FY - FCS - Final

Massimo Caboara - May 29th, 2020

Instructions: You have to keep an audio/video conncetion open all the time. The camera has to show you writing. Solve all the exercises. At 16:00, stop writing and send me photos of your exam. Exams received after 16:15 will receive a substantial downgraded evaluation. Write down your step by step reasoning, NOT ONLY THE FINAL RESULTS

Exercise 1. Given the function

$$
\begin{array}{cccc}
F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & \arctan (2 x+1)
\end{array}
$$

1. Draw the graph of F.
2. Is F even, odd?
3. Is F increasing, decreasing?
4. Has F a maximum? A minumum?
5. Determine $\operatorname{Im}(F)$, the image of F.
6. Find $F(0), F(-1 / 2), F([0,+\infty))$.
7. Find $F^{-1}(0), F^{-1}([0, \pi / 2])$.
8. Is F injective, surjective, invertible?
9. If F is not invertible, restrict the domain/codomain of F to get an invertible function G.
10. Find the explicit inverse of G or F if it is invertible, and draw its graph.

Solution:

GNU1: The graph of F

2

$$
0=\arctan (0)=F((-1 / 2) \neq F(1 / 2)=\arctan (2)>0 \Longrightarrow F \text { is not even }
$$

$$
0=\arctan (0)=F((-1 / 2) \neq-F(1 / 2)=-\arctan (2)<0 \Longrightarrow F \text { is not odd }
$$

3 From the graph, it is evident that F is increasing.
4 From the graph, it is evident that F has no a maximum or minumum.
5 Since

$$
F(x)=\arctan (2 x+1) \text { and } \forall \boldsymbol{\ell} \in \mathbb{R} \arctan (\boldsymbol{\ell}) \in(-\pi / 2, \pi / 2)
$$

we have

$$
\forall x \in \mathbb{R} \arctan (2 x+1) \in(-\pi / 2, \pi / 2)
$$

and so $\operatorname{Im}(F)=(-\pi / 2, \pi / 2)$
$6 \quad F(0)=\arctan (2 \cdot 0+1)=\arctan (1)=\pi / 4 \cdot F(-1 / 2)=\arctan (2 \cdot(-1 / 2)+1)=\arctan (0)=0$
. Since F is increasing and continuous,

$$
F([0,+\infty))=[\pi / 4, \pi / 2]
$$

7 Looking at the graph, we see that $F^{-1}(0)=0$ and that

$$
F^{-1}([0, \pi / 2])=\left[F^{-1}(0), F^{-1}(\pi / 2)\right]=[0,+\infty)
$$

8 Looking at the graph we see that every hotizontal line $y=a, a \in \mathbb{R}$ intersects the graph of F once or not at all. Thus F is injective. Looking at the graph we see that, for example, the hotizontal line $y=2$ doesn't intersect the graph of F. Thus F is not surjective, and hence F is not invertible.
$9 F$ is injective, so the domain stays the same. We restrict the codomain to the image of F to get the invertible function

$$
\begin{array}{rllc}
G: & \mathbb{R} & \longrightarrow & (-\pi / 2, \pi / 2) \\
& x & \mapsto & \arctan (2 x+1)
\end{array}
$$

10 The inverse is $G^{-1}:(-\pi / 2, \pi / 2) \longrightarrow \mathbb{R}$. To have the inverse formula, we solve the equation

$$
\arctan (2 x+1)=y
$$

for the variable x and the parameter y, where $\arctan (2 x+1), y \in(-\pi / 2, \pi / 2)$

$$
\begin{aligned}
\arctan (2 x+1) & =y \\
\tan (\arctan (2 x+1)) & =\tan (y) \\
2 x+1 & =\tan (y) \\
x & =\frac{\tan (y)-1}{2}
\end{aligned}
$$

For the second setp, we can apply the function $\tan :(-\pi / 2, \pi / 2) \longrightarrow \mathbb{R}$ to the equation since $\arctan (2 x+1), y \in(-\pi / 2, \pi / 2)$, the domain of \tan. Since \tan is inverible we don' change the equation solutions (we get an ecquivalent equation). For the third step we remember that $\tan (\arctan)=i d$.

So we have

$$
\begin{array}{|ccc|}
\hline G^{-1}:(-\pi / 2, \pi / 2) & \longrightarrow & \mathbb{R} \\
x & \mapsto & \frac{\tan (y)-1}{2} \\
\hline
\end{array}
$$

Exercise 2. Given the function

$$
\begin{aligned}
& F: \quad \mathbb{R} \longrightarrow \quad \mathbb{R} \\
& x \mapsto \begin{cases}x & x \leq 0 \\
x^{3}+1 & x>0\end{cases}
\end{aligned}
$$

1. Draw the graph of F.
2. Is F even, odd?
3. Is F increasing, decreasing?
4. Has F a maximum? A minumum?
5. Determine $\operatorname{Im}(F)$, the image of F.
6. Find $F(-1), F(2), F([-1,2])$.
7. Find $F^{-1}([-1,0]), F^{-1}([0,9]), F^{-1}([-1,9])$.
8. Is F injective, surjective, invertible?
9. If F is not invertible, restrict the domain/codomain of F to get an invertible function G.
10. Find the explicit inverse of G, or F if it is invertible, and draw its graph.

Solution:

2 We have

$$
\begin{gathered}
F(-1)=-1 \neq F(1)=2 \Longrightarrow F \text { is not even. } \\
F(-1)=-1 \neq-F(1)=-2 \Longrightarrow F \text { is not odd. }
\end{gathered}
$$

3 Looking at the graph, F is increasing.
4 Looking at the graph, F has no maximum or minimum
GNU4: The graph of F

5:

Looking at the graph, we see that all the horizontal lines $y=a, a \in \mathbb{R}$ intersects the graph of F, except for the lines $y=a, a \in(0,1]$

$$
\operatorname{Im}(F)=\mathbb{R}-(0,1]=(\infty, 0] \cup(1,+\infty
$$

$6 F(-1)=-1 . F(2)=10$.

$$
F([-1,2])=F((-1,0] \cup(0,2])=(-1,0] \cup(0,2]
$$

7

$$
\begin{gathered}
F^{-1}([-1,0])=[-1,0] \\
F^{-1}([0,9])=F^{-1}(\{0\} \cup(0,9])=\{0\} \cup(1,2] \\
F^{-1}([-1,9])=F^{-1}([-1,0] \cup(0,9])=[-1,0] \cup(1,2] \\
\hline
\end{gathered}
$$

8 Looking at the graph we see that every hotizontal line $y=a, a \in \mathbb{R}$ intersects the graph of F once or not at all. Thus F is injective. Looking at the graph we see that, for example, the hotizontal line $y=0.5$ doesn't intersect the graph of F. Thus F is not surjective, and hence F is not invertible.
$9 F$ is injective, so the domain stays the same. We restrict the codomain to the image of F to get the invertible function

$$
\begin{aligned}
\hline G: & \mathbb{R}
\end{aligned} \begin{aligned}
& \mathbb{R}-(0,1] \\
& x \mapsto \begin{cases}x & x \leq 0 \\
x^{3}+1 & x>0\end{cases}
\end{aligned}
$$

10 We have $G^{-1}: \mathbb{R}-(0,1] \longrightarrow \mathbb{R}$. To find the formula for the inverse we solve

$$
F(x)=y \text { for } y \in(-\infty, 0] \text { and } y \in(1,+\infty)
$$

the firse is trival $x=y$, for the second,

$$
\begin{aligned}
x^{3}+1 & =y \\
x^{3} & =y-1 \\
\sqrt[3]{x} & =\sqrt[3]{y-1} \\
x & =\sqrt[3]{y-1}
\end{aligned}
$$

In the third step, we can apply to the equation the invertible function $\sqrt[3]{ }$, whose domain is \mathbb{R}, and whose inverse is $(\cdot)^{3}$

$$
\begin{array}{rccc|}
G^{-1}: \mathbb{R}-(0,1] & \longrightarrow & \mathbb{R} \\
x & \mapsto & \begin{cases}x & x \leq 0 \\
\sqrt{x-1} & x>1\end{cases} \\
&
\end{array}
$$

Exercise 3. We have the equation

$$
2^{x}=3 x+3
$$

1. How many solutions are there?
2. Find the solutions, exactly if possible, with approximation of 0.1 if necessary. Motivate your answer.

We solve the equation graphically, drawing the graph of

GNU6: The graphs of f, g

1 There are two solutions, a and b, with $-1<a<-0.5$ and $3.5<b<4$.
2 We find the zeros of the function

$$
\begin{array}{cccc}
F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & 3 x+3-2^{x}
\end{array}
$$

when the function F is negative, $f(x)>g(x)$ and when F is positive, $f(x)<$ $g(x)$
a) The first (left) root: we have $-1<a<-0.5$, and $F(-1)<0, F(-0.5)>$ 0 .

We try $x=\frac{-1-0.5}{2}=-0.75$ and $F(-0.75)>0 \Longrightarrow-1<a<-0.75$

We try $x=\frac{-1-0.75}{2}=-0.875$ and $F(-0.875)<0 \Longrightarrow-0.875<a<-0.75$

We try $x=\frac{-0.875-0.75}{2}=-0.8125$ and $F(-0.8125)<0 \Longrightarrow-0.8125<a<-0.75$
The width of the interval is $-0.8125+0.75=0.0925$, within the required precision of 0.01 , so the solution is

$$
x=\frac{-0.8125-0.75}{2} \pm \frac{0.0925}{2}=-0.78125 \pm 0.04625
$$

b) The second (right) root: we have $3.5<b<4$, and $F(3.5)>0, F(4)<0$.

$$
\text { We try } \frac{3.5+4}{2}=3.75 \text { and } F(3.75)>0 \Longrightarrow 3.75<b<4
$$

We try $\frac{3.75+4}{2}=3.875$ and $F(3.875)<0 \Longrightarrow 3.75<a<3,875$

We try $\frac{3.75+3.875}{2}=3.8125$ and $F(3.8125)<0 \Longrightarrow 3.75<b<3.8125$
The width of the interval is $3.8125-3.75=0.0625$, within the required precision of 0.01 , so the solution is

$$
x=\frac{3.8125+3.75}{2} \pm \frac{0.0625}{2}=3.78125 \pm 0.03125
$$

Exercise 4. We have the two sets

$$
A=\{\sqrt[5]{k+1}-2 \mid k \in \mathbb{N}\} \text { and } B=\left\{2 t^{3}+2 \mid t \in \mathbb{N}\right\}
$$

1. $|A|=|B|$? Motivate your answer.
2. Exhibit, if one exists, an invertible function $F: B \longrightarrow A$.
3. Exhibit, if one exists, an invertible function $G: A \longrightarrow B$.

1 To show that $|A|=|B|$ we can to show that there exists an invertible function $h: A \longrightarrow B$. That can be difficult, so we proceed by showing that $|A|=|\mathbb{Z}|$ and $|\mathbb{Z}|=|B|$, deducing thus that $|A|=|B|$.

- To show that $|A|=|\mathbb{Z}|$, we have to find an invertible function $f: \mathbb{Z} \longrightarrow A$ or $\psi: A \longrightarrow \mathbb{Z}$. Let's do the first. We define the function

$$
\begin{array}{cccc}
f: & \mathbb{Z} & \longrightarrow & A \\
& n & \mapsto & \sqrt[5]{n+1}-2
\end{array}
$$

to show that this function is inverible, we build a function $f^{\prime}: A \longrightarrow \mathbb{Z}$ and we show that f^{\prime} is the inverse of f.

$$
\begin{aligned}
\sqrt[5]{n+1}-2 & =y \\
\sqrt[5]{n+1} & =y+2 \\
(\sqrt[5]{n+1})^{5} & =(y+2)^{5} \\
n+1 & =(y+2)^{5} \\
n & =(y+2)^{5}-1
\end{aligned}
$$

In the third step we aplly to the equation the invertible function $\sqrt[5]{\cdot}: \mathbb{R} \longrightarrow$ \mathbb{R}, getting an equivalent equation. The inverse of $\sqrt[5]{\cdot}$ is $(\cdot)^{5}$, and so we get fourth step. By construction, the function

$$
\begin{array}{lllc}
f^{\prime}: & A & \longrightarrow & \mathbb{Z} \\
& n & \mapsto & (n+2)^{5}-1
\end{array}
$$

is the inverse of f, that is hence invertible.

- To show that $|B|=|\mathbb{Z}|$, we have to find an invertible function $g: \mathbb{Z} \longrightarrow B$ or $\phi: B \longrightarrow \mathbb{Z}$. Let's do the first. We define the function

$$
\begin{array}{cccc}
g: & \mathbb{Z} & \longrightarrow & B \\
& n & \mapsto & 2 n^{3}+1
\end{array}
$$

to show that this function is inverible, we build a function $g^{\prime}: B \longrightarrow \mathbb{Z}$ and we show that g^{\prime} is the inverse of g.

$$
\begin{aligned}
2 n^{3}+1 & =y \\
n^{3} & =\frac{y-1}{2} \\
\sqrt[3]{n^{3}} & =\sqrt[3]{\frac{y-1}{2}} \\
n & =\sqrt[3]{\frac{y-1}{2}}
\end{aligned}
$$

In the third step we aplly to the equation the invertible function $\sqrt[3]{ }: \mathbb{R} \longrightarrow$ \mathbb{R}, getting an equivalent equation. The inverse of $\sqrt[3]{\cdot}$ is $(\cdot)^{3}$, and so we get fourth step. By construction, the function

$$
\begin{aligned}
g^{\prime}: & A
\end{aligned} \longrightarrow \mathbb{Z}, \quad \sqrt[3]{\frac{y-1}{2}}
$$

is the inverse of g, that is hence invertible.
Since have built an invertible function $f: \mathbb{Z} \longrightarrow A$ and an invertible function $g: \mathbb{Z} \longrightarrow B$. So $|A|=|\mathbb{Z}|$ and $|\mathbb{Z}|=|B|$, hence $|A|=|B|$.

2 To buind an invertible function $F: B \longrightarrow A$ we compose $g^{-1}: B \longrightarrow \mathbb{Z}$ and $f: \mathbb{Z} \longrightarrow A$, getting the composition function $B \xrightarrow{g^{-1}} \mathbb{Z} \xrightarrow{f} B$

$$
\begin{array}{cccc}
\hline f \circ g^{-1}: & B & \longrightarrow & A \\
& n & \mapsto & f\left(g^{-1}(n)\right)
\end{array}
$$

where

$$
f\left(g^{-1}(n)\right)=f\left(\sqrt[3]{\frac{y-1}{2}}\right)=\sqrt[5]{\sqrt[3]{\frac{y-1}{2}}+1}-2
$$

This function is invertible because it is the composition of two invertible functions (they are one-to-one correspondences, and the composition of one-to-one correspondences is trivially a one-to-one correspondence).
3 To buind an invertible function $G: A \longrightarrow B$ we compose $f^{-1}: A \longrightarrow \mathbb{Z}$ and $g: \mathbb{Z} \longrightarrow B$, getting the composition function $A \xrightarrow{f^{-1}} \mathbb{Z} \xrightarrow{g} B$

$$
\begin{array}{lccc}
\hline g \circ f^{-1}: & B & \longrightarrow & A \\
& n & \mapsto & g\left(f^{-1}(n)\right)
\end{array}
$$

where

$$
g\left(f^{-1}(n)\right)=g\left((n+2)^{5}-1\right)=2\left((n+2)^{5}-1\right)^{3}+1
$$

This function is invertible because it is the composition of two invertible functions (they are one-to-one correspondences, and the composition of one-to-one correspondences is trivially a one-to-one correspondence).

Exercise 5. We have the following sets A, B in \mathbb{R}^{2}, the real plane:

1. Do we have $|A|=|B|$?
2. Show, if one exists, an one-to-one correspondence between A and B, directly or through some intermediate step.

Solution:
We enlarge B to C, and $|B|=|C|$

We translate C to D, and $|C|=|D|$

We project A onto D, and $|A|=|D|$

1 We have $|A|=|B|$.
2 The combination of the above functions gives an one-to-one correspondence between A and B.

Exercise 6. Given the sets $A=\{0,1,2,3\}$ and $B=\{9,7,6,5,4\}$. We have

$$
|A|=4 \neq 5=|B|
$$

