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Statement of Martin’s Axiom

Let κ be an infinite well-ordered cardinal number. MA(κ) stands
for the principle:

If (P,≤) is a non-empty c.c.c. partial order and if D is a family of
≤ κ dense sets in P, then there is a filter F of P such that
F ∩ D 6= ∅ for all D ∈ D.

Such a filter F of P is called a D-generic filter of P.

Martin’s Axiom: ∀ ω ≤ κ < 2ℵ0 (MA(κ)).

E. Tachtsis Martin’s Axiom and Choice Principles



Statement of Martin’s Axiom

Let κ be an infinite well-ordered cardinal number. MA(κ) stands
for the principle:

If (P,≤) is a non-empty c.c.c. partial order and if D is a family of
≤ κ dense sets in P, then there is a filter F of P such that
F ∩ D 6= ∅ for all D ∈ D.

Such a filter F of P is called a D-generic filter of P.

Martin’s Axiom: ∀ ω ≤ κ < 2ℵ0 (MA(κ)).

E. Tachtsis Martin’s Axiom and Choice Principles



Some Known Facts

ZFC 0 MA: (a) AC (the Axiom of Choice) + MA ⇒ 2ℵ0 is
regular (b) it is relatively consistent with ZFC that 2ℵ0 is
singular.

MA(2ℵ0) is false.

(ZF) DC ⇒ MA(ℵ0) ⇒ “every compact c.c.c. T2 space is
Baire” ⇒ “every countable compact T2 space is Baire”,
where DC is the Principle of Dependent Choice: if R is a
binary relation on a non-empty set E such that
∀x ∈ E ∃y ∈ E (x R y), then there is a sequence (xn)n∈ω of
elements of E such that ∀n ∈ ω(xn R xn+1).

MA(ℵ0) is not provable in ZF.

(ZFC) For any κ ≥ ω, MA(κ) ⇔ MA(κ) restricted to
complete Boolean algebras ⇔ MA(κ) restricted to partial
orders of cardinality ≤ κ ⇔ if X is any compact c.c.c. T2

space and Uα are dense open sets for α < κ, then
⋂
α Uα 6= ∅.

E. Tachtsis Martin’s Axiom and Choice Principles



Some Known Facts

ZFC 0 MA: (a) AC (the Axiom of Choice) + MA ⇒ 2ℵ0 is
regular (b) it is relatively consistent with ZFC that 2ℵ0 is
singular.

MA(2ℵ0) is false.

(ZF) DC ⇒ MA(ℵ0) ⇒ “every compact c.c.c. T2 space is
Baire” ⇒ “every countable compact T2 space is Baire”,
where DC is the Principle of Dependent Choice: if R is a
binary relation on a non-empty set E such that
∀x ∈ E ∃y ∈ E (x R y), then there is a sequence (xn)n∈ω of
elements of E such that ∀n ∈ ω(xn R xn+1).

MA(ℵ0) is not provable in ZF.

(ZFC) For any κ ≥ ω, MA(κ) ⇔ MA(κ) restricted to
complete Boolean algebras ⇔ MA(κ) restricted to partial
orders of cardinality ≤ κ ⇔ if X is any compact c.c.c. T2

space and Uα are dense open sets for α < κ, then
⋂
α Uα 6= ∅.

E. Tachtsis Martin’s Axiom and Choice Principles



Some Known Facts

ZFC 0 MA: (a) AC (the Axiom of Choice) + MA ⇒ 2ℵ0 is
regular (b) it is relatively consistent with ZFC that 2ℵ0 is
singular.

MA(2ℵ0) is false.

(ZF) DC ⇒ MA(ℵ0) ⇒ “every compact c.c.c. T2 space is
Baire” ⇒ “every countable compact T2 space is Baire”,
where DC is the Principle of Dependent Choice: if R is a
binary relation on a non-empty set E such that
∀x ∈ E ∃y ∈ E (x R y), then there is a sequence (xn)n∈ω of
elements of E such that ∀n ∈ ω(xn R xn+1).

MA(ℵ0) is not provable in ZF.

(ZFC) For any κ ≥ ω, MA(κ) ⇔ MA(κ) restricted to
complete Boolean algebras ⇔ MA(κ) restricted to partial
orders of cardinality ≤ κ ⇔ if X is any compact c.c.c. T2

space and Uα are dense open sets for α < κ, then
⋂
α Uα 6= ∅.

E. Tachtsis Martin’s Axiom and Choice Principles



Some Known Facts

ZFC 0 MA: (a) AC (the Axiom of Choice) + MA ⇒ 2ℵ0 is
regular (b) it is relatively consistent with ZFC that 2ℵ0 is
singular.

MA(2ℵ0) is false.

(ZF) DC ⇒ MA(ℵ0) ⇒ “every compact c.c.c. T2 space is
Baire” ⇒ “every countable compact T2 space is Baire”,
where DC is the Principle of Dependent Choice: if R is a
binary relation on a non-empty set E such that
∀x ∈ E ∃y ∈ E (x R y), then there is a sequence (xn)n∈ω of
elements of E such that ∀n ∈ ω(xn R xn+1).

MA(ℵ0) is not provable in ZF.

(ZFC) For any κ ≥ ω, MA(κ) ⇔ MA(κ) restricted to
complete Boolean algebras ⇔ MA(κ) restricted to partial
orders of cardinality ≤ κ ⇔ if X is any compact c.c.c. T2

space and Uα are dense open sets for α < κ, then
⋂
α Uα 6= ∅.

E. Tachtsis Martin’s Axiom and Choice Principles



Some Known Facts

ZFC 0 MA: (a) AC (the Axiom of Choice) + MA ⇒ 2ℵ0 is
regular (b) it is relatively consistent with ZFC that 2ℵ0 is
singular.

MA(2ℵ0) is false.

(ZF) DC ⇒ MA(ℵ0) ⇒ “every compact c.c.c. T2 space is
Baire” ⇒ “every countable compact T2 space is Baire”,
where DC is the Principle of Dependent Choice: if R is a
binary relation on a non-empty set E such that
∀x ∈ E ∃y ∈ E (x R y), then there is a sequence (xn)n∈ω of
elements of E such that ∀n ∈ ω(xn R xn+1).

MA(ℵ0) is not provable in ZF.

(ZFC) For any κ ≥ ω, MA(κ) ⇔ MA(κ) restricted to
complete Boolean algebras ⇔ MA(κ) restricted to partial
orders of cardinality ≤ κ ⇔ if X is any compact c.c.c. T2

space and Uα are dense open sets for α < κ, then
⋂
α Uα 6= ∅.

E. Tachtsis Martin’s Axiom and Choice Principles



Let MAκ denote MA(κ) restricted to partial orders of cardinality
≤ κ and let MA∗ denote ∀κ < 2ℵ0(MAκ). Then from the above
observations we have that

ZFC ` MA⇔ MA∗.

However, we have shown that this is not the case in set theory
without choice.

Theorem

MA∗ + ¬MA(ℵ0) is relatively consistent with ZFA.

(ZFA is ZF with the Axiom of Extensionality modified in order to
allow the existence of atoms.)

Note that MAℵ0 is provable in ZF, MAℵ1 is not provable in
ZFC (Gödel’s model L |= GCH + ¬MA2ℵ0 ), and CH⇒ MA∗.
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A few problems – some settled in this project

The deductive strength of MA(ℵ0) and its relationship with various
choice forms is a fairly unexplored topic and, in our opinion, a
quite intriguing one!

1 What is the relationship between MA(ℵ0) and ACℵ0 (i.e. the
Axiom of Countable Choice)? (Partial answer: MA∗ ; ACℵ0

in ZF.)

2 Does MA(ℵ0) restricted to complete Boolean algebras imply
MA(ℵ0)? (Recall that, in ZFC, they are equivalent.)

3 Does MA(ℵ0) imply ACℵ0
fin (AC restricted to denumerable

families of nonempty finite sets)?

4 Does “every compact c.c.c. T2 space is Baire” imply
MA(ℵ0)? (Negative answer in ZFA – recall that, in ZFC,
they are equivalent.)

5 Does “every Dedekind-finite set is finite” imply MA(ℵ0)?
(Negative answer in ZF.)

6 Does ∀p(2p = p) imply MA(ℵ0)?
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It is unknown whether “every countable compact T2 space is
Baire” is provable in ZF. Our conjecture is that the answer is
in the negative.
We note that the stronger statement “every countable
compact T2 space is metrizable” is not provable in ZF
(Keremedis–Tachtsis, 2007)

(Fossy–Morillon, 1998) “Every compact T2 space is Baire” is
equivalent to Dependent Multiple Choice (DMC): if R is a
binary relation on a non-empty set E such that
∀x ∈ E ∃y ∈ E (x R y), then there is a sequence (Fn)n∈ω of
non-empty finite subsets of E such that
∀n ∈ ω ∀x ∈ Fn ∃y ∈ Fn+1(x R y).

DMC is strictly weaker than DC and MC (the Axiom of
Multiple Choice).
MC is equivalent to AC in ZF, but is not equivalent to AC in
ZFA.
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A preliminary and a couple of known results

Theorem

“Every compact c.c.c. T2 space is Baire” + the Boolean Prime
Ideal Theorem (BPI) ⇒ MA(ℵ0) restricted to complete Boolean
algebras. Thus, DMC + BPI ⇒ MA(ℵ0) restricted to complete
Boolean algebras.

(BPI is equivalent to “∀ infinite X , the Stone space S(X ) of X is
compact” (Herrlich–Keremedis–Tachtsis, 2011). We establish that
BPI cannot be dropped from the hypotheses. Hence, MA(ℵ0) is
not equivalent to “every compact c.c.c. T2 space is Baire” in set
theory without choice.)

Proof Let (B,+, ·, 0, 1) be a c.c.c. complete Boolean algebra. Let
S(B) be the Stone space of B (which is T2). By BPI, S(B) is
compact. Using the fact that B has the c.c.c. and is complete, one
shows that S(B) is a c.c.c. space, and hence it is Baire. Then, a
generic filter for a given countable set of dense subsets of B \ {0}
can be obtained, using the fact that S(B) is Baire. 2
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Lemma

Let (P,≤) be a partial order. Then there is a complete Boolean
algebra B and a map i : P → B \ {0} such that:

1 i [P] is dense in B \ {0}.
2 ∀p, q ∈ P (p ≤ q → i(p) ≤ i(q)).

3 ∀p, q ∈ P (p⊥q ↔ i(p) ∧ i(q) = 0).

(If (P,≤) is a partial order, then B is the complete Boolean
algebra ro(P) of the regular open subsets of P (O is regular open
if O = int cl(O) = the interior of the closure of O), where P is
endowed with the topology generated by the sets
Np = {q ∈ P : q ≤ p}, p ∈ P. Also, for b, c ∈ B, b ≤ c if and
only if b ⊆ c , b ∧ c = b ∩ c , b ∨ c = int cl(b ∪ c), b′ = int(P \ b),
and if S ⊆ B,

∨
S = int cl(

⋃
S) and

∧
S = int(

⋂
S). For p ∈ P,

i(p) := int cl(Np).)
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Theorem

(Herrlich–Keremedis, 1999) The following hold:

1 MA(ℵ0) + ACℵ0
fin implies ∀ infinite X (2X is Baire) which in

turn implies the following:

(a) ∀ infinite X , P(X ) is Dedekind-infinite,

(b) ACℵ0
fin,

(c) The Partial Kinna–Wagner Selection Principle (i.e. for
every infinite family A such that ∀X ∈ A, |X | ≥ 2, there is an
infinite subfamily B and a function F on B such that ∀B ∈ B,
∅ 6= f (B) ( B).

2 For any infinite set X , if 2X is Baire then X is not amorphous.

(An infinite set X is amorphous if it cannot be written as a disjoint
union of two infinite sets.)
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Main Results

Lemma

Let A and B be two sets such that B has at least two elements.
Then for (P,≤) = (Fn(A,B),⊇), the mapping
i : P → ro(P) \ {∅} (i(p) = int cl(Np)) is i(p) = Np for all p ∈ P,
where for p ∈ P, Np = {q ∈ P : q ≤ p}.

Proof Fix p ∈ P. Since ∀q ∈ P, Nq is the smallest (w.r.t. ⊆)
open set containing q, we have q ∈ cl(Np) iff Nq ∩ Np 6= ∅ iff p
and q are compatible. Thus, cl(Np) = {q ∈ P : q is compatible
with p}. Hence, r ∈ int cl(Np) iff Nr ⊆ cl(Np) iff every q ≤ r is
compatible with p. Thus, int cl(Np) = {r ∈ P : every extension of
r is compatible with p}.
Now, let r ∈ int cl(Np). If r 6∈ Np, then p 6⊆ r . Then ∃a ∈ A such
that (a, p(a)) ∈ p \ r , and since |B| ≥ 2, ∃b ∈ B \ {p(a)}. Let
r ′ = r ∪ {(a, b)}. Then r ′ is an extension of r which is
incompatible with p, and hence r 6∈ int cl(Np), a contradiction.
Therefore, int cl(Np) = Np, so i(p) = Np for all p ∈ P. 2
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Theorem

MA(ℵ0) restricted to complete Boolean algebras ⇒ the Cantor
cube 2R is Baire.

Proof Let D = {dn : n ∈ ω} be a countable dense subset of 2R.
(2R is separable in ZF). Let B = ro(P) be the complete Boolean
algebra associated with the poset (P,≤) = (Fn(R, 2),⊇) via the
mapping i of the lemma.

B has the c.c.c.: Let S be an antichain in B and s ∈ S . Since
i [P] is dense in B \ {∅} and D is dense in 2R, we may let
ns = min{n ∈ ω : ∃Fn,s ∈ [R]<ω, i(dn � Fn,s) ⊆ s}. Since
p ≤ q → i(p) ≤ i(q), the map s 7→ ns , s ∈ S , is 1-1 (if
s, s ′ ∈ S are such that s 6= s ′, but ns = ns′ = k for some
k ∈ ω, then there are Fk,s ,Fk,s′ ∈ [R]<ω such that

i(dk � Fk,s) ⊆ s and i(dk � Fk,s′) ⊆ s ′.

Letting q be the union of the above two restrictions of dk we
have that i(q) ⊆ s and i(q) ⊆ s ′, and thus s and s ′ are
compatible, a contradiction). Therefore, S is countable and B
has the c.c.c..
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Let O = {On : n ∈ ω} be a family of dense open subsets of
2R. Then, ∀n ∈ ω, Dn := {p ∈ P : [p] ⊆ On} is dense in P.
Hence, i [Dn] is dense in B \ {∅} for all n ∈ ω. By MA(ℵ0) on
B, there is a filter G of B such that G ∩ i [Dn] 6= ∅ for each
n ∈ ω. Then (by the lemma)
H = i−1(G ) = {p ∈ P : i(p) = Np ∈ G} and clearly
H ∩ Dn 6= ∅ for each n ∈ ω.

Furthermore, H is a filter of P: Since p ≤ q → i(p) ≤ i(q)
and G is a filter of B, it follows that H is upward closed.
Now, let p, q ∈ H. Then i(p) = Np and i(q) = Nq are in G ;
hence Np ∩ Nq ∈ G . However, Np ∩ Nq = Np∪q, and hence
i(p ∪ q) ∈ G , so p ∪ q ∈ H and clearly p ∪ q ≤ p and
p ∪ q ≤ q. Thus, H is a filter of P. It follows that

⋃
H is a

function with dom(
⋃

H) ⊆ R and ran(
⋃

H) ⊆ 2. So,
extending

⋃
H to a function f ∈ 2R, we obtain that f ∈

⋂
O.

2
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Whether or not the statement “the Cantor cube 2R is Baire”
is a theorem of ZF is an open problem!

(We note that 2R is Baire in every Fraenkel–Mostowski model
of ZFA.)

The weaker result “MA(ℵ0) ⇒ 2R is Baire” has a much easier
proof than the one for the previous theorem, and its keypoint
is the ZF fact that the poset (Fn(R, 2),⊇) (which is order
isomorphic to (B,⊆), where B is the standard base for the
Tychonoff topology on 2R) has the c.c.c.. In fact, its proof
readily yields that for any set X ,

“(Fn(X , 2),⊇) has the c.c.c.” + MA(ℵ0) ⇒ 2X is Baire.
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Theorem

ACℵ0
fin ⇔ for every infinite set X , (Fn(X , 2),⊇) has the c.c.c..

Proof Assume ACℵ0
fin and let X be an infinite set. Let S be an

antichain in (Fn(X , 2),⊇). For each n ∈ ω, let
Sn = {p ∈ S : |p| = n}. It is fairly easy to see that since S is an
antichain and ∀s ∈ S , ran(s) ⊆ 2, we have that Sn is a finite set for
each n ∈ ω. By ACℵ0

fin, it follows that S =
⋃

n∈ω Sn is countable.

Assume that for every infinite set X , (Fn(X , 2),⊇) has the c.c.c..
Let A = {Ai : i ∈ ω} be a countably infinite family of non-empty
finite sets. Without loss of generality, we may assume that A is
disjoint. Let X =

⋃
A. By our hypothesis, (Fn(X , 2),⊇) has ccc.

Let
S0 = {f ∈ 2A0 : |f −1({1})| = 1},

and for i ∈ ω \ {0}, let

Si = {f ∈ 2A0∪···∪Ai : [f � (A0∪· · ·∪Ai−1) ≡ 0]∧[|f −1({1})∩Ai | = 1]}.
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Then S =
⋃

i∈ω Si is an antichain in (Fn(X , 2),≤), and thus S is
countable, and clearly |S | = ℵ0. Let S = {sn : n ∈ ω} be an
enumeration of S . For j ∈ ω, let nj = min{n ∈ ω : sn ∈ Sj} and
cj = the unique element x of Aj such that snj (x) = 1. Then
f = {(j , cj) : j ∈ ω} is a choice function of the family A. 2

Corollary

BPI ⇒ “for every infinite set X , (Fn(X , 2),⊇) has the c.c.c.”.
The implication is not reversible in ZF.
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Theorem

MA(ℵ0) restricted to complete Boolean algebras is false in the
Second Fraenkel Model of ZFA. Thus, MC 6⇒ (MA(ℵ0) restricted
to complete Boolean algebras) in ZFA set theory, and consequently
MC (and hence “every compact T2 space is Baire”) does not imply
MA(ℵ0) in ZFA.

Proof The set of atoms A =
⋃
{An : n ∈ ω} is a countable disjoint

union of pairs An = {an, bn}, n ∈ ω. Let G be the group of all
permutations of A, which fix An for each n ∈ ω. Let Γ be the finite
support filter. Then the Second Fraenkel Model N is the FM
model which is determined by M, G , and Γ.

The (countable) family A = {An : n ∈ ω} has no partial
choice function in N .
Let P = {f : f is a choice function of {Ai : i ≤ n} for some
n ∈ ω}, and for f , g ∈ P, declare f ≤ g if and only if f ⊇ g .
Then (P,≤) ∈ N and every antichain in P is finite.
The mapping i : P → ro(P) \ {∅} is i(p) = Np.
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The complete Boolean algebra (ro(P),⊆) has the c.c.c.; in
fact, every antichain in ro(P) is finite: Let S be an antichain
in B. For every s ∈ S , let

Ws = {p ∈ P : |p| = ns and i(p) ⊆ s}

where ns is the least integer n such that there is a p ∈ P with
i(p) ⊆ s. Then W =

⋃
{Ws : s ∈ S} is an antichain in P,

thus it is finite. Hence, S is finite.

∀n ∈ ω, the set

Dn = {f ∈ P : An ∈ dom(f )}

is dense in P, and hence i [Dn] is dense in ro(P) for all n ∈ ω.
Let D = {Dn : n ∈ ω}. If G were an i [D]-generic filter of
ro(P), then H = i−1(G ) would be a D-generic filter of P, so⋃

H would be a choice function of A, which is impossible.
Thus, MA(ℵ0) is false for the c.c.c. complete Boolean algebra
ro(P). 2
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Theorem

MA(ℵ0) is false in Mostowski’s Linearly Ordered Model of ZFA.
Thus (by Pincus’ transfer theorems), BPI + Countable Union
Theorem (CUT) ; MA(ℵ0) in ZF.

Proof Start with a ground model M with a linearly ordered set
(A,�) of atoms which is order isomorphic to (Q,≤). G is the
group of all order atutomorphims of (A,�) and Γ is finite support
filter. The Mostowski model N is the model determined by M, G
and Γ.

The power set of the set A of atoms in Mostowski’s model is
Dedekind-finite, and hence ∀X (2X is Baire) is false in N . Since
BPI is true in N , it follows that ∀X ((Fn(X , 2),⊇) has the c.c.c.)
is also true in N . Thus, MA(ℵ0) is false in Mostowski’s model. 2
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Theorem

MA(ℵ0) is false in the Basic Fraenkel Model of ZFA.

Proof Start with a ground model M of ZFA + AC with a
countable set A of atoms. Let G be the group of all permutations
of A and let Γ be the finite support filter. Then the Basic Fraenkel
Model N is the permutation model determined by M, G and Γ.

MA(ℵ0) is false in N , since ∀X , Fn(X , 2) has the c.c.c. (for ACℵ0
fin

is true in N ) and A is amorphous (where A is the set of atoms),
and hence 2A is not Baire in N . 2
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Theorem

If ZFA is consistent, so is ZFA + MA∗ + ¬MA(ℵ0) + (DF = F) +
CUT.

(DF = F stands for “every Dedekind-finite is finite” and CUT is
the Countable Union Theorem.)

Proof Start with a model M of ZFA + AC + CH, in which there
is a set of atoms A =

⋃
{An : n ∈ ω} which is a countable disjoint

union of ℵ1-sized sets. Let G be the group of all permutations of
A, which fix An for every n ∈ ω. Let Γ be the (normal) filter of
subgroups of G generated by {fixG (E ) : E =

⋃
i∈I Ai , I ∈ [ω]<ω}.

Let N be the FM model determined by M, G and Γ.

In N , CH is true, hence so is MA∗.

The family A = {An : n ∈ ω} has no partial Kinna–Wagner
Selection function in N .
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DF = F is true in N , and hence ∀X , (Fn(X , 2),⊇) has the
c.c.c.:
Let x ∈ N be a non-well-orderable set and let
E =

⋃
{Ai : i ≤ k} be a support of x . Then there exists an

element z ∈ x and a φ ∈ fixG (E ) such that φ(z) 6= z . Let Ez

be a support of z ; wlog assume that Ez = E ∪ Ak+1 and that
φ ∈ fixG (A \ Ak+1). Let

y = {ψ(z) : ψ ∈ fixG (A \ Ak+1)}.

Then y is well-orderable and infinite; otherwise the index of
the proper subgroup

H = {η ∈ fixG (A \ Ak+1) : η(z) = z}

in fixG (A \ Ak+1) is finite. However, fixG (A \ Ak+1) is
isomorphic to Sym(ℵ1), and by a result of Gaughan, every
proper subgroup of Sym(ℵ1) has uncountable index. We have
reached a contradiction, and thus y is infinite.
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CUT is true in N : Fairly similar argument to the one for
DF = F in N .

MA(ℵ0) is false in N : (a) (Fn(A, 2),⊇) has the c.c.c. (since
by CUT in N – or DF = F –, it follows that ACℵ0

fin is also true
in N ) (b) A = {An : n ∈ ω} has no partial Kinna–Wagner
selection function in N , and hence 2A (= 2

⋃
A) is not Baire

in N . 2

Theorem

There is a ZF model in which (DF = F) + CUT is true, whereas
MA(ℵ0) is false.

Proof This follows from the facts that
Φ = (DF = F) + CUT + ¬MA(ℵ0) is a conjunction of injectively
boundable statements and Φ has a ZFA model, so by Pincus’
transfer theorems it follows that Φ has a ZF model. 2
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Theorem

If ZF is consistent, then so is ZF + MA∗ + ¬ACℵ0 .

Proof We start with a countable transitive model M of ZF + CH,
and we extend M to a symmetric model N of ZF with the same
reals as in M, but which does not satisfy ACℵ0 .

Let P = Fn(ω ×ℵ1 ×ℵ1, 2,ℵ1) be the set of all partial functions p
with |p| < ℵ1, dom(p) ⊂ ω × ℵ1 × ℵ1 and ran(p) ⊆ 2, partially
ordered by reverse inclusion, i.e., p ≤ q if and only if p ⊇ q. Since
ℵ1 is a regular cardinal, it follows that (P,≤) is a ℵ1-closed poset.
Hence, forcing with P adds only new subsets of ℵ1 and no new
subsets of cardinals < ℵ1. Therefore, forcing with P adds no new
reals; it only adds new subsets of R.

E. Tachtsis Martin’s Axiom and Choice Principles



Theorem

If ZF is consistent, then so is ZF + MA∗ + ¬ACℵ0 .

Proof We start with a countable transitive model M of ZF + CH,
and we extend M to a symmetric model N of ZF with the same
reals as in M, but which does not satisfy ACℵ0 .

Let P = Fn(ω ×ℵ1 ×ℵ1, 2,ℵ1) be the set of all partial functions p
with |p| < ℵ1, dom(p) ⊂ ω × ℵ1 × ℵ1 and ran(p) ⊆ 2, partially
ordered by reverse inclusion, i.e., p ≤ q if and only if p ⊇ q. Since
ℵ1 is a regular cardinal, it follows that (P,≤) is a ℵ1-closed poset.
Hence, forcing with P adds only new subsets of ℵ1 and no new
subsets of cardinals < ℵ1. Therefore, forcing with P adds no new
reals; it only adds new subsets of R.

E. Tachtsis Martin’s Axiom and Choice Principles



Theorem

If ZF is consistent, then so is ZF + MA∗ + ¬ACℵ0 .

Proof We start with a countable transitive model M of ZF + CH,
and we extend M to a symmetric model N of ZF with the same
reals as in M, but which does not satisfy ACℵ0 .

Let P = Fn(ω ×ℵ1 ×ℵ1, 2,ℵ1) be the set of all partial functions p
with |p| < ℵ1, dom(p) ⊂ ω × ℵ1 × ℵ1 and ran(p) ⊆ 2, partially
ordered by reverse inclusion, i.e., p ≤ q if and only if p ⊇ q. Since
ℵ1 is a regular cardinal, it follows that (P,≤) is a ℵ1-closed poset.
Hence, forcing with P adds only new subsets of ℵ1 and no new
subsets of cardinals < ℵ1. Therefore, forcing with P adds no new
reals; it only adds new subsets of R.

E. Tachtsis Martin’s Axiom and Choice Principles



Let an,m = {j ∈ ℵ1 : ∃p ∈ G , p(n,m, j) = 1}, n ∈ ω, m ∈ ℵ1, let
An = {an,m : m ∈ ℵ1}, n ∈ ω, and let A = {An : n ∈ ω}.
Every permutation φ of ω × ℵ1 induces an order-automorphism of
(P,≤) by requiring for every p ∈ P,

domφ(p) = {(φ(n,m), k) : (n,m, k) ∈ dom(p)},
φ(p)(φ(n,m), k) = p(n,m, k).

Let G be the group of all order-automorphisms of (P,≤) induced
(as above) by all those permutations φ of ω × ℵ1, which satisfy

φ(n,m) = (n,m′) for all ordered pairs (n,m) ∈ ω × ℵ1.

(So φ is essentially such that ∀n ∈ ω, ∃ permutation φn of ℵ1 so
that φ(n,m) = (n, φn(m)) for all n ∈ ω. Further, the effect of φ on
a condition p ∈ P is that φ changes only the second coordinate of
p.)
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For every finite subset E ⊂ ω × ℵ1, let
fixG(E ) = {φ ∈ G : ∀e ∈ E , φ(e) = e} and let Γ be the filter of
subgroups of G generated by {fixG(E ) : E ⊂ ω × ℵ1, |E | < ℵ0}.
An element x ∈ M is called symmetric if there exists a finite subset
E ⊂ ω × ℵ1 such that ∀φ ∈ fixG(E ), φ(x) = x . Under these
circumstances, we call E a support of x . An element x ∈ M is
called hereditarily symmetric if x and every element of the
transitive closure of x is symmetric. Let HS be the set of all
hereditarily symmetric names in M and let
N = {τG : τ ∈ HS} ⊂ M[G ]
be the symmetric extension model of M.
Since M and N have the same reals, we have MA∗ is true in the
model N.

Furthermore, the countable family A = {An : n ∈ ω} has no choice
function, and thus ACℵ0 is false in N. 2

E. Tachtsis Martin’s Axiom and Choice Principles



References
J. Fossy and M. Morillon,
The Baire category property and some notions of
compactness,
J. London Math. Soc. , () (), –.

E. D. Gaughan,
The index problem for infinite symmetric groups,
Proc. Amer. Math. Soc.  (), –.

H. Herrlich, K. Keremedis and E. Tachtsis,
Remarks on the Stone spaces of the integers and the reals
without AC,
Bull. Polish. Acad. Sci. Math. , No  (), –.

P. Howard and J. E. Rubin,
Consequences of the Axiom of Choice,
Mathematical Surveys and Monographs, ,
Amer. Math. Soc., Providence, RI, .

E. Tachtsis Martin’s Axiom and Choice Principles



T. J. Jech,
The Axiom of Choice,
Studies in Logic and the Foundations of Mathematics, ,
North-Holland, Amsterdam, .

K. Keremedis and H. Herrlich,
Powers of 2,
Notre Dame Journal of Formal Logic, ,
No.  (), –.

K. Keremedis and E. Tachtsis,
Countable compact Hausdorff spaces need not be metrizable in
ZF,
Proc. Amer. Math. Soc.,  (), –.

K. Kunen,
Set Theory. An Introduction to Independence Proofs,
Studies in Logic and the Foundations of Mathematics, 102,
North-Holland, Amsterdam, .

E. Tachtsis Martin’s Axiom and Choice Principles



G. P. Shannon,
Provable Forms of Martin’s Axiom,
Notre Dame Journal of Formal Logic, ,
No.  (), –.

E. Tachtsis,
On Martin’s Axiom and Forms of Choice,
Math. Log. Quart.  (),
no. , –.

E. Tachtsis Martin’s Axiom and Choice Principles



Thank You!

E. Tachtsis Martin’s Axiom and Choice Principles


