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Introduction

Lowenheim-Skolem theorem is one of the basic results in
mathematical logic.

Theorem

Let @ be a first order sentences. If p has an infinite model then it has
a model of cardinality k, for any infinite cardinal k.

This result in general fails for non first order logics. We shall consider
the simplest infinitary logic.
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Definition

Let T be a countable vocabulary. The collection of L, ., formulas
over T is obtained by closing the collection of atomic formulas under:

O countable conjunctions, disjunctions and negation,

O quantification over finitely many variables.

L., . satisfies the downward Lowenheim-Skolem theorem. We would
like to understand to what extent the upward LS theorem holds.

For an £, ., sentence ¢ and infinite cardinal £ we let Mod, (¢) will
denote the collection of models of ¢ of size «.
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Definition

Let P be a property. For an L, ., sentence @ we let the P-spectrum
specp () denote the class: {k: Mod(p) satisfies P}.

Examples:

spec(p) = {r : Mod,(p) + @},

specea () = {x : [Mod,(¢)/ ~ | =1}

spec . (@) = {k : there is a maximal model in Mod,;(¢) }

specap(p) = {k : Mod,(p) satisfies AP}, where AP stands for
the Amalgamation Property
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Definition

The Hanf number for a class K of sentences in a language L is the
least cardinal k such that, for every ¢ € K, if supspec(y) > k then
supspec(yp) = oo.

Theorem (Lopez-Escobar)

The Hanf number for the class of all sentences of L, ., is Dy, .
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Definition

We say that a sentence  characterizes a cardinal x if
k = maxspec(p).

Question
What are the characterizable cardinals?

Theorem (folklore)

The R, for o < wy, are characterizable.

This settles the problem under GCH. What happens if we do not
assume GCH?




Conjecture

For every L., ., sentence ¢, supspec(p) ¢ [Ry,, 2%0).

Remark

If Conjecture is true and 2% > R, then no cardinal in the interval
[Ry,,2%0) is characterizable.

Theorem (Shelah; Hrushovski - V.)

If we starts with a model of GCH and add > R,,, Cohen reals, the
Conjecture holds in the generic extension.

What can be said in ZFC alone?




Theorem (folklore)

The set of cardinals characterizable by L, ., sentences is closed
under:

@D k"
Q@ k28
@ countable sums

@ countable products.

Question

Let C be the least set of cardinals containing Xy and closed under
(1) = (4). Is C the set of characterizable cardinals?




Theorem (Souldatos, Sinapova)

The set of cardinals characterizable by L., ., sentences is also closed
under the following operations:

@ (k,\) &
@ Kk~ Ded(k)

@ kv max{\: thereis a k-Kurepa tree with \ branches}.

Remark

There is a model of ZFC in which the set C' above is not closed under
the last operation.




Absoluteness

Question

Given an L,,, ., sentence ¢ and a cardinal  is the question
K € spec(p) decidable in ZFC?

Theorem (Friedman,Hyttinen, Koerwien)

@ Ry espec(yp) is absolute for models of ZFC.
@ ®, €spec(yp) is not absolute for models of ZFC, for 1 < a < wy.

@ Assuming the existence of uncountably many inaccessibles the
question X2 € spec() is not absolute for models of ZFC +
GCH.

@ Let a < wy be a limit ordinal. Assume there is a supercompact
cardinal. Then there is a sentence  such that X1 € spec(p) is
not absolute in ZFC + GCH.




Theorem (Friedman,Hyttinen, Koerwien)

Let o be a limit ordinal with w < o < wy. Assume there is a
supercompact cardinal. Then there is a L,,, ., sentence ¢ such that
R, € spec(p) is not absolute for models of ZFC + GCH.

Remark
The question remains open for o = w.

Theorem (Grossberg, Shelah)

Let ¢ be an L, ., sentence. The question whether sup spec(p)
is decidable in ZFC.
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Scott sentences

Theorem (Scott)

Let M be a countable structure in a countable vocabulary T. Then
there is a sentence ) such that for every other countable model N
in vocabulary 7, if N & @y then N ~ M.

Remark
o 1s called the Scott sentence of M.

Proposition

Suppose M is a countable structure in a countable vocabulary T and
N is any structure in the same vocabulary such that N = py;. Then
N ELN w M
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Definition
An Ly, ., sentence is called complete if it has a unique countable
model.

We now consider the above questions for complete sentences. If M is
a countable structure we say that a cardinal « is characterized by M
if Kk = maxspec(par).

Question

What are the cardinals that can be characterized by countable
structures?

Theorem (Malitz assuming GCH, Baumgartner in ZFC)

The 1, for o < w1, can be characterized by countable structures, i.e.
by complete L, ., sentences.
1M
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Theorem (Knight (1977))

There is a complete L, ., sentence characterizing R.

How about the R, for a < wy ? This took about 25 years to settle.

Theorem (Hjorth (2002))

For every a < wy there is a complete L, ., sentence
characterizing Rq.

Why was this difficult? We do it by induction. The limit case is no
problem, for the successor case we need to start with a bit more at R,
to get a complete sentence characterizing Ry 1.




Definition

Let A be a structure in a vocabulary T which includes a unary
predicate P. We say that P* is completely homogenous for A if it is
infinite and totally indiscernible for A, i.e. every permutation 7 of pA
extends to an automorphism of A.

In a sense P is a pure set, the only thing that matters is its
cardinality.

Definition

We say that a cardinal r is homogeneously characterized by a
complete L, ., sentence ¢ if there is a predicate P in the vocabulary
of v such that:

@ ¢ has no model of size > k.

@ if Ais the unique countable model of  then PAis completely
homogeneous for A.

@ there is a model Ay, of o such that P has cardinality k.
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Proposition

Let k be a cardinal. Suppose ¢ is a complete L, ., sentence that
homogeneously characterizes k. Then there is a complete sentence p*
characterizing x*.

The vocabulary of ¢* contains the vocabulary of (. In addition it will
two unary predicates U, V' and a binary relation <. The sentence ¢
says that U and V' are disjoint, U is a model of ¢, call itU, < is a
dense linear ordering without endpoints on V' and for any proper
initial segment of V' we have an injection into P4. We need P¥ to be
complete indiscernible so that the choice of the injections does not
affect the resulting £, ., theory. However, we lose homogeneity by
going from ¢ to ™, so we cannot proceed with the induction.
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Hjorth’s proof is quite involved. Given « < wq, he first defines a
complete L, ., sentence @441 and shows that:

@ .1 has a homogeneous model of size R,,.
@ .41 dos not have a model of size > Rq1.

Now, if 4+1 has a model of size R,.1 then we are done. Otherwise,
we can do the above stepping-up procedure and obtain another
complete sentence ¥4+1 characterizing R 41.
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We now describe an alternative simpler approach. It involves a Fraissé
type construction. We do it for the R,,. For the general case R, for

o < wy we need some additional ideas.

Definition

Let I be an index set. A function f : [I]"** — [I]" is an n-selector if
f(A)c A, forall Ae[I]"™

Definition

Given an index set I we let Py be the set of pairs p = (I, fp), where
I, is a finite subset of I and f, is an n-selector on I,,. We let p < q if

@ I,c1,
@ fo=/fg! [Ip]ml,
@ fq_l(T) c [L,]™*Y, for every T € [I]™.
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Definition
Given a set I and an n-selector f on I we say that f is generic if:
@ f is locally finite, i.e. for every finite J < I there is finite J such
that J € J € I such that (J, f } [J]"*Y) < (I, f). We say that J
is closed in I.
@ for every finite closed J ¢ I and any n-selector (K, g) such that
K is finite and (J, f } [J]"™1) < (K, g) there is h: K — I such
that

@ hlJ=idy,
@ h[K]is closedin I,

@ g=foh.

Remark
Being a generic n-selector can be expressed by an £, ., sentence, say
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Proposition

Any two generic n-selectors are Lo (,-equivalent. In particular, p,,_1
is a complete L, .,-sentence.

Proposition

Suppose n> 0 and (1, f) is a locally finite n-selector with

card(I) < Ry_1. Let J € I be a closed finite set. Let (K, g) be a finite
n-selector such that (J, f } [J]"™1) < (K, g). Then there is

h: K — I such that

@ htJ=idy,
@ h[K]is closed in I,
@ g=foh

Corollary

There is a generic n-selector on a set I of size Rp_1. ora




The main point is that there is no locally finite n-selector on a set of
size R,,. This follows from the following.

Theorem (Kuratowski)

Suppose F : [I" — [I]*Y is a finite set mapping on a set I of
cardinality X,,. Then there is a free set J of size n + 1. This means:
x ¢ F(J~NA{x}), forevery x € J.

Indeed, if (I, f) is a locally finite n-selector on a set I of size R,, we
canlet F'(J)={xel~J: f(Ju{z})=J),forall Je[I[]". Then F
would violate Kuratowski’s free set mapping theorem.

Conclusion:
The sentence ¢y, characterizes Xy, for all k. ]




Closure properties of characterizable cardinals

Definition
O Let CH be the set of cardinals that can be characterized by a
complete L, ., sentence.

O Let HCH be the set of cardinals that can be characterized by a
complete homogeneous L, ., sentence.

What are the closure properties of CH and HCH?
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Theorem (Hjorth)
@ CH is closed under successors and limits of countable
sequences.
@ If k € CH then either k or k¥ are in HCH.

Theorem (Baumgartner)
If k belongs to HCH then so does 27.

Theorem (Souldatos)
If A € CH then \¥ € HCH. In particular, CH and HCH are closed

under countable products.




Outline

@ Open Problems




Open problems

Question

@ If a cardinal « is characterizable, is it characterizable by a
complete sentence?

@ Is spec(p) always closed in the order topology?

@ If p is a complete L, ., sentence and o < wy is R, € spec(p)
absolute?
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