d}(A) + \underline{d}(B) \le \underline{d}(A \cup B) \le \underline{d}(A) + \overline{d}(B) \le \overline{d}(A \cup B) \le \overline{d}(A) + \overline{d}(B)$$

 $\begin{array}{l} \textit{Dimostrazione.} \text{ Chiamando } a_n = \frac{|A \cap [1,n]|}{n}, \ b_n = \frac{|B \cap [1,n]|}{n} \text{ e } c_n = \frac{|(A \cup B) \cap [1,n]|}{n}, \\ \text{poich\'e } A \text{ e } B \text{ sono disgiunti, si verifica } a_n + b_n = c_n. \end{array}$

Vediamo la prima disuguaglianza: se considero $\{c_{n_k}\}_{k\in\mathbb{N}}$ sottosuccessione che converga a $\underline{d}(A\cup B)$, questa induce 2 sottosuccessioni negli a_n e nei b_n tali per cui $a_{n_k}+b_{n_k}=c_{n_k}$. A meno di sottosuccessioni si ha che $\{a_{n_k}\}_{k\in\mathbb{N}}$ e $\{b_{n_k}\}_{k\in\mathbb{N}}$ ammettono limiti, la somma dei quali sia $\underline{d}(A\cup B)$. Per definizione di lim inf si ha che $\underline{d}(A)$ è minore uguale del limite degli a_{n_k} e così $\underline{d}(B)$ per i b_{n_k} ; segue allora la disuguaglianza.

Passando alla seconda disuguaglianza, sia $\{a_{n_k}\}_{k\in\mathbb{N}}$ una sottosuccessione degli a_n che converga a $\underline{d}(A)$. Considero allora $\{c_{n_k}\}_{k\in\mathbb{N}}$ e $\{b_{n_k}\}_{k\in\mathbb{N}}$ con gli indici corrispondenti, in modo che tutte ammettano limite (possibile a meno di sottosuccessione). Vale che se $l_c = \lim_{k\to\infty} c_{n_k}$, allora $l_c \geq \underline{d}(A\cup B)$; definendo in modo simile l_b , si ha dunque $\underline{d}(A\cup B) \leq l_c = \underline{d}(A) + l_b$ e poiché $l_b \leq \overline{d}(B)$, la tesi segue.

Per la terza disuguaglianza, similmente a prima consideriamo $\{b_{n_k}\}_{k\in\mathbb{N}}$ in modo che il suo limite sia $\overline{d}(B)$. Con una notazione e una costruzione analoga a quella della disuguaglianza precedente, si ottiene che $l_c \leq \overline{d}(A \cup B)$, ovvero $l_a + \overline{d}(B) = l_c \leq \overline{d}(A \cup B)$, e poiché $l_a \geq \underline{d}(A)$, si ottiene la tesi.

Infine, sia $\{c_{n_k}\}_{k\in\mathbb{N}}$ sottosuccessione dei c_n convergente a $\overline{d}(A\cup B)$. Considerando (come sempre a meno di sottosuccessione in modo che tutte le successioni da noi considerate ammettano limite) allora $\{a_{n_k}\}_{k\in\mathbb{N}}$ e $\{b_{n_k}\}_{k\in\mathbb{N}}$ si ottiene $\overline{d}(A\cup B)=l_a+l_b\leq \overline{d}(A)+\overline{d}(B)$ per definizione di lim sup.

Proposizione 0.2. Sia $A = \{\alpha_1, \alpha_2, \cdots\}$. Se $\sum_n \frac{1}{a_n} < \infty$ allora d(A) = 0.

 $\begin{array}{l} \textit{Dimostrazione}. \text{ Chiamiamo } a_n = \frac{|A \cap [1,n]|}{n}, \text{ e supponiamo vi sia una sottosuccessione (che chiameremo sempre } a_n) \text{ che ammette limite positivo. A meno di togliere un segmento iniziale della successione, possiamo supporre } a_n \neq 0 \text{ per ogni } n. \text{ Se chiamiamo } l > 0 \text{ il limite della successione, allora la successione } \left\{\frac{1}{a_n}\right\}_{n \in \mathbb{N}} \text{ ammette limite } \frac{1}{l} > 0, \text{ ma ciò è assurdo per l'ipotesi } \sum_n \frac{1}{a_n} < \infty. \\ \text{Si ottiene dunque che } \overline{d}(A) = 0 \text{ e segue la tesi, poiché la successione degli } a_n \text{ è positiva.} \end{array}$

Proposizione 0.3. Per ogni insieme infinito $X = \{x_1, x_2, \dots\}$ trovare una bicolorazione $[\mathbb{N}]^2 = C_1 \sqcup C_2$ in modo che per ogni H infinito ed omogeneo valga $\lim_{n\to\infty} \frac{|H\cap[1,n]|}{|X\cap[1,n]|} = 0$.

Dimostrazione. Poiché $X=\{x_1< x_2<\cdots\}$ è infinito, definendo $x_0=0$, si ha che $\mathbb{N}=\bigcup_{i\geq 0} [x_i,x_{i+1})$. Definiamo allora una bi-colorazione su $[\mathbb{N}]^2=C_1\sqcup C_2$ come segue: sia $\{a,b\}$ con a< b; sia $k\in\mathbb{N}$ tale che $a\in[x_k,x_{k+1})$. Se $b\in[x_j,x_{j+1})$ con $k\leq j\leq 2k$ allora poniamo $\{a,b\}$ in C_1 , mettiamo la coppia in C_2 altrimenti. Sia ora $H=\{h_1< h_2<\cdots\}$ infinito omogeneo; poiché è infinito, si verifica che $\{a,b\}\in C_2$ per ogni $a,b\in H$. Sia infatti $h_1\in[x_k,x_{k+1})$, poiché l'insieme $\bigcup_{k\leq j\leq 2k} [x_j,x_{j+1})$ è finito, dovrà esistere h_i fuori da tale unione; per definizione allora $\{h_1,h_i\}\in C_2$, dunque $[H]^2$ è colorato in C_2 poiché omogeneo. Studiamo allora $\lim_{n\to\infty} \frac{|H\cap[1,n]|}{|X\cap[1,n]|}$. Chiamiamo $\alpha_n=\frac{|H\cap[1,n]|}{|X\cap[1,n]|}$ e valga $h_1\in[x_i,x_{i+1})$; vale allora che $\alpha_{h_1}=\frac{1}{i}$, e poiché H è omogeneo in C_2 deve anche valere che h_k sia al minimo in $[x_{2^{k-1}i},x_{2^{k-1}i+1})$, dunque $\alpha_{h_k}\leq \frac{k}{2^{k-1}i}$, inoltre per ogni $n\in(h_k,h_{k+1})$ vale $\alpha_n\leq \frac{k}{2^{k-1}i}$, poiché rispetto ad α_{h_k} stiamo solo aumentando il denominatore. Dal momento che $\frac{k+1}{2^k}\leq \frac{k}{2^{k-1}}$ si ha che la successione degli α_n tende a zero, in quanto per ogni ϵ posso trovare un k tale che $\frac{k}{2^{k-1}i}<\epsilon$.