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Alternate Title: Nonnegativity Constrained Low-Rank Matrix 
Approximation -

Nonnegative Matrix Factorization (NMF), for Blind Source Separation 
and Unsupervised Unmixing

• Good Matrix Factorization Reference:                            
Hubert, Meulmann, Heiser. “Two purposes of matrix factorization:   
A historical perspective”, Vol 42 SIREV, 2000.

• Good Matrix Approximation Reference:                            
Nick Higham, “Nearest matrix approximations and applications”, 
Oxford Press, 1999.

• Various Constrained Low Rank Approximation References:          
M. Chu, R. Funderlic, Ple., B. Beckermann, B. De Moor,  and 
numerous other authors. 



One Application in this talk: Space Object Identification and COne Application in this talk: Space Object Identification and Characterization haracterization 
fromfrom

Spectral Reflectance DataSpectral Reflectance Data

Perhaps 9,000 objects in orbit: various types of military
and commercial satellites, rocket bodies, residual parts, 
and debris – space object database mining, object
Identification, clustering, classification, etc.
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General  Applications of NMF Techniques
• Document clustering in text data mining (work with Mike Berry)
• Independent representation of image features - face recognition
• Source separation in acoustics, speech
• Hyperspectral imaging from satellites (our Maui project)
• EEG in Medicine, electric potentials
• MEG in medicine, magnetic fields
• Atmospheric pollution source identification (work with Moody Chu, 

Fasma Diele, Stafania Ragina)
• Sensorimotor processing in robots  
• Spectroscopy in chemistry, etc.
• Spectroscopy for space applications – spectral data mining

– Identifying object surface materials and substances
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Computational Mathematics 
Space Investment

• PRET: A university based 
research program involving 
strong industrial ties to 
accelerate transition of 
research to industry

• PRET Objective: Explore and 
develop many of the basic 
sciences that form the basis for                                
space situational awareness
(SSA)

• Specific Research Areas: 
– Spectral data mining
– Wave front sensor control
– Image processing
– Enabling mathematics

Partnership for Research Excellence and Transition  (PRET)
2002 - 2007
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Outline
• Background and Overview of the Problem

– SOI (space object identification)
– PCA, ICA, Sparse ICA, Non-Negative Sparse ICA 

• Data Description
• Features-Based Identification & Classification
• Nonnegativity Constrained Low-Rank 

Approximation for Blind Source Separation and 
Unsupervised Unmixing

• Information-theoretic matching methods
• Preliminary Results using Spectrometer Data 
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Overview of the SOI Problem

• Space activities require accurate information about 
orbiting objects for space situational awareness and 
safety

• Many objects are either in 
– Geosynchronous orbits (about 40,000 KM from earth), or
– Near-Earth orbits, but too small to be resolved by optical imaging 

systems
• Orbiting object identification and classification through 

reflectance spectroscopy sensor measurements
• Spectral measurements of reflected sunlight used to 

identify object surface materials and substances
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Overview of the SOI Problem Continued

• Match recovered hidden components with known spectral 
signatures from substances such as mylar, aluminum, 
white paint, and solar panel materials, etc.

• Problem solution by learning the parts of objects (hidden 
components) by low rank non-negative sparse independent 
component analysis - a new approach for scientific data 
mining and unsupervised hyperspectral unmixing.

• Basis representation (dimension reduction) may enable 
near real-time object (target) recognition, object class 
clustering, and characterization.
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Blind Source Separation for 
Finding Hidden Components

Mixing of Sources
…basic physics often leads to linear mixing…

X = [X1,X2, …,Xm] – training set of column vectors
approximately factor 

X ≈ W H

X sensor readings (mixed components – observed data)
W separated components (feature basis matrix - unknown) 
H hidden mixing coefficients (unknown)

Complete prior knowledge of basis matrix  W would simplify problem, 
but W seldom known in practice.
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Simple Analog Illustration
Hidden Components in Light Hidden Components in Light –– Separated by a PrismSeparated by a Prism

Our purpose Our purpose –– finding hidden components by finding hidden components by data analysisdata analysis
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Some References: 
Recent work involving co-authors of this presentation

• Pauca, Ple., Giffin, “Unmixing Spectral Data for Space 
Objects using Low-Rank Non-Negative Sparse Component 
Analysis”, to appear in Proc. Maui Amos Tech. Conf., 2004

• Pauca, Shahnaz, Berry and Ple., “Text Mining using Non-
negative Matrix Factorization”, to appear in Proc. 
International Conf. on Data Mining, Orlando, 2004.

• Careal, Han, Neumann and Ple., “Reduced Rank Non-
Negative Similarity Matrix Factorization”, to appear in LAA, 
2004.

• Chu, Diele, Ple., Ragni, “Some Theory, Numerical 
Methods, and Applications of NMF”, draft 2004
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Additional Related References

• Lee and Seung.  “Learning the Parts of Objects by Non-Negative Matrix 
Factorization", Nature, 1999.

• Hoyer. “Non-Negative Sparse Coding", Neural Networks for Signal Proc., 2002.
• Hyvärinen and Hoyer. “Emergence of Phase and Shift Invariant Features by 

Decomposition of Natural Images into Independent Feature Subspaces", Neural 
Computation, 2000.

• David Donoho and Stodden. ``When does Nonnegative Matrix Factorization 
give a Correct Decomposition into Parts?", preprint, Dept. Stat., Stanford, 2003.

• Berman and Plemmons. Non-Negative Matrices in the Mathematical Sciences, 
SIAM Press, 1994.

• Sajda, Du, and  Parra, “Recovery of Constituent Spectra using Non-negative 
Matrix Factorization”, Tech. Rept., Columbia U. & Sarnoff Corp. 2003.

• Cooper and Foote, “Summarizing Video using Non-Negative Similarity Matrix 
Factorization”, Tech. Rept. FX Palo Alto Lab, 2003.

• Szu and Kopriva, “Deterministic Blind Source Separation for Space Variant 
Imaging”, 4th Inter. Conf. Independent Component. Anal., Nara Japan, 2003.

• Umeyama, “Blind Deconvolution of Images using Gabor Filters and 
Independent Component Analysis”, 4th Inter. Conf. Independent Component. 
Anal., Nara Japan, 2003.
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- Brief Review -

• Principal Component Analysis (PCA)
• Independent Component Analysis (ICA)
• Sparse Component Analysis (SCA)
• Non-Negative SCA
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Various Approaches for BSS Can be Used
PCA – Older Method

• Based on eigen-decomposition of covariance matrix for 
X = [X1,X2, …,Xm] – training set of column vectors, scaled and 

centered, XXT (or SVD of X itself).
• In the PCA context each column of W represents an eigenvector 

(hidden component), and H represents eigenprojections.
• “Principal” components correspond to largest eigenvalues. 

Components called “eigenfaces” in face recognition applications. 

• Advantages: orthogonal representation, dimension reduction, 
clustering into principal components, computed by simple linear 
algebra.

• Disadvantages: does not enforce nonnegativity in W and H.
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ICA
• Based on neural computation studies – unsupervised 

learning.
• Identified with - blind source separation (BSS), feature 

extraction, finding hidden components. 
• Most research based on equality, X = WH, not 

necessary.
• Statistical independence for components in W, a guiding 

principle, but seldom holds in practical situations. 
• Data in X assumed to have nongausssian PDF, find 

hidden components as independent as possible – mutual 
information content in different components ci, cj, is 
(near) zero, or p(ci,cj) ≈ p(ci)p(cj). 

• Next, sparse separation into parts, and use data non-
negativity.
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SCA
• Sparse (independent) component analysis – called 

sparse encoding in the neural information processing 
literature.

• Enforce sparsity for the hidden mixing components in H.
• PDF has sharp peak at zero and heavy tails
• Allows better separation of basis components by parts,
• Measures of sparsity: lp functional, p ≤ 1 (not a formal 

norm if p < 1). Other measures studied by Donoho, 
“beyond wavelets”. 
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Non-Negative SCA

• Utilize constraint that sensor data values in X are 
nonnegative

• Apply non-negativity constrained low rank approximation 
for blind source separation, dimension reduction (data 
compression) and unsupervised unmixing

• Low rank approximation to data matrix  X :   
X ≈ WH,  W ≥ 0,  H ≥ 0

Columns of W  are basis vectors for spectral trace database, 
desire statistical independence in W.
Columns of H represent mixing coefficients, desire statistical 
sparsity in H.
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Data Obtained from a Spica (Space Infrared Telescope for 
Cosmology and Astrophysics) - type Spectrometer

• Mission: Support non-imaging 
SOI with spectroscopic 
observations

• 3 – 4 angstrom resolution 
• Blue mode: 3000 – 6000 

angstroms (.3 – .6 µm)
• Red mode: 6000 – 9000 

angstroms (.6 – .9 µm)
• Located on the rear blanchard

of a Maui 1.6m telescope
• Can acquire 15th magnitude 

objects (dim objects)
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Sample Raw Data Collected in Blue and Red ModesSample Raw Data Collected in Blue and Red Modes
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Electromagnetic Spectrum: Spectral 
Signatures

For any given material, the amount of solar (or other) radiation
that it reflects, absorbs, or transmits varies with 
wavelength.

This property of matter makes it possible to identify different 
substances and separate them by their spectral
signatures (spectral curves) – hyperspectral unmixing.

Complexity arises since objects can be composed of
many materials, each with their own spectral  
signature.
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Some Laboratory Electromagnetic 
Spectral Signatures
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Database Description
• Spica dataset used for test purposes consists of 2,392 

spectral traces of various space objects. Training data 
matrix  X is  5,732 X 2,392.

• Individual trace wavelengths ranged between about      
.3 to .9 microns, collected in a blue mode (wavelength .3 
to .6 microns) and red mode (.6 to .9 microns).

• Spectral traces are pre-processed to correct for cosmic 
rays, etc., and have background and atmospheric 
absorption effects removed. CCD read noise and 
thermal noise are also present, but at small levels.
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Spica Observations Of Galaxy V Provide Test Cases

24



Some Raw Data Spectral Observations of
Galaxy V Satellite
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NASA data showing spectra of a white painted rocket body matched
with a laboratory spectra of white paint (angstrom = 104 microns)
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Parts- Based Feature Identification & Classification

• Features from hidden components: parts-based learning algorithms 
from training set data

• Utilize constraint that spectral trace reflectance values are nonnegative
• Arrange the spectral traces into columns of a (nonnegative) database 

matrix denoted by X
• Non-negativity constrained low rank approximation for blind source 

separation and unsupervised unmixing

• Low rank approximation to data matrix  X :   X ≈ WH,  W ≥ 0,  H ≥ 0
Columns of W  are basis vectors for spectral trace database
Columns of H represent mixing coefficients

• Low rank representation may allow near real-time object (target) 
recognition and classification using reduced dimension basis matrix W
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Learning the Hidden Components of Objects by Nonnegative 
Matrix Factorization (NMF) – a Recent Approach for 

Mining Nonnegative Scientific Data

• First proposed by Lee and Seung (MIT) in Nature, 1999.

• Idea - use NMF to find a set of nonnegative basis functions to represent image-related 
data where the basis functions enable the identification of “intrinsic parts or features” of 
objects and spectral abundances.

• Allows only additive, not subtractive combinations of the original data, in comparison to 
other decomposition methods such as principal component analysis (PCA) and 
independent component analysis (ICA).

• Problem solution by unsupervised hyperspectral unmixing

• NMF has also been used successfully for “unmixing” data consisting of spectral traces 
of ARVIS (Airborne Visible/IR Spectrometer) observations 

• Other spectral unmixing a applications include Raman spectroscopy and chemical shift 
imaging in biochemistry classification of nuclear magnetic resonance spectral data in 
medicine, by Sajda, et al, Columbia U. and Sarnoff Corp., 2003.
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NMF Problem FormulationNMF Problem Formulation

Given initial database expressed as n x m nonnegative matrix X

find two reduced-dimensional matrices W (n x r) and  H (r x m) to:

where Wij ≥ 0 and  Hij ≥ 0  for each i and j. Choice of r << m is often 
problem dependent. Can impose other (e.g., smoothness) constraints on 
W and/or H.

plus constraints
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NMF - Continued

• Of course W and H are not unique without 
further constraints. W (DP)(DP)-1H, etc.

• Donoho, et al, 2003, used convex cone 
theoretic geometric concepts to determine 
conditions for uniqueness, up to 
permutation and scaling of the rows. 
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Lee and Seung (1999) proposed a multiplicative alternating iteration scheme

1. Initialize W and H with nonnegative values and scale columns of W to unit norm.
2. Iterate for each c, j and i until convergence or stop (eps is a machine dependent 

small positive pos. no.):

Process is essentially a diagonally-scaled gradient 
descent method of EM (R-L) type.
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A NonA Non--Negative Sparse Coding Approach Suggested Hoyer Negative Sparse Coding Approach Suggested Hoyer 
and and DonahoDonaho in the Blind Source Separation Literature in the Blind Source Separation Literature 

Initialization of W and H as with GD-CLS Algorithm 

We replaced (a) by    

(b) Is then not needed.
We replaced step (d) above by:    H  ← H.*(WTX)./(WTWH + λ)
Equivalent to using a sparsity constraint for non-negative H.
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A Non-Negative Sparse ICA Scheme
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Experimental Results using the Spica Database

• X contains m = 2,392 spectral traces, each represented 
by a vector of dimension n = 5,732, corresponding to the 
wavelength range used

• Number of columns used for the basis matrix  W and 
rows of the spectral abundance matrix  H was arbitrarily 
set at k = 30 , for test purposes, as an estimate for an 
upper bound on the number of distinct material traces 
present in the space objects

• The non-negative sparse coding ICA algorithm were 
applied to Spica database
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Some Columns of the Computed Basis Matrix  Some Columns of the Computed Basis Matrix  W W Showing IntrinsicShowing Intrinsic
Hidden Component Material Spectra (Hidden Component Material Spectra (endmembersendmembers))

mylarmylar (left),   white paint (center),   and solar cell (right)(left),   white paint (center),   and solar cell (right)
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How well does the factorization WV approximate Y
for

satellite identification?

• Test by scoring with a fixed spectral scan q of Sat #21906 
(Galaxy V), using spectral data from blue mode, 
observations taken on various days – significant!

• Matching done by using the information-theoretic 
Kullback-Liebler Divergence Measure

• Thirty basis vectors are used. 

• We derive a method imposing useful constraints. Notation 
change: Y for X.
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Columns B used as final endmember set
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Scoring truth for database is BLUE. Scoring approximation using 30 basis in 
endmember matrix B vectors is RED. 
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Quantification of Fractional Abundancies

We use PMRNSD from RestoreTools and endmember matrix B to 
iteratively solve for fractional abundances vector x, given a spectral 
trace vector y.

x provides percentages of aluminum, mylar, solar cell, paint, etc. 
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Sample Simulation Results
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Satellite 5 simulates (real) Galaxy 5 at different observation times 
and in different orientations
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Applications to Object (Target) Feature Identification

• Classification of objects in terms of material 
features and fractional abundances

• Database compression
• Fast determination of whether a new object 

spectral trace is in the database, using basis 
matrix B

• Multiple observations with object in different 
orientations can provide object shape 
information

• Low-rank representation to enable near real-
time object (target) recognition and tracking

- The End -
44
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