FY - FCS - Homework 2

Massimo Caboara

May 20, 2021

Exercise 1. We have the function

$$
\begin{array}{ccc}
F: & {[-1,+\infty]} & \longrightarrow \\
\mathbb{R} \\
x & \mapsto & \log _{e}(x+1)+2
\end{array}
$$

1. Draw the graph of F. Mark the intersections with the axis and the vertex.
2. Determine $F([1,4])$.
3. Determine $F^{-1}(1)$.
4. Determine $F^{-1}(1 / 2)$.
5. Determine $F^{-1}([-1,1])$.
6. Solve, with approximation if necessary, the equation $F(x)=x^{2}$
7. Is F invertible? If it is, determine the formula for its inverse and draw its graph.

Solutions: we draw the graph F, remembering the graph of $\log _{e}: \mathbb{R}^{+} \longrightarrow \mathbb{R}$ and shifting it up by 2 and to the left by 1.

1. Since $F(1)=\log _{e}(2)+2 \simeq 0.7+2 \simeq 2.7$ and $F(4)=\log _{e}(5)+2 \simeq 1.6+2=$ 3.6, looking at the graph we have $F([1,4])=[F(1), F(4)] \simeq[2.7,3.6]$.

Figure 1: $F([1,2])$
2. Determine $F^{-1}(1)$.

Figure 2: Intersection of the graph of F with the line $y=1$

We have to solve

$$
\begin{aligned}
\log _{e}(x+1)+2 & =1 \\
\log _{e}(x+1) & =-1 \\
e^{\log _{e}(x+1)} & =e^{-1} \\
x+1 & =1 / e \\
x & =1 / e-1 \\
x & \simeq 0.36-1 \\
x & \simeq-0.64
\end{aligned}
$$

3. Determine $F^{-1}(1 / 2)$.

Figure 3: Intersection of the graph of F with the line $y=1 / 2$
We solve

$$
\begin{aligned}
\log _{e}(x+1)+2 & =1 / 2 \\
\log _{e}(x+1) & =-3 / 2 \\
e^{\log _{e}(x+1)} & =e^{-3 / 2} \\
x+1 & =\frac{1}{e^{3 / 2}} \\
x+1 & =\frac{1}{e \sqrt{e}} \\
x+1 & =\frac{1}{e \sqrt{e}}-1 \\
x+1 & =0.2-1 \\
x & \simeq-0.8
\end{aligned}
$$

4. Determine $F^{-1}([-1,1])$.

Figure 4: Intersection of the graph of F with the lines $y=-1, y=1$
It is immediate from the graph that $F^{-1}([-1,1])=[a, b]$.
We have already computed b, that is $F^{-1}(1) \simeq-0.64$. To compute $a=$ $F^{-1}(-1)$ We solve

$$
\begin{aligned}
\log _{e}(x+1)+2 & =-1 \\
\log _{e}(x+1) & =-3 \\
e^{\log _{e}(x+1)} & =e^{-3} \\
x+1 & =\frac{1}{e^{3}} \\
x & =\frac{1}{e^{3}}-1 \\
x & =0.05-1 \\
x & \simeq-0.95
\end{aligned}
$$

and so $a=-0.95$ and

$$
F^{-1}([-1,1]) \simeq[-0.95,-0.64]
$$

5. Solve, with approximation if necessary, the equation $F(x)=x^{2}$.

We draw the graph of the function and the parabola $y=x^{2}$.

Figure 5: Intersection of the graph of F with the parabola $y=x^{2}$
It is clear that there are two intersections, a, b, with $a \in(-1,-0.5)$ and $b \in(1.5,2)$

Figure 6: Graph of $F x)=\log _{e}(x+1)+2$
6. By looking at the graph of F it is obvious that any horizontal line $y=a$, with $a \in \mathbb{R}$ intersects F once and only once. The function F is hence invertible, and there exists $F^{-1}: \mathbb{R} \longrightarrow(-1,+\infty)$. The get the inverse formula, we solve for x the equation

$$
\begin{aligned}
\log _{e}(x+1)+2 & =y \\
\log _{e}(x+1) & =y-2 \\
e^{\log _{e}(x+1)} & =e^{y-2} \\
x+1 & =e^{y-2} \\
x & =e^{y-2}-1
\end{aligned}
$$

The third step is OK becasuse the function e^{x} has as domain the whole \mathbb{R}, and we can hence apply it to both sides of the equation without regard to the values $\log _{e}(x+1), y-2$. The fourth step is OK because the functions e^{x} and $\log _{e}(x)$ are inverses.

The inverse is so

$$
\left.\begin{array}{rl}
F^{-1}: \mathbb{R} & \longrightarrow \\
y & \mapsto
\end{array} e^{y-2}-1,+\infty\right)
$$

Figure 7: The graph of $F^{-1}: \mathbb{R} \longrightarrow(-1,+\infty), F^{-1}(x)=e^{y-2}-1$

Exercise 2. Find the definition field for the formula

$$
\begin{array}{ccc}
h:[-2 \pi, 2 \pi] & \longrightarrow & \mathbb{R} \\
x & \mapsto & \frac{\sqrt{1-x^{2}} \tan (x)}{\left(1-x^{2}\right) \sin (x)}
\end{array}
$$

We have the following constraints

$$
\begin{cases}1-x^{2} \geq 0 & \text { root existence } \\ x \neq k \pi / 2, k \in \mathbb{Z} & \text { tangent existence } \\ 1-x^{2} \neq 0 & \text { denominator } \neq 0 \\ \sin (x) \neq 0 & \text { denominator } \neq 0\end{cases}
$$

Figure 8: The elementary function graphs

Looking at the graphs we easily see that

1. $1-x^{2} \geq 0 \Longrightarrow x \in[-1,1]$.
2. $x \neq k \pi / 2, k \in \mathbb{Z} \Longrightarrow x \notin\{\ldots,-5 / 2 \pi,-3 / 2 \pi,-\pi / 2, \pi / 2,3 / 2 \pi, 5 / 2 \pi, \ldots\}$. And since, $x \in[-2 \pi, 2 \pi]$ this is equivalent to $x \notin\{-3 / 2 \pi,-\pi / 2, \pi / 2,3 / 2 \pi\}$.
3. $1-x^{2} \neq 0 \Longrightarrow x^{2} \neq 1 \Longrightarrow x \neq \pm 1$.
4. $\sin (x) \neq 0 \Longrightarrow x \neq \pi+k \pi, k \in \mathbb{Z} \Longrightarrow x \notin\{\ldots,-3 \pi,-2 \pi, \pi, 0, \pi, 2 \pi, 3 \pi, \ldots\}$. And since, $x \in[-2 \pi, 2 \pi]$ this is equivalent to $x \notin\{-2 \pi, \pi, 0, \pi, 2 \pi\}$

Since $\pi \simeq 3,14$ we have $\pi / 2 \simeq 1.57$ and the four conditions, that have to held at the same time, give as final constraint

$$
x \in(-1,0) \cup(0,1)
$$

And this is the definition set of the formula h. The associated function is

$$
\begin{array}{ccc}
h^{\prime}: \quad(-1,0) \cup(0,1) & \longrightarrow & \mathbb{R} \\
x & \mapsto & \frac{\sqrt{1-x^{2}} \tan (x)}{\left(1-x^{2}\right) \sin (x)}
\end{array}
$$

and since, for $x \in(-1,0) \cup(0,1)$ we have that

$$
\begin{aligned}
\frac{\sqrt{1-x^{2}} \tan (x)}{\left(1-x^{2}\right) \sin (x)} & =\frac{\sqrt{1-x^{2}} \frac{\sin (x)}{\cos (x)}}{\left(1-x^{2}\right) \sin (x)} \\
& =\frac{\sqrt{1-x^{2}} \frac{1}{\cos (x)}}{\left(1-x^{2}\right)} \\
& =\frac{\sqrt{1-x^{2}}}{\left(1-x^{2}\right) \cos (x)}
\end{aligned}
$$

we have that h^{\prime} is equal, e.g., to the simpler function

$$
\begin{array}{ccc}
h^{\prime \prime}:(-1,0) \cup(0,1) & \longrightarrow & \mathbb{R} \\
x & \mapsto & \frac{\sqrt{1-x^{2}}}{\left(1-x^{2}\right) \cos (x)}
\end{array}
$$

Exercise 3. Find the number of solutions of the equation

$$
4 \sin (x)+2=x^{2}-5
$$

Figure 9: Intersections of $y=4 \sin (x)+2$ and $x^{2}-5$
From the graph it is immediate that there are two solutions $x=a, b$ and $a \in(-2,-1.5), b \in(2.5,3)$.

Exercise 4. Draw the graph of the function

$$
\begin{aligned}
F: \mathbb{R} & \longrightarrow\left\{\begin{array}{ll}
\frac{2^{x+1}+1}{2} & x \in[-5,1) \\
x & \mapsto \begin{cases}\frac{x^{2}+2}{2} & x \in[1,2] \\
\frac{\sqrt{x}+8}{2} & x \in(2,8)\end{cases}
\end{array} . \begin{array}{l}
x
\end{array}\right.
\end{aligned}
$$

Is the function

1. Injective?
2. Surjective?
3. Invertible?

Restrict the domain, codomain of F to obtain an invertible function.
The purple curve is for $\frac{2^{x+1}+1}{2}$, the green curve is for $\frac{x^{2}+2}{2}$ and the blu curve is for $\frac{\sqrt{x}+8}{2}$.

Solution:
From the graph of the function it is clear that

1. F is not injective because, for example, the red horizontal line $y=2$ intersects the graph of F twice.
2. F is not surjective, because the magenta horizontal line $y=4$ does not intersect the graph of F.
3. F is thus not invertible.

If, for example, we restrict the domain of F to $(-5,1]$ and the codomain to
$[F(-5), F(1)]=\left[\frac{2^{-4}+1}{2}, \frac{2^{2}+1}{2}\right]=\left[\frac{1 / 16+1}{2}, \frac{5}{2}\right]=\left[\frac{1 \frac{17}{16}}{2}, \frac{5}{2}\right]=\left[\frac{17}{32}, \frac{5}{2}\right]=[17 / 32,4]=[0.5125,2.5]$
we get the function

$$
\begin{array}{cccc}
F_{[[-5,1]}: & {[-5,1]} & \longrightarrow & {\left[0.5125, \frac{5}{2}\right]} \\
x & \mapsto & F(x)
\end{array}
$$

that is clearly invertible

