FCS Math: Functions

Massimo Caboara

May 13^{th} , 2021

Definition 1. A function $F : \mathbb{R} \longrightarrow \mathbb{R}$, is

- ODD if $\forall x \in A \ F(-x) = -F(x)$ or, equivalently, the graph of F is symmetric with respect to the origin.
- EVEN if $\forall x \in A \ F(-x) = F(x)$ or, equivalently, the graph of F is symmetric with respect to the x = 0 vertical line.

Example 1. The functions with the following formulas are ODD.

 $f(x) = 0, \ f(x) = x, \ f(x) = x^3, \ f(x) = x^{2n+1}, n \in \mathbb{N}, \ y = \sin(x), y = \tan(x), \ y = \arcsin(x), \ y = \arctan(x)$

Example 2. The functions with the following formulas are EVEN.

 $f(x) = a, \ a \in \mathbb{R}, \ f(x) = x^2, \ f(x) = x^{2n}, n \in \mathbb{N}, \ f(x) = \cos(x), \ f(x) = \arccos(x), \ f(x) = |x|$

Example 3. The functions with the following formulas are neither ODD nor EVEN.

$$f(x) = x + 1, \ f(x) = \sqrt{x}, \ f(x) = e^x, \ y = \log(x), \ y = x^2 + x$$

Proposition 1. If the invertible function $F : \mathbb{R} \longrightarrow \mathbb{R}$ is ODD (EVEN), then $F^{-1} : B \longrightarrow A$ is ODD (EVEN).

Proposition 2. If the invertible, continuous function $F : \mathbb{R} \longrightarrow \mathbb{R}$ is increasing (decreasing), then $F^{-1} : B \longrightarrow A$ is increasing (decreasing).

Proposition 3. We have the functions f, g

$f \ odd$	$g \ odd$	$f \pm g \ are \ odd$	$f \cdot g, f/g$ are even	$f \circ g$ is odd
f even	g even	$f \pm g$ are even	$f \cdot g, f/g$ are even	$f \circ g$ is even
$f \ odd$	$g \ even$	$f \pm g$ neither	$f \cdot g, f/g$ are odd	$f \circ g$ is even
f even	$g \ odd$	$f\pm g$ neither	$f \cdot g, f/g$ are odd	$f \circ g$ is even

Note that if g is EVEN, $f \circ g$ is EVEN for any function.

Proposition 4. We have the monotone, continuous functions f, g defined on an interval (a, b) $f \uparrow -f$

$$\begin{array}{cccc} f\uparrow & -f\downarrow \\ f\downarrow & -f\uparrow \\ f\uparrow & 1/f\downarrow \\ f\downarrow & 1/f\uparrow \\ \end{array} \\ f\uparrow & g\downarrow & f+g\downarrow & f\cdot g ? & f\circ g\uparrow \\ f\downarrow & g\downarrow & f+g\downarrow & f\cdot g ? & f\circ g\uparrow \\ f\uparrow & g\downarrow & f+g ? & f\circ g ? & f\circ g\downarrow \\ f\downarrow & g\uparrow & f+g ? & f\cdot g ? & f\circ g\downarrow \\ f\downarrow & g\uparrow & f+g ? & f\cdot g ? & f\circ g\downarrow \\ \end{array}$$