Wadge hierachies versus generalised Wadge hierarchies

Riccardo Camerlo

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A well established way to compare subsets of a topological space X is the $W\!adge\ hierarchy$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A well established way to compare subsets of a topological space X is the Wadge hierarchy: given $A, B \subseteq X$,

 $A \leq_W^X B \Leftrightarrow \exists f : X \to X \text{ continuous s.t. } A = f^{-1}(B)$

Say: A continuously reduces (or Wadge reduces to B).

A well established way to compare subsets of a topological space X is the Wadge hierarchy: given $A, B \subseteq X$,

 $A \leq^X_W B \Leftrightarrow \exists f : X \to X \text{ continuous s.t. } A = f^{-1}(B)$

Say: A continuously reduces (or Wadge reduces to B). The equivalence classes $[A]_W$ associated to the preorder \leq^X_W are the Wadge degrees. A well established way to compare subsets of a topological space X is the Wadge hierarchy: given $A, B \subseteq X$,

 $A \leq^X_W B \Leftrightarrow \exists f : X \to X \text{ continuous s.t. } A = f^{-1}(B)$

Say: A continuously reduces (or Wadge reduces to B). The equivalence classes $[A]_W$ associated to the preorder \leq^X_W are the Wadge degrees.

The single most important and best studied space from the point of view of Wadge reducibility is Baire space $\mathbb{N}^{\mathbb{N}}$.

In fact, the Wadge hierarchy on $\mathbb{N}^{\mathbb{N}}$ is related to the Wadge games $G_W(A, B)$, for $A, B \subseteq \mathbb{N}^{\mathbb{N}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

| ||

$$\begin{array}{ccc} I & x_0 & x_1 \\ II & y_0 \end{array}$$

$$\begin{array}{ccc} I & x_0 & x_1 \\ II & y_0 & y_1 \end{array}$$

$$\begin{array}{cccc} I & x_0 & x_1 & x_2 \\ II & y_0 & y_1 \end{array}$$

I x₀ x₁ x₂ x₃ II y₀ y₁ (skip) y₂

Player II wins this run of the game iff y is infinite and

Player II wins this run of the game iff y is infinite and

 $x \in A \Leftrightarrow y \in B$

Player II wins this run of the game iff y is infinite and

$$x \in A \Leftrightarrow y \in B$$

Fact. $A \leq_{W}^{\mathbb{N}^{\mathbb{N}}} B$ iff player *II* has a winning strategy in $G_W(A, B)$.

Using Wadge games and Martin's Borel determinacy, the structure of $\leq_W^{\mathbb{N}^N}$ restricted to Borel sets becomes transparent.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$A \leq_W^{\mathbb{N}^{\mathbb{N}}} B \vee \mathbb{N}^{\mathbb{N}} \setminus B \leq_W^{\mathbb{N}^{\mathbb{N}}} A$$

$$A \leq_W^{\mathbb{N}^{\mathbb{N}}} B \vee \mathbb{N}^{\mathbb{N}} \setminus B \leq_W^{\mathbb{N}^{\mathbb{N}}} A$$

The Wadge hierarchy on Borel subsets of $\mathbb{N}^{\mathbb{N}}$ goes as follows:

 $\{\emptyset\}$ $\{\mathbb{N}^{\mathbb{N}}\}$

$$A \leq_W^{\mathbb{N}^{\mathbb{N}}} B \vee \mathbb{N}^{\mathbb{N}} \setminus B \leq_W^{\mathbb{N}^{\mathbb{N}}} A$$

The Wadge hierarchy on Borel subsets of $\mathbb{N}^{\mathbb{N}}$ goes as follows:

$$\{\emptyset\}$$
 $\{\mathbb{N}^{\mathbb{N}}\}$
 $\mathbf{\Delta}_{1}^{0}$

$$A \leq_W^{\mathbb{N}^{\mathbb{N}}} B \vee \mathbb{N}^{\mathbb{N}} \setminus B \leq_W^{\mathbb{N}^{\mathbb{N}}} A$$

The Wadge hierarchy on Borel subsets of $\mathbb{N}^{\mathbb{N}}$ goes as follows:

$$\begin{array}{ccc} \{ \emptyset \} & & \pmb{\Sigma}_1^0 \\ & \pmb{\Delta}_1^0 & \\ \{ \mathbb{N}^{\mathbb{N}} \} & & \pmb{\Pi}_1^0 \end{array}$$

$$A \leq_W^{\mathbb{N}^{\mathbb{N}}} B \vee \mathbb{N}^{\mathbb{N}} \setminus B \leq_W^{\mathbb{N}^{\mathbb{N}}} A$$

The Wadge hierarchy on Borel subsets of $\mathbb{N}^{\mathbb{N}}$ goes as follows:

$$\begin{cases} \emptyset \} & \boldsymbol{\Sigma}_1^0 \\ & \boldsymbol{\Delta}_1^0 & \boldsymbol{\Delta}(D_2) \\ \{\mathbb{N}^{\mathbb{N}}\} & \boldsymbol{\Pi}_1^0 \end{cases}$$

Using Wadge games and Martin's Borel determinacy, the structure of $\leq_W^{\mathbb{N}^{\mathbb{N}}}$ restricted to Borel sets becomes transparent. Most notably, $\leq_W^{\mathbb{N}^{\mathbb{N}}}$ satisfies the *Wadge duality principle* on Borel subsets: given $A, B \subseteq \mathbb{N}^{\mathbb{N}}$,

$$A \leq_W^{\mathbb{N}^{\mathbb{N}}} B \vee \mathbb{N}^{\mathbb{N}} \setminus B \leq_W^{\mathbb{N}^{\mathbb{N}}} A$$

The Wadge hierarchy on Borel subsets of $\mathbb{N}^{\mathbb{N}}$ goes as follows:

$$\begin{cases} \emptyset \} & \boldsymbol{\Sigma}_1^0 & D_2 & \dots \\ & \boldsymbol{\Delta}_1^0 & \boldsymbol{\Delta}(D_2) & \dots \\ \{\mathbb{N}^{\mathbb{N}}\} & \boldsymbol{\Pi}_1^0 & \boldsymbol{\check{D}_2} & \dots \end{cases}$$

Wadge hierarchy on $\mathbb{N}^{\mathbb{N}}$

Remark (ZFC, probably folklore).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Remark (ZFC, probably folklore).

1. $\mathbf{\Delta}_2^0$ sets precede all other sets: if A is in $\mathbf{\Delta}_2^0$ and B is not, then $A \leq_W^{\mathbb{N}} B$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remark (ZFC, probably folklore).

1. $\mathbf{\Delta}_2^0$ sets precede all other sets: if A is in $\mathbf{\Delta}_2^0$ and B is not, then $A \leq_W^{\mathbb{N}} B$

2. this breaks at the level of F_{σ} and G_{δ}

Remark (ZFC, probably folklore).

- 1. $\mathbf{\Delta}_2^0$ sets precede all other sets: if A is in $\mathbf{\Delta}_2^0$ and B is not, then $A \leq_W^{\mathbb{N}} B$
- 2. this breaks at the level of F_{σ} and G_{δ} : if $A \in B(\mathbb{N}^{\mathbb{N}}) \setminus \mathbf{\Delta}_{2}^{0}(\mathbb{N}^{\mathbb{N}})$ and B is a Bernstein set, then $A \not\leq_{W}^{\mathbb{N}^{\mathbb{N}}} B$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Wadge hierarchy on subspaces of $\mathbb{N}^{\mathbb{N}}$

▲□▶ ▲圖▶ ★園▶ ★園▶ - 園 - の��

Wadge hierarchy on subspaces of $\mathbb{N}^{\mathbb{N}}$

On Borel subsets of $\mathbb{N}^{\mathbb{N}},$ the structure of the Wadge hierarchy is essentially the same as on $\mathbb{N}^{\mathbb{N}}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

On an *arbitrary* zero-dimensional Polish spaces X, the structure of the Wadge hierarchy begins as in $\mathbb{N}^{\mathbb{N}}$, at least for the following eight degrees:

On an *arbitrary* zero-dimensional Polish spaces X, the structure of the Wadge hierarchy begins as in $\mathbb{N}^{\mathbb{N}}$, at least for the following eight degrees:

$$\begin{cases} \emptyset \} & \boldsymbol{\Sigma}_1^0 & D_2 \\ \boldsymbol{\Delta}_1^0 & \boldsymbol{\Delta}(D_2) & \\ \{X\} & \boldsymbol{\Pi}_1^0 & \boldsymbol{\check{D}}_2 \end{cases}$$

On an *arbitrary* zero-dimensional Polish spaces X, the structure of the Wadge hierarchy begins as in $\mathbb{N}^{\mathbb{N}}$, at least for the following eight degrees:

$$\begin{cases} \emptyset \} & \boldsymbol{\Sigma}_1^0 & D_2 \\ \boldsymbol{\Delta}_1^0 & \boldsymbol{\Delta}(D_2) & \\ \{X\} & \boldsymbol{\Pi}_1^0 & \boldsymbol{\check{D}}_2 \end{cases}$$

moreover, sets in $\Delta(D_2)$ precede every other set.

On an *arbitrary* zero-dimensional Polish spaces X, the structure of the Wadge hierarchy begins as in $\mathbb{N}^{\mathbb{N}}$, at least for the following eight degrees:

$$\begin{cases} \emptyset \} & \boldsymbol{\Sigma}_1^0 & D_2 \\ \boldsymbol{\Delta}_1^0 & \boldsymbol{\Delta}(D_2) & \\ \{X\} & \boldsymbol{\Pi}_1^0 & \boldsymbol{\check{D}}_2 \end{cases}$$

moreover, sets in $\Delta(D_2)$ precede every other set. **Conjecture:** The structure is the same as in Baire space up to Δ_2^0 sets; the similarity breaks at the level of F_{σ} and G_{δ} sets.

Wadge hierarchy on other spaces

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

 For an arbitrary topological space X, one can only say that the {∅}
 Wadge hierarchy has a root of three degrees {∅}
 {X}
 precede every other set.

For an arbitrary topological space X, one can only say that the Wadge hierarchy has a root of three degrees $\{\emptyset\}$ $\{X\}$ Δ_1^0 which

precede every other set.

P. Schlicht showed that if X is a positive dimensional metric space, then there is ≤^X_W has an antichain of size the continuum, consisting of sets in D₂.

Reducibility by relatively continuous relations

・ロト・(型ト・モト・モー・ モー のへぐ

 \leq_{TP}^{X} has the following features:

▶ It refines the Baire hierarchy and the Kuratowski-Hausdorff hierarchy

 \preceq_{TP}^{X} has the following features:

▶ It refines the Baire hierarchy and the Kuratowski-Hausdorff hierarchy

 It satisfies the Wadge duality principle on Borel subsets of Borel representable spaces

 \preceq_{TP}^{X} has the following features:

It refines the Baire hierarchy and the Kuratowski-Hausdorff hierarchy

- It satisfies the Wadge duality principle on Borel subsets of Borel representable spaces
- It coincides with \leq_W^X for zero-dimensional spaces

Admissible representations

Let X be a second countable, T_0 space.

Let X be a second countable, T_0 space. A (partial) continuous function $\rho: Z \subseteq \mathbb{N}^{\mathbb{N}} \to X$ is an *admissible* representation if

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let X be a second countable, T_0 space. A (partial) continuous function $\rho: Z \subseteq \mathbb{N}^{\mathbb{N}} \to X$ is an *admissible* representation if for any continuous $\rho': Z' \subseteq \mathbb{N}^{\mathbb{N}} \to X$

Let X be a second countable, T_0 space. A (partial) continuous function $\rho: Z \subseteq \mathbb{N}^{\mathbb{N}} \to X$ is an *admissible* representation if for any continuous $\rho': Z' \subseteq \mathbb{N}^{\mathbb{N}} \to X$ there is a continuous $h: Z' \to Z$ s.t. $\rho' = \rho h$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

X is Borel representable if it admits an admissible representation whose domain is a Borel subset of $\mathbb{N}^{\mathbb{N}}$.

Facts.

Every admissible representation is surjective

Facts.

- Every admissible representation is surjective
- Every second countable, T₀ space X has an admissible representation ρ : Z ⊆ N^N → X s.t.

Facts.

- Every admissible representation is surjective
- Every second countable, T₀ space X has an admissible representation ρ : Z ⊆ N^N → X s.t.

• ρ is open

Facts.

- Every admissible representation is surjective
- Every second countable, T₀ space X has an admissible representation ρ : Z ⊆ N^N → X s.t.

- ρ is open
- every $\rho^{-1}(\{x\})$ is a G_{δ} subset of $\mathbb{N}^{\mathbb{N}}$

Relatively continuous relations

Definition

・ロト ・雪 ・ ィヨ ・ ・ ヨー うへの

An everywhere defined relation $R \subseteq X \times Y$ is *relatively continuous* if for some/any admissible representations $\rho_X : Z_X \to X, \rho_Y : Z_Y \to Y$ there is a *continuous realiser* for R

An everywhere defined relation $R \subseteq X \times Y$ is *relatively continuous* if for some/any admissible representations $\rho_X : Z_X \to X, \rho_Y : Z_Y \to Y$ there is a *continuous realiser* for R, i.e. a continuous $f : Z_X \to Z_Y$ s.t.

 $\forall \alpha \in Z_X \ \rho_X(\alpha) R \rho_Y f(\alpha)$

An everywhere defined relation $R \subseteq X \times Y$ is *relatively continuous* if for some/any admissible representations $\rho_X : Z_X \to X, \rho_Y : Z_Y \to Y$ there is a *continuous realiser* for R, i.e. a continuous $f : Z_X \to Z_Y$ s.t.

 $\forall \alpha \in Z_X \ \rho_X(\alpha) R \rho_Y f(\alpha)$

Question. (Pequignot 2015) Is there an intrinsic characterisation of relative continuous total relations (i.e. without reference to admissible representations)?

An everywhere defined relation $R \subseteq X \times Y$ is *relatively continuous* if for some/any admissible representations $\rho_X : Z_X \to X, \rho_Y : Z_Y \to Y$ there is a *continuous realiser* for R, i.e. a continuous $f : Z_X \to Z_Y$ s.t.

 $\forall \alpha \in Z_X \ \rho_X(\alpha) R \rho_Y f(\alpha)$

Question. (Pequignot 2015) Is there an intrinsic characterisation of relative continuous total relations (i.e. without reference to admissible representations)? Partial results by Brattka, Hertling (1994) and Pauly, Ziegler (2013).

Definition Let X be second countable, T_0 .

Definition

Let X be second countable, T_0 .

For $A, B \in \mathcal{P}(X)$, define $A \preceq^{X}_{TP} B$ if there exists an everywhere defined, relatively continuous relation $R \subseteq X^2$ s.t.

$$\forall x, y \in X \ (xRy \Rightarrow (x \in A \Leftrightarrow y \in B))$$

Definition

Let X be second countable, T_0 .

For $A, B \in \mathcal{P}(X)$, define $A \preceq^{X}_{TP} B$ if there exists an everywhere defined, relatively continuous relation $R \subseteq X^2$ s.t.

$$\forall x, y \in X \ (xRy \Rightarrow (x \in A \Leftrightarrow y \in B))$$

Notice that $A \leq^X_W B \Rightarrow A \preceq^X_{TP} B$

Definition

Let X be second countable, T_0 .

For $A, B \in \mathcal{P}(X)$, define $A \preceq^{X}_{TP} B$ if there exists an everywhere defined, relatively continuous relation $R \subseteq X^2$ s.t.

$$\forall x, y \in X \ (xRy \Rightarrow (x \in A \Leftrightarrow y \in B))$$

Notice that
$$A \leq^X_W B \Rightarrow A \preceq^X_{TP} B$$

A more manageable definition is given by the following.

Fact. Let X be second countable, T_0 , and let $\rho : Z \to X$ be any admissible representation for X.

Definition

Let X be second countable, T_0 .

For $A, B \in \mathcal{P}(X)$, define $A \preceq^{X}_{TP} B$ if there exists an everywhere defined, relatively continuous relation $R \subseteq X^2$ s.t.

$$\forall x, y \in X \ (xRy \Rightarrow (x \in A \Leftrightarrow y \in B))$$

Notice that
$$A \leq^X_W B \Rightarrow A \preceq^X_{TP} B$$

A more manageable definition is given by the following.

Fact. Let X be second countable, T_0 , and let $\rho : Z \to X$ be any admissible representation for X. Then

$$\forall A, B \in \mathcal{P}(X) \ (A \preceq^X_{TP} B \Leftrightarrow \rho^{-1}(A) \leq^Z_W \rho^{-1}(B))$$

An example: the conciliatory hierarchy

Duparc (2001) introduces the *conciliatory hierarchy* on subsets of $\mathbb{N}^{\leq \omega}$.

Duparc (2001) introduces the *conciliatory hierarchy* on subsets of $\mathbb{N}^{\leq \omega}$. Given $A, B \subseteq \mathbb{N}^{\leq \omega}$, say that $A \leq_c B$ if player II has a winning strategy in the *conciliatory game* $G_c(A, B)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Duparc (2001) introduces the *conciliatory hierarchy* on subsets of $\mathbb{N}^{\leq \omega}$. Given $A, B \subseteq \mathbb{N}^{\leq \omega}$, say that $A \leq_c B$ if player II has a winning strategy in the *conciliatory game* $G_c(A, B)$. This is the same as the Wadge game $G_W(A, B)$ except that both players are allowed to skip their turn

Duparc (2001) introduces the *conciliatory hierarchy* on subsets of $\mathbb{N}^{\leq \omega}$. Given $A, B \subseteq \mathbb{N}^{\leq \omega}$, say that $A \leq_c B$ if player II has a winning strategy in the *conciliatory game* $G_c(A, B)$. This is the same as the Wadge game $G_W(A, B)$ except that both players are allowed to skip their turn

so producing sequences $x, y \in \mathbb{N}^{\leq \omega}$.

Duparc (2001) introduces the *conciliatory hierarchy* on subsets of $\mathbb{N}^{\leq \omega}$. Given $A, B \subseteq \mathbb{N}^{\leq \omega}$, say that $A \leq_c B$ if player II has a winning strategy in the *conciliatory game* $G_c(A, B)$. This is the same as the Wadge game $G_W(A, B)$ except that both players are allowed to skip their turn

so producing sequences $x, y \in \mathbb{N}^{\leq \omega}$. Player *II* wins the run of the game iff

$$x \in A \Leftrightarrow y \in B$$

(日) (同) (三) (三) (三) (○) (○)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Recently Kihara, Montalbán use conciliatory sets and functions in their work describing the structure of Wadge degrees on Borel functions from $\mathbb{N}^\mathbb{N}$ to an arbitrary bqo.

Recently Kihara, Montalbán use conciliatory sets and functions in their work describing the structure of Wadge degrees on Borel functions from $\mathbb{N}^\mathbb{N}$ to an arbitrary bqo.

Theorem (Duparc, Fournier)

Endow $\mathbb{N}^{\leq \omega}$ with the prefix topology.

Recently Kihara, Montalbán use conciliatory sets and functions in their work describing the structure of Wadge degrees on Borel functions from $\mathbb{N}^\mathbb{N}$ to an arbitrary bqo.

Theorem (Duparc, Fournier)

Endow $\mathbb{N}^{\leq \omega}$ with the prefix topology. Then

Question. (Duparc, Fournier) Is there a topology τ on $\mathbb{N}^{\leq \omega}$ such that $\leq_c = \leq_W^{\tau}$?

(ロ)、(型)、(E)、(E)、 E) の(の)

Question. (Duparc, Fournier) Is there a topology τ on $\mathbb{N}^{\leq \omega}$ such that $\leq_c = \leq_W^{\tau}$?

More general question. Given a second countable, T_0 space $X = (X, \mathcal{T})$, when there is a topology τ on X such that $\preceq_{TP}^{\mathcal{T}} = \leq_W^{\tau}$?

Theorem Let X = (X, T) be second countable, T_0 . Then there are three possibilities:

Let X = (X, T) be second countable, T_0 . Then there are three possibilities:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

(0) There is no topology τ on X such that $\preceq_{TP}^{\mathcal{T}} = \leq_{W}^{\tau}$

Let X = (X, T) be second countable, T_0 . Then there are three possibilities:

- (0) There is no topology τ on X such that $\preceq_{TP}^{\mathcal{T}} = \leq_{W}^{\tau}$
- (1) There is just one topology τ on X such that $\leq_{TP}^{\mathcal{T}} = \leq_{W}^{\tau}$: namely, $\tau = \mathcal{T}$

Let X = (X, T) be second countable, T_0 . Then there are three possibilities:

- (0) There is no topology τ on X such that $\preceq_{TP}^{\mathcal{T}} = \leq_{W}^{\tau}$
- (1) There is just one topology τ on X such that $\preceq_{TP}^{\mathcal{T}} = \leq_{W}^{\tau}$: namely, $\tau = \mathcal{T}$
- (2) There are exactly two topologies τ on X such that $\preceq_{TP}^{\mathcal{T}} = Wadge^{\tau}$: namely $\tau = \mathcal{T}$ and $\tau = \Pi_1^0(\mathcal{T})$

Let X = (X, T) be second countable, T_0 . Then there are three possibilities:

- (0) There is no topology τ on X such that $\preceq_{TP}^{\mathcal{T}} = \leq_{W}^{\tau}$
- (1) There is just one topology τ on X such that $\leq_{TP}^{\mathcal{T}} = \leq_{W}^{\tau}$: namely, $\tau = \mathcal{T}$
- (2) There are exactly two topologies τ on X such that ≤^T_{TP} = Wadge^τ: namely τ = T and τ = Π⁰₁(T) (in this case, T is an Alexandrov topology)

Is there a nice characterisation of the spaces satisfying each of the alternatives above?

Is there a nice characterisation of the spaces satisfying each of the alternatives above?

Rather unexpectedly — at least to me — the answer seems to depend on an analysis of the separation axioms satisfied by X

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Is there a nice characterisation of the spaces satisfying each of the alternatives above?

Rather unexpectedly — at least to me — the answer seems to depend on an analysis of the separation axioms satisfied by X:

- Hausdorff spaces
- ► *T*₁, non-Hausdorff spaces
- ▶ non-T₁ spaces

Theorem Let X be second countable, Hausdorff. Then $\leq_W^X = \preceq_{TP}^X$ iff X is zero-dimensional.

Theorem Let X be second countable, Hausdorff. Then $\leq_W^X = \preceq_{TP}^X$ iff X is zero-dimensional.

Remarks. Since second countable, T_0 , zero-dimensional spaces are metrisable, then

Theorem Let X be second countable, Hausdorff. Then $\leq_W^X = \preceq_{TP}^X$ iff X is zero-dimensional.

Remarks. Since second countable, T_0 , zero-dimensional spaces are metrisable, then

 for Borel representable spaces this was already known, by Schlicht's antichain

Theorem Let X be second countable, Hausdorff. Then $\leq_W^X = \stackrel{X}{\rightharpoonup_{TP}}$ iff X is zero-dimensional.

Remarks. Since second countable, T_0 , zero-dimensional spaces are metrisable, then

- for Borel representable spaces this was already known, by Schlicht's antichain
- if $\leq_W^X = \preceq_{TP}^X$ and X is not Hausdorff and there are such spaces! — then dim(X) > 0

Theorem Let X be second countable, T_1 , non-Hausdorff.

Let X be second countable, T_1 , non-Hausdorff. In order for the equality $\leq_W^X = \preceq_{TP}^X$ to be satisfied, it is necessary that

► X is the union of at most countably many clopen connected components X_i

Let X be second countable, T_1 , non-Hausdorff. In order for the equality $\leq_W^X = \preceq_{TP}^X$ to be satisfied, it is necessary that

► X is the union of at most countably many clopen connected components X_i

$$\blacktriangleright \forall i \leq^{X_i}_W = \preceq^{X_i}_{TP}$$

Let X be second countable, T_1 , non-Hausdorff. In order for the equality $\leq_W^X = \preceq_{TP}^X$ to be satisfied, it is necessary that

 X is the union of at most countably many clopen connected components X_i

$$\blacktriangleright \forall i \leq^{X_i}_W = \preceq^{X_i}_{TP}$$

For every non-empty closed C ⊂ X there is x ∈ X \ C such that C, x do not have disjoint neighbourhoods

Let X be second countable, T_1 , non-Hausdorff. In order for the equality $\leq_W^X = \preceq_{TP}^X$ to be satisfied, it is necessary that

 X is the union of at most countably many clopen connected components X_i

$$\blacktriangleright \forall i \leq^{X_i}_W = \preceq^{X_i}_{TP}$$

For every non-empty closed C ⊂ X there is x ∈ X \ C such that C, x do not have disjoint neighbourhoods

Example. Let X be a countable space with the cofinite topology. Then $\leq_W^X = \preceq_{TP}^X$.

Theorem Let X be second countable, T_0 , non- T_1 .

Let X be second countable, T_0 , non- T_1 . If $\leq_W^X = \preceq_{TP}^X$, then X carries an Alexandrov topology, and it is the union of at most countably many clopen connected components.

Let X be second countable, T_0 , non- T_1 . If $\leq_W^X = \preceq_{TP}^X$, then X carries an Alexandrov topology, and it is the union of at most countably many clopen connected components.

As a consequence, $card(X) \leq \aleph_0$.

Given a topological space X define the $\textit{specialisation partial order} \leq \text{on } X$ by letting

$$x \le y \Leftrightarrow x \in \overline{\{y\}}$$

Given a topological space X define the specialisation partial order \leq on X by letting

$$x \le y \Leftrightarrow x \in \overline{\{y\}}$$

Given any partial order \leq on a non-empty set X there is exactly one Alexandrov topology T on X such that \leq is the specialisation order of T

Given a topological space X define the specialisation partial order \leq on X by letting

 $x \le y \Leftrightarrow x \in \overline{\{y\}}$

Given any partial order \leq on a non-empty set X there is exactly one Alexandrov topology \mathcal{T} on X such that \leq is the specialisation order of \mathcal{T} : the open sets of \mathcal{T} are the upward closed sets with respect to \leq .

Let X be endowed with an Alexandrov topology, with $card(X) \leq \aleph_0$. Let \leq be the specialisation order on X.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Let X be endowed with an Alexandrov topology, with $card(X) \leq \aleph_0$. Let \leq be the specialisation order on X.

• If \leq is a wqo or the reverse of a wqo, then $\leq_W^X = \preceq_{TP}^X$

Let X be endowed with an Alexandrov topology, with $card(X) \leq \aleph_0$. Let \leq be the specialisation order on X.

- If \leq is a wqo or the reverse of a wqo, then $\leq^X_W = \preceq^X_{TP}$
- ▶ If there is $n \in \mathbb{N}$ such that all chains in \leq have cardinality less than n, then $\leq^X_W = \preceq^X_{TP}$

Let X be endowed with an Alexandrov topology, with $card(X) \leq \aleph_0$. Let \leq be the specialisation order on X.

- If \leq is a wqo or the reverse of a wqo, then $\leq^X_W = \preceq^X_{TP}$
- If there is n ∈ N such that all chains in ≤ have cardinality less than n, then ≤^X_W= ⊥^X_{TP}

• If both ω and ω^* embed into (X, \leq) , then $\leq^X_W \neq \preceq^X_{TP}$