Esercizi legati a teorema di Ramsey e regolarità per partizioni

Guglielmo Nocera

22 marzo 2015

Esercizio 1 (Lemma per la dimostrazione del Teorema di Ramsey). \mathcal{U} ultrafiltro su \mathbb{N} . Allora se $B \in \mathcal{U} \otimes \mathcal{U} \otimes \mathcal{U}$ esiste $H \in \mathbb{N}$ infinito t.c. $[H]^3 \subset B$.

<u>Dim.</u> Come nel caso k=2, identifichiamo l'insieme delle terne con l'insieme $\{(a,b,c)|a< b< c\}$. Anzitutto $\hat{B}=\{(i,j)\in\mathbb{N}^2|B_{i,j}\in\mathcal{U}\}\in\mathcal{U}\otimes\mathcal{U}$. Quindi $\hat{B}=\{i\in\mathbb{N}|\hat{B}_i\in\mathcal{U}\}\in\mathcal{U}$. Scegliamo ora $h_1\in\hat{B}$, e $h_1>h_1,h_2\in\hat{B}\cap\hat{B}_{h_1}$ (è possibile perché per scelta di h_1 anche $\hat{B}_{h_1}\in\mathcal{U}$, quindi l'intersezione è non vuota e infinita, cosicché è possibile prendere $h_2>h_1$). Scegliamo ora $h_3>h_2$ in $\hat{B}\cap\hat{B}_{h_1}\cap\hat{B}_{h_2}\cap B_{h_1,h_2}$; è possibile farlo perché per scelta di h_1 e h_2 tutti i termini dell'intersezione appartengono ad \mathcal{U} . Abbiamo allora che:

- $h_3 \in \hat{B} \Longrightarrow \hat{B}_{h_3} \in \mathcal{U}$
- $h_3 \in \hat{B}_{h_1} \Longrightarrow B_{h_1,h_3} \in \mathcal{U}$
- $h_3 \in \hat{B}_{h_2} \Longrightarrow B_{h_2,h_3} \in \mathcal{U}$
- $h_3 \in B_{h_1,h_2} \Longrightarrow (h_1,h_2,h_3) \in B$

Su questa base siamo dunque in grado di iterare la costruzione (si sceglie $h_4 \in \hat{B} \cap \hat{B}_{h_1} \cap \hat{B}_{h_2} \cap \hat{B}_{h_3} \cap B_{h_1,h_2} \cap B_{h_1,h_3} \cap B_{h_2,h_3}$, etc.) ottenendo $H = \{h_1 < h_2 < h_3 < h_4 \dots\}$.

NOTA: il caso k>3 segue uno schema esattamente analogo. In tal modo il Teorema di Ramsey in versione infinita risulta dimostrato, dato che per ogni k l'insieme $[\mathbb{N}]^k$ si può identificare con l'insieme $\Delta_k^+ = \{(n_1,\ldots,n_k)|n_1<\cdots< n_k\}$ e si possono condurre gli stessi ragionamenti fatti nel caso k=2 per dimostrare che esiste un colore C_i appartenente al prodotto tensoriale di k copie dell'ultrafiltro non principale \mathcal{U} . Infatti come in quel caso basta dimostrare che $\Delta_k^+ \in \bigotimes_1^k \mathcal{U}$: proviamolo per induzione prendendo come passo base appunto k=2 e come ipotesi induttiva $\Delta_{k-1}^+ \in \bigotimes_1^{k-1} \mathcal{U}$. Allora la sezione $(\Delta_k^+)_{n_1,\ldots,n_{k-1}}$ è cofinita (dunque appartiene all'ultrafiltro \mathcal{U}) per ogni $(n_1,\ldots,n_{k-1}) \in \Delta_{k-1}^+$. Poiché quest'ultimo insieme appartiene a $\bigotimes_1^{k-1} \mathcal{U}$ per ipotesi induttiva, dalla definizione di prodotto tensoriale si ha la tesi.

Esercizio 2. Sia (P, \leq) parzialmente ordinato e infinito. Allora esiste $X \subseteq P$ catena infinita oppure anti-catena infinita (ovvero $\forall x \neq x'$ in X vale $x \nleq x'$ e $x \ngeq x'$).

<u>Dim.</u> Sia $N \subseteq P$ numerabile. Allora $[N]^2 = C \sqcup D$ dove

$$C = \{(x, y) | x \le y \lor y \le x\}$$

Per il teorema di Ramsey esiste $H \subseteq N$ infinito t.c. $[H]^2 \subset D$, ovvero H e un'anticatena, oppure $[H]^2 \subset C$, ovvero H è totalmente ordinato, ovvero una catena infinita.

Definizione 1. $\mathcal{F} \subset \mathcal{P}(X)$ chiusa per soprainsiemi si dice debolmente regolare per partizioni se $\forall r \in \mathbb{N}, \ \forall \ X = C_1 \sqcup \cdots \sqcup C_r$ esiste $F \in \mathcal{F}$ t.c. $F \subset C_i$, ovvero $C_i \in \mathcal{F}$, per qualche i.

Definizione 2. $\mathcal{F} \subset \mathcal{P}(X)$ chiusa per soprainsiemi si dice (fortemente) regolare per partizioni se $\forall r \in \mathbb{N}, \ \forall \ C_1 \sqcup \cdots \sqcup C_r \in \mathcal{F}$ esiste $C_i \in \mathcal{F}$ per qualche i.

Esercizio 3.

- 1) \mathcal{F} è debolmente regolare per partizioni su $X \iff \exists \ \mathcal{U}$ ultrafiltro su X incluso in \mathcal{F} .
- 2) \mathcal{F} è regolare per partizioni \iff è unione di ultrafiltri su X.

Dim.

- 1)(\Longrightarrow) Mostriamo anzitutto che $\mathcal F$ contiene il filtro di Fréchet su X oppure un ultrafiltro principale. Sia infatti F cofinito non contenuto in $\mathcal F$. La partizione formata da F e da tutti i punti non appartenenti a F rientra nell'ipotesi e dunque, poiché $F \notin \mathcal F$, esiste $x \in X, \{x\} \in \mathcal F$. Quindi poiché $\mathcal F$ è chiusa per soprainsiemi contiene ultrafiltro principale associato ad x. Supponiamo invece che $\mathcal F$ contenga il filtro di Fréchet su X e dimostriamo che contiene un ultrafiltro che lo estende. Per ogni $A \in \mathcal P(X)$ vale $A \in \mathcal F \vee A^c \in \mathcal F$ (basta considerare la partizione $X = A \sqcup A^c$). Supponiamo ad esempio che $A \in \mathcal F$, e aggiungiamo A e tutti i soprainsiemi al filtro di Fréchet. Ogni altra aggiunta potrà essere fatta in modo da non violare la proprietà di intersezione finita, dato che saremmo costretti a violarla se un soprainsieme di A non stesse in $\mathcal F$, ma ciò non è vero per ipotesi.
 - (\Leftarrow) Se \mathcal{F} contiene un ultrafiltro, esso conterrà certamente lo spazio X come elemento. Dunque la tesi discende direttamente da una delle forme equivalenti della definizione di ultrafitro.
- 2)(\Longrightarrow) Sia $F \in \mathcal{F}$. Certamente F esiste un ultrafiltro \mathcal{U} su \mathcal{F} per quanto dimostrato sopra e per l'ipotesi di ereditarietà, e certamente F appartiene a questo ultrafiltro. Estendiamo \mathcal{U} a ultrafiltro su X aggiungendo tutti i soprainsiemi degli elementi di \mathcal{U} : la famiglia \mathcal{U}' così ottenuta è banalmente ancora un filtro, ed è anche un ultrafiltro, dato che preso un qualunque $A \in \mathcal{P}(X)$ vale $A \cap F \in \mathcal{U} \vee A^c \cap F \in \mathcal{U}$, quindi $A \in \mathcal{U}' \vee A^c \in \mathcal{U}'$.
 - (\Leftarrow) Sia $C_1 \sqcup \cdots \sqcup C_r \in \mathcal{F}$. Allora $C_1 \sqcup \cdots \sqcup C_r$ è contenuto in un certo ultrafiltro \mathcal{U} su X, e pertanto esiste $C_i \in \mathcal{U} \subset \mathcal{F}$.