Dario Ascari

Esercizi del corso di ultrafiltri

assegnati il 16-17/3/15

Lemma 0.1. Data una funzione $f: X \to X$ senza punti fissi, esiste una 3-colorazione di X tale che $\forall x \in X$ x ed f(x) hanno colori diversi.

Esercizio 0.1. La famiglia dei sottoinsiemi interni di ${}^*\mathbb{R}$ è chiusa per unione finita, intersezione finita, differenza. (Chiamo \mathcal{U} l'ultrafiltro usato per costruire ${}^*\mathbb{R}$)

Dimostrazione. Siano dati due sottoinsiemi $A := \{ [\langle a_n | n \in \mathbb{N} \rangle] : a_n \in A_n \}$ e $B := \{ [\langle b_n | n \in \mathbb{N} \rangle] : b_n \in B_n \}$ interni di * \mathbb{R} :

- $A \cup B$ è interno perchè coincide con X generato da $\langle A_n \cup B_n | n \in \mathbb{N} \rangle$: chiaramente $A \subseteq X$ e $B \subseteq X$, quindi $A \cup B \subseteq X$; inoltre se $[\langle x_n \rangle] \in X$ allora $\{i : x_i \in A_i \cup B_i\} \in \mathcal{U}$, quindi per proprietà di ultrafiltro almeno uno dei due insiemi $\{i : x_i \in A_i\}$ e $\{i : x_i \in B_i\}$ appartiene a \mathcal{U} , cioè $[\langle x_n \rangle] \in A \cup B$. Quindi $X \subseteq A \cup B$.
- $A \cap B$ è interno perchè coincide con X generato da $\langle A_n \cap B_n | n \in \mathbb{N} \rangle$: le inclusioni $X \subseteq A$ $X \subseteq B$ sono ovvie, da cui $X \subseteq A \cap B$; inoltre se $[\langle x_n \rangle] \in A \cap B$ allora gli insiemi $\{i : x_i \in A_i\}$ e $\{i : x_i \in B_i\}$ stanno in \mathcal{U} , quindi per proprietà di filtro anche la loro intersezione $\{i : x_i \in A_i \cap B_i\} \in \mathcal{U}$, quindi $[\langle x_n \rangle] \in X$, da cui $A \cap B \subseteq X$.
- Analogamente agli altri due casi, $A \setminus B$ è interno in quanto coincide con l'insieme X generato da $\langle A_n \setminus B_n | n \in \mathbb{N} \rangle$: è facile vedere che $X \cap B = \emptyset$ e $X \subseteq A$ da cui $X \subseteq A \setminus B$; inoltre se $[\langle x_n \rangle] \in A \setminus B$ allora $\{i : x_i \in A_i\} \in \mathcal{U}$ e $\{i : x_i \notin B_i\} \in \mathcal{U}$ quindi per proprietà di filtro la loro intersezione $\{i : x_i \in A_i \setminus B_i\} \in \mathcal{U}$ cioè $[\langle x_n \rangle] \in X$ da cui $A \setminus B \subseteq X$.

Esercizio 0.2. Dato un ultrafiltro \mathcal{U} su X e una funzione $f: X \to X$, vale

$$f_*(\mathcal{U}) = \mathcal{U} \Leftrightarrow \{x : f(x) = x\} \in \mathcal{U}$$

Dimostrazione.

(⇒) Partiziono X in 4 insiemi: uno è l'insieme F dei punti fissi di f; usando il lemma, dato che $f|_{X\backslash F}$ non ha punti fissi, si può partizionare $X\backslash F$ in tre insiemi A, B e C in modo che x ed f(x) stiano in insiemi diversi $\forall x \in X \backslash F$. Per proprietà di ultrafiltro, esattamente uno tra F, A, B e C appartiene all'ultrafiltro: se non fosse F e fosse invece ad esempio $A \in \mathcal{U}$

avrei $F \cup B \cup C \notin \mathcal{U}$ e $f^{-1}(A) \subseteq F \cup B \cup C \notin \mathcal{U}$, che è assurdo poichè, dal momento che $f_*(\mathcal{U}) = \mathcal{U}$, vale $[A \in \mathcal{U} \Leftrightarrow f^{-1}(A) \in \mathcal{U}]$. Quindi $F \in \mathcal{U}$. (\Leftarrow) Detto sempre F l'insieme dei punti fissi di f e preso un qualsiasi insieme $A \subseteq X$, essendo $F \in \mathcal{U}$ vale $[A \in \mathcal{U} \Leftrightarrow A \cap F \in \mathcal{U}]$: ma allora valgono le seguenti implicazioni:

$$A \in \mathcal{U} \Rightarrow A \cap F \in \mathcal{U} \Rightarrow f^{-1}(A \cap F) \in \mathcal{U} \Rightarrow f^{-1}(A) \in \mathcal{U}$$

dove la seconda implicazione è vera perchè $f^{-1}(A \cap F) \supseteq A \cap F \in \mathcal{U}$ e la terza perchè $f^{-1}(A) \supseteq f^{-1}(A \cap F) \in \mathcal{U}$; analogamente

$$f^{-1}(A) \in \mathcal{U} \Rightarrow f^{-1}(A) \cap F \in \mathcal{U} \Rightarrow A \cap F \in \mathcal{U} \Rightarrow A \in \mathcal{U}$$

perchè $f^{-1}(A) \cap F = f^{-1}(A) \cap f^{-1}(F) = f^{-1}(A \cap F) = A \cap F$. Quindi $[A \in \mathcal{U} \Leftrightarrow f^{-1}(A) \in \mathcal{U}]$ cioè $f_*(\mathcal{U}) = \mathcal{U}$.

Esercizio 0.3. Non è vero in generale che $[f_*(\mathcal{U}) = g_*(\mathcal{U}) \Rightarrow \{x : f(x) = g(x)\} \in \mathcal{U}].$

Dimostrazione. Costruiamo un controesempio: consideriamo un qualsiasi ultrafiltro non principale \mathcal{U} su un qualsiasi insieme infinito X: consideriamo inoltre l'ultrafiltro $\mathcal{U}\otimes\mathcal{U}$ su $X\times X$. Siano $f:X\times X\to X$ e $g:X\times X\to X$ definite da f((x,y))=x e g((x,y))=y ($\forall x,y\in X$): è semplice verificare che $f_*(\mathcal{U}\otimes\mathcal{U})=g_*(\mathcal{U}\otimes\mathcal{U})=\mathcal{U}$ dal momento che, comunque preso $A\subseteq X$ valgono

- $A \in \mathcal{U} \Leftrightarrow f^{-1}(A) \in \mathcal{U}$ perchè $f^{-1}(A) = \{(a, x) : a \in A \ x \in X\}$ e quindi $\{x : \{y : (x, y) \in f^{-1}(A)\} \in \mathcal{U}\} = A$ (infatti l'insieme più interno dei due è X se $x \in A$ ed è \emptyset altrimenti).
- $A \in \mathcal{U} \Leftrightarrow g^{-1}(A) \in \mathcal{U}$ perchè $g^{-1}(A) = \{(x, a) : a \in A \ x \in X\}$ da cui $\{x : \{y : (x, y) \in f^{-1}(A)\} \in \mathcal{U}\}$ è X se $A \in \mathcal{U}$ ed è \emptyset altrimenti (infatti l'insieme più interno dei due è A indipendentemente da x).

Tuttavia $F := \{(x,y) \in X \times Y : f((x,y)) = g((x,y))\} = \{(x,x) : x \in X\}$ non appartiene a $\mathcal{U} \otimes \mathcal{U}$ in quanto $\{(x : \{y : (x,y) \in F\} \in \mathcal{U}\} = \{x : \{x\} \in \mathcal{U}\} = \emptyset \notin \mathcal{U}$ perchè \mathcal{U} è non principale.

Esercizio 0.4. Siano dati due ultrafiltri \mathcal{U} e \mathcal{V} su due insiemi X ed Y rispettivamente, tali che |X| = |Y| e $\mathcal{V} \leq \mathcal{U}$ e $\mathcal{U} \leq \mathcal{V}$; allora $\mathcal{U} \cong \mathcal{V}$.

Dimostrazione. Se X ed Y sono finiti, \mathcal{U} e \mathcal{V} sono principali e la tesi è ovvia. Altrimenti per ipotesi esistono due funzioni $f: X \to Y$ e $g: Y \to X$ tali che $f_*(\mathcal{U}) = \mathcal{V}$ e $g_*(\mathcal{V}) = \mathcal{U}$. Allora $(g \circ f)_*(\mathcal{U}) = g_*(f_*(\mathcal{U})) = \mathcal{U}$ da cui, per l'esercizio precedente $F_X := \{x \in X : g(f(x)) = x\} \in \mathcal{U}$; analogamente $F_Y := \{y \in Y : f(g(y)) = y\} \in \mathcal{V}$. Inoltre $f|_{F_X} : F_X \to F_Y$ e $g|_{F_Y} : F_Y \to F_X$ sono bigettive e sono una l'inversa dell'altra.

Se $|X \setminus F_X| = |Y \setminus F_Y|$ prendo una qualunque bigezione $\beta: X \setminus F_X \to Y \setminus F_Y$ e considero la bigezione $\sigma: X \to Y$ data dall'unione delle due bigezioni $\sigma|_{F_X} := f|_{F_X}$ e $\sigma|_{X \setminus F_X} := \beta$: è facile verificare che $\sigma_*(\mathcal{U}) = \mathcal{V}$. Se invece $|X \setminus F_X| \neq |Y \setminus F_Y|$ allora $|F_X| = |F_Y| = |X| = |Y|$: divido F_X in due insiemi entrambi di cardinalità |X| (e le loro immagini partizionano F_Y in due parti anch'esse di cardinalità |X|) e considero quello $\in \mathcal{U}$ dei due; definisco la bigezione σ come f sulla metà di F_X che appartiene a \mathcal{U} e come una bigezione qualunque da ciò che resta in X (di cardinalità |X|) in ciò che resta in Y (sempre di cardinalità |X|); è semplice ferificare che $\sigma_*(\mathcal{U}) = \mathcal{V}$.