Elementi di Teoria degli Insiemi Prova scritta del 20 Giugno 2017

Tutte le risposte devono essere giustificate

Buon lavoro!

Esercizio 1. [9 punti] Determinare la cardinalità delle seguenti famiglie di insiemi:

- 1. $\mathcal{F}_1 = \{X \subseteq \omega_2 \mid X \text{ è finito}\};$
- 2. $\mathcal{F}_2 = \{ X \subseteq \omega_2 \mid |X| = \aleph_0 \};$
- 3. $\mathcal{F}_3 = \{ X \subseteq \omega_2 \mid |X| = \aleph_1 \};$
- 4. $\mathcal{F}_4 = \{ X \subseteq \omega_2 \mid |X| = \aleph_2 \};$
- 5. $\mathcal{F}_5 = \{X \subset \omega_2 \mid X \text{ è illimitato}\};$
- 6. $\mathcal{F}_6 = \{X \subseteq \omega_2 \mid X \text{ è limitato}\}.$

Soluzione. Useremo la seguente formula:

(*) Siano $\nu \leq \kappa$ cardinali infiniti. Allora l'insieme $[\kappa]^{\nu} = \{X \subseteq \kappa \mid |X| = \nu\}$ dei sottoinsiemi di κ di cardinalità ν ha cardinalità $|[\kappa]^{\nu}| = \kappa^{\nu}$.

Dimostriamo la (\star) . Denotiamo con $[\kappa]^{\leq \nu} = \{X \subseteq \kappa \mid |X| \leq \nu\}$. È immediato verificare che la funzione $\Phi : \operatorname{Fun}(\nu,\kappa) \to [\kappa]^{\leq \nu}$ che associa ad ogni funzione $f : \nu \to \kappa$ la sua immagine $\operatorname{Im}(f)$ è una funzione suriettiva, e quindi $|[\kappa]^{\nu}| \leq |[\kappa]^{\leq \nu}| \leq |\operatorname{Fun}(\nu,\kappa)| = \kappa^{\nu}$. Ricordiamo che ogni funzione $f : \nu \to \kappa$ è identificata con il suo grafico, e quindi è un sottoinsieme del prodotto cartesiano $\nu \times \kappa$ di cardinalità ν , cioè $\operatorname{Fun}(\nu,\kappa) \subseteq [\nu \times \kappa]^{\nu}$. Ma allora si ottiene anche l'altra disuguaglianza $\kappa^{\nu} = |\operatorname{Fun}(\nu,\kappa)| \leq |[\nu \times \kappa]^{\nu}| = |[\kappa]^{\nu}|$, dove abbiamo usato il fatto che $|\nu \times \kappa| = \max\{\nu,\kappa\} = \kappa$.

(1). Notiamo che $\mathcal{F}_1 = \bigcup_{n \in \omega} [\omega_2]^n$, dove $[\omega_2]^n = \{X \subset \omega_2 \mid |X| \leq n\}$. Ricordiamo che per ogni naturale $n \geq 1$ e e per ogni cardinale infinito μ si ha $\mu^n = \mu$, e quindi $(\aleph_2)^n = \aleph_2$. Visto che le le funzioni $\Psi_n : (\omega_2)^n \to [\omega_2]^n$ dove $(a_1, \ldots, a_n) \mapsto \{a_1, \ldots, a_n\}$ sono suriettive, usando la (\star) si ha che

$$|\mathcal{F}_1| = \max \left\{ \sup_{n \in \omega} |[\omega_2]^n; |\omega| \right\} = \max \left\{ \sup_{n \in \omega} (\aleph_2)^n; \aleph_0 \right\} = \max \{\aleph_2; \aleph_0\} = \aleph_2.$$

- (2). $|\mathcal{F}_2| = |[\aleph_2]^{\aleph_0}| = (\aleph_2)^{\aleph_0}$. Usando due volte la formula di Hausdorff si ottiene che $(\aleph_2)^{\aleph_0} = \aleph_0^{\aleph_0} \cdot \aleph_2 = \max\{2^{\aleph_0}, \aleph_2\}$.
- (3). $|\mathcal{F}_3| = |[\aleph_2]^{\aleph_1}| = (\aleph_2)^{\aleph_1}$. Usando la formula di Hausdorff si ottiene che $(\aleph_2)^{\aleph_1} = \aleph_0^{\aleph_1} \cdot \aleph_2 = \max\{2^{\aleph_1}, \aleph_2\} = 2^{\aleph_1}$.
 - (4). $|\mathcal{F}_4| = |[\aleph_2]^{\aleph_2}| = (\aleph_2)^{\aleph_2} = 2^{\aleph_2}$.
- (5). Visto che ω_2 è un cardinale regolare, si ha che $X \subseteq \omega_2$ è illimitato se e solo se $|X| = \aleph_2$. Dunque $\mathcal{F}_5 = 2^{\aleph_2}$ perché $\mathcal{F}_5 = \mathcal{F}_4$.
- (6). Da quanto detto sopra, $X \subseteq \omega_2$ è limitato se e solo se $|X| < \aleph_2$, cioè se e solo se X finito, o $|X| = \aleph_0$, o $|X| = \aleph_1$. Ma allora $\mathcal{F}_6 = \mathcal{F}_1 \cup \mathcal{F}_2 \cup \mathcal{F}_3$, e quindi

$$|\mathcal{F}_6| \ = \ |\mathcal{F}_1| + |\mathcal{F}_2| + |\mathcal{F}_3| \ = \ \max\{|\mathcal{F}_1|; |\mathcal{F}_2|; |\mathcal{F}_3|\} \ = \ \max\{\aleph_2; \max\{2^{\aleph_0}, \aleph_2\}; 2^{\aleph_1}\} \ = \ 2^{\aleph_1}$$

Esercizio 2. [9 punti] Sia $g: \omega_1 \to \omega_1$ e sia $Fix(g) = \{\alpha \in \omega_1 \mid g(\alpha) = \alpha\}$ l'insieme dei suoi punti fissi.

- 1. Dimostrare che per ogni g crescente e continua¹, l'insieme Fix(g) ha cardinalità \aleph_1 .
- 2. Dimostrare che sia l'ipotesi "g crescente" che l'ipotesi "g continua" sono necessarie per la validità della proprietà (1) di sopra.
- 3. Vale la proprietà (1) di sopra se sostituiamo l'ipotesi di "g crescente" con l'ipotesi di "g illimitata"? (Giustificare la risposta).

Soluzione. (1). Ricordiamo che ω_1 è un cardinale regolare, e quindi ogni sottoinsieme illimitato $X \subseteq \omega_1$ ha cardinalità $|X| = |\omega_1| = \aleph_1$. Per raggiungere la tesi basta allora mostrare che per ogni $\gamma < \omega_1$ esiste un punto fisso $\alpha \ge \gamma$. Definiamo induttivamente:

$$\begin{cases} \alpha_0 = \gamma \\ \alpha_{n+1} = g(\alpha_n). \end{cases}$$

Poiché g è crescente, $g(\beta) \ge \beta$ per ogni β e quindi la successione $\langle \alpha_n \mid n \in \omega \rangle$ è debolmente crescente. Il punto $\alpha = \sup_n \alpha_n \ge \gamma$ è punto fisso; infatti dalla continuità di g segue che:

$$g(\alpha) = \sup_{n} g(\alpha_n) = \sup_{n} \alpha_{n+1} = \sup_{n} \alpha_n = \alpha.$$

(2). Una qualunque funzione costante g è banalmente continua (ma non crescente) ed ha un unico punto fisso. Questo mostra che l'ipotesi "g crescente" è necessaria.

La funzione $g(\alpha) = \alpha + 1$ è crescente (ma non continua) ed è priva di punti fissi. Questo mostra che l'ipotesi "g continua" è necessaria.

(3). La risposta è positiva. Per dimostrarlo si usa un'idea simile a quella vista sopra al punto (1). Basta mostrare che per ogni $\gamma < \omega_1$ esiste $\alpha \ge \gamma$ punto fisso. Definiamo induttivamente:

$$\begin{cases} \alpha_0 = \gamma \\ \alpha_{n+1} = \min\{\beta > \alpha_n, g(\alpha_n) \mid g(\beta) > \alpha_n, g(\alpha_n) \}. \end{cases}$$

Notiamo che l'insieme $\{g(\beta) \mid \beta \leq \max\{\alpha_n, g(\alpha_n)\}\}$ è un insieme numerabile, e dunque limitato in ω_1 ; di conseguenza, visto che g è illimitata, il suo complementare $\{g(\beta) \mid \beta > \alpha_n, g(\alpha_n)\}$ è illimitato, e la definizione di α_{n+1} è ben posta. Chiaramente $\langle \alpha_n \mid n \in \omega \rangle$ e $\langle g(\alpha_n) \mid n \in \omega \rangle$ sono sequenze crescenti dove $\alpha_{n+1} > g(\alpha_n)$ e $g(\alpha_{n+1}) > \alpha_n$ per ogni $n \in \omega$. Il punto $\alpha = \sup_n \alpha_n > \gamma$ è punto fisso; infatti, vista la continuità di g, si ha:

$$g(\alpha) = \sup_{n} g(\alpha_n) = \sup_{n} g(\alpha_{n+1}) \ge \sup_{n} \alpha_n = \alpha = \sup_{n} \alpha_{n+1} \ge \sup_{n} g(\alpha_n) = g(\alpha).$$

Esercizio 3. [8 punti]

- 1. Trovare la forma normale di Cantor dell'ordinale $(\omega^2 \cdot 5 + \omega \cdot 3)^3$.
- 2. Determinare quoziente e resto della divisione euclidea tra gli ordinali $\omega^2 \cdot 5 + \omega \cdot 2 + 3$ e $\omega \cdot 2 + 7$.

Soluzione. (1). Usando la distributività a destra, si ottiene che $\omega^2 \cdot 5 + \omega \cdot 3 = \omega \cdot (\omega \cdot 5 + 3)$. Inoltre $(\omega \cdot 5 + 3) \cdot \omega = \omega^2$, come dimostrato dalle seguenti disuguaglianze:

$$\omega^2 \ \leq \ (\omega \cdot 5 + 3) \cdot \omega \ \leq \ (\omega \cdot 6) \cdot \omega \ = \ \omega \cdot (6 \cdot \omega) \ = \ \omega^2.$$

¹ Cioè tali che per ogni ordinale limite $\lambda < \omega_1$ si ha $g(\lambda) = \sup_{\gamma < \lambda} g(\gamma)$.

Otteniamo allora:

$$(\omega^2 \cdot 5 + \omega \cdot 3)^3 = \omega \cdot (\omega \cdot 5 + 3) \cdot \omega \cdot (\omega \cdot 5 + 3) \cdot \omega \cdot (\omega \cdot 5 + 3) = \omega \cdot \omega^2 \cdot \omega^2 \cdot (\omega \cdot 5 + 3)$$
$$= \omega^5 \cdot (\omega \cdot 5 + 3) = \omega^6 \cdot 5 + \omega^5 \cdot 3,$$

che è la forma normale di Cantor cercata.

(2). Notiamo che $(\omega \cdot 2 + 7) \cdot \omega = \omega^2$; infatti:

$$\omega^2 \leq (\omega \cdot 2 + 7) \cdot \omega \leq (\omega \cdot 3) \cdot \omega = \omega \cdot (3 \cdot \omega) = \omega^2.$$

Allora $(\omega \cdot 2 + 7) \cdot \omega \cdot 5 = \omega^2 \cdot 5$. Possiamo concludere che la divisione euclidea si ottiene prendendo come quoziente $\omega \cdot 5$, e come resto $\omega \cdot 2 + 3 < \omega \cdot 2 + 7$.

Esercizio4. [6 punti] Sia $\langle V_{\alpha} \mid \alpha \in \mathbf{ON} \rangle$ la gerarchia cumulativa di von Neumann, e sia $\langle \beth_{\alpha} \mid \alpha \in \mathbf{ON} \rangle$ la sequenza dei *beths*.²

- 1. Dimostrare che $|V_{\alpha}|=\beth_{\alpha}$ se e solo se $\alpha>\omega^2.$
- 2. Fissato un ordinale α infinito, determinare tutti e soli gli ordinali β che soddisfano la seguente proprietà:
 - Se $f: V_{\beta} \to V_{\alpha}$ allora $f \in V_{\alpha}$.

Soluzione. (1). Per induzione transfinita, si dimostra che $|V_{\omega+\alpha}| = \beth_{\alpha}$ per ogni ordinale α . Infatti $|V_{\omega}| = \aleph_0 = \beth_0$; al passo successore $|V_{\omega+\alpha+1}| = |\mathcal{P}(V_{\omega+\alpha})| = 2^{|V_{\omega+\alpha}|} = (\text{per ip. induttiva}) = 2^{\beth_{\alpha}} = \beth_{\alpha+1}$; al passo limite,

$$|V_{\omega+\lambda}| = |\bigcup_{\alpha < \lambda} V_{\omega+\alpha}| = \max\{\sup_{\alpha < \lambda} |V_{\omega+\alpha}|, |\lambda|\} = (\text{ip. indutt.}) = \max\{\sup_{\alpha < \lambda} \beth_{\alpha}, |\lambda|\} = \max\{\beth_{\lambda}, |\lambda|\} = \beth_{\lambda}.$$

Se $\alpha < \omega$ è finito allora V_n è finito, quindi $|V_n| < \aleph_0 = \beth_0$ e $|V_n| \neq \beth_n$. Se $\omega \leq \alpha < \omega^2$, allora $\alpha = \omega \cdot n + k$ dove $n, k \in \omega$ con $n \neq 0$. Ma allora, per la formula di sopra, $|V_\alpha| = \beth_{\omega \cdot (n-1) + k} < \beth_\alpha$. Infine, se $\alpha \geq \omega^2$, allora $\omega + \alpha = \alpha$ e quindi $|V_\alpha| = |V_{\omega + \alpha}| = \beth_\alpha$.

(2). Sono tutti e soli gli ordinali β tali che $|V_{\beta}| < \cos(\alpha)$. Vediamo perchè. Se $\alpha = \gamma + 1$ è successore, allora $\cos(\alpha) = 1$, e la condizione di sopra si riduce a $|V_{\beta}| < 1$, cioè $V_{\beta} = \emptyset$, cioè $\beta = 0$. In questo caso l'unica $f: V_{\beta} \to V_{\alpha}$ è la funzione vuota, e banalmente $\emptyset \in V_1 \subseteq V_{\alpha}$. Viceversa, se $\beta \geq 1$, allora $\emptyset \in V_{\beta}$ e posso prendere una funzione $f: V_{\beta} \to V_{\alpha}$ tale che $f(\emptyset) = V_{\gamma}$. Una tale funzione $f \notin V_{\alpha} = \mathcal{P}(V_{\gamma})$, altrimenti $(\emptyset, V_{\gamma}) \in f \in V_{\gamma+1} \Rightarrow (\emptyset, V_{\gamma}) \in V_{\gamma}$. Questo non è possibile perché $V_{\gamma} \in \{\emptyset, V_{\gamma}\} \in \{\{\emptyset\}, \{\emptyset, V_{\gamma}\}\} = (\emptyset, V_{\gamma}) \in V_{\gamma}$, da cui seguirebbe $V_{\gamma} \in V_{\gamma}$.

Possiamo quindi assumere α limite. Assumiamo prima che $|V_{\beta}| < \operatorname{cof}(\alpha)$. Data $f: V_{\beta} \to V_{\alpha}$, per ogni $x \in V_{\beta}$ prendo $R(x) = \min\{\gamma \mid f(x) \in V_{\gamma}\}$. L'insieme di ordinali $\{R(x) \mid x \in V_{\beta}\} \subseteq \alpha$ ha cardinalità $\leq |V_{\beta}|$ e quindi è limitato. Ma allora esiste $\delta < \alpha$ con $\delta > R(x)$ per ogni $x \in V_{\beta}$. Questo garantisce che $\operatorname{Im}(f) \subseteq V_{\delta}$ e quindi $\operatorname{Im}(f) \in V_{\alpha}$. Inoltre, $\beta \leq |V_{\beta}| < \operatorname{cof}(\alpha) \leq \alpha$, e quindi $V_{\beta} \in V_{\alpha}$. Visto che sia dominio che immagine di f appartengono a V_{α} , possiamo concludere che $f \in V_{\alpha}$.

Se invece $|V_{\beta}| \ge \operatorname{cof}(\alpha)$, allora esiste una funzione $f: V_{\beta} \to \alpha$ illimitata. Chiaramente $f: V_{\beta} \to V_{\alpha}$, ma $f \notin V_{\alpha}$, altrimenti avremmo che $\operatorname{Im}(f) \in V_{\alpha}$, e quindi anche $\alpha = \bigcup \operatorname{Im}(f) \in V_{\alpha}$, il che è assurdo.

Ricordiamo le definizioni per ricorsione transfinita: $V_0 = \emptyset$, $V_{\alpha+1} = \mathcal{P}(V_{\alpha})$, $V_{\lambda} = \bigcup_{\alpha < \lambda} V_{\alpha}$ se λ è limite; $\beth_0 = \aleph_0$, $\beth_{\alpha+1} = 2^{\beth_{\alpha}}$, $\beth_{\lambda} = \sup_{\alpha < \lambda} \beth_{\alpha}$ se λ è limite.