FCS
 Math: Functions

First partial
Massimo Caboara
April $2^{s t}, 2021$

Exercise 1. Given the function

$$
\begin{array}{cccc}
T: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & 3 \sin \left(\frac{1}{3} x\right)+2
\end{array}
$$

1. Draw the graph of T.
2. What is the PERIOD of T?

Solution:

1. The graph is the graph of $\sin (x)$ multiplied by 3 , shifted up by 2 and stretched by 3 .

2. : the PERIOD of T is 6π, since we stretch by 3 a function whose PERIOD is 2π.

Exercise 2. Solve the equation

$$
\sqrt{x+2}+x=2
$$

Solution

The existence field is $\mathrm{EF}=[-2,+\infty)$. We consider the equivalent equation

$$
\sqrt{x+2}=-x+2
$$

The graphical solution

GNU3

$$
\begin{gathered}
(\sqrt{x+2})^{2}=(-x+2)^{2} \Longleftrightarrow x+2=x^{2}-4 x+4 \Longleftrightarrow x^{2}-5 x+2 \\
x=\frac{5 \pm \sqrt{25-8}}{2}=\frac{5 \pm \sqrt{17}}{2}
\end{gathered}
$$

since $\sqrt{17} \sim 4$, looking at the graph we can say that

$$
\frac{5-\sqrt{17}}{2} \sim \frac{1}{2} \in[-2,2] \text { is acceptable } \frac{5+\sqrt{17}}{2} \sim \frac{9}{2} \notin[-2,2] \text { is not acceptable }
$$

Exercise 3. Given the sets $A=\{3 n+5 \mid n \in \mathbb{N}\}$ and $B=\left\{k^{2}+2 \mid k \in \mathbb{Z}\right\}$

1. Do we have $|A|=|B|$?
2. If the answer is positive, determine explicitly an invertible function $H: A \longrightarrow B$.
3. If such H exists, determine its inverse.

Solution We notice that $B=\left\{k^{2}+2 \mid k \in \mathbb{Z}\right\}=\left\{k^{2}+2 \mid k \in \mathbb{N}\right\}$ since $\forall k \in \mathbb{Z} k^{2}+2>0$. We remember that in a set there are no repetitions.

1. We have $|A|=|\mathbb{N}|$ and $|B|=|\mathbb{N}|$, since the two functions

$$
\begin{array}{rllccccc}
F: & \mathbb{N} & \longrightarrow & A & G: & \mathbb{N} & \longrightarrow & B \\
& n & \mapsto & 3 n+5 & & n & \mapsto & n^{2}+2
\end{array}
$$

are invertible with inverses

$$
\begin{array}{rllccccc}
F^{-1}: & A & \longrightarrow & \mathbb{N} & G^{-1}: & B & \longrightarrow & \mathbb{N} \\
& n & \mapsto & \frac{n-5}{3} & & n & \mapsto & \sqrt{n-2}
\end{array}
$$

determined by solving

$$
3 n+5=y \Longleftrightarrow n=\frac{y-5}{3}
$$

and

$$
n^{2}+2=y \Longleftrightarrow n^{2}=y-2 \Longleftrightarrow n=\sqrt{y-2}
$$

in the last case we get the positive solution looking at the domains/codomains. Since

$$
|A|=|\mathbb{N}| \text { and }|B|=|\mathbb{N}|
$$

we get

$$
|A|=|B|
$$

2. We build an invertible function H from A to B by composition,

$$
\begin{gathered}
A \xrightarrow{F^{-1}} \mathbb{N} \xrightarrow{G} B \\
H \equiv G \circ F^{-1}: \begin{array}{ll}
A & \longrightarrow \\
n & \mapsto
\end{array} F^{-1}(G(n))=\left(\frac{n-5}{3}\right)^{2}+2=\frac{n^{2}-10 n+43}{9}
\end{gathered}
$$

This is an invertible function since it is the composition of invertible functions
3. Since $H \equiv G \circ F^{-1}$ is invertible, its inverse is

$$
\left.H^{-1} \equiv\left(G \circ F^{-1}\right)^{-1}\right) \equiv\left(F^{-1}\right)^{-1} \circ G^{-1} \equiv F \circ G^{-1}
$$

and since

$$
F \circ G^{-1}(n)=F\left(G^{-1}(n)\right)=F(\sqrt{n-2})=3(\sqrt{n-2})+5
$$

we have

$$
\begin{array}{rllc}
H^{-1}: & B & \longrightarrow & A \\
& n & \mapsto & 3(\sqrt{n-2})+5
\end{array}
$$

Exercise 4. We have the function

$$
\begin{array}{cccc}
F: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & (x+1)^{2}+2
\end{array}
$$

1. Is F invertible?
2. If the answer is no, determine a domain/codomain restriction of F that makes it invertible. Proceed with the new F.
3. Determine explicitly the inverse of F

Solution

The graph of F is just the graph of the standard parabola shifted by 2 up and by 1 to the left.

1. So, F is not invertible by the horizontal line rule.
2. We restrict to domain and codomain of F to get the new function

$$
\left.\begin{array}{ccc}
F^{\prime}: & {[-1,+\infty)} & \longrightarrow
\end{array}\right][2,+\infty)
$$

whose graph is

F^{\prime} is clearly invertible by the horizontal line rule
3. The inverse of

$$
F^{\prime}:[-1,+\infty) \longrightarrow[2,+\infty)
$$

is

$$
F^{\prime-1}:[2,+\infty) \longrightarrow[-1,+\infty)
$$

$$
\begin{aligned}
(x+1)^{2}+2 & =y \\
x^{2}+2 x+3-y^{2} & =0 \\
x & =\frac{-2 \pm \sqrt{4-4\left(3-y^{2}\right)}}{2} \\
x & =-1 \pm \sqrt{y^{2}-2}
\end{aligned}
$$

Since $x \in[-1,+\infty)$ we take the positive root only.
The explicit inverse is

$$
\begin{array}{ccc}
F^{\prime-1}: & {[2,+\infty)} & \longrightarrow \\
& {[-1,+\infty)} \\
x & \mapsto & -1+\sqrt{x^{2}-2}
\end{array}
$$

Exercise 5.

1. Do the subsets A, B of \mathbb{R}^{2} have the same cardinality? Detail the answer.

2. Do the subsets A, C of \mathbb{R}^{2} have the same cardinality? Detail the answer.

GNU7

Do the subsets B, C of \mathbb{R}^{2} have the same cardinality? Detail the answer.

Solution

1. We have $|A|=|B|$ since the function F detailed below is a one-to-one correspondence.

2. We have $|A|=|C|$ since the function G detailed below is a one-to-one correspondence.

GNU10

3. Since $|A|=|B|$ and $|A|=|C|$, we have $|B|=|C|$.

Exercise 6.

1. Draw the function

$$
\begin{array}{cccc}
f: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & \sin \left(\frac{1}{3} x\right)
\end{array}
$$

2. Draw the function

$$
\begin{array}{cccc}
g: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \mapsto & \sin \left(\frac{2}{3} x\right)
\end{array}
$$

3. Determine the PERIOD of f.
4. Determine the PERIOD of g.
5. Determine a period of $f+g$.

Solution

1. The graph of $\sin \left(\frac{1}{3} x\right)$ is the graph of $\sin (x)$, but stretched by 3 .

2. The graph of $\sin \left(\frac{2}{3} x\right)$ is the graph of $\sin (x)$, but stretched by $3 / 2$.

3. The PERIOD of f is, for the same resons as in exercise $1,6 \pi$.
4. The PERIOD of g is, for the same resons as in exercise $1,3 \pi$.
5. A period of $f+g$ is thus $\operatorname{lcm}(3 \pi, 6 \pi)=6 \pi$.
