Martin's Axiom and Choice Principles

Eleftherios Tachtsis

Department of Mathematics University of the Aegean Karlovassi, Samos, GREECE

SWIP

Set Theory Workshop in Pisa June 13, 2017 Department of Mathematics

Let κ be an infinite well-ordered cardinal number. MA(κ) stands for the principle:

If (P, \leq) is a non-empty c.c.c. partial order and if \mathcal{D} is a family of $\leq \kappa$ dense sets in P, then there is a filter F of P such that $F \cap D \neq \emptyset$ for all $D \in \mathcal{D}$.

Such a filter F of P is called a D-generic filter of P.

Let κ be an infinite well-ordered cardinal number. MA(κ) stands for the principle:

If (P, \leq) is a non-empty c.c.c. partial order and if \mathcal{D} is a family of $\leq \kappa$ dense sets in P, then there is a filter F of P such that $F \cap D \neq \emptyset$ for all $D \in \mathcal{D}$.

Such a filter F of P is called a D-generic filter of P.

Martin's Axiom: $\forall \ \omega \leq \kappa < 2^{\aleph_0} \ (MA(\kappa)).$

ZFC ⊬ MA: (a) AC (the Axiom of Choice) + MA ⇒ 2^{ℵ0} is regular (b) it is relatively consistent with ZFC that 2^{ℵ0} is singular.

< ∃ >

- ZFC ⊬ MA: (a) AC (the Axiom of Choice) + MA ⇒ 2^{ℵ0} is regular (b) it is relatively consistent with ZFC that 2^{ℵ0} is singular.
- MA(2^{ℵ0}) is false.

- ZFC ⊬ MA: (a) AC (the Axiom of Choice) + MA ⇒ 2^{ℵ0} is regular (b) it is relatively consistent with ZFC that 2^{ℵ0} is singular.
- MA(2^ℵ₀) is false.
- (ZF) DC ⇒ MA(ℵ₀) ⇒ "every compact c.c.c. T₂ space is Baire" ⇒ "every countable compact T₂ space is Baire", where DC is the *Principle of Dependent Choice*: if *R* is a binary relation on a non-empty set *E* such that ∀x ∈ E ∃y ∈ E(x R y), then there is a sequence (x_n)_{n∈ω} of elements of *E* such that ∀n ∈ ω(x_n R x_{n+1}).

- ZFC ⊬ MA: (a) AC (the Axiom of Choice) + MA ⇒ 2^{ℵ0} is regular (b) it is relatively consistent with ZFC that 2^{ℵ0} is singular.
- MA(2^ℵ₀) is false.
- (ZF) DC ⇒ MA(ℵ₀) ⇒ "every compact c.c.c. T₂ space is Baire" ⇒ "every countable compact T₂ space is Baire", where DC is the *Principle of Dependent Choice*: if *R* is a binary relation on a non-empty set *E* such that ∀x ∈ E ∃y ∈ E(x R y), then there is a sequence (x_n)_{n∈ω} of elements of *E* such that ∀n ∈ ω(x_n R x_{n+1}).
- $MA(\aleph_0)$ is **not provable** in ZF.

- ZFC ⊬ MA: (a) AC (the Axiom of Choice) + MA ⇒ 2^{ℵ0} is regular (b) it is relatively consistent with ZFC that 2^{ℵ0} is singular.
- MA(2^{ℵ0}) is false.
- (ZF) DC ⇒ MA(ℵ₀) ⇒ "every compact c.c.c. T₂ space is Baire" ⇒ "every countable compact T₂ space is Baire", where DC is the *Principle of Dependent Choice*: if *R* is a binary relation on a non-empty set *E* such that ∀x ∈ E ∃y ∈ E(x R y), then there is a sequence (x_n)_{n∈ω} of elements of *E* such that ∀n ∈ ω(x_n R x_{n+1}).
- $MA(\aleph_0)$ is **not provable** in ZF.
- (ZFC) For any κ ≥ ω, MA(κ) ⇔ MA(κ) restricted to complete Boolean algebras ⇔ MA(κ) restricted to partial orders of cardinality ≤ κ ⇔ if X is any compact c.c.c. T₂ space and U_α are dense open sets for α < κ, then ∩_α U_α ≠ Ø.

• • = • • = •

Let MA_{κ} denote $MA(\kappa)$ restricted to partial orders of cardinality $\leq \kappa$ and let MA^* denote $\forall \kappa < 2^{\aleph_0}(MA_{\kappa})$. Then from the above observations we have that

 $\mathsf{ZFC} \vdash \mathsf{MA} \Leftrightarrow \mathsf{MA}^*.$

Let MA_{κ} denote $MA(\kappa)$ restricted to partial orders of cardinality $\leq \kappa$ and let MA^* denote $\forall \kappa < 2^{\aleph_0}(MA_{\kappa})$. Then from the above observations we have that

 $\mathsf{ZFC} \vdash \mathsf{MA} \Leftrightarrow \mathsf{MA}^*.$

However, we have shown that this is not the case in set theory without choice.

Theorem MA* $+ \neg$ MA(\aleph_0) is relatively consistent with ZFA.

(ZFA is ZF with the Axiom of Extensionality modified in order to allow the existence of atoms.)

Let MA_{κ} denote $MA(\kappa)$ restricted to partial orders of cardinality $\leq \kappa$ and let MA^* denote $\forall \kappa < 2^{\aleph_0}(MA_{\kappa})$. Then from the above observations we have that

 $\mathsf{ZFC} \vdash \mathsf{MA} \Leftrightarrow \mathsf{MA}^*.$

However, we have shown that this is not the case in set theory without choice.

Theorem $MA^* + \neg MA(\aleph_0)$ is relatively consistent with ZFA.

(ZFA is ZF with the Axiom of Extensionality modified in order to allow the existence of atoms.)

• Note that MA_{\aleph_0} is provable in ZF, MA_{\aleph_1} is **not** provable in ZFC (Gödel's model $L \models GCH + \neg MA_{2^{\aleph_0}}$), and $CH \Rightarrow MA^*$.

The deductive strength of $MA(\aleph_0)$ and its relationship with various choice forms is a fairly unexplored topic and, in our opinion, a quite intriguing one!

The deductive strength of $MA(\aleph_0)$ and its relationship with various choice forms is a fairly unexplored topic and, in our opinion, a quite intriguing one!

What is the relationship between MA(ℵ₀) and AC^{ℵ₀} (i.e. the Axiom of Countable Choice)? (Partial answer: MA* ⇒ AC^{ℵ₀} in ZF.)

The deductive strength of $MA(\aleph_0)$ and its relationship with various choice forms is a fairly unexplored topic and, in our opinion, a quite intriguing one!

- What is the relationship between MA(ℵ₀) and AC^{ℵ₀} (i.e. the Axiom of Countable Choice)? (Partial answer: MA* ⇒ AC^{ℵ₀} in ZF.)
- Ooes MA(\u03c8₀) restricted to complete Boolean algebras imply MA(\u03c8₀)? (Recall that, in ZFC, they are equivalent.)

The deductive strength of $MA(\aleph_0)$ and its relationship with various choice forms is a fairly unexplored topic and, in our opinion, a quite intriguing one!

- What is the relationship between MA(ℵ₀) and AC^{ℵ₀} (i.e. the Axiom of Countable Choice)? (Partial answer: MA* ⇒ AC^{ℵ₀} in ZF.)
- Ooes MA(\u03c8₀) restricted to complete Boolean algebras imply MA(\u03c8₀)? (Recall that, in ZFC, they are equivalent.)
- Ooes MA(ℵ₀) imply AC^{ℵ₀}_{fin} (AC restricted to denumerable families of nonempty finite sets)?

The deductive strength of $MA(\aleph_0)$ and its relationship with various choice forms is a fairly unexplored topic and, in our opinion, a quite intriguing one!

- What is the relationship between MA(ℵ₀) and AC^{ℵ₀} (i.e. the Axiom of Countable Choice)? (Partial answer: MA* ⇒ AC^{ℵ₀} in ZF.)
- Ooes MA(\u03c8₀) restricted to complete Boolean algebras imply MA(\u03c8₀)? (Recall that, in ZFC, they are equivalent.)
- Ooes MA(ℵ₀) imply AC^{ℵ₀}_{fin} (AC restricted to denumerable families of nonempty finite sets)?
- Ooes "every compact c.c.c. T₂ space is Baire" imply MA(ℵ₀)? (Negative answer in ZFA – recall that, in ZFC, they are equivalent.)

同 ト イ ヨ ト イ ヨ ト

The deductive strength of $MA(\aleph_0)$ and its relationship with various choice forms is a fairly unexplored topic and, in our opinion, a quite intriguing one!

- What is the relationship between MA(ℵ₀) and AC^{ℵ₀} (i.e. the Axiom of Countable Choice)? (Partial answer: MA* ⇒ AC^{ℵ₀} in ZF.)
- Ooes MA(\u03c8₀) restricted to complete Boolean algebras imply MA(\u03c8₀)? (Recall that, in ZFC, they are equivalent.)
- Ooes MA(ℵ₀) imply AC^{ℵ₀}_{fin} (AC restricted to denumerable families of nonempty finite sets)?
- Obes "every compact c.c.c. T₂ space is Baire" imply MA(ℵ₀)? (Negative answer in ZFA – recall that, in ZFC, they are equivalent.)
- Does "every Dedekind-finite set is finite" imply MA(ℵ₀)? (Negative answer in ZF.)

(人間) ト く ヨ ト く ヨ ト

The deductive strength of $MA(\aleph_0)$ and its relationship with various choice forms is a fairly unexplored topic and, in our opinion, a quite intriguing one!

- What is the relationship between MA(ℵ₀) and AC^{ℵ₀} (i.e. the Axiom of Countable Choice)? (Partial answer: MA* ⇒ AC^{ℵ₀} in ZF.)
- Ooes MA(\u03c8₀) restricted to complete Boolean algebras imply MA(\u03c8₀)? (Recall that, in ZFC, they are equivalent.)
- Ooes MA(ℵ₀) imply AC^{ℵ₀}_{fin} (AC restricted to denumerable families of nonempty finite sets)?
- Ooes "every compact c.c.c. T₂ space is Baire" imply MA(ℵ₀)? (Negative answer in ZFA – recall that, in ZFC, they are equivalent.)
- Ooes "every Dedekind-finite set is finite" imply MA(ℵ₀)?
 (Negative answer in ZF.)
- Does $\forall \mathfrak{p}(2\mathfrak{p} = \mathfrak{p}) \text{ imply } MA(\aleph_0)$?

• It is **unknown** whether "*every countable compact* T_2 *space is Baire*" is provable in ZF. Our conjecture is that the answer is in the negative.

We note that the stronger statement "every countable compact T_2 space is metrizable" is **not provable** in ZF (Keremedis–Tachtsis, 2007) • It is **unknown** whether "*every countable compact* T_2 *space is Baire*" is provable in ZF. Our conjecture is that the answer is in the negative.

We note that the stronger statement "every countable compact T_2 space is metrizable" is **not provable** in ZF (Keremedis–Tachtsis, 2007)

• (Fossy-Morillon, 1998) "Every compact T_2 space is Baire" is equivalent to Dependent Multiple Choice (DMC): if R is a binary relation on a non-empty set E such that $\forall x \in E \exists y \in E(x R y)$, then there is a sequence $(F_n)_{n \in \omega}$ of non-empty finite subsets of E such that $\forall n \in \omega \ \forall x \in F_n \ \exists y \in F_{n+1}(x R y)$. • It is **unknown** whether "*every countable compact* T_2 *space is Baire*" is provable in ZF. Our conjecture is that the answer is in the negative.

We note that the stronger statement "every countable compact T_2 space is metrizable" is **not provable** in ZF (Keremedis–Tachtsis, 2007)

- (Fossy-Morillon, 1998) "Every compact T_2 space is Baire" is equivalent to Dependent Multiple Choice (DMC): if R is a binary relation on a non-empty set E such that $\forall x \in E \exists y \in E(x R y)$, then there is a sequence $(F_n)_{n \in \omega}$ of non-empty finite subsets of E such that $\forall n \in \omega \ \forall x \in F_n \ \exists y \in F_{n+1}(x R y)$.
 - DMC is strictly weaker than DC and MC (the Axiom of Multiple Choice).
 - MC is equivalent to AC in ZF, but is *not* equivalent to AC in ZFA.

A preliminary and a couple of known results

Theorem

"Every compact c.c.c. T_2 space is Baire" + the Boolean Prime Ideal Theorem (BPI) \Rightarrow MA(\aleph_0) restricted to complete Boolean algebras. Thus, DMC + BPI \Rightarrow MA(\aleph_0) restricted to complete Boolean algebras.

A preliminary and a couple of known results

Theorem

"Every compact c.c.c. T_2 space is Baire" + the Boolean Prime Ideal Theorem (BPI) \Rightarrow MA(\aleph_0) restricted to complete Boolean algebras. Thus, DMC + BPI \Rightarrow MA(\aleph_0) restricted to complete Boolean algebras.

(BPI is **equivalent** to " \forall infinite X, the Stone space S(X) of X is compact" (Herrlich-Keremedis-Tachtsis, 2011). We establish that BPI **cannot be dropped** from the hypotheses. Hence, MA(\aleph_0) is **not equivalent** to "every compact c.c.c. T₂ space is Baire" in set theory without choice.)

A preliminary and a couple of known results

Theorem

"Every compact c.c.c. T_2 space is Baire" + the Boolean Prime Ideal Theorem (BPI) \Rightarrow MA(\aleph_0) restricted to complete Boolean algebras. Thus, DMC + BPI \Rightarrow MA(\aleph_0) restricted to complete Boolean algebras.

(BPI is **equivalent** to " \forall infinite X, the Stone space S(X) of X is compact" (Herrlich–Keremedis–Tachtsis, 2011). We establish that BPI **cannot be dropped** from the hypotheses. Hence, MA(\aleph_0) is **not equivalent** to "every compact c.c.c. T₂ space is Baire" in set theory without choice.)

Proof Let $(B, +, \cdot, 0, 1)$ be a c.c.c. complete Boolean algebra. Let S(B) be the Stone space of B (which is T_2). By BPI, S(B) is compact. Using the fact that B has the c.c.c. and is *complete*, one shows that S(B) is a c.c.c. space, and hence it is Baire. Then, a generic filter for a given countable set of dense subsets of $B \setminus \{0\}$ can be obtained, using the fact that S(B) is Baire.

Lemma

Let (P, \leq) be a partial order. Then there is a complete Boolean algebra B and a map $i : P \to B \setminus \{0\}$ such that:

- i[P] is dense in $B \setminus \{0\}$.

Lemma

Let (P, \leq) be a partial order. Then there is a complete Boolean algebra B and a map $i : P \rightarrow B \setminus \{0\}$ such that:

(If (P, \leq) is a partial order, then *B* is the complete Boolean algebra $\operatorname{ro}(P)$ of the regular open subsets of *P* (*O* is regular open if $O = \operatorname{int} \operatorname{cl}(O) =$ the interior of the closure of *O*), where *P* is endowed with the topology generated by the sets $N_p = \{q \in P : q \leq p\}, p \in P$. Also, for $b, c \in B, b \leq c$ if and only if $b \subseteq c, b \land c = b \cap c, b \lor c = \operatorname{int} \operatorname{cl}(b \cup c), b' = \operatorname{int}(P \setminus b),$ and if $S \subseteq B, \bigvee S = \operatorname{int} \operatorname{cl}(\bigcup S)$ and $\bigwedge S = \operatorname{int}(\bigcap S)$. For $p \in P$, $i(p) := \operatorname{int} \operatorname{cl}(N_p)$.)

伺 ト く ヨ ト く ヨ ト

(Herrlich-Keremedis, 1999) The following hold:

• $MA(\aleph_0) + AC_{fin}^{\aleph_0}$ implies \forall infinite $X(2^X$ is Baire) which in turn implies the following:

(a) \forall infinite X, $\mathcal{P}(X)$ is Dedekind-infinite,

(b) $AC_{fin}^{\aleph_0}$,

(c) The Partial Kinna–Wagner Selection Principle (i.e. for every infinite family A such that $\forall X \in A$, $|X| \ge 2$, there is an infinite subfamily B and a function F on B such that $\forall B \in B$, $\emptyset \neq f(B) \subsetneq B$).

2 For any infinite set X, if 2^X is Baire then X is not amorphous.

(An infinite set X is *amorphous* if it cannot be written as a disjoint union of two infinite sets.)

Main Results

Lemma

Let A and B be two sets such that B has at least two elements. Then for $(P, \leq) = (\operatorname{Fn}(A, B), \supseteq)$, the mapping $i : P \to \operatorname{ro}(P) \setminus \{\emptyset\} \ (i(p) = \operatorname{int} \operatorname{cl}(N_p)) \text{ is } i(p) = N_p \text{ for all } p \in P$, where for $p \in P$, $N_p = \{q \in P : q \leq p\}$.

Main Results

Lemma

Let A and B be two sets such that B has at least two elements. Then for $(P, \leq) = (\operatorname{Fn}(A, B), \supseteq)$, the mapping $i: P \to \operatorname{ro}(P) \setminus \{\emptyset\} \ (i(p) = \operatorname{int} \operatorname{cl}(N_p)) \text{ is } i(p) = N_p \text{ for all } p \in P,$ where for $p \in P$, $N_p = \{q \in P : q \leq p\}$.

Proof Fix $p \in P$. Since $\forall q \in P$, N_q is the smallest (w.r.t. \subseteq) open set containing q, we have $q \in cl(N_p)$ iff $N_q \cap N_p \neq \emptyset$ iff pand q are compatible. Thus, $cl(N_p) = \{q \in P : q \text{ is compatible} with <math>p\}$. Hence, $r \in int cl(N_p)$ iff $N_r \subseteq cl(N_p)$ iff every $q \leq r$ is compatible with p. Thus, $int cl(N_p) = \{r \in P : every \text{ extension of } r \text{ is compatible with } p\}$.

Main Results

Lemma

Let A and B be two sets such that B has at least two elements. Then for $(P, \leq) = (\operatorname{Fn}(A, B), \supseteq)$, the mapping $i: P \to \operatorname{ro}(P) \setminus \{\emptyset\}$ $(i(p) = \operatorname{int} \operatorname{cl}(N_p))$ is $i(p) = N_p$ for all $p \in P$, where for $p \in P$, $N_p = \{q \in P : q \leq p\}$.

Proof Fix $p \in P$. Since $\forall q \in P$, N_q is the smallest (w.r.t. \subseteq) open set containing q, we have $q \in cl(N_p)$ iff $N_q \cap N_p \neq \emptyset$ iff pand q are compatible. Thus, $cl(N_p) = \{q \in P : q \text{ is compatible} with <math>p\}$. Hence, $r \in int cl(N_p)$ iff $N_r \subseteq cl(N_p)$ iff every $q \leq r$ is compatible with p. Thus, $int cl(N_p) = \{r \in P : every \text{ extension of } r \text{ is compatible with } p\}$.

Now, let $r \in \operatorname{int} \operatorname{cl}(N_p)$. If $r \notin N_p$, then $p \not\subseteq r$. Then $\exists a \in A$ such that $(a, p(a)) \in p \setminus r$, and since $|B| \ge 2$, $\exists b \in B \setminus \{p(a)\}$. Let $r' = r \cup \{(a, b)\}$. Then r' is an extension of r which is incompatible with p, and hence $r \notin \operatorname{int} \operatorname{cl}(N_p)$, a contradiction. Therefore, $\operatorname{int} \operatorname{cl}(N_p) = N_p$, so $i(p) = N_p$ for all $p \in P$.

500

 $\mathsf{MA}(\aleph_0) \text{ restricted to complete Boolean algebras} \Rightarrow \text{the Cantor cube } 2^{\mathbb{R}} \text{ is Baire.}$

문 🛌 문

- **→** → **→**

 $MA(\aleph_0) \text{ restricted to complete Boolean algebras} \Rightarrow the Cantor cube 2^{\mathbb{R}} \text{ is Baire.}$

Proof Let $D = \{d_n : n \in \omega\}$ be a countable dense subset of $2^{\mathbb{R}}$. $(2^{\mathbb{R}}$ is separable in ZF). Let $\mathcal{B} = \operatorname{ro}(P)$ be the complete Boolean algebra associated with the poset $(P, \leq) = (\operatorname{Fn}(\mathbb{R}, 2), \supseteq)$ via the mapping *i* of the lemma.

 $MA(\aleph_0) \text{ restricted to complete Boolean algebras} \Rightarrow the \ Cantor \ cube \ 2^{\mathbb{R}} \ \text{is Baire.}$

Proof Let $D = \{d_n : n \in \omega\}$ be a countable dense subset of $2^{\mathbb{R}}$. $(2^{\mathbb{R}} \text{ is separable in ZF})$. Let $\mathcal{B} = \operatorname{ro}(P)$ be the complete Boolean algebra associated with the poset $(P, \leq) = (\operatorname{Fn}(\mathbb{R}, 2), \supseteq)$ via the mapping *i* of the lemma.

• \mathcal{B} has the c.c.c.: Let S be an antichain in \mathcal{B} and $s \in S$. Since i[P] is dense in $\mathcal{B} \setminus \{\emptyset\}$ and D is dense in $2^{\mathbb{R}}$, we may let $n_s = \min\{n \in \omega : \exists F_{n,s} \in [\mathbb{R}]^{<\omega}, i(d_n \upharpoonright F_{n,s}) \subseteq s\}$. Since $p \leq q \rightarrow i(p) \leq i(q)$, the map $s \mapsto n_s, s \in S$, is 1-1 (if $s, s' \in S$ are such that $s \neq s'$, but $n_s = n_{s'} = k$ for some $k \in \omega$, then there are $F_{k,s}, F_{k,s'} \in [\mathbb{R}]^{<\omega}$ such that

 $i(d_k \upharpoonright F_{k,s}) \subseteq s \text{ and } i(d_k \upharpoonright F_{k,s'}) \subseteq s'.$

Letting q be the union of the above two restrictions of d_k we have that $i(q) \subseteq s$ and $i(q) \subseteq s'$, and thus s and s' are compatible, a contradiction). Therefore, S is countable and \mathcal{B}

• Let $\mathcal{O} = \{O_n : n \in \omega\}$ be a family of dense open subsets of $2^{\mathbb{R}}$. Then, $\forall n \in \omega$, $D_n := \{p \in P : [p] \subseteq O_n\}$ is dense in P. Hence, $i[D_n]$ is dense in $\mathcal{B} \setminus \{\emptyset\}$ for all $n \in \omega$. By MA(\aleph_0) on \mathcal{B} , there is a filter G of \mathcal{B} such that $G \cap i[D_n] \neq \emptyset$ for each $n \in \omega$. Then (by the lemma) $H = i^{-1}(G) = \{p \in P : i(p) = N_p \in G\}$ and clearly $H \cap D_n \neq \emptyset$ for each $n \in \omega$. • Let $\mathcal{O} = \{O_n : n \in \omega\}$ be a family of dense open subsets of $2^{\mathbb{R}}$. Then, $\forall n \in \omega$, $D_n := \{p \in P : [p] \subseteq O_n\}$ is dense in P. Hence, $i[D_n]$ is dense in $\mathcal{B} \setminus \{\emptyset\}$ for all $n \in \omega$. By MA(\aleph_0) on \mathcal{B} , there is a filter G of \mathcal{B} such that $G \cap i[D_n] \neq \emptyset$ for each $n \in \omega$. Then (by the lemma) $H = i^{-1}(G) = \{p \in P : i(p) = N_p \in G\}$ and clearly $H \cap D_n \neq \emptyset$ for each $n \in \omega$.

Furthermore, *H* is a filter of *P*: Since $p \leq q \rightarrow i(p) \leq i(q)$ and *G* is a filter of *B*, it follows that *H* is upward closed. Now, let $p, q \in H$. Then $i(p) = N_p$ and $i(q) = N_q$ are in *G*; hence $N_p \cap N_q \in G$. However, $N_p \cap N_q = N_{p \cup q}$, and hence $i(p \cup q) \in G$, so $p \cup q \in H$ and clearly $p \cup q \leq p$ and $p \cup q \leq q$. Thus, *H* is a filter of *P*. It follows that $\bigcup H$ is a function with dom $(\bigcup H) \subseteq \mathbb{R}$ and ran $(\bigcup H) \subseteq 2$. So, extending $\bigcup H$ to a function $f \in 2^{\mathbb{R}}$, we obtain that $f \in \bigcap \mathcal{O}$. \Box

・ 同 ト ・ ヨ ト ・ ヨ ト

 Whether or not the statement "the Cantor cube 2^ℝ is Baire" is a theorem of ZF is an **open problem**!
Whether or not the statement "the Cantor cube 2^ℝ is Baire" is a theorem of ZF is an **open problem**! (We note that 2^ℝ is Baire in every Fraenkel–Mostowski model of ZFA.)

- Whether or not the statement "the Cantor cube 2^ℝ is Baire" is a theorem of ZF is an **open problem**! (We note that 2^ℝ is Baire in every Fraenkel–Mostowski model of ZFA.)
- The weaker result "MA(ℵ₀) ⇒ 2^ℝ is Baire" has a much easier proof than the one for the previous theorem, and its keypoint is the ZF fact that the poset (Fn(ℝ, 2), ⊇) (which is order isomorphic to (B, ⊆), where B is the standard base for the Tychonoff topology on 2^ℝ) has the c.c.c.. In fact, its proof readily yields that for any set X,
 - "(Fn(X,2), \supseteq) has the c.c.c." + MA(\aleph_0) $\Rightarrow 2^X$ is Baire.

$\mathsf{AC}^{\aleph_0}_{\mathrm{fin}} \Leftrightarrow$ for every infinite set X, $(\mathrm{Fn}(X,2),\supseteq)$ has the c.c.c..

æ

御 と く ヨ と く ヨ と …

$AC_{fin}^{\aleph_0} \Leftrightarrow$ for every infinite set X, $(Fn(X,2),\supseteq)$ has the c.c.c..

Proof Assume $AC_{\text{fin}}^{\aleph_0}$ and let X be an infinite set. Let S be an antichain in $(\operatorname{Fn}(X, 2), \supseteq)$. For each $n \in \omega$, let $S_n = \{p \in S : |p| = n\}$. It is fairly easy to see that since S is an antichain and $\forall s \in S, \operatorname{ran}(s) \subseteq 2$, we have that S_n is a finite set for each $n \in \omega$. By $AC_{\text{fin}}^{\aleph_0}$, it follows that $S = \bigcup_{n \in \omega} S_n$ is countable.

$\mathsf{AC}^{\aleph_0}_{\mathsf{fin}} \Leftrightarrow \mathsf{for every infinite set } X, (\mathrm{Fn}(X,2), \supseteq) \mathsf{ has the c.c.c.}$

Proof Assume $AC_{\text{fin}}^{\aleph_0}$ and let X be an infinite set. Let S be an antichain in $(\operatorname{Fn}(X, 2), \supseteq)$. For each $n \in \omega$, let $S_n = \{p \in S : |p| = n\}$. It is fairly easy to see that since S is an antichain and $\forall s \in S, \operatorname{ran}(s) \subseteq 2$, we have that S_n is a finite set for each $n \in \omega$. By $AC_{\text{fin}}^{\aleph_0}$, it follows that $S = \bigcup_{n \in \omega} S_n$ is countable.

Assume that for every infinite set X, $(\operatorname{Fn}(X,2),\supseteq)$ has the c.c.c.. Let $\mathcal{A} = \{A_i : i \in \omega\}$ be a countably infinite family of non-empty finite sets. Without loss of generality, we may assume that \mathcal{A} is disjoint. Let $X = \bigcup \mathcal{A}$. By our hypothesis, $(\operatorname{Fn}(X,2),\supseteq)$ has ccc. Let

$$S_0 = \{ f \in 2^{A_0} : |f^{-1}(\{1\})| = 1 \},$$

and for $i \in \omega \setminus \{0\}$, let

 $S_i = \{ f \in 2^{A_0 \cup \cdots \cup A_i} : [f \upharpoonright (A_0 \cup \cdots \cup A_{i-1}) \equiv \mathbf{0}] \land [|f^{-1}(\{1\}) \cap A_i| = 1] \}.$

Then $S = \bigcup_{i \in \omega} S_i$ is an antichain in $(\operatorname{Fn}(X, 2), \leq)$, and thus S is countable, and clearly $|S| = \aleph_0$. Let $S = \{s_n : n \in \omega\}$ be an enumeration of S. For $j \in \omega$, let $n_j = \min\{n \in \omega : s_n \in S_j\}$ and c_j = the unique element x of A_j such that $s_{n_j}(x) = 1$. Then $f = \{(j, c_j) : j \in \omega\}$ is a choice function of the family A.

Then $S = \bigcup_{i \in \omega} S_i$ is an antichain in $(\operatorname{Fn}(X, 2), \leq)$, and thus S is countable, and clearly $|S| = \aleph_0$. Let $S = \{s_n : n \in \omega\}$ be an enumeration of S. For $j \in \omega$, let $n_j = \min\{n \in \omega : s_n \in S_j\}$ and $c_j =$ the unique element x of A_j such that $s_{n_j}(x) = 1$. Then $f = \{(j, c_j) : j \in \omega\}$ is a choice function of the family \mathcal{A} .

Corollary

 $BPI \Rightarrow$ "for every infinite set X, $(Fn(X,2), \supseteq)$ has the c.c.c.". The implication is not reversible in ZF.

 $MA(\aleph_0)$ restricted to complete Boolean algebras is false in the Second Fraenkel Model of ZFA. Thus, $MC \Rightarrow (MA(\aleph_0)$ restricted to complete Boolean algebras) in ZFA set theory, and consequently MC (and hence "every compact T_2 space is Baire") does not imply $MA(\aleph_0)$ in ZFA.

 $MA(\aleph_0)$ restricted to complete Boolean algebras is false in the Second Fraenkel Model of ZFA. Thus, $MC \Rightarrow (MA(\aleph_0)$ restricted to complete Boolean algebras) in ZFA set theory, and consequently MC (and hence "every compact T_2 space is Baire") does not imply $MA(\aleph_0)$ in ZFA.

Proof The set of atoms $A = \bigcup \{A_n : n \in \omega\}$ is a countable disjoint union of pairs $A_n = \{a_n, b_n\}$, $n \in \omega$. Let *G* be the group of all permutations of *A*, which fix A_n for each $n \in \omega$. Let Γ be the finite support filter. Then the Second Fraenkel Model \mathcal{N} is the FM model which is determined by *M*, *G*, and Γ .

 $MA(\aleph_0)$ restricted to complete Boolean algebras is false in the Second Fraenkel Model of ZFA. Thus, $MC \Rightarrow (MA(\aleph_0)$ restricted to complete Boolean algebras) in ZFA set theory, and consequently MC (and hence "every compact T_2 space is Baire") does not imply $MA(\aleph_0)$ in ZFA.

Proof The set of atoms $A = \bigcup \{A_n : n \in \omega\}$ is a countable disjoint union of pairs $A_n = \{a_n, b_n\}$, $n \in \omega$. Let *G* be the group of all permutations of *A*, which fix A_n for each $n \in \omega$. Let Γ be the finite support filter. Then the Second Fraenkel Model \mathcal{N} is the FM model which is determined by *M*, *G*, and Γ .

The (countable) family A = {A_n : n ∈ ω} has no partial choice function in N.

 $MA(\aleph_0)$ restricted to complete Boolean algebras is false in the Second Fraenkel Model of ZFA. Thus, $MC \Rightarrow (MA(\aleph_0)$ restricted to complete Boolean algebras) in ZFA set theory, and consequently MC (and hence "every compact T_2 space is Baire") does not imply $MA(\aleph_0)$ in ZFA.

Proof The set of atoms $A = \bigcup \{A_n : n \in \omega\}$ is a countable disjoint union of pairs $A_n = \{a_n, b_n\}$, $n \in \omega$. Let *G* be the group of all permutations of *A*, which fix A_n for each $n \in \omega$. Let Γ be the finite support filter. Then the Second Fraenkel Model \mathcal{N} is the FM model which is determined by *M*, *G*, and Γ .

- The (countable) family A = {A_n : n ∈ ω} has no partial choice function in N.
- Let $P = \{f : f \text{ is a choice function of } \{A_i : i \leq n\}$ for some $n \in \omega\}$, and for $f, g \in P$, declare $f \leq g$ if and only if $f \supseteq g$. Then $(P, \leq) \in \mathcal{N}$ and every antichain in P is finite.

 $MA(\aleph_0)$ restricted to complete Boolean algebras is false in the Second Fraenkel Model of ZFA. Thus, $MC \neq (MA(\aleph_0)$ restricted to complete Boolean algebras) in ZFA set theory, and consequently MC (and hence "every compact T_2 space is Baire") does not imply $MA(\aleph_0)$ in ZFA.

Proof The set of atoms $A = \bigcup \{A_n : n \in \omega\}$ is a countable disjoint union of pairs $A_n = \{a_n, b_n\}$, $n \in \omega$. Let *G* be the group of all permutations of *A*, which fix A_n for each $n \in \omega$. Let Γ be the finite support filter. Then the Second Fraenkel Model \mathcal{N} is the FM model which is determined by *M*, *G*, and Γ .

- The (countable) family A = {A_n : n ∈ ω} has no partial choice function in N.
- Let $P = \{f : f \text{ is a choice function of } \{A_i : i \leq n\}$ for some $n \in \omega\}$, and for $f, g \in P$, declare $f \leq g$ if and only if $f \supseteq g$. Then $(P, \leq) \in \mathcal{N}$ and every antichain in P is finite.
- The mapping $i: P \to \operatorname{ro}(P) \setminus \{\emptyset\}$ is $i(p) = N_{p^{p_{i-1}}}$ is $i \in \mathbb{N}$

The complete Boolean algebra (ro(P), ⊆) has the c.c.c.; in fact, every antichain in ro(P) is finite: Let S be an antichain in B. For every s ∈ S, let

$$W_s = \{p \in P : |p| = n_s \text{ and } i(p) \subseteq s\}$$

where n_s is the least integer n such that there is a $p \in P$ with $i(p) \subseteq s$. Then $W = \bigcup \{W_s : s \in S\}$ is an antichain in P, thus it is finite. Hence, S is finite.

The complete Boolean algebra (ro(P), ⊆) has the c.c.c.; in fact, every antichain in ro(P) is finite: Let S be an antichain in B. For every s ∈ S, let

$$W_s = \{p \in P : |p| = n_s \text{ and } i(p) \subseteq s\}$$

where n_s is the least integer n such that there is a $p \in P$ with $i(p) \subseteq s$. Then $W = \bigcup \{W_s : s \in S\}$ is an antichain in P, thus it is finite. Hence, S is finite.

• $\forall n \in \omega$, the set

$$D_n = \{f \in P : A_n \in \operatorname{dom}(f)\}$$

is dense in *P*, and hence $i[D_n]$ is dense in ro(P) for all $n \in \omega$. Let $\mathcal{D} = \{D_n : n \in \omega\}$. If *G* were an $i[\mathcal{D}]$ -generic filter of ro(P), then $H = i^{-1}(G)$ would be a \mathcal{D} -generic filter of *P*, so $\bigcup H$ would be a choice function of \mathcal{A} , which is impossible. Thus, MA(\aleph_0) is false for the c.c.c. complete Boolean algebra ro(P).

 $MA(\aleph_0)$ is false in Mostowski's Linearly Ordered Model of ZFA. Thus (by Pincus' transfer theorems), BPI + Countable Union Theorem (CUT) $\Rightarrow MA(\aleph_0)$ in ZF.

 $MA(\aleph_0)$ is false in Mostowski's Linearly Ordered Model of ZFA. Thus (by Pincus' transfer theorems), BPI + Countable Union Theorem (CUT) $\Rightarrow MA(\aleph_0)$ in ZF.

Proof Start with a ground model M with a linearly ordered set (A, \preceq) of atoms which is order isomorphic to (\mathbb{Q}, \leq) . G is the group of all order atutomorphims of (A, \preceq) and Γ is finite support filter. The Mostowski model \mathcal{N} is the model determined by M, G and Γ .

 $MA(\aleph_0)$ is false in Mostowski's Linearly Ordered Model of ZFA. Thus (by Pincus' transfer theorems), BPI + Countable Union Theorem (CUT) $\Rightarrow MA(\aleph_0)$ in ZF.

Proof Start with a ground model M with a linearly ordered set (A, \preceq) of atoms which is order isomorphic to (\mathbb{Q}, \leq) . G is the group of all order atutomorphims of (A, \preceq) and Γ is finite support filter. The Mostowski model \mathcal{N} is the model determined by M, G and Γ .

The power set of the set A of atoms in Mostowski's model is Dedekind-finite, and hence $\forall X \ (2^X \text{ is Baire})$ is false in \mathcal{N} . Since BPI is true in \mathcal{N} , it follows that $\forall X \ ((\operatorname{Fn}(X,2),\supseteq)$ has the c.c.c.) is also true in \mathcal{N} . Thus, MA(\aleph_0) is false in Mostowski's model. \Box

 $MA(\aleph_0)$ is false in the Basic Fraenkel Model of ZFA.

æ

- **→** → **→**

 $MA(\aleph_0)$ is false in the Basic Fraenkel Model of ZFA.

Proof Start with a ground model M of ZFA + AC with a countable set A of atoms. Let G be the group of all permutations of A and let Γ be the finite support filter. Then the Basic Fraenkel Model \mathcal{N} is the permutation model determined by M, G and Γ .

 $MA(\aleph_0)$ is false in the Basic Fraenkel Model of ZFA.

Proof Start with a ground model M of ZFA + AC with a countable set A of atoms. Let G be the group of all permutations of A and let Γ be the finite support filter. Then the Basic Fraenkel Model \mathcal{N} is the permutation model determined by M, G and Γ .

 $MA(\aleph_0)$ is false in \mathcal{N} , since $\forall X$, Fn(X, 2) has the c.c.c. (for $AC_{fin}^{\aleph_0}$ is true in \mathcal{N}) and A is amorphous (where A is the set of atoms), and hence 2^A is not Baire in \mathcal{N} .

If ZFA is consistent, so is ZFA + MA* + \neg MA(\aleph_0) + (DF = F) + CUT.

(DF = F stands for "every Dedekind-finite is finite" and CUT is the Countable Union Theorem.)

< ∃ >

э

If ZFA is consistent, so is ZFA + MA* + \neg MA(\aleph_0) + (DF = F) + CUT.

(DF = F stands for "every Dedekind-finite is finite" and CUT is the Countable Union Theorem.)

Proof Start with a model M of ZFA + AC + CH, in which there is a set of atoms $A = \bigcup \{A_n : n \in \omega\}$ which is a countable disjoint union of \aleph_1 -sized sets. Let G be the group of all permutations of A, which fix A_n for every $n \in \omega$. Let Γ be the (normal) filter of subgroups of G generated by $\{\operatorname{fix}_G(E) : E = \bigcup_{i \in I} A_i, I \in [\omega]^{<\omega}\}$. Let \mathcal{N} be the FM model determined by M, G and Γ .

If ZFA is consistent, so is ZFA + MA* + \neg MA(\aleph_0) + (DF = F) + CUT.

(DF = F stands for "every Dedekind-finite is finite" and CUT is the Countable Union Theorem.)

Proof Start with a model M of ZFA + AC + CH, in which there is a set of atoms $A = \bigcup \{A_n : n \in \omega\}$ which is a countable disjoint union of \aleph_1 -sized sets. Let G be the group of all permutations of A, which fix A_n for every $n \in \omega$. Let Γ be the (normal) filter of subgroups of G generated by $\{\operatorname{fix}_G(E) : E = \bigcup_{i \in I} A_i, I \in [\omega]^{<\omega}\}$. Let \mathcal{N} be the FM model determined by M, G and Γ .

• In \mathcal{N} , CH is true, hence so is MA*.

If ZFA is consistent, so is ZFA + MA* + \neg MA(\aleph_0) + (DF = F) + CUT.

(DF = F stands for "every Dedekind-finite is finite" and CUT is the Countable Union Theorem.)

Proof Start with a model M of ZFA + AC + CH, in which there is a set of atoms $A = \bigcup \{A_n : n \in \omega\}$ which is a countable disjoint union of \aleph_1 -sized sets. Let G be the group of all permutations of A, which fix A_n for every $n \in \omega$. Let Γ be the (normal) filter of subgroups of G generated by $\{\operatorname{fix}_G(E) : E = \bigcup_{i \in I} A_i, I \in [\omega]^{<\omega}\}$. Let \mathcal{N} be the FM model determined by M, G and Γ .

- In \mathcal{N} , CH is true, hence so is MA*.
- The family $\mathcal{A} = \{A_n : n \in \omega\}$ has no partial Kinna–Wagner Selection function in \mathcal{N} .

DF = F is true in N, and hence ∀X, (Fn(X, 2), ⊇) has the c.c.c.:

Let $x \in \mathcal{N}$ be a non-well-orderable set and let $E = \bigcup \{A_i : i \leq k\}$ be a support of x. Then there exists an element $z \in x$ and a $\phi \in \operatorname{fix}_G(E)$ such that $\phi(z) \neq z$. Let E_z be a support of z; wlog assume that $E_z = E \cup A_{k+1}$ and that $\phi \in \operatorname{fix}_G(A \setminus A_{k+1})$. Let

$$y = \{\psi(z) : \psi \in \operatorname{fix}_G(A \setminus A_{k+1})\}.$$

Then y is well-orderable and infinite; otherwise the index of the proper subgroup

$$H = \{\eta \in \operatorname{fix}_{G}(A \setminus A_{k+1}) : \eta(z) = z\}$$

in $\operatorname{fix}_G(A \setminus A_{k+1})$ is finite. However, $\operatorname{fix}_G(A \setminus A_{k+1})$ is isomorphic to $\operatorname{Sym}(\aleph_1)$, and by a result of Gaughan, every proper subgroup of $\operatorname{Sym}(\aleph_1)$ has uncountable index. We have reached a contradiction, and thus y is infinite. • CUT is true in \mathcal{N} : Fairly similar argument to the one for $\mathsf{DF} = \mathsf{F}$ in \mathcal{N} .

伺 ト く ヨ ト く ヨ ト

э

- CUT is true in \mathcal{N} : Fairly similar argument to the one for $\mathsf{DF} = \mathsf{F}$ in \mathcal{N} .
- MA(ℵ₀) is false in N: (a) (Fn(A, 2), ⊇) has the c.c.c. (since by CUT in N or DF = F -, it follows that AC^{ℵ₀}_{fin} is also true in N) (b) A = {A_n : n ∈ ω} has no partial Kinna-Wagner selection function in N, and hence 2^A (= 2^{UA}) is not Baire in N.

- CUT is true in \mathcal{N} : Fairly similar argument to the one for $\mathsf{DF} = \mathsf{F}$ in \mathcal{N} .
- MA(ℵ₀) is false in N: (a) (Fn(A, 2), ⊇) has the c.c.c. (since by CUT in N or DF = F -, it follows that AC^{ℵ₀}_{fin} is also true in N) (b) A = {A_n : n ∈ ω} has no partial Kinna-Wagner selection function in N, and hence 2^A (= 2^{UA}) is not Baire in N.

There is a ZF model in which (DF = F) + CUT is true, whereas $MA(\aleph_0)$ is false.

- CUT is true in \mathcal{N} : Fairly similar argument to the one for $\mathsf{DF} = \mathsf{F}$ in \mathcal{N} .
- MA(ℵ₀) is false in N: (a) (Fn(A, 2), ⊇) has the c.c.c. (since by CUT in N or DF = F –, it follows that AC^{ℵ₀}_{fin} is also true in N) (b) A = {A_n : n ∈ ω} has no partial Kinna–Wagner selection function in N, and hence 2^A (= 2^{U,A}) is not Baire in N.

There is a ZF model in which (DF = F) + CUT is true, whereas $MA(\aleph_0)$ is false.

Proof This follows from the facts that $\Phi = (DF = F) + CUT + \neg MA(\aleph_0) \text{ is a conjunction of injectively}$ boundable statements and Φ has a ZFA model, so by Pincus' transfer theorems it follows that Φ has a ZF model.

If ZF is consistent, then so is $ZF + MA^* + \neg AC^{\aleph_0}$.

æ

- **→** → **→**

If ZF is consistent, then so is $ZF + MA^* + \neg AC^{\aleph_0}$.

Proof We start with a countable transitive model M of ZF + CH, and we extend M to a symmetric model N of ZF with the same reals as in M, but which does not satisfy AC^{\aleph_0} .

If ZF is consistent, then so is $ZF + MA^* + \neg AC^{\aleph_0}$.

Proof We start with a countable transitive model M of ZF + CH, and we extend M to a symmetric model N of ZF with the same reals as in M, but which does not satisfy AC^{\aleph_0} .

Let $P = \operatorname{Fn}(\omega \times \aleph_1 \times \aleph_1, 2, \aleph_1)$ be the set of all partial functions pwith $|p| < \aleph_1$, dom $(p) \subset \omega \times \aleph_1 \times \aleph_1$ and $\operatorname{ran}(p) \subseteq 2$, partially ordered by reverse inclusion, i.e., $p \leq q$ if and only if $p \supseteq q$. Since \aleph_1 is a regular cardinal, it follows that (P, \leq) is a \aleph_1 -closed poset. Hence, forcing with P adds only new subsets of \aleph_1 and no new subsets of cardinals $< \aleph_1$. Therefore, forcing with P adds no new reals; it only adds new subsets of \mathbb{R} . Let $a_{n,m} = \{j \in \aleph_1 : \exists p \in G, p(n, m, j) = 1\}$, $n \in \omega$, $m \in \aleph_1$, let $A_n = \{a_{n,m} : m \in \aleph_1\}$, $n \in \omega$, and let $\mathcal{A} = \{A_n : n \in \omega\}$. Every permutation ϕ of $\omega \times \aleph_1$ induces an order-automorphism of (P, \leq) by requiring for every $p \in P$,

$$dom \phi(p) = \{(\phi(n, m), k) : (n, m, k) \in dom(p)\},\\phi(p)(\phi(n, m), k) = p(n, m, k).$$

Let \mathcal{G} be the group of all order-automorphisms of (P, \leq) induced (as above) by all those permutations ϕ of $\omega \times \aleph_1$, which satisfy

$$\phi(n,m) = (n,m')$$
 for all ordered pairs $(n,m) \in \omega \times \aleph_1$.

(So ϕ is essentially such that $\forall n \in \omega$, \exists permutation ϕ_n of \aleph_1 so that $\phi(n, m) = (n, \phi_n(m))$ for all $n \in \omega$. Further, the effect of ϕ on a condition $p \in P$ is that ϕ changes only the second coordinate of p.)

For every finite subset $E \subset \omega \times \aleph_1$, let $fix_{\mathcal{G}}(E) = \{ \phi \in \mathcal{G} : \forall e \in E, \phi(e) = e \}$ and let Γ be the filter of subgroups of \mathcal{G} generated by {fix_{\mathcal{G}}(E) : $E \subset \omega \times \aleph_1$, $|E| < \aleph_0$ }. An element $x \in M$ is called *symmetric* if there exists a finite subset $E \subset \omega \times \aleph_1$ such that $\forall \phi \in \operatorname{fix}_{\mathcal{G}}(E), \phi(x) = x$. Under these circumstances, we call E a support of x. An element $x \in M$ is called *hereditarily symmetric* if x and every element of the transitive closure of x is symmetric. Let HS be the set of all hereditarily symmetric names in M and let $N = \{\tau_G : \tau \in \mathrm{HS}\} \subset M[G]$

be the symmetric extension model of M.

Since M and N have the same reals, we have MA^{*} is true in the model N.

Furthermore, the countable family $\mathcal{A} = \{A_n : n \in \omega\}$ has no choice function, and thus AC^{\aleph_0} is false in N.

References

J. Fossy and M. Morillon,

The Baire category property and some notions of compactness,

J. London Math. Soc. 57, (2) (1998), 1–19.

E. D. Gaughan,

The index problem for infinite symmetric groups, Proc. Amer. Math. Soc. 15 (1964), 527–528.

H. Herrlich, K. Keremedis and E. Tachtsis, Remarks on the Stone spaces of the integers and the reals without AC, Bull. Polish. Acad. Sci. Math. 59, No 2 (2011), 101–114.

P. Howard and J. E. Rubin, Consequences of the Axiom of Choice, Mathematical Surveys and Monographs, 59, Amer. Math. Soc., Providence, RI, 1998.

The Axiom of Choice,

Studies in Logic and the Foundations of Mathematics, 75, North-Holland, Amsterdam, 1973.

- K. Keremedis and H. Herrlich, *Powers of* 2, Notre Dame Journal of Formal Logic, 40, No. 3 (1999), 346–351.
- K. Keremedis and E. Tachtsis, Countable compact Hausdorff spaces need not be metrizable in ZF, Proc. Amer. Math. Soc., 135 (2007), 1205–1211.

嗪 K. Kunen,

Set Theory. An Introduction to Independence Proofs, Studies in Logic and the Foundations of Mathematics, **102**, North-Holland, Amsterdam, 1980.

G. P. Shannon,

Provable Forms of Martin's Axiom,

Notre Dame Journal of Formal Logic, 31, No. 3 (1990), 382-388.

E. Tachtsis,

On Martin's Axiom and Forms of Choice, Math. Log. Quart. 62 (2016), no. 3, 190–203.

Thank You!

⊡ ► < ≣ ►

æ

⊸ ≣ ⊁