FCS
 Math: Functions

Massimo Caboara

May $13^{\text {th }}, 2021$

Definition 1. A function $F: \mathbb{R} \longrightarrow \mathbb{R}$, is

- ODD if $\forall x \in A F(-x)=-F(x)$ or, equivalently, the graph of F is symmetric with respect to the origin.
- EVEN if $\forall x \in A F(-x)=F(x)$ or, equivalently, the graph of F is symmetric with respect to the $x=0$ vertical line.

Example 1. The functions with the following formulas are $O D D$.
$f(x)=0, f(x)=x, f(x)=x^{3}, f(x)=x^{2 n+1}, n \in \mathbb{N}, y=\sin (x), y=\tan (x), y=\arcsin (x), y=\arctan (x)$
Example 2. The functions with the following formulas are EVEN.
$f(x)=a, a \in \mathbb{R}, f(x)=x^{2}, f(x)=x^{2 n}, n \in \mathbb{N}, f(x)=\cos (x), f(x)=\arccos (x), f(x)=|x|$
Example 3. The functions with the following formulas are neither ODD nor EVEN.

$$
f(x)=x+1, f(x)=\sqrt{x}, f(x)=e^{x}, y=\log (x), y=x^{2}+x
$$

Proposition 1. If the invertible function $F: \mathbb{R} \longrightarrow \mathbb{R}$ is $O D D$ (EVEN), then $F^{-1}: B \longrightarrow A$ is $O D D$ (EVEN).

Proposition 2. If the invertible, continuous function $F: \mathbb{R} \longrightarrow \mathbb{R}$ is increasing (decreasing), then $F^{-1}: B \longrightarrow A$ is increasing (decreasing).

Proposition 3. We have the functions f, g

f odd	g odd	$f \pm g$ are odd	$f \cdot g, f / g$ are even	$f \circ g$ is odd
f even	g even	$f \pm g$ are even	$f \cdot g, f / g$ are even	$f \circ g$ is even
f odd	g even	$f \pm g$ neither	$f \cdot g, f / g$ are odd	$f \circ g$ is even
f even	g odd	$f \pm g$ neither	$f \cdot g, f / g$ are odd	$f \circ g$ is even

Note that if g is EVEN, $f \circ g$ is EVEN for any function.

Proposition 4. We have the monotone, continuous functions f, g defined on an interval (a, b)

$$
\begin{aligned}
& f \uparrow \quad-f \downarrow \\
& f \downarrow \quad-f \uparrow \\
& f \uparrow 1 / f \downarrow \\
& f \downarrow 1 / f \uparrow \\
& f \uparrow \quad g \uparrow \quad f+g \uparrow \quad f \cdot g ? \quad f \circ g \uparrow \\
& f \downarrow \quad g \downarrow \quad f+g \downarrow \quad f \cdot g ? \quad f \circ g \uparrow \\
& f \uparrow \quad g \downarrow f+g ? \quad f \cdot g \text { ? } f \circ g \downarrow \\
& f \downarrow g \uparrow \quad f+g ? f \cdot g ? f \circ g \downarrow
\end{aligned}
$$

