FCS
 Math: Functions Exercises

Massimo Caboara

May $13^{\text {th }}, 2021$

Exercises

Exercise 1. Given the functions $f: \mathbb{R} \longrightarrow \mathbb{R}, \uparrow$ and $g: \mathbb{R} \longrightarrow \mathbb{R}, \downarrow$, prove that the function $f \circ g: \mathbb{R} \longrightarrow \mathbb{R}$ is \downarrow.

Exercise 2. Given the functions $f: \mathbb{R} \longrightarrow \mathbb{R}$, even and any $g: \mathbb{R} \longrightarrow \mathbb{R}$, function $g \circ f: \mathbb{R} \longrightarrow \mathbb{R}$ is even.

Exercise 3. Find examples of functions $f: \mathbb{R} \longrightarrow \mathbb{R}$, even and any $g: \mathbb{R} \longrightarrow \mathbb{R}$, odd such that $f+g$ is neither odd nor even.

Exercise 4. Find examples of functions $f: \mathbb{R} \longrightarrow \mathbb{R}, \uparrow$ and $g: \mathbb{R} \longrightarrow \mathbb{R}, \downarrow$ such that $f \cdot g$ is neither increasing nor decreasing.

Exercise 5. Draw the graph of the quasi-function $f(x)=\sin \left(x^{2}\right)$. Find the existence field, intersection with the axis, zeroes, positivity and increasing intervals. Find maximun and minimums.

GNU1: The Graph of $f(x)=\sin \left(x^{2}\right)$

Exercise 6. Draw the graph of the quasi-function $f(x)=\arcsin \left(2^{x}\right)$. Find the existence field, intersection with the axis, zeroes, positivity and increasing intervals. Find maximun and minimums.

GNU2: The Graph of $f(x)=\arcsin \left(2^{x}\right)$

Exercise 7. Draw the graph of the quasi-function $f(x)=$ frac $1 x-1$. Find the existence field, intersection with the axis, zeroes, positivity and increasing intervals. Find maximun and minimums.

GNU3: The Graph of $f(x)=f(x)=\frac{1}{x-1}$

Exercise 8. Draw the graph of the quasi-function $f(x)=\frac{x}{x-1}$. Find the existence field, intersection with the axis, zeroes, positivity and increasing intervals. Find maximun and minimums.

GNU4: The Graph of $f(x)=f(x)=\frac{x}{x-1}$

Exercise 9. Draw the graph of the quasi-function $f(x)=\frac{x}{\sqrt{x-1}}$. Find the existence field, intersection with the axis, zeroes, positivity and increasing intervals. Find maximun and minimums.

GNU5: The Graph of $f(x)=\frac{x}{\sqrt{x-1}}$

Exercise 10. Draw the graph of the quasi-function $f(x)=\frac{\sqrt{x}}{\sqrt{x-1}}$. Find the existence field, intersection with the axis, zeroes, positivity and increasing intervals. Find maximun and minimums.

GNU6: The Graph of $f(x)=\frac{\sqrt{x}}{\sqrt{x-1}}$

Exercise 11. Draw the graph of the quasi-function $f(x)=\sqrt{\frac{x}{x-1}}$. Find the existence field, intersection with the axis, zeroes, positivity and increasing intervals. Find maximun and minimums.

Exercise 12. Draw the graph of the quasi-function $f(x)=2^{\arctan (x)}$. Find the existence field, intersection with the axis, zeroes, positivity and increasing intervals. Find maximun and minimums.

GNU8: The Graph of $f(x)=2^{\arctan (x)}$

Exercise 13. Draw the graph of the quasi-function $f(x)=\log (|x+1|)$. Find the existence field, intersection with the axis, zeroes, positivity and increasing intervals. Find maximun and minimums.

GNU9: The Graph of $f(x)=\log (|x+1|)$

