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Non-constructive principles for mathematics

A list of five (in some cases apparently unrelated) useful non-constructive
principles:

1 The axiom of choice,
2 Baire’s category theorem,
3 Large cardinal axioms,
4 Shoenfield’s absoluteness,
5 Łoś Theorem for ultrapowers of first orders structures.

First aim: show that the language of forcing allows to bring out the
analogies more or less evident between all these distinct
principles and to express all of them as forcing axioms.

Second aim: formulate stronger and stronger non constructive principles
leveraging on different aspects of the above analogies.
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The axiom of choice is a global forcing axiom

This observation has been handled to me by Stevo Todorčević.
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The axiom of choice is a global forcing axiom

Definition
Let λ be an infinite cardinal. DCλ holds if for all sets X and all functions
F : X<λ → P(X), there exists g : λ→ X such that g(α) ∈ F(g � α) for all
α < λ.

Fact
The axiom of choice AC is equivalent over ZF to the assertion DCλ holds
for all λ.

This is a local statement, i.e. there is a level by level correspondance
between the amount of choice and of dependent choice available in the
universe.
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The axiom of choice is a global forcing axiom

Definition

Let P be a partial order. FAλ(P) holds if for all family {Dα : α < λ} of dense
subsets of P, there exists a filter G ⊂ P which has non-empty intersection
with all the Dα.
Let Γ be a class of partial orders. Then FAλ(Γ) holds if FAλ(P) holds for all
P ∈ Γ.

Fact

DCℵ0 is equivalent over ZF to the assertion FAℵ0(P) holds for all P.
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The axiom of choice is a global forcing axiom.

Sketch of proof. I show just the direction I want to bring forward:
Assume F : X<ω → P(X) is a function. Let T be the subtree of X<ω given
by finite sequences s ∈ X<ω such that s(i) ∈ F(s � i) for all i < |s|.
Consider the family given by the dense sets

Dn = {s ∈ T : |s| > n}.

If G is a filter on T meeting the dense sets of this family, ∪G works.
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The axiom of choice is a global forcing axiom.

More generally:

Definition
A partial order P is < λ-closed if all chains in P of length less than λ have
a lower bound.

Let AC � λ abbreviate DCγ holds for all γ < λ and Γλ be the class of
< λ-closed posets.

Fact

DCλ is equivalent to FAλ(Γλ) over the theory ZF + AC � λ.
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The axiom of choice is a global forcing axiom.

Conclusion:

Fact
The axiom of choice is equivalent over the theory ZF to the assertion that
FAλ(Γλ) holds for all λ.

The usual forcing axioms such as Martin’s maximum or the proper forcing
axiom are natural strenghtenings of the axiom of choice. They aim to
isolate a maximal strengthening of AC � ω2 enlarging the family Γ for
which FAℵ1(Γ) holds.
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Baire’s category theorem is a forcing axiom

Theorem (BCT)

Assume (X , τ) is compact and Hausdorff. Let {Dn : n ∈ ω} be a family of
dense open subsets of X. Then

⋂
n∈ω Dn is non-empty.

Fact

FAℵ0(P) for all forcing P entails BCT.
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Proof.

Let (X , τ) compact Hausdorff and {Dn : n ∈ ω} a family of dense open
subsets of X .
Let (P,≤P) = (τ \ {∅},⊆) and

En = {A ∈ τ : A ⊆ Dn}.

Each En is a dense subset of P. Let G be a filter on P with G ∩ En , ∅ for
all n. By compactness of X

∅ ,
⋂
{Cl (A) : A ∈ G} ⊆

⋂
n∈ω

Dn.

�
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More general forcing axioms

Fact
Let G be a filter on a poset P and X ⊆ P. Then G ∩ X is non-empty iff
G∩ ↓ X is non-empty.

Hence G meets a predense set A iff it meets the dense open set ↓ A .

Definition

Given a poset P and a property φ, FAφ(P) holds if

For all D collection of predense subsets of P such that φ(D)
holds, there exists G filter on P such that G ∩X , ∅ for all X ∈ D.

FAκ(P) stands for FAφ(P) where
φ(D) ≡ |D| = κ and each D ∈ D is predense.
BFAω1(P) stands for FAφ(RO(P)) where
φ(D) ≡ |D| = ω1 and each D ∈ D is a predense subset of RO(P) of size
ω1.
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Large cardinals as forcing axioms

Given a cardinal κ,

Iκ is the ideal of bounded subsets of κ,

Aκ is the family of maximal antichains of size less than κ in P(κ)/Iκ .

Definition

κ is measurable iff there is a ultrafilter G ∈ P(κ)/Iκ such that G ∩ A , ∅ for
all A ∈ Aκ.

I.e. κ is measurable if FAφ(P (κ) /Iκ), where φ(D) stands for D = Aκ.
Cofinally many large cardinal properties of κ can be formulated as forcing
axiom of the type FAφ(P (P (λ)) /Jκ,λ), choosing φ and Jκ,λ suitably.
for example supercompact, huge, extendible, n-huge, I1, etc......
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Łoś theorem

Theorem

Let
{
Ml = (Ml ,Rl) : l ∈ L

}
be first oreder models for L = {R}.

Let G ⊆ P (L) be a ultrafilter on L. Set

[f ]G = [h]G iff
{
l ∈ L : f(l) = h(l))

}
∈ G,

R̄([f1]G , . . . , [fn]G) iff
{
l ∈ L : Rl(f1(l), . . . , fn(l))

}
∈ G.

Then:
1 For all φ(x1, . . . , xn) (

∏
l∈L Ml/G, R̄) |= φ([f1]G , . . . , [fn]G) if and only if{

l ∈ L : Ml |= φ(f1(l), . . . , fn(l))
}
∈ G.

2 IfMl = M for all l ∈ L, M ≺
∏

l∈L Ml/G as witnessed by the map
m 7→ [cm]G (where cm : L → M is constant with value m).
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Recall on boolean algebras and Stone spaces

Given a boolean algebra B:

St(B) is given by its ultrafilters G.

St(B) is endowed with a compact, Hausdorff topology τB whose
clopens are Nb =

{
G ∈ St(B) : b ∈ G

}
.

The map b 7→ Nb defines a natural isomorphism of B with the
boolean algebra CLOP(St(B)) of clopen subset of St(B).

B is complete if and only if CLOP(St(B)) = RO(St(B), τB) � B.

Spaces X satisfying the property that its regular open sets are closed
are extremally (or extremely) disconnected.

P (X) is a complete boolean algebra, and β(X) = St(P (X)) is the
Stone-Cech compactification of X with discrete topology and is
extremally disconnected.
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Boolean valued models

Definition

Let B be a cba and a L be first order relational language.
A B-valued model for L is a tuple
M = 〈M,=M,RMi : i ∈ I, cMj : j ∈ J〉 with

=M: M2 → B

(τ, σ) 7→ ~τ = σ�MB = ~τ = σ� ,

RM : Mn → B

(τ1, . . . , τn) 7→
�
R(τ1, . . . , τn)

�M
B =

�
R(τ1, . . . , τn)

�
for R ∈ L an n-ary relation symbol.
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Forcing relations on boolean valued models

The constraints on RM and =M are the following:
for τ, σ, χ ∈ M,

1 ~τ = τ� = 1B;
2 ~τ = σ� = ~σ = τ�;
3 ~τ = σ� ∧

�
σ = χ

�
≤
�
τ = χ

�
;

for R ∈ L with arity n, and (τ1, . . . , τn), (σ1, . . . , σn) ∈ Mn,�
R(τ1, . . . , τn)

�
∧

∧
h∈{1,...,n}

~τh = σh� ≤
�
R(σ1, . . . , σn)

�
.
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for τ, σ, χ ∈ M,

1 ~τ = τ� = 1B;
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�
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Boolean valued semantics

Definition

Let 〈M,=M,RM〉 be a B-valued model in the relational language L = {R},
φ(x1, . . . , xn) a L-formula with displayed free variables,
ν : free variables→ M.�
φ
�M,ν

B =
�
φ
�
, the boolean value of φ with the assignment ν is defined by

recursion as follows:

~t = s� =
�
ν(t) = ν(s)

�
,�

R(t1, . . . , tn)
�

=
�
R(ν(t1), . . . , ν(tn))

�
;�

¬ψ
�

= ¬
�
ψ
�
;�

ψ ∧ θ
�

=
�
ψ
�
∧ ~θ�;�

∃yψ(y)
�

=
∨
τ∈M
�
ψ(y/τ)

�
.
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Soundness Theorem for B-valued semantics

Theorem (Soundness Theorem)

Assume L is a relational language and φ is a L-formula which is
syntactically provable by a L-theory T.
Assume each formula in T has boolean value at least b ∈ B in a B-valued
modelM with valuation ν.
Then

�
φ
�M,ν

B ≥ b as well.

The completeness theorem is automatic given that 2 is a complete
boolean algebra.
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Tarski quotient of B-valued models

Definition

Let B be a cba,M a B-valued model for L, and G a ultrafilter over B.
Consider the following equivalence relation on M:

τ ≡G σ⇔ ~τ = σ� ∈ G

The first order (Tarski) modelM/G = 〈M/G ,R
M/G
i : i ∈ I, cM/G

j : j ∈ J〉 is
defined letting:

For any n-ary relation symbol R in L

RM/G =
{
([τ1]G , . . . , [τn]G) ∈ (M/G)n :

�
R(τ1, . . . , τn)

�
∈ G

}
.

For any constant symbol c in L

cM/G = [cM]G .
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Full B-valued models

Definition
A B-valued modelM for the language L is full if for every L-formula
φ(x, ȳ) and every τ̄ ∈ M |ȳ | there is a σ ∈ M such that�

∃xφ(x, τ̄)
�

=
�
φ(σ, τ̄)

�
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Boolean valued Łoś Theorem — Forcing theorem

Theorem (B-valued Łoś’s Theorem — Forcing theorem)

AssumeM is a full B-valued model for the relational language L. Then for
every formula φ(x1, . . . , xn) in L and (τ1, . . . , τn) ∈ Mn:

1 For all ultrafilters G over B,M/G |= φ([τ1]G , . . . , [τn]G) if and only if�
φ(τ1, . . . , τn)

�
∈ G.

2 For all a ∈ B the following are equivalent:
1
�
φ(f1, . . . , fn)

�
≥ a,

2 M/G |= φ([τ1]G , . . . , [τn]G) for all G ∈ Na ,
3 M/G |= φ([τ1]G , . . . , [τn]G) for densely many G ∈ Na .
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Łoś’s Theorem versus boolean valued Łoś’s Theorem

Fact

Let (Mx : x ∈ X) be a family of Tarski-models in the first order relational
language L. Then N =

∏
x∈X Mx is a full P (X)-model, letting for each

n-ary relation symbol R ∈ L,�
R(f1, . . . , fn)

�
P(X) =

{
x ∈ X : Mx |= R(f1(x), . . . , fn(x))

}
.

Let G be any non-principal ultrafilter on X . Then the Tarski quotient N/G is
the familiar ultraproduct of the family (Mx : x ∈ X) by G.

The usual Łoś theorem for ultraproducts of Tarski models is the
specialization to the case of the full P (X)-valued model N of the
boolean valued Łoś theorem.

If N is an ultrapower of a model M, the embedding
a 7→ [ca ]G (where ca(x) = a for all x ∈ X and a ∈ M)
is elementary.

22 / 51
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Boolean ultrapowers of compact Hausdorff spaces

Let X be a set with the discrete topology.

For a ∈ X , Ga ∈ St(P (X)) is the principal ultrafilter of supersets of
{a}.
The map a 7→ Ga embeds X as an open, dense, discrete subspace of
St(P (X)).
For any space (Y , τ), any f : X → Y is continuous. (since X has the
discrete topology)

Moreover if Y is compact Hausdorff:
f : X → Y induces a unique continuous extension f̄ : St(P (X))→ Y .
(St(P (X)) is also the Stone-Cech compactification of X ).
C(X ,Y) = YX is canonically isomorphic to C(St(P (X)),Y).
C(St(P (X)),Y) � YX can be endowed of the structure of a
P (X)-valued elementary extension of Y for any first order structure
on Y .

What if we replace P (X) with an arbitrary (complete) boolean algebra?
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Boolean ultrapowers of 2ω

Let B be an arbitrary complete boolean algebra, and set
M = C(St(B), 2ω).
Fix R a Borel (Universally Baire) relation on (2ω)n. The continuity of an
n-tuple f1, . . . , fn ∈ M grants that

{G : R(f1(G) . . . , fn(G))} = (f1 × · · · × fn)−1[R]

has the Baire property in St(B), where f1 × · · · × fn(G) = (f1(G), . . . , fn(G)).
Define:

RM :Mn → B

(f1, . . . , fn) 7→ Reg (
{
G : R(f1(G), . . . , fn(G)

}
)

where Reg (A) = Int (Cl (A)).
Also, since the diagonal is closed in (2ω)2,

=M (f , g) = Reg (
{
G : f(G) = g(G)

}
)

is well defined.
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Boolean ultrapowers of 2ω

Let B be an arbitrary (even atomless) complete boolean algebra. The
following holds:

For any Borel (universally Baire) relation R on (2ω)n, the structure
(M,=M ,RM) is a full B-valued model.
For G ∈ St(B),

iG :2ω → M/G

x 7→ [cx ]G

(cx is the constant function with value x) defines an injective
morphism (2ω,R) into (M/G,RM/G).

It is not clear whether this morphism is an elementary map or not:

This is the case for B = P (X), since in this case we are analyzing the
standard embedding of the first order structure (2ω,R) in its
ultrapowers induced by ultrafilters on P (X).
What are the properties of this map if B is some other complete
(atomless) boolean algebra?
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Shoenfield’s absoluteness rephrased

Theorem (Cohen’s absoluteness)

Assume B is a complete boolean algebra and R ⊆ (2ω)n is a Borel
(Universally Baire) relation. Let M = C(St(B), 2ω) and G ∈ St(B). Then

(2ω,=,R) ≺Σ2 (M/G ,=
M /G ,RM/G).

If one assumes the existence of class many Woodin cardinals

(2ω,=,R) ≺ (M/G ,=
M /G ,RM/G).

Proof.

C(St(B), 2ω) is isomorphic to the B-names in VB for elements of 2ω (see
next slide). Apply Shoenfield’s (or Woodin’s) absoluteness to V and V [H]
(for H V -generic for B) to infer the desired conclusion. �
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C(St(B), 2ω) and VB

Given f ∈ C(St(B), 2ω) = M, σ ∈ VB with ~σ ∈ 2ω� = 1B define:

τf =
{
〈〈n, i〉, f−1[Nn,i]〉 : n < ω, i < 2

}
∈ VB,

gσ ∈ M by gσ(G)(n) = i iff
�
σ(n) = i

�
∈ G.

Then

gτf = f ,�
τgσ = σ

�
= 1B.

These identities allow to translate forcing relations from both sides.

The lift of a Universally Baire relation R to VB is translated as the forcing
relation (on M)

RM :Mn → B

(f1, . . . , fn) 7→ Reg (
{
G : R(f1(G), . . . , fn(G)

}
) .

Universal Baireness grants that the lift RM behaves as desired.
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Two questions

1 Where are forcing axioms playing a role in the above proof (and
rephrasing) of Shoenfield’s absoluteness?

2 What if Y , 2ω is some other compact Hausdorff space?

1 Time not permitting I won’t give a proof of the above rephrasing of
Shoenfield’s absoluteness, which can be based on a Baire category
argument and on Cohen’s forcing theorem.

2 We will now inquire on the second question, which leads us to other
stronger formulation of forcing axioms in categorial terms.
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Looking at 2ω is the same as looking at Hω1

There exists a natural correspondence between the theory of projective
subsets of 2ω and the first order theory of Hω1 . Any Σ1

2-property of 2ω

corresponds to a Σ1-property on Hω1 .
Moreover 2ω is a definable class in Hω1 , hence the first order theory of Hω1

interprets that of 2ω with projective predicates.
The converse holds as well.
Hence it is essentially the same to look at the first order theory of 2ω or at
the first order theory of Hω1 .
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Boolean ultrapowers of Hκ

To analyze how to use forcing for the analysis of compact spaces other
than 2ω it is more convenient to move from an analysis of a compact space
X to the analysis of the Hκ in which X is definable for κ large enough.

If we can define elementary boolean ultrapowers of Hκ, we can naturally
define elementary boolean ultrapowers of any compact Hausdorff Y (or
more generally any mathematical structure) definable in Hκ.

Let us address now the question of how to use generic absoluteness
results as a template to formulate stronger and stronger forcing axioms.
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Forcing axioms as density properties of class posets.

Definition
Let Γ be a class of complete boolean algebras and Θ be a class of
complete homomorphisms between elements of Γ and closed under
composition and identity maps.

B ≥Θ Q if there is a complete homomorphism i : B→ Q in Θ.

B ≥∗Θ Q if there is a complete and injective homomorphism i : B→ Q
in Θ.

With these definitions (Γ,≤Θ) and (Γ,≤∗Θ) are class partial orders.
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Forcing axioms as density properties of class posets.

We can look at these class partial orders as forcing notions, and check
whether they are interesting forcing notions.

In particular we look for universal objects satisfying both of Woodin’s
ingredients for some Hλ with λ > ω1.

The order ≤∗Θ is the one we use to study iterated forcing and captures the
notion of complete embedding for partial orders.

≤Θ has been neglected so far but is sufficient to grant that whenever
i : B→ Q witnesses Q ≤Θ B and G is V -generic for Q, then i−1[G] is
V -generic for B.
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Forcing axioms as density properties of class posets.

Theorem
The following holds:

Woodin: Assume there are class many Woodin cardinals. Then
Martin’s maximum is equivalent to the assertion that the family of
presaturated towers is dense in (SSP,≤Ω).

V.: Assume there are class many Woodin cardinals Then MM++ (a
strong form of MM) is equivalent to the assertion that the family of
presaturated towers T is dense in (SSP,≤SSP), where B ≥SSP Q iff
there is i : B→ Q complete homomorphism such that

~Q/i[ĠB] ∈ SSP�B = 1B.

if T is a presaturated tower with critical point of generic embedding ω2,

Hω2 ≺ HVT
ω2
.
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Strongest forcing axioms

Definition (V.)

MM+++ holds if the class of SSP-super rigid presaturated towers is dense
in (SSP,≤SSP).

Fact

MM+++ ⇒ MM++ ⇒ MM.

Theorem (V.)

MM+++ is consistent relative to the existence of a huge cardinal.

I postpone (or omit) the definition of SSP-super rigid presaturated tower.

Remark

MM+++ will be forced by any of the standard iteration of length δ which
yield MM provided that δ is superhuge.
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The category forcing (SSP,≤SSP):

Theorem (V.)

Assume that δ is supercompact. Then (SSP ∩ Vδ,≤SSP� Vδ) is an SSP
partial order Uδ.
Moreover:

B ≥SSP Uδ � B for all B ∈ SSP ∩ Vδ.

(Uδ � B)/G = UV [G]
δ whenever G is V-generic for B.

Uδ forces MM++.

Theorem (V.)

Assume δ is a reflecting cardinal and MM+++ holds. Then Uδ is itself an
SSP-super rigid presaturated tower. Hence

(Hω2 , ∈) ≺ (HVUδ
ω2

, ∈).
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These items allow to prove that

(Hω2 , ∈) ≺ (HVB

ω2
/G , ∈ /G)

holds if we assume that V models MM+++ and B forces MM+++

This gives other arguments to explain why MM has proved so useful as of
now.
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Sketch of proof:

Let δ be large enough (for example Σ2-reflecting). After forcing with B
adding a V -geneirc filter G for B, δ remains large enough in V [G]. Since B
forces MM+++, we have that in V [G], UV

δ [G] is a presaturated tower. Now
UV
δ [G] � UV

δ �B /G , hence

HV
ω2
⊆ HV [G]

ω2 ⊆ HVUδ�B
ω2

and
HV
ω2
≺ HVUδ�B

ω2
,

HV [G]
ω2 ≺ HVUδ�B

ω2
.

Hence
HV
ω2
≺ HV [G]

ω2 .
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In general the following holds for suitable properties φ(x) for the category
forcing Uδ:

φ(Uδ) holds if and only if the following set

{B ∈ Uδ : φ(B) holds}

is dense in Uδ.

Are all these results peculiar of the category SSP?
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Modular generic absoluteness and modular category
forcing axioms (joint with D. Asperò)

Definition

Let φ(x) be a Π1-property.
Γ is φ-preserving if for all B ∈ Γ and all S ∈ V such that φ(S) holds, we
have that

VB |= φ(Š).

Properness, semiproperness, stationary set preserving forcings are all
φ-preserving for suitable Π1-properties φ(x).

SSP: φSSP(S) ≡ S is a stationary subset of ω1

Properness:
φproper(S) ≡ S is a stationary subset of [X ]ℵ0 for some X .

Semiproperness:
φsemiproper(S) ≡ S is a semi-stationary subset of [X ]ℵ0 for some X .
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Lemma
Assume Γ is φΓ-preserving. Then Γ is closed under two step iterations,
lottery sums and preimages of complete homomorphisms.
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Γ-rigidity

Definition
Assume Γ is closed under two-steps iterations.

B ∈ Γ is Γ-rigid if for all Q ≤Γ B there exists only one i : B→ Q witnessing
it.

Remark
Any B ∈ Γ which is Γ-superrigid is forcing equivalent to a presaturated
tower and is also Γ-rigid. It is not clear if the converse holds. For this
reason the definition I came up for a Γ-superrigid presaturated tower is
more involved.
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Definition (V.)

CFA(Γ) holds if the class of Γ-superrigid presaturated towers which belong
to Γ is dense in (Γ,≤Γ).

Definition (V., Asperó)

Γ is κ-suitable, if:

it is φ-preserving for some Π1-property φ(x) definable by a parameter
in Hκ+ ,

it is κ-iterable (essentially it has “nice” lower bounds in Γ for all “nice”
≤∗Γ-descending sequences),

it has a dense set of Γ-rigid elements.

Fact

For a κ-suitable Γ, CFA(Γ) implies FAκ(Γ).
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Γ is κ-suitable, if:

it is φ-preserving for some Π1-property φ(x) definable by a parameter
in Hκ+ ,

it is κ-iterable (essentially it has “nice” lower bounds in Γ for all “nice”
≤∗Γ-descending sequences),

it has a dense set of Γ-rigid elements.

Fact

For a κ-suitable Γ, CFA(Γ) implies FAκ(Γ).

42 / 51



Definition (V.)

CFA(Γ) holds if the class of Γ-superrigid presaturated towers which belong
to Γ is dense in (Γ,≤Γ).

Definition (V., Asperó)
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Theorem (V.)

Assume Γ is κ-suitable for some κ and there is a 2-superhuge cardinal
λ > κ. Then CFA(Γ) is consistent.

Theorem (V.)

Assume Γ is κ-suitable for some κ. Assume moreover that there are class
many reflecting cardinals.
Then CFA(Γ) entails that the theory of L(Ordκ) ⊇ Hκ+ is invariant with
respect to forcing in Γ which preserve CFA(Γ).
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Theorem (Asperó)

The following holds:
1 Assume Γ is the intersection of any among the following 8 family of

classes given by the union of
a singleton subset of

{proper, semiproper}

any non-empty subset of the following classes

{preserving a Suslin tree on ω1, ωω-bounding, all}.

Then Γ is ω1-suitable.
2 There is a ninth ω1-suitable class Γ such that CFA(Γ) implies CH.

We obtain nine distinct classes Γ making the theory of L(Ordω1)
generically invariant with respect to the relevant forcings.
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The following holds:
1 Assume Γ is the intersection of any among the following 8 family of

classes given by the union of
a singleton subset of

{proper, semiproper}

any non-empty subset of the following classes

{preserving a Suslin tree on ω1, ωω-bounding, all}.

Then Γ is ω1-suitable.
2 There is a ninth ω1-suitable class Γ such that CFA(Γ) implies CH.

We obtain nine distinct classes Γ making the theory of L(Ordω1)
generically invariant with respect to the relevant forcings.

44 / 51



Γ-correct filters

Definition
Let Γ be a κ-suitable class of forcings and φΓ be the Π1-property preserved
by Γ.
Let M ≺ Hθ with B ∈ M ∩ Γ and κ ⊆ M, otp(M ∩ θ) ≤ κ+.
Let πM : M → NM be the transitive collapse map of (M, ∈).

H ∈ St(B ∩M) is Γ-correct if

V |= φγ(πM(Ṡ)πM [H])

for all Ṡ ∈ M ∩ VB such that
�
φγ(Ṡ)

�
= 1B.

For example if Γ = SSP,
Γ-correct filters for M and B are ultrafilters H for B ∩M which evaluate as
stationary subsets of ω1 in V all B-names for stationary subsets of ω1 in M.
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�
= 1B.

For example if Γ = SSP,
Γ-correct filters for M and B are ultrafilters H for B ∩M which evaluate as
stationary subsets of ω1 in V all B-names for stationary subsets of ω1 in M.

45 / 51



Γ-correct filters

Definition
Let Γ be a κ-suitable class of forcings and φΓ be the Π1-property preserved
by Γ.
Let M ≺ Hθ with B ∈ M ∩ Γ and κ ⊆ M, otp(M ∩ θ) ≤ κ+.
Let πM : M → NM be the transitive collapse map of (M, ∈).

H ∈ St(B ∩M) is Γ-correct if

V |= φγ(πM(Ṡ)πM [H])
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Self-generic filters

Let I = {IX : X ∈ Vδ} be a tower of normal ideals and TI be the
corresponding tower forcing.

For example if I = {NSX : X ∈ Vδ}, TI is Woodin’s stationary tower.

M ≺ Hδ+ is I-self generic if

GM = {S ∈ M ∩ Vδ : M ∩ ∪S ∈ S}

is an M-generic filter for TI.

We let TI denote the set of such models M.
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Γ-superrigid presaturated towers

Definition
Let I = {IX : X ∈ Vδ} be a tower of normal ideals and Γ be a κ-suitable
class of forcings.

TI is Γ-superrigid presaturated if:

for all M ≺ Hδ+ GM is the unique possible Γ-correct M-generic filter for
TI.

For all S ∈ TI
TI ∧ S

is stationary.
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Iterated resurrection axioms and generic absoluteness

There is a companion approach to generic absoluteness results inspired
by Hamkins and Johnstone’s resurrection axioms, and by Tsaprounis
elaborations on their work.
Specifically generic absoluteness is also given by the iterated resurrection
axioms RAα(Γ, κ) as Γ ranges among forcing classes, κ among cardinals,
and α among ordinals.
It is joint work with Audrito, my former PhD student, now PostDoc in the
computer science dept in Torino.
I will skip details due to time constraints.....
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Comments and open questions

Category forcing axioms spring out from a natural inquire to
strengthen as much as possible the nonconstructive tools.
Most often BCT and AC suffice. In some cases (which are not
restricted to set theory but occurs also in other parts of mathematics)
generic absolutness arguments for projective sets are useful.
This leads us to model theoretic considerations which show that
forcing axioms yield a variety of canonical elementary superstructures
of initial fragments of V (if one is eager to accept their truth....).
We now have a definite pattern which isolate a modular strategy to
obtain forcing axioms (the axioms CFA(Γ) and RAω(Γ, κ) for a
κ-suitable Γ) yielding more and more generic absoluteness for larger
and larger fragments of the universe (if one is eager to accept their
truth....).
It remains wide open whether we can prove CFA(Γ) (or RAω(Γ, ω2),
i.e. an axiom freezing the theory of Hℵ3) consistent for some Γ (other
than the class of ω1-closed forcings) which is ω2-suitable.

49 / 51



Comments and open questions

Category forcing axioms spring out from a natural inquire to
strengthen as much as possible the nonconstructive tools.
Most often BCT and AC suffice. In some cases (which are not
restricted to set theory but occurs also in other parts of mathematics)
generic absolutness arguments for projective sets are useful.
This leads us to model theoretic considerations which show that
forcing axioms yield a variety of canonical elementary superstructures
of initial fragments of V (if one is eager to accept their truth....).
We now have a definite pattern which isolate a modular strategy to
obtain forcing axioms (the axioms CFA(Γ) and RAω(Γ, κ) for a
κ-suitable Γ) yielding more and more generic absoluteness for larger
and larger fragments of the universe (if one is eager to accept their
truth....).
It remains wide open whether we can prove CFA(Γ) (or RAω(Γ, ω2),
i.e. an axiom freezing the theory of Hℵ3) consistent for some Γ (other
than the class of ω1-closed forcings) which is ω2-suitable.

49 / 51



Comments and open questions

Category forcing axioms spring out from a natural inquire to
strengthen as much as possible the nonconstructive tools.
Most often BCT and AC suffice. In some cases (which are not
restricted to set theory but occurs also in other parts of mathematics)
generic absolutness arguments for projective sets are useful.
This leads us to model theoretic considerations which show that
forcing axioms yield a variety of canonical elementary superstructures
of initial fragments of V (if one is eager to accept their truth....).
We now have a definite pattern which isolate a modular strategy to
obtain forcing axioms (the axioms CFA(Γ) and RAω(Γ, κ) for a
κ-suitable Γ) yielding more and more generic absoluteness for larger
and larger fragments of the universe (if one is eager to accept their
truth....).
It remains wide open whether we can prove CFA(Γ) (or RAω(Γ, ω2),
i.e. an axiom freezing the theory of Hℵ3) consistent for some Γ (other
than the class of ω1-closed forcings) which is ω2-suitable.

49 / 51



Comments and open questions

Category forcing axioms spring out from a natural inquire to
strengthen as much as possible the nonconstructive tools.
Most often BCT and AC suffice. In some cases (which are not
restricted to set theory but occurs also in other parts of mathematics)
generic absolutness arguments for projective sets are useful.
This leads us to model theoretic considerations which show that
forcing axioms yield a variety of canonical elementary superstructures
of initial fragments of V (if one is eager to accept their truth....).
We now have a definite pattern which isolate a modular strategy to
obtain forcing axioms (the axioms CFA(Γ) and RAω(Γ, κ) for a
κ-suitable Γ) yielding more and more generic absoluteness for larger
and larger fragments of the universe (if one is eager to accept their
truth....).
It remains wide open whether we can prove CFA(Γ) (or RAω(Γ, ω2),
i.e. an axiom freezing the theory of Hℵ3) consistent for some Γ (other
than the class of ω1-closed forcings) which is ω2-suitable.

49 / 51



Comments and open questions

Category forcing axioms spring out from a natural inquire to
strengthen as much as possible the nonconstructive tools.
Most often BCT and AC suffice. In some cases (which are not
restricted to set theory but occurs also in other parts of mathematics)
generic absolutness arguments for projective sets are useful.
This leads us to model theoretic considerations which show that
forcing axioms yield a variety of canonical elementary superstructures
of initial fragments of V (if one is eager to accept their truth....).
We now have a definite pattern which isolate a modular strategy to
obtain forcing axioms (the axioms CFA(Γ) and RAω(Γ, κ) for a
κ-suitable Γ) yielding more and more generic absoluteness for larger
and larger fragments of the universe (if one is eager to accept their
truth....).
It remains wide open whether we can prove CFA(Γ) (or RAω(Γ, ω2),
i.e. an axiom freezing the theory of Hℵ3) consistent for some Γ (other
than the class of ω1-closed forcings) which is ω2-suitable.

49 / 51



Comments and open questions

Category forcing axioms spring out from a natural inquire to
strengthen as much as possible the nonconstructive tools.
Most often BCT and AC suffice. In some cases (which are not
restricted to set theory but occurs also in other parts of mathematics)
generic absolutness arguments for projective sets are useful.
This leads us to model theoretic considerations which show that
forcing axioms yield a variety of canonical elementary superstructures
of initial fragments of V (if one is eager to accept their truth....).
We now have a definite pattern which isolate a modular strategy to
obtain forcing axioms (the axioms CFA(Γ) and RAω(Γ, κ) for a
κ-suitable Γ) yielding more and more generic absoluteness for larger
and larger fragments of the universe (if one is eager to accept their
truth....).
It remains wide open whether we can prove CFA(Γ) (or RAω(Γ, ω2),
i.e. an axiom freezing the theory of Hℵ3) consistent for some Γ (other
than the class of ω1-closed forcings) which is ω2-suitable.

49 / 51



Comments and open questions

Category forcing axioms spring out from a natural inquire to
strengthen as much as possible the nonconstructive tools.
Most often BCT and AC suffice. In some cases (which are not
restricted to set theory but occurs also in other parts of mathematics)
generic absolutness arguments for projective sets are useful.
This leads us to model theoretic considerations which show that
forcing axioms yield a variety of canonical elementary superstructures
of initial fragments of V (if one is eager to accept their truth....).
We now have a definite pattern which isolate a modular strategy to
obtain forcing axioms (the axioms CFA(Γ) and RAω(Γ, κ) for a
κ-suitable Γ) yielding more and more generic absoluteness for larger
and larger fragments of the universe (if one is eager to accept their
truth....).
It remains wide open whether we can prove CFA(Γ) (or RAω(Γ, ω2),
i.e. an axiom freezing the theory of Hℵ3) consistent for some Γ (other
than the class of ω1-closed forcings) which is ω2-suitable.

49 / 51



Comments and open questions

Category forcing axioms spring out from a natural inquire to
strengthen as much as possible the nonconstructive tools.
Most often BCT and AC suffice. In some cases (which are not
restricted to set theory but occurs also in other parts of mathematics)
generic absolutness arguments for projective sets are useful.
This leads us to model theoretic considerations which show that
forcing axioms yield a variety of canonical elementary superstructures
of initial fragments of V (if one is eager to accept their truth....).
We now have a definite pattern which isolate a modular strategy to
obtain forcing axioms (the axioms CFA(Γ) and RAω(Γ, κ) for a
κ-suitable Γ) yielding more and more generic absoluteness for larger
and larger fragments of the universe (if one is eager to accept their
truth....).
It remains wide open whether we can prove CFA(Γ) (or RAω(Γ, ω2),
i.e. an axiom freezing the theory of Hℵ3) consistent for some Γ (other
than the class of ω1-closed forcings) which is ω2-suitable.

49 / 51



Bibliography

Giorgio Audrito and Matteo Viale.
Absoluteness via resurrection.
arXiv:1404.2111 (to apper in the Journal of Mathematical Logic),
2017.

A. Vaccaro and M. Viale.
Generic absoluteness and boolean names for elements of a Polish
space.
Boll Unione Mat Ital, 2017.

Matteo Viale.
Category forcings, MM+++, and generic absoluteness for the theory
of strong forcing axioms.
J. Amer. Math. Soc., 29(3):675–728, 2016.

Matteo Viale.
Useful axioms.
2016.

50 / 51



THANKS FOR YOUR PATIENCE AND ATTENTION

51 / 51


