Elementi di Teoria degli Insiemi Prova scritta del 25 Giugno 2012

Tutte le risposte devono essere giustificate

Buon lavoro!

Esercizio 1. Assumiamo che valga l'*ipotesi generalizzata del continuo*, cioè $2^{\aleph_{\alpha}} = \aleph_{\alpha+1}$ per ogni α . Determinare le cardinalità dei seguenti insiemi:

1.
$$X_1 = \{A \subseteq \omega_{11} \mid |A| = \aleph_0 \}$$

2.
$$X_2 = \{A \subseteq \omega_{11} \mid |A| = \aleph_5 \}.$$

3.
$$X_3 = \{f : \omega_{11} \to \omega_5 \mid f \text{ è illimitata}\}.$$

4.
$$X_4 = \{f : \omega_5 \to \omega_{11} \mid f \text{ è strettamente crescente}\}.$$

Esercizio 2. Siano $\alpha, \beta > 2$ ordinali.

- 1. Dimostrare che $\alpha^{\beta} = \alpha \cdot \beta$ se e solo se $\alpha^{\beta} = \beta$.
- 2. Dimostrare che per ogni α esistono β arbitrariamente grandi tali che $\alpha^{\beta} = \alpha \cdot \beta$.

Esercizio 3. Consideriamo la gerarchia di von Neumann: $V_0 = \emptyset$; $V_{\alpha+1} = \mathcal{P}(V_{\alpha})$; $V_{\lambda} = \bigcup_{\alpha < \lambda} V_{\alpha}$ se λ è limite. Dimostrare le seguenti proprietà:

1.
$$\mathcal{F} \in V_{\alpha} \implies \bigcup_{F \in \mathcal{F}} F \in V_{\alpha}$$
.

2.
$$A \in V_{\alpha} \Rightarrow \mathrm{TC}(A) \in V_{\alpha}.^{1}$$

3.
$$A \in V_{\omega} \iff |\mathrm{TC}(A)| < \aleph_0.^2$$

Esercizio 4. Siano κ e ν cardinali infiniti. Dimostrare le proprietà seguenti.

- 1. Se $\mu^{\nu} < \kappa$ per ogni $\mu < \kappa$ e se $\nu < \operatorname{cof}(\kappa)$ allora $\kappa^{\nu} = \kappa$.
- 2. Se $\mu^{\nu} < \kappa$ per ogni $\mu < \kappa$ e se $\nu \ge \operatorname{cof}(\kappa)$ allora κ è singolare ed inoltre $\kappa^{\nu} = \kappa^{\operatorname{cof}(\kappa)}$. [Suggerimento: usare la formula per i prodotti infiniti.]

¹ Ricordiamo che la chiusura transitiva TC(A) è il più piccolo insieme transitivo che contiene A, ed è uguale all'unione $\bigcup_{n\in\omega}A_n$ dove $A_0=A$ e $A_{n+1}=\bigcup A_n$.

Per l'implicazione \Leftarrow è necessario l'uso dell'assioma di Fondazione.