Elementi di Logica Matematica Prova scritta del 13 Giugno 2006 Soluzioni (a cura di M. Di Nasso)

Esercizio 1. Determinare la cardinalità dei seguenti insiemi:

- 1. $Y_1 = \{ A \subseteq \mathbb{R} \mid A \text{ è finito } \}.$
- 2. $Y_2 = \{f : \mathbb{N} \to \mathbb{N} \mid f \text{ bigezione } \}$
- 3. $Y_3 = \{f : (0,1) \to (0,1) \mid f \text{ discontinua in al più una quantità numerabile di punti } \}$.
- 4. $Y_4 = \bigcup_{\gamma < \omega_1} A_\gamma$ dove $\{A_\gamma \mid \gamma < \omega_1\}$ è una famiglia di aperti (non vuoti) di \mathbb{R} .

Soluzione. (1). La funzione $f : \mathbb{R} \to Y_1$ dove $r \mapsto \{r\}$ è iniettiva, dunque $\mathfrak{c} \leq |Y_1|$. Se $A = \{r_0 < \ldots < r_k\}$ è un sottoinsieme finito di \mathbb{R} , definiamo la successione $s_A : \mathbb{N} \to \mathbb{R} \cup \{\star\}$ (dove $\star \notin \mathbb{R}$), ponendo

$$s_A(i) = r_i$$
 per $i = 0, \dots, k$ e $s_A(i) = \star$ per $i > k$.

La funzione $\psi: Y_1 \to (\mathbb{R} \cup \{\star\})^{\mathbb{N}}$ dove $\psi(A) = s_A$ è chiaramente iniettiva. Infatti $\operatorname{Im}(s_A) = A \cup \{\star\}$, e quindi $s_A = s_{A'} \Rightarrow A = A'$. Dunque $|Y_1| \leq |(\mathbb{R} \cup \{\star\})^{\mathbb{N}}| = \mathfrak{c}^{\aleph_0} = \mathfrak{c}$. Per Cantor-Bernstein, concludiamo che $|Y_1| = \mathfrak{c}$. (2). $Y_2 \subseteq \mathbb{N}^{\mathbb{N}}$, dunque $|Y_2| \leq \aleph_0^{\aleph_0} = \mathfrak{c}$. Per ottenere l'altra disuguaglianza, troviamo una funzione iniettiva $\psi: \mathcal{P}(\mathbb{N}) \to Y_2$. Un possibile modo è questo. Per ogni sottoinsieme $A \subseteq \mathbb{N}$, poniamo

$$\sigma_A(2n) = \begin{cases} 2n+1 & \text{se } n \in A. \\ 2n & \text{se } n \notin A. \end{cases} \quad \text{e} \quad \sigma_A(2n+1) = \begin{cases} 2n & \text{se } n \in A. \\ 2n+1 & \text{se } n \notin A. \end{cases}$$

Si può verificare direttamente che ogni $\sigma_A: \mathbb{N} \to \mathbb{N}$ è una bigezione (ad esempio, si osservi che $\sigma_A \circ \sigma_A$ è l'identità, dunque σ_A è l'inversa di se stessa). Inoltre $A = \{n \mid \sigma_A(2n) \neq 2n\}$. Da qui segue che la funzione $\psi: A \mapsto \sigma_A$ è una mappa iniettiva, e perciò $\mathfrak{c} = |\mathcal{P}(\mathbb{N})| \leq |Y_2|$. Il teorema di Cantor-Bernstein ci permette di concludere che $|Y_2| = \mathfrak{c}$.

(3). Denotiamo con $\mathcal{H} = \{A \subset (0,1) : |A| \leq \aleph_0\}$. Notiamo intanto che $|\mathcal{H}| = \mathfrak{c}$. Infatti, la disuguaglianza $\mathfrak{c} \leq |\mathcal{H}|$ è banale; e viceversa basta notare che $|\mathcal{H}| = |\{\operatorname{Im}(\sigma) \mid \sigma : \mathbb{N} \to (0,1)\}| \leq |(0,1)^{\mathbb{N}}| = \mathfrak{c}^{\aleph_0} = \mathfrak{c}$.

Per ogni $A \in \mathcal{H}$, definiamo

$$C_A = \{g : (0,1) \setminus A \to (0,1) \mid f \text{ è continua } \} \text{ e } \mathcal{F}_A = (0,1)^A = \{h \mid h : A \to (0,1)\}.$$

Per ogni $f \in Y_3$, poniamo¹

$$\psi(f) = \langle f|_{(0,1)\backslash A}, f|_A \rangle \in \mathcal{C}_A \times \mathcal{F}_A,$$

dove A è l'insieme dei punti di discontinuità di f. La funzione $\psi: Y_3 \to \bigcup_{A \in \mathcal{H}} \mathcal{C}_A \times \mathcal{F}_A$, è chiaramente iniettiva. Adesso, per ogni $A \in \mathcal{H}$, fissiamo D_A numerabile e denso in $(0,1) \setminus A$. Due funzioni f e g continue su $(0,1) \setminus A$ che coincidono sul denso D_A sono necessariamente uguali. Dunque la corrispondenza $\vartheta: f \mapsto f|_{D_A}$ è una funzione iniettiva $\vartheta: \mathcal{C}_A \to (0,1)^{D_A}$, e così $|\mathcal{C}_A| \leq |(0,1)^{D_A}| = \mathfrak{c}^{\aleph_0} = \mathfrak{c}$. Inoltre $|\mathcal{F}_A| = |(0,1)|^{|A|} \leq \mathfrak{c}^{\aleph_0} = \mathfrak{c}$, e quindi il prodotto cartesiano $|\mathcal{C}_A \times \mathcal{F}_A| = \mathfrak{c}$. Concludiamo allora che

$$|Y_3| \leq |\bigcup_{A \in \mathcal{H}} \mathcal{C}_A \times \mathcal{F}_A| = \max\{|\mathcal{H}|, \sup\{|\mathcal{C}_A \times \mathcal{F}_A| : A \in \mathcal{H}\}\} = \mathfrak{c}.$$

L'altra disuguaglianza $\mathfrak{c} \leq |Y_3|$ è immediata (basta considerare le funzioni costanti).

(4). Chiaramente $Y_4 \subseteq \mathbb{R}$, dunque $|Y_4| \le \mathfrak{c}$. Ogni A_{γ} , in quanto sottoinsieme aperto non vuoto di \mathbb{R} , include un intervallo (a, b), e dunque ha cardinalità $|A_{\gamma}| = \mathfrak{c}$. Allora:

$$|Y_4| \leq \sum_{\gamma < \omega_1} |A_\gamma| = \max\{|\omega_1|, \sup\{|A_\gamma| : \gamma < \omega_1\}\,\} = \max\{\aleph_1, \mathfrak{c}\} = \mathfrak{c}.$$

¹ Con $f|_X$ si denota la restrizione della funzione f all'insieme X.

Esercizio 2.

- 1. Supponiamo che $|X| \leq |Z|$ dove Z è bene ordinabile. Senza usare l'assioma di scelta, dimostrare che se esiste $g: X \to Y$ suriettiva, allora $|Y| \leq |X|$.
- 2. Usando l'assioma di scelta, dimostrare la seguente proprietà:

$$(\star)$$
 $|Y| \leq |X|$ se e solo se esiste $g: X \to Y$ suriettiva.

Soluzione. (1). Per ipotesi esiste un buon ordinamento \leq_Z su Z, ed esiste una funzione iniettiva $f: X \to Z$. La relazione \leq_X definita ponendo $x \leq_X x'$ se e solo se $f(x) \leq_Z f(x')$, è un buon ordinamento. Infatti, poiché f è iniettiva, (X, \leq_X) risulta isomorfo a $(f[X], \leq_Z)$, che è bene ordinato in quanto sottoinsieme del bene ordinato (Z, \leq_Z) . Data $g: X \to Y$ suriettiva, per ogni $y \in Y$ definiamo allora $h(y) = \min\{x \in X \mid g(x) = y\}$. La definizione è ben posta perché X è bene ordinato da \leq_X , e inoltre $\{x \in X \mid g(x) = y\} \neq \emptyset$ per la suriettività di g. È infine immediato verificare che una tale h è iniettiva. Più direttamente, data $f: X \to Z$ iniettiva dove Z bene ordinato, e $g: X \to Y$ suriettiva, si poteva definire $h: Y \to X$ iniettiva ponendo:

$$h(y) = \text{quell'unico elemento } x \in X \text{ tale che } f(x) = \min\{f(x') \mid g(x') = y\}.$$

(2). Supponiamo prima $|Y| \leq |X|$, cioè che esista una funzione iniettiva $f: Y \to X$. Fisso un elemento $y_0 \in Y$, e definisco g(x) = y dove y è quell'unico elemento tale che f(y) = x, nel caso in cui $x \in \text{Im}(f)$; e definisco $g(x) = y_0$ nel caso in cui $x \notin \text{Im}(f)$. Chiaramente una tale $g: X \to Y$ è suriettiva. Viceversa, supponiamo di avere $g: X \to Y$ suriettiva. Allora per ogni $y \in Y$, l'insieme $\Gamma_y = \{x \in X \mid g(x) = y\} \neq \emptyset$. Prendiamo una funzione di scelta ψ sulla famiglia $\{\Gamma_y \mid y \in Y\}$, e poniamo $f(y) = \psi(\Gamma_y)$. È immediato verificare che $f: Y \to X$ è iniettiva, dunque $|Y| \leq |X|$.

Esercizio 3. Determinare quoziente e resto della divisione euclidea tra gli ordinali $\omega^2 + \omega \cdot 3 + 2$ e $\omega + 4$.

Soluzione. Procediamo "a tentativi" per trovare il quoziente, cioè il più grande ordinale α tale che $(\omega+4)\cdot\alpha\leq$ $\omega^2+\omega\cdot 3+2$. Intanto notiamo che $(\omega+4)\cdot\omega=\bigcup_{n<\omega}(\omega+4)\cdot n=\omega^2$. Inoltre, per ogni $k\in\omega$, si ha che

$$(\omega + 4) \cdot (\omega + k) = (\omega + 4) \cdot \omega + (\omega + 4) \cdot k = \omega^2 + (\omega + 4) + \dots + (\omega + 4) = \omega^2 + \omega + (4 + \omega) + \dots + 4 = \omega^2 + \omega \cdot k + 4$$

Dunque $\omega + 2$ è il quoziente cercato, perché $(\omega + 4) \cdot (\omega + 2) = \omega^2 + \omega \cdot 2 + 4 < \omega^2 + \omega \cdot 3 + 2$, mentre $(\omega + 4) \cdot (\omega + 3) = \omega^2 + \omega \cdot 3 + 4 > \omega^2 + \omega \cdot 3 + 2$. Il resto è quell'ordinale ρ tale che $(\omega + 4) \cdot (\omega + 2) + \rho = \omega^2 + \omega \cdot 3 + 2$. È facile verificare che $\rho = \omega + 2$. Infatti:

$$(\omega + 4) \cdot (\omega + 2) + (\omega + 2) = (\omega^2 + \omega \cdot 2 + 4) + (\omega + 2) = \omega^2 + \omega \cdot 2 + (4 + \omega) + 2 = \omega^2 + \omega \cdot 3 + 2.$$

Esercizio 4.

La famiglia dei Boreliani $\mathcal{B}(\mathbb{R})$ è definita come la più piccola σ -algebra di sottoinsiemi di \mathbb{R} che contiene tutti gli aperti.³ Per induzione transfinita, poniamo:

$$\begin{cases} B_0 = \{X \subseteq \mathbb{R} \mid A \text{ è aperto } \} \\ B_{\alpha+1} = B_{\alpha} \cup \{X^c \mid X \in B_{\alpha}\} \cup \{\bigcup_{n < \omega} X_n \mid X_n \in B_{\alpha}\} \cup \{\bigcap_{n < \omega} X_n \mid X_n \in B_{\alpha}\} \\ B_{\lambda} = \bigcup_{\alpha < \lambda} B_{\alpha} \text{ se } \lambda \text{ è limite.} \end{cases}$$

- 1. Dimostrare che $\mathcal{B}(\mathbb{R}) = \bigcup_{\alpha < \omega_1} B_{\alpha}$.
- 2. Qual è la cardinalità di $\mathcal{B}(\mathbb{R})$?

² Per questa implicazione non richiede l'assioma di scelta.

 $^{^3}$ Ricordare che una σ -algebra è una famiglia di insiemi chiusa per complementi, e chiusa per intersezioni e unioni numerabili.

Soluzione. (1). Visto che $\mathcal{B}(\mathbb{R})$ contiene tutti gli aperti, ed è una σ -algebra, è immediato verificare per induzione transfinita che $B_{\alpha} \subseteq \mathcal{B}(\mathbb{R})$ per ogni $\alpha < \omega_1$. Dunque $\bigcup_{\alpha < \omega_1} B_{\alpha} \subseteq \mathcal{B}(\mathbb{R})$.

Vista la definizione di $\mathcal{B}(\mathbb{R})$, l'inclusione inversa si ottiene dimostrando che $\bigcup_{\alpha<\omega_1}B_{\alpha}$ è essa stessa una σ -algebra che contiene tutti gli aperti. Se $A\in\bigcup_{\alpha<\omega_1}B_{\alpha}$, allora esiste $\alpha<\omega_1$ con $A\in B_{\alpha}$, e quindi il complementare $A^c\in B_{\alpha+1}\subseteq\bigcup_{\alpha<\omega_1}B_{\alpha}$. Se $\{A_n\mid n\in\mathbb{N}\}\subseteq\bigcup_{\alpha<\omega_1}B_{\alpha}$ è una famiglia numerabile, per ogni $n\in\mathbb{N}$ definisco $\gamma_n=\min\{\alpha\mid A_n\in B_{\alpha}\}$, e considero $\gamma=\sup_n\gamma_n=\bigcup_n\gamma_n$. Visto che ω_1 non è numerabile, necessariamente $\gamma\in\omega_1$. Dunque $\{A_n\mid n\in\mathbb{N}\}\subseteq B_{\gamma}$, e cosí $\bigcup_n A_n,\bigcap_n A_n\in B_{\gamma+1}\subseteq\bigcup_{\alpha<\omega_1}B_{\alpha}$, come volevamo.

(2). Procedendo per induzione transfinita, dimostriamo che $|B_{\alpha}| = \mathfrak{c}$ per ogni $\alpha < \omega_1$. Abbiamo visto a lezione che la collezione B_0 di tutti gli aperti di \mathbb{R} ha la cardinalità del continuo \mathfrak{c} . Supponiamo ora $|B_{\alpha}| = \mathfrak{c}$, e consideriamo le funzioni:

$$\psi: B_{\alpha} \times \{0,1\} \to B_{\alpha+1} \quad \text{e} \quad \theta: B_{\alpha}^{\mathbb{N}} \times \{0,1\} \to B_{\alpha+1},$$

dove $\psi(A,0) = A$, $\psi(A,1) = A^c$, $\theta(\sigma,0) = \bigcup_n \sigma(n)$ e $\theta(\sigma,1) = \bigcap_n \sigma(n)$. Dunque l'immagine di ψ consiste di tutti gli elementi di B_α e dei loro complementi, mentre l'immagine di θ consiste di tutte le unioni e intersezioni numerabili di elementi di B_α . Ma allora

$$|B_{\alpha+1}| = |\operatorname{Im}(\psi) \cup \operatorname{Im}(\theta)| \le |B_{\alpha} \times \{0,1\}| + |B_{\alpha}^{\mathbb{N}} \times \{0,1\}| = \mathfrak{c} + \mathfrak{c}^{\aleph_0} = \mathfrak{c}.$$

Il caso limite $\lambda < \omega_1$ segue facilmente notando che:

$$\mathfrak{c} = |B_0| \le |B_\lambda| \le \sum_{\alpha \le \lambda} |B_\alpha| = \max\{|\lambda|, \sup_{\alpha \le \lambda} |B_\alpha|\} = \max\{\aleph_0, \mathfrak{c}\} = \mathfrak{c}.$$

Concludiamo allora che:

$$\mathfrak{c} = |B_0| \le |\bigcup_{\alpha < \omega_1} B_\alpha| \le \sum_{\alpha < \omega_1} |B_\alpha| = \max\{|\omega_1|, \sup_{\alpha < \omega_1} |B_\alpha|\} = \max\{\aleph_1, \mathfrak{c}\} = \mathfrak{c}.$$

Esercizio 5.

Un cardinale non numerabile κ si dice *limite forte* se $\nu^{\mu} < \kappa$ per ogni $\nu, \mu < \kappa$.

- 1. Dimostrare che se κ è limite forte allora κ è un cardinale limite.
- 2. Dimostrare che κ è limite forte se e solo se $2^{\nu} < \kappa$ per ogni cardinale $\nu < \kappa$.
- 3. Dimostrare che esistono limiti forti.

Soluzione. (1). Supponiamo che κ non sia un cardinale limite, cioè che $\kappa = \nu^+$ sia il successore di un cardinale ν . Allora $2^{\nu} > \nu$ implica che $2^{\nu} \ge \nu^+ = \kappa$, e κ non è un limite forte.

- (2). Una implicazione è banale. Viceversa, siano $\nu, \mu < \kappa$ e denotiamo con $\theta = \max\{\nu, \mu\} < \kappa$. Allora $\nu^{\mu} \leq \theta^{\theta} \leq (2^{\theta})^{\theta} = 2^{\theta \cdot \theta} = 2^{\theta} < \kappa$, come volevamo.⁴
- (3). Sia μ un cardinale infinito qualunque. Definiamo per induzione la successione:

$$\begin{cases} \kappa_0 = \mu \\ \kappa_{n+1} = 2^{\kappa_n} \end{cases}$$

L'unione $\kappa = \bigcup_{n < \omega} \kappa_n$ è un cardinale limite forte. Infatti se $\nu < \kappa$, allora $\nu < \kappa_n$ per qualche n, e dunque $2^{\nu} \le 2^{\kappa_n} = \kappa_{n+1} < \kappa$.

⁴ Si osservi che per ogni cardinale infinito θ vale l'uguaglianza $\theta^{\theta} = 2^{\theta}$.

Esercizio facoltativo. Sia κ un cardinale con $\aleph_0 \leq \kappa \leq \mathfrak{c}$, dove $\mathfrak{c} = 2^{\aleph_0}$ è la cardinalità del continuo. Dimostrare che le seguenti due condizioni sono equivalenti:

1. Per ogni sottoinsieme $X \subseteq \mathbb{R}$ di cardinalità $|X| = \kappa$, esiste un razionale $q \in \mathbb{Q}$ tale che:

$$|X \cap (-\infty, q)| = |X \cap (q, +\infty)| = \kappa.$$

2. La cofinalità di κ è più che numerabile: $cof(\kappa) > \aleph_0$.

Soluzione. Supponiamo prima che la (2) non valga, cioè che $cof(\kappa) = \aleph_0$. Allora esisterebbe una sequenza crescente di cardinali $\langle \kappa_n \mid n < \omega \rangle$ tale che l'unione $\bigcup_n \kappa_n = \kappa$. Denotiamo con $Y_n = \kappa_{n+1} \setminus \kappa_n$. Poichè $|Y_n| = \kappa_{n+1} < \kappa \le \mathfrak{c}$, per ogni $n \in \omega$ posso fissare una funzione iniettiva $\psi_n : Y_n \to [n, n+1)$, dove $[n, n+1) = \{x \in \mathbb{R} \mid n \le x < n+1\}$. Definiamo ora $X_n = \psi_n[Y_n]$ (l'immagine di ψ_n), e sia $X = \bigcup_n X_n$ la corrispondente unione digiunta. Mettendo insieme tutte le ψ_n , si ottiene una funzione biunivoca $\psi : \kappa \to X \subset \mathbb{R}$, definita su $\kappa = \bigcup_n Y_n$. Se $q \in \mathbb{Q}$ è negativo, allora banalmente $X \cap (-\infty, q) = \emptyset$. Se invece $q \in [n, n+1)$ per qualche naturale n, allora $|X \cap (-\infty, q)| \le |\bigcup_{i \le n} Y_i| = \kappa_n < \kappa$. Questo dimostra che X è un controesempio alla proprietà (1).

Viceversa, supponiamo che la (1) non valga, cioè supponiamo che esista un sottoinsieme $X \subseteq \mathbb{R}$ di cardinalità κ tale che, per ogni razionale q, si abbia $|X \cap (-\infty, q)| < \kappa$ o $|X \cap (q, +\infty)| < \kappa$. Dobbiamo dimostrare che allora la (2) non vale, cioè che $\operatorname{cof}(\kappa) = \aleph_0$. Per fare questo, mostreremo che X (0 un suo sottoinsieme di cardinalità κ) è una unione numerabile di sottoinsiemi di cardinalità $< \kappa$. A questo scopo, consideriamo l'insieme

$$A = \{ q \in \mathbb{Q} \mid |X \cap (-\infty, q)| < \kappa \}.$$

[È immediato verificare che A è un segmento di \mathbb{Q} , cioè $q' < q \in A \Rightarrow q' \in A$.] Se $A = \emptyset$, allora deve essere $|X \cap (q, +\infty)| < \kappa$ per ogni $q \in \mathbb{Q}$. In particolare, $X = \bigcup_{n < \omega} (X \cap (-n, +\infty))$ è unione numerabile di insiemi di cardinalità $< \kappa$. Anche se sup $A = +\infty$, si ha subito che $X = \bigcup_{n < \omega} (X \cap (-\infty, n))$ è unione numerabile di insiemi di cardinalità $< \kappa$. Se sup $A = \alpha \notin A$ non è massimo, si prenda una successione crescente $\{q_n\}$ di elementi di A con sup_n $q_n = \alpha$. Allora $X \cap (-\infty, \alpha) = \bigcup_{n < \omega} (X \cap (-\infty, q_n))$ ha cardinalità κ , ed è unione numerabile di insiemi di cardinalità $< \kappa$. Resta da considerare il caso in cui sup $A = \alpha \in A$ è massimo. Prendo allora una successione decrescente $\{s_n\}$ con inf_n $s_n = \alpha$. In questo caso si ha che $X \cap (\alpha, +\infty) = \bigcup_{n < \omega} (X \cap (s_n, +\infty))$ ha cardinalità κ , ed è unione unione numerabile di insiemi di cardinalità $< \kappa$.