Elementi di Logica Matematica Prova scritta del 13 Giugno 2006

| Cognome e | nome: | | | | |
 |
|-------------|------------|------|--------|--------|---|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Numero di | matricola: | | | | |
 |
| E-mail (per | eventuali | comı | ınicaz | zioni) | : |
 |

Tutte le risposte devono essere giustificate

Esercizio 1. Determinare la cardinalità dei seguenti insiemi:

- 1. $Y_1 = \{ A \subseteq \mathbb{R} \mid A \text{ è finito } \}.$
- 2. $Y_2 = \{ f : \mathbb{N} \to \mathbb{N} \mid f \text{ bigezione } \}.$
- 3. $Y_3 = \{f : (0,1) \to (0,1) \mid f \text{ discontinua in al più una quantità numerabile di punti } \}$.
- 4. $Y_4 = \bigcup_{\gamma < \omega_1} A_{\gamma}$ dove $\{A_{\gamma} \mid \gamma < \omega_1\}$ è una famiglia di aperti (non vuoti) di \mathbb{R} .

Esercizio 2.

- 1. Supponiamo che $|X| \leq |Z|$ dove Z è bene ordinabile. Senza usare l'assioma di scelta, dimostrare che se esiste $g: X \to Y$ suriettiva, allora $|Y| \leq |X|$.
- 2. Usando l'assioma di scelta, dimostrare la seguente proprietà:

$$(\star) |Y| \leq |X|$$
 se e solo se esiste $g: X \to Y$ suriettiva.

Esercizio 3. Determinare quoziente e resto della divisione euclidea tra gli ordinali $\omega^2 + \omega \cdot 3 + 2$ e $\omega + 4$.

Esercizio 4.

La famiglia dei Boreliani $\mathcal{B}(\mathbb{R})$ è definita come la più piccola σ -algebra di sottoinsiemi di \mathbb{R} che contiene tutti gli aperti.¹ Per induzione transfinita, poniamo:

$$\begin{cases} B_0 = \{X \subseteq \mathbb{R} \mid A \text{ è aperto } \} \\ B_{\alpha+1} = B_{\alpha} \cup \{X^c \mid X \in B_{\alpha}\} \cup \{\bigcup_{n < \omega} X_n \mid X_n \in B_{\alpha}\} \cup \{\bigcap_{n < \omega} X_n \mid X_n \in B_{\alpha}\} \\ B_{\lambda} = \bigcup_{\alpha < \lambda} B_{\alpha} \quad \text{se } \lambda \text{ è limite.} \end{cases}$$

- 1. Dimostrare che $\mathcal{B}(\mathbb{R}) = \bigcup_{\alpha < \omega_1} B_{\alpha}$.
- 2. Qual è la cardinalità di $\mathcal{B}(\mathbb{R})$?

Esercizio 5.

Un cardinale non numerabile κ si dice *limite forte* se $\nu^{\mu} < \kappa$ per ogni $\nu, \mu < \kappa$.

- 1. Dimostrare che se κ è limite forte allora κ è un cardinale limite.
- 2. Dimostrare che κ è limite forte se e solo se $2^{\nu} < \kappa$ per ogni cardinale $\nu < \kappa$.
- 3. Dimostrare che esistono limiti forti.

Esercizio facoltativo. [DIFFICILE. Fare solo dopo aver risolto gli altri esercizi.]

Sia κ un cardinale con $\aleph_0 \le \kappa \le \mathfrak{c}$, dove $\mathfrak{c} = 2^{\aleph_0}$ è la cardinalità del continuo. Dimostrare che le seguenti due condizioni sono equivalenti:

1. Per ogni sottoinsieme $X \subseteq \mathbb{R}$ di cardinalità $|X| = \kappa$, esiste un razionale $q \in \mathbb{Q}$ tale che:

$$|X \cap (-\infty, q)| = |X \cap (q, +\infty)| = \kappa.$$

2. La cofinalità di κ è più che numerabile: $cof(\kappa) > \aleph_0$.

 $^{^{1}}$ Ricordare che una σ -algebra è una famiglia di insiemi chiusa per complementi, e chiusa per intersezioni e unioni numerabili.