FCS Math: Functions Exercises

Massimo Caboara

May 13^{th} , 2021

Exercises

Exercise 1. Given the functions $f : \mathbb{R} \longrightarrow \mathbb{R}, \uparrow$ and $g : \mathbb{R} \longrightarrow \mathbb{R}, \downarrow$, prove that the function $f \circ g : \mathbb{R} \longrightarrow \mathbb{R}$ is \downarrow .

Exercise 2. Given the functions $f : \mathbb{R} \longrightarrow \mathbb{R}$, even and any $g : \mathbb{R} \longrightarrow \mathbb{R}$, function $g \circ f : \mathbb{R} \longrightarrow \mathbb{R}$ is even.

Exercise 3. Find examples of functions $f : \mathbb{R} \longrightarrow \mathbb{R}$, even and any $g : \mathbb{R} \longrightarrow \mathbb{R}$, odd such that f + g is neither odd nor even.

Exercise 4. Find examples of functions $f : \mathbb{R} \longrightarrow \mathbb{R}, \uparrow$ and $g : \mathbb{R} \longrightarrow \mathbb{R}, \downarrow$ such that $f \cdot g$ is neither increasing nor decreasing.

Exercise 5. Draw the graph of the quasi-function $f(x) = \sin(x^2)$. Find the existence field, intersection with the axis, zeroes, positivity and increasing intervals. Find maximum and minimums.

Exercise 6. Draw the graph of the quasi-function $f(x) = \arcsin(2^x)$. Find the existence field, intersection with the axis, zeroes, positivity and increasing intervals. Find maximum and minimums.

GNU2: The Graph of $f(x) = \arcsin(2^x)$

Exercise 7. Draw the graph of the quasi-function $f(x) = frac_1x - 1$. Find the existence field, intersection with the axis, zeroes, positivity and increasing intervals. Find maximum and minimums.

GNU3: The Graph of $f(x) = f(x) = \frac{1}{x-1}$

Exercise 8. Draw the graph of the quasi-function $f(x) = \frac{x}{x-1}$. Find the existence field, intersection with the axis, zeroes, positivity and increasing intervals. Find maximum and minimums.

GNU4: The Graph of $f(x) = f(x) = \frac{x}{x-1}$

Exercise 9. Draw the graph of the quasi-function $f(x) = \frac{x}{\sqrt{x-1}}$. Find the existence field, intersection with the axis, zeroes, positivity and increasing intervals. Find maximum and minimums.

6

 $\mathbf{2}$

0.

Exercise 10. Draw the graph of the quasi-function $f(x) = \frac{\sqrt{x}}{\sqrt{x-1}}$. Find the existence field, intersection with the axis, zeroes, positivity and increasing intervals. Find maximun and minimums.

Exercise 11. Draw the graph of the quasi-function $f(x) = \sqrt{\frac{x}{x-1}}$. Find the existence field, intersection with the axis, zeroes, positivity and increasing intervals. Find maximum and minimums.

Exercise 12. Draw the graph of the quasi-function $f(x) = 2^{\arctan(x)}$. Find the existence field, intersection with the axis, zeroes, positivity and increasing intervals. Find maximum and minimums.

GNU8: The Graph of $f(x) = 2^{\arctan(x)}$

Exercise 13. Draw the graph of the quasi-function $f(x) = \log(|x + 1|)$. Find the existence field, intersection with the axis, zeroes, positivity and increasing intervals. Find maximum and minimums.

GNU9: The Graph of $f(x) = \log(|x+1|)$