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The Wadge hierarchy

A well established way to compare subsets of a topological space X is the
Wadge hierarchy

: given A,B ⊆ X ,

A ≤X
W B ⇔ ∃f : X → X continuous s.t. A = f −1(B)

Say: A continuously reduces (or Wadge reduces to B).
The equivalence classes [A]W associated to the preorder ≤X

W are the
Wadge degrees.

The single most important and best studied space from the point of view
of Wadge reducibility is Baire space NN.
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GW (A,B), for A,B ⊆ NN

:
Players I and II take turns by playing natural numbers, player II may skip
at any of his moves:
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The SLO principle

Using Wadge games and Martin’s Borel determinacy, the structure of ≤NN

W

restricted to Borel sets becomes transparent.

Most notably, ≤NN

W satisfies
the semi-linear-ordering principle on Borel subsets: given A,B ⊆ NN,
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W A

The Wadge hierarchy on Borel subsets of NN goes as follows:
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The Wadge duality

Using Wadge games and Martin’s Borel determinacy, the structure of

≤NN

W restricted to Borel sets becomes transparent. Most notably, ≤NN

W

satisfies the Wadge duality principle on Borel subsets: given A,B ⊆ NN,

A ≤NN

W B ∨ NN \ B ≤NN

W A

The Wadge hierarchy on Borel subsets of NN goes as follows:

{∅} Σ0
1 D2 . . .

∆0
1 ∆(D2) . . .

{NN} Π0
1 Ď2 . . .



Wadge hierarchy on NN

Remark (ZFC, probably folklore).

1. ∆0
2 sets precede all other sets: if A is in ∆0

2 and B is not, then

A ≤NN

W B

2. this breaks at the level of Fσ and Gδ: if A ∈ B(NN) \∆0
2(NN) and B

is a Bernstein set, then A �NN

W B
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Wadge hierarchy on subspaces of NN

On Borel subsets of NN, the structure of the Wadge hierarchy is
essentially the same as on NN.

On an arbitrary zero-dimensional Polish spaces X , the structure of the
Wadge hierarchy begins as in NN, at least for the following eight degrees:

{∅} Σ0
1 D2

∆0
1 ∆(D2)

{X} Π0
1 Ď2

moreover, sets in ∆(D2) precede every other set.
Conjecture: The structure is the same as in Baire space up to ∆0

2 sets;
the similarity breaks at the level of Fσ and Gδ sets.
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Wadge hierarchy on other spaces

I For an arbitrary topological space X , one can only say that the

Wadge hierarchy has a root of three degrees
{∅}

∆0
1

{X}
which

precede every other set.

I P. Schlicht showed that if X is a positive dimensional metric space,
then there is ≤X

W has an antichain of size the continuum, consisting
of sets in D2.
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Reducibility by relatively continuous relations

A. Tang (1981) working with Scott domain, and Y. Pequignot (2015) for
general second countable T0 spaces X , propose a different notion of
reducibility, that I denote �X

TP .

�X
TP has the following features:

I It refines the Baire hierarchy and the Kuratowski-Hausdorff hierarchy

I It satisfies the Wadge duality principle on Borel subsets of Borel
representable spaces

I It coincides with ≤X
W for zero-dimensional spaces
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Admissible representations

Let X be a second countable, T0 space.

A (partial) continuous function ρ : Z ⊆ NN → X is an admissible
representation if for any continuous ρ′ : Z ′ ⊆ NN → X there is a
continuous h : Z ′ → Z s.t. ρ′ = ρh.
X is Borel representable if it admits an admissible representation whose
domain is a Borel subset of NN.

Facts.

I Every admissible representation is surjective

I Every second countable, T0 space X has an admissible
representation ρ : Z ⊆ NN → X s.t.

I ρ is open
I every ρ−1({x}) is a Gδ subset of NN



Admissible representations

Let X be a second countable, T0 space.
A (partial) continuous function ρ : Z ⊆ NN → X is an admissible
representation if

for any continuous ρ′ : Z ′ ⊆ NN → X there is a
continuous h : Z ′ → Z s.t. ρ′ = ρh.
X is Borel representable if it admits an admissible representation whose
domain is a Borel subset of NN.

Facts.

I Every admissible representation is surjective

I Every second countable, T0 space X has an admissible
representation ρ : Z ⊆ NN → X s.t.

I ρ is open
I every ρ−1({x}) is a Gδ subset of NN



Admissible representations

Let X be a second countable, T0 space.
A (partial) continuous function ρ : Z ⊆ NN → X is an admissible
representation if for any continuous ρ′ : Z ′ ⊆ NN → X

there is a
continuous h : Z ′ → Z s.t. ρ′ = ρh.
X is Borel representable if it admits an admissible representation whose
domain is a Borel subset of NN.

Facts.

I Every admissible representation is surjective

I Every second countable, T0 space X has an admissible
representation ρ : Z ⊆ NN → X s.t.

I ρ is open
I every ρ−1({x}) is a Gδ subset of NN



Admissible representations

Let X be a second countable, T0 space.
A (partial) continuous function ρ : Z ⊆ NN → X is an admissible
representation if for any continuous ρ′ : Z ′ ⊆ NN → X there is a
continuous h : Z ′ → Z s.t. ρ′ = ρh.

X is Borel representable if it admits an admissible representation whose
domain is a Borel subset of NN.

Facts.

I Every admissible representation is surjective

I Every second countable, T0 space X has an admissible
representation ρ : Z ⊆ NN → X s.t.

I ρ is open
I every ρ−1({x}) is a Gδ subset of NN



Admissible representations

Let X be a second countable, T0 space.
A (partial) continuous function ρ : Z ⊆ NN → X is an admissible
representation if for any continuous ρ′ : Z ′ ⊆ NN → X there is a
continuous h : Z ′ → Z s.t. ρ′ = ρh.
X is Borel representable if it admits an admissible representation whose
domain is a Borel subset of NN.

Facts.

I Every admissible representation is surjective

I Every second countable, T0 space X has an admissible
representation ρ : Z ⊆ NN → X s.t.

I ρ is open
I every ρ−1({x}) is a Gδ subset of NN



Admissible representations

Let X be a second countable, T0 space.
A (partial) continuous function ρ : Z ⊆ NN → X is an admissible
representation if for any continuous ρ′ : Z ′ ⊆ NN → X there is a
continuous h : Z ′ → Z s.t. ρ′ = ρh.
X is Borel representable if it admits an admissible representation whose
domain is a Borel subset of NN.

Facts.

I Every admissible representation is surjective

I Every second countable, T0 space X has an admissible
representation ρ : Z ⊆ NN → X s.t.

I ρ is open
I every ρ−1({x}) is a Gδ subset of NN



Admissible representations

Let X be a second countable, T0 space.
A (partial) continuous function ρ : Z ⊆ NN → X is an admissible
representation if for any continuous ρ′ : Z ′ ⊆ NN → X there is a
continuous h : Z ′ → Z s.t. ρ′ = ρh.
X is Borel representable if it admits an admissible representation whose
domain is a Borel subset of NN.

Facts.

I Every admissible representation is surjective

I Every second countable, T0 space X has an admissible
representation ρ : Z ⊆ NN → X s.t.

I ρ is open
I every ρ−1({x}) is a Gδ subset of NN



Admissible representations

Let X be a second countable, T0 space.
A (partial) continuous function ρ : Z ⊆ NN → X is an admissible
representation if for any continuous ρ′ : Z ′ ⊆ NN → X there is a
continuous h : Z ′ → Z s.t. ρ′ = ρh.
X is Borel representable if it admits an admissible representation whose
domain is a Borel subset of NN.

Facts.

I Every admissible representation is surjective

I Every second countable, T0 space X has an admissible
representation ρ : Z ⊆ NN → X s.t.

I ρ is open

I every ρ−1({x}) is a Gδ subset of NN



Admissible representations

Let X be a second countable, T0 space.
A (partial) continuous function ρ : Z ⊆ NN → X is an admissible
representation if for any continuous ρ′ : Z ′ ⊆ NN → X there is a
continuous h : Z ′ → Z s.t. ρ′ = ρh.
X is Borel representable if it admits an admissible representation whose
domain is a Borel subset of NN.

Facts.

I Every admissible representation is surjective

I Every second countable, T0 space X has an admissible
representation ρ : Z ⊆ NN → X s.t.

I ρ is open
I every ρ−1({x}) is a Gδ subset of NN



Relatively continuous relations

Definition

An everywhere defined relation R ⊆ X × Y is relatively continuous if for
some/any admissible representations ρX : ZX → X , ρY : ZY → Y there is
a continuous realiser for R, i.e. a continuous f : ZX → ZY s.t.

∀α ∈ ZX ρX (α)RρY f (α)

Question. (Pequignot 2015) Is there an intrinsic characterisation of
relative continuous total relations (i.e. without reference to admissible
representations)? Partial results by Brattka, Hertling (1994) and Pauly,
Ziegler (2013).
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A definition of �X
TP

Definition
Let X be second countable, T0.

For A,B ∈ P(X ), define A �X
TP B if there exists an everywhere defined,

relatively continuous relation R ⊆ X 2 s.t.

∀x , y ∈ X (xRy ⇒ (x ∈ A⇔ y ∈ B))

Notice that A ≤X
W B ⇒ A �X

TP B

A more manageable definition is given by the following.

Fact. Let X be second countable, T0, and let ρ : Z → X be any
admissible representation for X . Then

∀A,B ∈ P(X ) (A �X
TP B ⇔ ρ−1(A) ≤Z

W ρ−1(B))
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An example: the conciliatory hierarchy

Duparc (2001) introduces the conciliatory hierarchy on subsets of N≤ω.

Given A,B ⊆ N≤ω, say that A ≤c B if player II has a winning strategy in
the conciliatory game Gc(A,B). This is the same as the Wadge game
GW (A,B) except that both players are allowed to skip their turn

I x0 (skip) x1 x2 . . . = x
II y0 y1 (skip) y2 . . . = y

so producing sequences x , y ∈ N≤ω. Player II wins the run of the game iff

x ∈ A⇔ y ∈ B



An example: the conciliatory hierarchy

Duparc (2001) introduces the conciliatory hierarchy on subsets of N≤ω.
Given A,B ⊆ N≤ω, say that A ≤c B if player II has a winning strategy in
the conciliatory game Gc(A,B).

This is the same as the Wadge game
GW (A,B) except that both players are allowed to skip their turn

I x0 (skip) x1 x2 . . . = x
II y0 y1 (skip) y2 . . . = y

so producing sequences x , y ∈ N≤ω. Player II wins the run of the game iff

x ∈ A⇔ y ∈ B



An example: the conciliatory hierarchy

Duparc (2001) introduces the conciliatory hierarchy on subsets of N≤ω.
Given A,B ⊆ N≤ω, say that A ≤c B if player II has a winning strategy in
the conciliatory game Gc(A,B). This is the same as the Wadge game
GW (A,B) except that both players are allowed to skip their turn

I x0 (skip) x1 x2 . . . = x
II y0 y1 (skip) y2 . . . = y

so producing sequences x , y ∈ N≤ω. Player II wins the run of the game iff

x ∈ A⇔ y ∈ B



An example: the conciliatory hierarchy

Duparc (2001) introduces the conciliatory hierarchy on subsets of N≤ω.
Given A,B ⊆ N≤ω, say that A ≤c B if player II has a winning strategy in
the conciliatory game Gc(A,B). This is the same as the Wadge game
GW (A,B) except that both players are allowed to skip their turn

I x0 (skip) x1 x2 . . . = x
II y0 y1 (skip) y2 . . . = y

so producing sequences x , y ∈ N≤ω.

Player II wins the run of the game iff

x ∈ A⇔ y ∈ B



An example: the conciliatory hierarchy

Duparc (2001) introduces the conciliatory hierarchy on subsets of N≤ω.
Given A,B ⊆ N≤ω, say that A ≤c B if player II has a winning strategy in
the conciliatory game Gc(A,B). This is the same as the Wadge game
GW (A,B) except that both players are allowed to skip their turn

I x0 (skip) x1 x2 . . . = x
II y0 y1 (skip) y2 . . . = y

so producing sequences x , y ∈ N≤ω. Player II wins the run of the game iff

x ∈ A⇔ y ∈ B



An example: the conciliatory hierarchy

Duparc introduced conciliatory sets as a tool for the study of the ordinary
Wadge hierarchy on NN.

Recently Kihara, Montalbán use conciliatory sets and functions in their
work describing the structure of Wadge degrees on Borel functions from
NN to an arbitrary bqo.

Theorem (Duparc, Fournier)
Endow N≤ω with the prefix topology. Then

≤c 6= ≤N≤ω

W

≤c = �N≤ω

TP



An example: the conciliatory hierarchy

Duparc introduced conciliatory sets as a tool for the study of the ordinary
Wadge hierarchy on NN.
Recently Kihara, Montalbán use conciliatory sets and functions in their
work describing the structure of Wadge degrees on Borel functions from
NN to an arbitrary bqo.

Theorem (Duparc, Fournier)
Endow N≤ω with the prefix topology. Then

≤c 6= ≤N≤ω

W

≤c = �N≤ω

TP



An example: the conciliatory hierarchy

Duparc introduced conciliatory sets as a tool for the study of the ordinary
Wadge hierarchy on NN.
Recently Kihara, Montalbán use conciliatory sets and functions in their
work describing the structure of Wadge degrees on Borel functions from
NN to an arbitrary bqo.

Theorem (Duparc, Fournier)
Endow N≤ω with the prefix topology.

Then

≤c 6= ≤N≤ω

W

≤c = �N≤ω

TP



An example: the conciliatory hierarchy

Duparc introduced conciliatory sets as a tool for the study of the ordinary
Wadge hierarchy on NN.
Recently Kihara, Montalbán use conciliatory sets and functions in their
work describing the structure of Wadge degrees on Borel functions from
NN to an arbitrary bqo.

Theorem (Duparc, Fournier)
Endow N≤ω with the prefix topology. Then

≤c 6= ≤N≤ω

W

≤c = �N≤ω

TP



The questions

Question. (Duparc, Fournier) Is there a topology τ on N≤ω such that
≤c=≤τW ?

More general question. Given a second countable, T0 space
X = (X , T ), when there is a topology τ on X such that �TTP=≤τW ?
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An answer

Theorem
Let X = (X , T ) be second countable, T0. Then there are three
possibilities:

(0) There is no topology τ on X such that �TTP=≤τW
(1) There is just one topology τ on X such that �TTP=≤τW : namely,

τ = T
(2) There are exactly two topologies τ on X such that �TTP= Wadgeτ :

namely τ = T and τ = Π0
1(T ) (in this case, T is an Alexandrov
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A further question

Is there a nice characterisation of the spaces satisfying each of the
alternatives above?

Rather unexpectedly — at least to me — the answer seems to depend on
an analysis of the separation axioms satisfied by X :

I Hausdorff spaces

I T1, non-Hausdorff spaces

I non-T1 spaces
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Hausdorff spaces

Theorem
Let X be second countable, Hausdorff.
Then ≤X

W =�X
TP iff X is zero-dimensional.

Remarks. Since second countable, T0, zero-dimensional spaces are
metrisable, then

I for Borel representable spaces this was already known, by Schlicht’s
antichain

I if ≤X
W =�X

TP and X is not Hausdorff — and there are such spaces!
— then dim(X ) > 0
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T1, non-Hausdorff spaces

Theorem
Let X be second countable, T1, non-Hausdorff.

In order for the equality ≤X
W =�X

TP to be satisfied, it is necessary that

I X is the union of at most countably many clopen connected
components Xi

I ∀i ≤Xi

W =�Xi

TP

I for every non-empty closed C ⊂ X there is x ∈ X \ C such that C , x
do not have disjoint neighbourhoods

Example. Let X be a countable space with the cofinite topology. Then
≤X

W =�X
TP .
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Non-T1 spaces

Theorem
Let X be second countable, T0, non-T1.

If ≤X
W =�X

TP , then X carries an Alexandrov topology, and it is the union
of at most countably many clopen connected components.

As a consequence, card(X) ≤ ℵ0.
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The specialisation order

Given a topological space X define the specialisation partial order ≤ on
X by letting

x ≤ y ⇔ x ∈ {y}

Given any partial order ≤ on a non-empty set X there is exactly one
Alexandrov topology T on X such that ≤ is the specialisation order of
T : the open sets of T are the upward closed sets with respect to ≤.
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Alexandrov topologies and wqo’s

Theorem
Let X be endowed with an Alexandrov topology, with card(X) ≤ ℵ0. Let
≤ be the specialisation order on X .

I If ≤ is a wqo or the reverse of a wqo, then ≤X
W =�X

TP

I If there is n ∈ N such that all chains in ≤ have cardinality less than
n, then ≤X

W =�X
TP

I If both ω and ω∗ embed into (X ,≤), then ≤X
W 6=�X

TP
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