Spectra of $\mathcal{L}_{\omega_1,\omega}$ sentences

Boban Velickovic

IMJ-PRG Université Paris Diderot

Set Theory Workshop in Pisa June 13 2017

Outline

1 Introduction

2 Characterizing uncountable cardinals

3 Complete sentences

Outline

Introduction

- 2 Characterizing uncountable cardinals
- 3 Complete sentences
- 4 Open Problems

Löwenheim-Skolem theorem is one of the basic results in mathematical logic.

Theorem

Let φ be a first order sentences. If φ has an infinite model then it has a model of cardinality κ , for any infinite cardinal κ .

This result in general fails for non first order logics. We shall consider the simplest infinitary logic.

> Institute de Mathématiques de Justitute de Mathématiques de Justitute Tartés Stite cipande

Let τ be a countable vocabulary. The collection of $\mathcal{L}_{\omega_1,\omega}$ formulas over τ is obtained by closing the collection of atomic formulas under:

- countable conjunctions, disjunctions and negation,
- quantification over finitely many variables.

 $\mathcal{L}_{\omega_1,\omega}$ satisfies the downward Löwenheim-Skolem theorem. We would like to understand to what extent the upward LS theorem holds.

For an $\mathcal{L}_{\omega_1,\omega}$ sentence φ and infinite cardinal κ we let $\operatorname{Mod}_{\kappa}(\varphi)$ will denote the collection of models of φ of size κ .

Let P be a property. For an $\mathcal{L}_{\omega_1,\omega}$ sentence φ we let the P-spectrum spec_P(φ) denote the class: { $\kappa \colon Mod_{\kappa}(\varphi)$ satisfies P}.

Examples:

• spec(
$$\varphi$$
) = { κ : Mod _{κ} (φ) $\neq \emptyset$ },

•
$$\operatorname{spec}_{\operatorname{cat}}(\varphi) = \{\kappa : |\operatorname{Mod}_{\kappa}(\varphi)/\simeq|=1\}$$

- spec_{max}(φ) = { κ : there is a maximal model in Mod_{κ}(φ)}
- spec_{AP}(φ) = {κ : Mod_κ(φ) satisfies AP}, where AP stands for the Amalgamation Property

• ...

The **Hanf number** for a class \mathcal{K} of sentences in a language \mathcal{L} is the least cardinal κ such that, for every $\varphi \in \mathcal{K}$, if $\operatorname{sup} \operatorname{spec}(\varphi) \geq \kappa$ then $\operatorname{sup} \operatorname{spec}(\varphi) = \infty$.

Theorem (Lopez-Escobar)

The Hanf number for the class of all sentences of $\mathcal{L}_{\omega_1,\omega}$ *is* \beth_{ω_1} *.*

= nac

1 Introduction

2 Characterizing uncountable cardinals

3 Complete sentences

We say that a sentence φ characterizes a cardinal κ if $\kappa = \max \operatorname{spec}(\varphi)$.

Question

What are the characterizable cardinals?

Theorem (folklore)

The \aleph_{α} *, for* $\alpha < \omega_1$ *, are characterizable.*

This settles the problem under GCH. What happens if we do not assume GCH?

Insitut it de Mathématiques it jussieu-Paris Esive quarke (□ > (= = > (= = >) = =) (= >) (=) (=)

Conjecture

For every $\mathcal{L}_{\omega_1,\omega}$ sentence φ , sup spec $(\varphi) \notin [\aleph_{\omega_1}, 2^{\aleph_0})$.

Remark

If Conjecture is true and $2^{\aleph_0} > \aleph_{\omega_1}$ then no cardinal in the interval $[\aleph_{\omega_1}, 2^{\aleph_0})$ is characterizable.

Theorem (Shelah; Hrushovski - V.)

If we starts with a model of GCH and $add > \aleph_{\omega_1}$ Cohen reals, the Conjecture holds in the generic extension.

What can be said in ZFC alone?

Theorem (folklore)

The set of cardinals characterizable by $\mathcal{L}_{\omega_{1},\omega}$ sentences is closed under:

- 1 $\kappa \mapsto \kappa^+$
- 2 $\kappa \mapsto 2^{\kappa}$
- 3 countable sums
- ④ countable products.

Question

Let C be the least set of cardinals containing \aleph_0 and closed under (1) - (4). Is C the set of characterizable cardinals?

∃ <\0<</p>

Theorem (Souldatos, Sinapova)

The set of cardinals characterizable by $\mathcal{L}_{\omega_1,\omega}$ sentences is also closed under the following operations:

- $(\kappa,\lambda) \mapsto \kappa^{\lambda}$
- 2 $\kappa \mapsto \text{Ded}(\kappa)$
- 3 $\kappa \mapsto \max\{\lambda : \text{ there is a } \kappa\text{-Kurepa tree with } \lambda \text{ branches}\}.$

Remark

There is a model of ZFC in which the set C above is not closed under the last operation.

Absoluteness

Question

Given an $\mathcal{L}_{\omega_1,\omega}$ sentence φ and a cardinal κ is the question $\kappa \in \operatorname{spec}(\varphi)$ decidable in ZFC?

Theorem (Friedman, Hyttinen, Koerwien)

- **1** $\Leftrightarrow_1 \in \operatorname{spec}(\varphi)$ is absolute for models of ZFC.
- (2) $\aleph_{\alpha} \in \operatorname{spec}(\varphi)$ is not absolute for models of ZFC, for $1 < \alpha < \omega_1$.
- 3 Assuming the existence of uncountably many inaccessibles the question ℵ_{α+2} ∈ spec(φ) is not absolute for models of ZFC + GCH.
- **④** Let $\alpha < \omega_1$ be a limit ordinal. Assume there is a supercompact cardinal. Then there is a sentence φ such that $\aleph_{\alpha+1} \in \operatorname{spec}(\varphi)$ is not absolute in ZFC + GCH.

Institut de Mathématiques de Jussieu-Paris Rive Gauche

I-PRG

Theorem (Friedman, Hyttinen, Koerwien)

Let α be a limit ordinal with $\omega < \alpha < \omega_1$. Assume there is a supercompact cardinal. Then there is a $\mathcal{L}_{\omega_1,\omega}$ sentence φ such that $\aleph_{\alpha} \in \operatorname{spec}(\varphi)$ is not absolute for models of ZFC + GCH.

Remark

The question remains open for $\alpha = \omega$.

Theorem (Grossberg, Shelah)

Let φ be an $\mathcal{L}_{\omega_1,\omega}$ sentence. The question whether $\sup \operatorname{spec}(\varphi) = \infty$ is decidable in ZFC.

Outline

1 Introduction

2 Characterizing uncountable cardinals

3 Complete sentences

4 Open Problems

Scott sentences

Theorem (Scott)

Let M be a countable structure in a countable vocabulary τ . Then there is a sentence φ_M such that for every other countable model Nin vocabulary τ , if $N \vDash \varphi_M$ then $N \simeq M$.

Remark

 φ_M is called the **Scott sentence** of M.

Proposition

Suppose *M* is a countable structure in a countable vocabulary τ and *N* is **any** structure in the same vocabulary such that $N \vDash \varphi_M$. Then $N \equiv_{\mathcal{L}_{\infty,\omega}} M$.

Institut de Mathématiques de Jussieu-París Rive Gauste

= nac

An $\mathcal{L}_{\omega_1,\omega}$ sentence is called **complete** if it has a unique countable model.

We now consider the above questions for complete sentences. If M is a countable structure we say that a cardinal κ is **characterized** by M if $\kappa = \max \operatorname{spec}(\varphi_M)$.

Question

What are the cardinals that can be characterized by countable structures?

Theorem (Malitz assuming GCH, Baumgartner in ZFC)

The \exists_{α} , for $\alpha < \omega_1$, can be characterized by countable structures, i.e. by complete $\mathcal{L}_{\omega_1,\omega}$ sentences.

Institut de Mathématiques de Jussieu-París Rive Gauche

Theorem (Knight (1977))

There is a complete $\mathcal{L}_{\omega_1,\omega}$ sentence characterizing \aleph_1 .

How about the \aleph_{α} , for $\alpha < \omega_1$? This took about 25 years to settle.

Theorem (Hjorth (2002))

For every $\alpha < \omega_1$ there is a complete $\mathcal{L}_{\omega_1,\omega}$ sentence φ_{α} characterizing \aleph_{α} .

Why was this difficult? We do it by induction. The limit case is no problem, for the successor case we need to start with a bit more at \aleph_{α} to get a complete sentence characterizing $\aleph_{\alpha+1}$.

= 900

Let \mathcal{A} be a structure in a vocabulary τ which includes a unary predicate P. We say that $P^{\mathcal{A}}$ is **completely homogenous** for \mathcal{A} if it is infinite and totally indiscernible for \mathcal{A} , i.e. every permutation π of $P^{\mathcal{A}}$ extends to an automorphism of \mathcal{A} .

In a sense $P^{\mathcal{A}}$ is a **pure set**, the only thing that matters is its cardinality.

Definition

We say that a cardinal κ is **homogeneously characterized** by a complete $\mathcal{L}_{\omega_{1},\omega}$ sentence φ if there is a predicate P in the vocabulary of φ such that:

- 1) φ has no model of size > κ .
- 2 if \mathcal{A} is the unique countable model of φ then $P^{\mathcal{A}}$ is completely homogeneous for \mathcal{A} .
- (3) there is a model \mathcal{A}_{κ} of φ such that $P^{\mathcal{A}_{\kappa}}$ has cardinality κ .

1-PRG Hhématiques

SQC

Proposition

Let κ be a cardinal. Suppose φ is a complete $\mathcal{L}_{\omega_1,\omega}$ sentence that homogeneously characterizes κ . Then there is a complete sentence φ^+ characterizing κ^+ .

The vocabulary of φ^+ contains the vocabulary of φ . In addition it will two unary predicates U, V and a binary relation <. The sentence φ^+ says that U and V are disjoint, U is a model of φ , call it \mathcal{U} , < is a dense linear ordering without endpoints on V and for any proper initial segment of V we have an injection into $P^{\mathcal{U}}$. We need $P^{\mathcal{U}}$ to be complete indiscernible so that the choice of the injections does not affect the resulting $\mathcal{L}_{\omega_1,\omega}$ theory. However, we lose homogeneity by going from φ to φ^+ , so we cannot proceed with the induction.

Hjorth's proof is quite involved. Given $\alpha < \omega_1$, he first defines a complete $\mathcal{L}_{\omega_1,\omega}$ sentence $\varphi_{\alpha+1}$ and shows that:

- (1) $\varphi_{\alpha+1}$ has a homogeneous model of size \aleph_{α} .
- 2 $\varphi_{\alpha+1}$ dos not have a model of size > $\aleph_{\alpha+1}$.

Now, if $\varphi_{\alpha+1}$ has a model of size $\aleph_{\alpha+1}$ then we are done. Otherwise, we can do the above stepping-up procedure and obtain another complete sentence $\psi_{\alpha+1}$ characterizing $\aleph_{\alpha+1}$.

We now describe an alternative simpler approach. It involves a Fraïssé type construction. We do it for the \aleph_n . For the general case \aleph_α , for $\alpha < \omega_1$ we need some additional ideas.

Definition

Let I be an index set. A function $f : [I]^{n+1} \to [I]^n$ is an n-selector if $f(A) \subseteq A$, for all $A \in [I]^{n+1}$.

Definition

Given an index set I we let \mathbb{P}_I be the set of pairs $p = (I_p, f_p)$, where I_p is a finite subset of I and f_p is an n-selector on I_p . We let $p \le q$ if

I_p ⊆ I_q,
f_p = f_q ↾ [I_p]ⁿ⁺¹,
f_q⁻¹(T) ⊆ [I_p]ⁿ⁺¹, for every T ∈ [I]ⁿ.

▲ロト ▲局 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○

Given a set I and an n-selector f on I we say that f is generic if:

- **1** *f* is locally finite, i.e. for every finite J ⊆ I there is finite \overline{J} such that $J ⊆ \overline{J} ⊆ I$ such that $(\overline{J}, f ↾ [\overline{J}]^{n+1}) ≤ (I, f)$. We say that \overline{J} is closed in *I*.
- 2 for every finite closed $J \subseteq I$ and any *n*-selector (K,g) such that K is finite and $(J, f \upharpoonright [J]^{n+1}) \leq (K,g)$ there is $h : K \to I$ such that
 - 1 $h \upharpoonright J = \operatorname{id}_J,$ 2 h[K] is closed in I,3 $g = f \circ h.$

Remark

Being a generic *n*-selector can be expressed by an $\mathcal{L}_{\omega_1,\omega}$ sentence, say φ_{n-1} .

Institut de Mathématique de Jussieu-Paris Rive Gauche

Proposition

Any two generic n-selectors are $\mathcal{L}_{\infty,\omega}$ -equivalent. In particular, φ_{n-1} is a complete $\mathcal{L}_{\omega_1,\omega}$ -sentence.

Proposition

Suppose n > 0 and (I, f) is a locally finite *n*-selector with $card(I) < \aleph_{n-1}$. Let $J \subseteq I$ be a closed finite set. Let (K,g) be a finite *n*-selector such that $(J, f \upharpoonright [J]^{n+1}) \leq (K,g)$. Then there is $h : K \to I$ such that

$$1 \quad h \upharpoonright J = \mathrm{id}_J,$$

2 h[K] is closed in I,

$$3 g = f \circ h.$$

Corollary

There is a generic *n*-selector on a set I of size \aleph_{n-1} .

I-PRG

de Jussieu-Paris Rive Gauche) _ _ _ _ _ _ _ _ _ _ _ _

The main point is that there is **no** locally finite *n*-selector on a set of size \aleph_n . This follows from the following.

Theorem (Kuratowski)

Suppose $F : [I]^n \to [I]^{<\omega}$ is a finite set mapping on a set I of cardinality \aleph_n . Then there is a *free* set J of size n + 1. This means: $x \notin F(J \setminus \{x\})$, for every $x \in J$.

Indeed, if (I, f) is a locally finite *n*-selector on a set *I* of size \aleph_n we can let $F(J) = \{x \in I \setminus J : f(J \cup \{x\}) = J)$, for all $J \in [I]^n$. Then *F* would violate Kuratowski's free set mapping theorem.

Conclusion:

The sentence φ_k characterizes \aleph_k , for all k.

Closure properties of characterizable cardinals

Definition

- Let CH be the set of cardinals that can be characterized by a complete L_{ω1,ω} sentence.
- Let HCH be the set of cardinals that can be characterized by a complete homogeneous L_{ω1,ω} sentence.

What are the closure properties of CH and HCH?

Theorem (Hjorth)

- CH is closed under successors and limits of countable sequences.
- 2) If $\kappa \in CH$ then either κ or κ^+ are in HCH.

Theorem (Baumgartner)

If κ belongs to HCH then so does 2^{κ} .

Theorem (Souldatos)

If $\lambda \in CH$ then $\lambda^{\omega} \in HCH$. In particular, CH and HCH are closed under countable products.

Outline

1 Introduction

- 2 Characterizing uncountable cardinals
- 3 Complete sentences

④ Open Problems

Open problems

Question

- 1 If a cardinal κ is characterizable, is it characterizable by a complete sentence?
- 2 Is spec(φ) always closed in the order topology?
- 3 If φ is a complete L_{ω1,ω} sentence and α < ω₁ is ℵ_α ∈ spec(φ) absolute?

Institut de Mathématiques

Jussieu-Paris Rive Gauche

ヘロト A倒ト A注ト A注ト